Experimental and simulation study on micro damage of HTPB propellant under multi angle tensile shear loading

The damage evolution of composite solid propellants is influenced by the stress state. In order to investigate the in-situ damage evolution mechanism of hydroxyl terminated polybutadiene (HTPB) propellant under tensile shear conditions, computer tomography (CT) technology was used to scan and recons...

Full description

Saved in:
Bibliographic Details
Published inPolymer testing Vol. 148; p. 108841
Main Authors Jiaxiang, Wang, Hongfu, Qiang, Shudi, Pei, Shiqi, Li
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.07.2025
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The damage evolution of composite solid propellants is influenced by the stress state. In order to investigate the in-situ damage evolution mechanism of hydroxyl terminated polybutadiene (HTPB) propellant under tensile shear conditions, computer tomography (CT) technology was used to scan and reconstruct micro samples of HTPB propellant loaded at different angles. The variation of propellant internal damage with loading process and the influence of different representative volume element (RVE) sizes on porosity were analyzed. Subsequently, numerical simulations of relaxation loads were conducted using 12 different finite element models with 4 RVE sizes and 3 mesh sizes. The experimental results show that under tension shear loading conditions, the porosity increases exponentially with the equivalent effect, and the propagation direction of macroscopic cracks formed by the convergence of microcracks tends to be perpendicular to the tensile stress component. When the side length of RVE reaches and exceeds 600 μm, the porosity tends to stabilize. The numerical simulation study of variable angle tension shear loading found that when the RVE size is 800 μm and the grid size is 10 μm, the calculation effect considering calculation accuracy and efficiency is the best. As the loading angle increases, the dewetting stress first decreases and then increases, the dewetting strain shows a linear increasing trend. •This study innovatively designed and prepared microstructure samples of solid propellants with different loading angles, and systematically verified the feasibility of the experimental scheme using finite element method. By conducting micro mechanical experiments under variable angle tensile shear composite loading conditions, the propagation behavior of macroscopic cracks in complex stress fields was revealed for the first time: the propagation direction of macroscopic cracks formed by the convergence of microcracks is orthogonal to the tensile stress component. The experimental results show that solid propellants exhibit significant microscopic damage evolution characteristics under load, and their porosity increases exponentially with the increase of nominal strain. It is worth noting that there are significant differences in the evolution of porosity under different loading angles: as the loading angle decreases, the shear component in the stress field decreases accordingly, and the loading state gradually approaches uniaxial tension, at which point the growth rate of porosity significantly accelerates.•Based on advanced micro CT scanning technology and multiple segmentation algorithms, a high-precision 3D digital model of the propellant bonding interface was successfully constructed by processing the raw data. By systematically studying the influence of representative volume element (RVE) size on porosity characterization, the critical threshold for RVE size has been determined for the first time: when the RVE side length reaches 600 μm, the measured porosity value tends to stabilize. This discovery provides important theoretical basis for the study of the micro mechanical properties of HTPB composite solid propellants. It is recommended to use RVE with a side length of not less than 600 μm for quantitative characterization analysis in subsequent mechanical modeling and numerical simulation to ensure the reliability and accuracy of the research results.•This study constructed 12 sets of finite element models containing 4 RVE sizes and 3 mesh sizes, and systematically conducted numerical simulation research under relaxed load conditions. Research has found two key patterns: firstly, under the condition of fixed RVE size, as the grid size increases, the calculation accuracy shows a characteristic of first rapidly decreasing and then stabilizing; Secondly, under fixed grid size conditions, an increase in RVE size will significantly improve computational accuracy, and this effect is more pronounced at larger grid sizes. Through optimization analysis, it was determined that the optimal computational performance can be achieved when the RVE size is 800 μm and the grid size is 10 μm. This discovery provides important parameter optimization basis for numerical simulation research of solid propellants.•This study established a three-dimensional micromechanical model of composite solid propellants under variable angle tensile shear loads for the first time, and conducted systematic numerical simulation research. Several innovative findings have been made in the study: the critical dewetting stress first decreases then increases with loading angle, reaching minimum values near 60° loading angles, while critical dewetting stress under 90° pure shear loading exceeds that under 0° uniaxial tension; critical dewetting strain shows approximately linear growth, measuring 6.1 % under 0° uniaxial tension and 10.8 % under 90° pure shear loading.
AbstractList The damage evolution of composite solid propellants is influenced by the stress state. In order to investigate the in-situ damage evolution mechanism of hydroxyl terminated polybutadiene (HTPB) propellant under tensile shear conditions, computer tomography (CT) technology was used to scan and reconstruct micro samples of HTPB propellant loaded at different angles. The variation of propellant internal damage with loading process and the influence of different representative volume element (RVE) sizes on porosity were analyzed. Subsequently, numerical simulations of relaxation loads were conducted using 12 different finite element models with 4 RVE sizes and 3 mesh sizes. The experimental results show that under tension shear loading conditions, the porosity increases exponentially with the equivalent effect, and the propagation direction of macroscopic cracks formed by the convergence of microcracks tends to be perpendicular to the tensile stress component. When the side length of RVE reaches and exceeds 600 μm, the porosity tends to stabilize. The numerical simulation study of variable angle tension shear loading found that when the RVE size is 800 μm and the grid size is 10 μm, the calculation effect considering calculation accuracy and efficiency is the best. As the loading angle increases, the dewetting stress first decreases and then increases, the dewetting strain shows a linear increasing trend.
The damage evolution of composite solid propellants is influenced by the stress state. In order to investigate the in-situ damage evolution mechanism of hydroxyl terminated polybutadiene (HTPB) propellant under tensile shear conditions, computer tomography (CT) technology was used to scan and reconstruct micro samples of HTPB propellant loaded at different angles. The variation of propellant internal damage with loading process and the influence of different representative volume element (RVE) sizes on porosity were analyzed. Subsequently, numerical simulations of relaxation loads were conducted using 12 different finite element models with 4 RVE sizes and 3 mesh sizes. The experimental results show that under tension shear loading conditions, the porosity increases exponentially with the equivalent effect, and the propagation direction of macroscopic cracks formed by the convergence of microcracks tends to be perpendicular to the tensile stress component. When the side length of RVE reaches and exceeds 600 μm, the porosity tends to stabilize. The numerical simulation study of variable angle tension shear loading found that when the RVE size is 800 μm and the grid size is 10 μm, the calculation effect considering calculation accuracy and efficiency is the best. As the loading angle increases, the dewetting stress first decreases and then increases, the dewetting strain shows a linear increasing trend. •This study innovatively designed and prepared microstructure samples of solid propellants with different loading angles, and systematically verified the feasibility of the experimental scheme using finite element method. By conducting micro mechanical experiments under variable angle tensile shear composite loading conditions, the propagation behavior of macroscopic cracks in complex stress fields was revealed for the first time: the propagation direction of macroscopic cracks formed by the convergence of microcracks is orthogonal to the tensile stress component. The experimental results show that solid propellants exhibit significant microscopic damage evolution characteristics under load, and their porosity increases exponentially with the increase of nominal strain. It is worth noting that there are significant differences in the evolution of porosity under different loading angles: as the loading angle decreases, the shear component in the stress field decreases accordingly, and the loading state gradually approaches uniaxial tension, at which point the growth rate of porosity significantly accelerates.•Based on advanced micro CT scanning technology and multiple segmentation algorithms, a high-precision 3D digital model of the propellant bonding interface was successfully constructed by processing the raw data. By systematically studying the influence of representative volume element (RVE) size on porosity characterization, the critical threshold for RVE size has been determined for the first time: when the RVE side length reaches 600 μm, the measured porosity value tends to stabilize. This discovery provides important theoretical basis for the study of the micro mechanical properties of HTPB composite solid propellants. It is recommended to use RVE with a side length of not less than 600 μm for quantitative characterization analysis in subsequent mechanical modeling and numerical simulation to ensure the reliability and accuracy of the research results.•This study constructed 12 sets of finite element models containing 4 RVE sizes and 3 mesh sizes, and systematically conducted numerical simulation research under relaxed load conditions. Research has found two key patterns: firstly, under the condition of fixed RVE size, as the grid size increases, the calculation accuracy shows a characteristic of first rapidly decreasing and then stabilizing; Secondly, under fixed grid size conditions, an increase in RVE size will significantly improve computational accuracy, and this effect is more pronounced at larger grid sizes. Through optimization analysis, it was determined that the optimal computational performance can be achieved when the RVE size is 800 μm and the grid size is 10 μm. This discovery provides important parameter optimization basis for numerical simulation research of solid propellants.•This study established a three-dimensional micromechanical model of composite solid propellants under variable angle tensile shear loads for the first time, and conducted systematic numerical simulation research. Several innovative findings have been made in the study: the critical dewetting stress first decreases then increases with loading angle, reaching minimum values near 60° loading angles, while critical dewetting stress under 90° pure shear loading exceeds that under 0° uniaxial tension; critical dewetting strain shows approximately linear growth, measuring 6.1 % under 0° uniaxial tension and 10.8 % under 90° pure shear loading.
ArticleNumber 108841
Author Jiaxiang, Wang
Hongfu, Qiang
Shudi, Pei
Shiqi, Li
Author_xml – sequence: 1
  givenname: Wang
  orcidid: 0000-0002-4253-3628
  surname: Jiaxiang
  fullname: Jiaxiang, Wang
  email: 1213827487@qq.com
– sequence: 2
  givenname: Qiang
  surname: Hongfu
  fullname: Hongfu, Qiang
– sequence: 3
  givenname: Pei
  orcidid: 0000-0002-8596-6861
  surname: Shudi
  fullname: Shudi, Pei
– sequence: 4
  givenname: Li
  surname: Shiqi
  fullname: Shiqi, Li
BookMark eNqNkU1r3DAQhkVIIJs0_0GHXr2VZFm2oZc25AsCySE9i7E82mqRJSNpS_ffV-mWQm89zTDD-8zHe0XOQwxIyEfOtpxx9Wm_XaM_LpgK5uLCbiuY6GprGCQ_Ixs-9G0jWjmckw3jUjSj5MMlucp5zxjrKmFD_N3PFZNbMBTwFMJMs1sOHoqLgeZymI-0JoszKdIZFtghjZY-vr1-pWuKK3oPodBDmDHRqiuuMnYeacGQXY35O0KiPsJc9_tALiz4jDd_4jX5dn_3dvvYPL88PN1-eW5MO7alMR3rutH2wgre9z0304DCGFA1s2ZoBecK-s5OwjIFVvWmV4oZqXCUnZJte02eTtw5wl6v9TxIRx3B6d-FmHYaUnHGo54YA8mlUqpFOU11rJz4aPg8S1BS8Mr6fGLVD-Sc0P7lcabfXdB1wj8u6HcX9MmFKr8_ybHe-8Nh0tk4DAZnl9CUupD7P9AvC5actQ
Cites_doi 10.1016/0022-5096(60)90013-2
10.1103/PhysRevE.80.061301
10.1016/j.geoderma.2020.114206
10.1016/j.compscitech.2024.110743
10.1016/j.compstruct.2023.117785
10.1016/j.polymertesting.2024.108365
10.1063/5.0101388
10.1080/07370652.2014.970245
10.1016/0021-8928(59)90036-X
10.1016/j.polymertesting.2023.107922
10.1016/j.compstruct.2024.118572
10.1016/j.matdes.2024.113261
ContentType Journal Article
Copyright 2025 The Authors
Copyright_xml – notice: 2025 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.polymertesting.2025.108841
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1873-2348
ExternalDocumentID oai_doaj_org_article_b00a4146663e4bb59f4b19c1dd4a6421
10_1016_j_polymertesting_2025_108841
S0142941825001552
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1~.
1~5
29O
4.4
457
4G.
53G
5VS
6I.
7-5
71M
8P~
9JN
AABXZ
AAEDT
AAEDW
AAEPC
AAFTH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARLI
AATTM
AAXKI
AAXUO
AAYWO
ABJNI
ABMAC
ABWVN
ABXDB
ABXRA
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADECG
ADEZE
ADMUD
ADNMO
ADVLN
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEZYN
AFJKZ
AFPUW
AFRZQ
AFTJW
AFXIZ
AFZHZ
AGCQF
AGHFR
AGQPQ
AGRNS
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJSZI
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FLBIZ
FNPLU
FYGXN
G-2
G-Q
GBLVA
GROUPED_DOAJ
HVGLF
HZ~
IHE
J1W
KOM
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SCB
SDF
SDG
SES
SEW
SMS
SPC
SPCBC
SSH
SSK
SSM
SSZ
T5K
WUQ
XPP
ZMT
~G-
AAYXX
CITATION
EFKBS
ID FETCH-LOGICAL-c393t-c50559f72f217771cb8e2cca61cbfc832116a75fb2f06af67c7660c46e9456433
IEDL.DBID .~1
ISSN 0142-9418
IngestDate Wed Aug 27 01:28:12 EDT 2025
Thu Jul 03 08:46:50 EDT 2025
Sat Jul 05 17:11:27 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords HTPB propellant
Micro computed tomography
Damage evolution
Multi-angle tensile shear
Language English
License This is an open access article under the CC BY license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c393t-c50559f72f217771cb8e2cca61cbfc832116a75fb2f06af67c7660c46e9456433
ORCID 0000-0002-4253-3628
0000-0002-8596-6861
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0142941825001552
ParticipantIDs doaj_primary_oai_doaj_org_article_b00a4146663e4bb59f4b19c1dd4a6421
crossref_primary_10_1016_j_polymertesting_2025_108841
elsevier_sciencedirect_doi_10_1016_j_polymertesting_2025_108841
PublicationCentury 2000
PublicationDate July 2025
2025-07-00
2025-07-01
PublicationDateYYYYMMDD 2025-07-01
PublicationDate_xml – month: 07
  year: 2025
  text: July 2025
PublicationDecade 2020
PublicationTitle Polymer testing
PublicationYear 2025
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Pei, Qiang, Wang, Li (bib7) 2024; 132
Dugdale (bib27) 1960; 2
Wang, Qiang (bib20) 2018; 14
Lee, Brandyberry, Tudor (bib12) 2009; 80
Wang, Qiang (bib8) 2025; 145
(bib22) 2005
Wang, Qiang (bib23) 2021; 42
Zhang, Hongfu, Wang, Geng (bib5) 2022; 45
Wang, Hongfu, Wang (bib6) 2020; 43
Wang, Qiang, Wang (bib9) 2022; 47
Koestel, Larsbo, Jarvis (bib25) 2020; 366
Wang, Qiang (bib19) 2022; 18
Cui, Qiang, Wang (bib28) 2022; 12
Hou, Zhang, Liu (bib4) 2023; 44
Geng, Qiang, Wang (bib21) 2023
Wang, Hongfu, Jiaxiang (bib1) 2024; 32
Hongfu, Wang, Wang (bib2) 2023; 46
Shiqi, Hongfu, Wang, Wang, Liu, Wang (bib13) 2022; 43
Lai, Sang, Bian, Xie, Liu, Chai (bib15) 2024; 256
Shiqi, Wang, Hongfu (bib24) 2021; 44
Collins, Maggi, Matous (bib11) 2008
Zhang, Luo, Zhou, Wei, Yang, Zhu (bib17) 2024; 329
Gligorijević, Živković, Subotić, Rodić, Gligorijević (bib3) 2015; 33
Wang, Qiang, Wang (bib10) 2022; 47
Shen, Fang, Zhang, Jia, Du (bib18) 2025; 351
Barenblatt (bib26) 1959; 4
Liu, Qian, Wang (bib14) 2023; 882
Zhang, Dong, Zhai, Wang, Li, Wang (bib16) 2024; 245
Hou (10.1016/j.polymertesting.2025.108841_bib4) 2023; 44
Wang (10.1016/j.polymertesting.2025.108841_bib6) 2020; 43
Wang (10.1016/j.polymertesting.2025.108841_bib9) 2022; 47
Zhang (10.1016/j.polymertesting.2025.108841_bib17) 2024; 329
Wang (10.1016/j.polymertesting.2025.108841_bib23) 2021; 42
Wang (10.1016/j.polymertesting.2025.108841_bib10) 2022; 47
Lee (10.1016/j.polymertesting.2025.108841_bib12) 2009; 80
Gligorijević (10.1016/j.polymertesting.2025.108841_bib3) 2015; 33
Lai (10.1016/j.polymertesting.2025.108841_bib15) 2024; 256
Dugdale (10.1016/j.polymertesting.2025.108841_bib27) 1960; 2
Shiqi (10.1016/j.polymertesting.2025.108841_bib13) 2022; 43
Pei (10.1016/j.polymertesting.2025.108841_bib7) 2024; 132
Koestel (10.1016/j.polymertesting.2025.108841_bib25) 2020; 366
Wang (10.1016/j.polymertesting.2025.108841_bib1) 2024; 32
Cui (10.1016/j.polymertesting.2025.108841_bib28) 2022; 12
Liu (10.1016/j.polymertesting.2025.108841_bib14) 2023; 882
(10.1016/j.polymertesting.2025.108841_bib22) 2005
Zhang (10.1016/j.polymertesting.2025.108841_bib5) 2022; 45
Shiqi (10.1016/j.polymertesting.2025.108841_bib24) 2021; 44
Wang (10.1016/j.polymertesting.2025.108841_bib19) 2022; 18
Geng (10.1016/j.polymertesting.2025.108841_bib21) 2023
Wang (10.1016/j.polymertesting.2025.108841_bib8) 2025; 145
Shen (10.1016/j.polymertesting.2025.108841_bib18) 2025; 351
Collins (10.1016/j.polymertesting.2025.108841_bib11) 2008
Wang (10.1016/j.polymertesting.2025.108841_bib20) 2018; 14
Barenblatt (10.1016/j.polymertesting.2025.108841_bib26) 1959; 4
Hongfu (10.1016/j.polymertesting.2025.108841_bib2) 2023; 46
Zhang (10.1016/j.polymertesting.2025.108841_bib16) 2024; 245
References_xml – volume: 882
  year: 2023
  ident: bib14
  article-title: In situ X-ray tomography study on internal damage evolution within solid propellants of carrier rockets
  publication-title: Materials Science and Engineering: A
– start-page: 207
  year: 2005
  end-page: 213
  ident: bib22
  article-title: Gunpowder test method
  publication-title: National Defense Science, technology and Industry Commission of P. R. C
– volume: 256
  year: 2024
  ident: bib15
  article-title: Interfacial debonding and cracking in a solid propellant composite under uniaxial tension: an in situ synchrotron X-ray tomography study
  publication-title: Compos. Sci. Technol.
– volume: 32
  year: 2024
  ident: bib1
  article-title: Multiscale research progress on damage behavior of composite solid propellants
  publication-title: Chin. J. Energetic Mater.
– volume: 43
  start-page: 411
  year: 2022
  end-page: 417
  ident: bib13
  article-title: Experimental study on the meso-damage evolution of HTPB propellant under uniaxial tension load
  publication-title: J. Propuls. Technol.
– volume: 80
  year: 2009
  ident: bib12
  article-title: Three-dimensional reconstruction of statistically optimal unit cells of polydisperse particulate composites from microtomography
  publication-title: Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys.
– volume: 4
  start-page: 1009
  year: 1959
  end-page: 1029
  ident: bib26
  article-title: Equilibrium cracks formed during brittle fracture rectilinear cracks in plane plates
  publication-title: J. Appl. Math. Mech.
– year: 2008
  ident: bib11
  article-title: Using tomography to characterize heterogeneous propellants
  publication-title: 46th AIAA Aerospace Sciences Meeting and Exhibit, Reno
– volume: 18
  start-page: 8
  year: 2022
  ident: bib19
  article-title: Mechanical properties of thermal aged HTPB composite solid propellant under confining pressure
  publication-title: Def. Technol.
– volume: 47
  start-page: 1
  year: 2022
  end-page: 9
  ident: bib9
  article-title: Mechanical properties of HTPB propellant under shear loading at low temperature
  publication-title: Propellants, Explos. Pyrotech.
– volume: 33
  start-page: 229
  year: 2015
  end-page: 259
  ident: bib3
  article-title: Effect of cumulative damage on rocket motor service life
  publication-title: J. Energetic Mater.
– volume: 12
  year: 2022
  ident: bib28
  article-title: Experimental and simulation research on microscopic damage of HTPB propellant under tension-shear loading
  publication-title: AIP Adv.
– volume: 42
  start-page: 225
  year: 2021
  end-page: 230
  ident: bib23
  article-title: Design and analysis of combined loading fixture and specimen for solid propellant
  publication-title: Journal of Ordnance Equipment Engineering
– volume: 329
  year: 2024
  ident: bib17
  article-title: Damage behavior of high particle volume fraction composites with initial damage by finite element meso-modeling
  publication-title: Compos. Struct.
– volume: 43
  start-page: 788
  year: 2020
  end-page: 798
  ident: bib6
  article-title: Research progress on mesomechanics of composite solid propellants
  publication-title: J. Solid Rocket Technol.
– volume: 44
  start-page: 7
  year: 2021
  ident: bib24
  article-title: Micro-CT experimental study on the mesostructure of HTPB composite solid propellant
  publication-title: CHINESE JOURNAL OF Explosives & Propellant
– volume: 2
  start-page: 100
  year: 1960
  end-page: 108
  ident: bib27
  article-title: Yielding of steel sheets containing slits
  publication-title: J. Mech. Phys. Solid.
– volume: 46
  start-page: 561
  year: 2023
  end-page: 588
  ident: bib2
  article-title: Research progress on strength, damage and fracture failure of composite solid propellants
  publication-title: Chin. J. Explos. Propellants
– volume: 132
  year: 2024
  ident: bib7
  article-title: Mesoscopic failure behavior of HTPB propellant bonding interface under multi-angle pull-and-shear loading
  publication-title: Polym. Test.
– volume: 351
  year: 2025
  ident: bib18
  article-title: Multi-scale modeling of damage evolution for particle-filled polymer composites
  publication-title: Compos. Struct.
– volume: 47
  year: 2022
  ident: bib10
  article-title: Strength criterion of HTPB composite solid propellant under tension-shear loading at low temperature
  publication-title: Propellants, Explos. Pyrotech.
– volume: 45
  start-page: 689
  year: 2022
  end-page: 695
  ident: bib5
  article-title: Analysis on stress and damage of solid motor grainunder the conditions of horizontal storageand periodic turnover
  publication-title: J. Solid Rocket Technol.
– volume: 145
  year: 2025
  ident: bib8
  article-title: Macro-microscopic study on the damage threshold strain of particle-filled polymer composites
  publication-title: Polym. Test.
– volume: 366
  year: 2020
  ident: bib25
  article-title: Scale and REV analyses for porosity and pore connectivity measures in undisturbed soil
  publication-title: Geoderma
– volume: 44
  start-page: 566
  year: 2023
  end-page: 579
  ident: bib4
  article-title: Research progress on structural integrity of solid rocket motor grain
  publication-title: J. Astronautics
– volume: 245
  year: 2024
  ident: bib16
  article-title: Damage analysis of solid propellants with default defects based on macro-microscopic approach
  publication-title: Mater. Des.
– volume: 14
  start-page: 107
  year: 2018
  end-page: 112
  ident: bib20
  article-title: Strength criterion of composite solid propellants under dynamic loading
  publication-title: Def. Technol.
– year: 2023
  ident: bib21
  article-title: Macroscopic and mesoscopic properties of HTPB propellant under low temperature dynamic biaxial compression loading
  publication-title: Polym. Test.
– volume: 44
  start-page: 7
  year: 2021
  ident: 10.1016/j.polymertesting.2025.108841_bib24
  article-title: Micro-CT experimental study on the mesostructure of HTPB composite solid propellant
  publication-title: CHINESE JOURNAL OF Explosives & Propellant
– volume: 47
  year: 2022
  ident: 10.1016/j.polymertesting.2025.108841_bib10
  article-title: Strength criterion of HTPB composite solid propellant under tension-shear loading at low temperature
  publication-title: Propellants, Explos. Pyrotech.
– volume: 2
  start-page: 100
  year: 1960
  ident: 10.1016/j.polymertesting.2025.108841_bib27
  article-title: Yielding of steel sheets containing slits
  publication-title: J. Mech. Phys. Solid.
  doi: 10.1016/0022-5096(60)90013-2
– volume: 80
  year: 2009
  ident: 10.1016/j.polymertesting.2025.108841_bib12
  article-title: Three-dimensional reconstruction of statistically optimal unit cells of polydisperse particulate composites from microtomography
  publication-title: Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys.
  doi: 10.1103/PhysRevE.80.061301
– volume: 43
  start-page: 788
  year: 2020
  ident: 10.1016/j.polymertesting.2025.108841_bib6
  article-title: Research progress on mesomechanics of composite solid propellants
  publication-title: J. Solid Rocket Technol.
– start-page: 207
  year: 2005
  ident: 10.1016/j.polymertesting.2025.108841_bib22
  article-title: Gunpowder test method
  publication-title: National Defense Science, technology and Industry Commission of P. R. C
– volume: 32
  year: 2024
  ident: 10.1016/j.polymertesting.2025.108841_bib1
  article-title: Multiscale research progress on damage behavior of composite solid propellants
  publication-title: Chin. J. Energetic Mater.
– volume: 18
  start-page: 8
  year: 2022
  ident: 10.1016/j.polymertesting.2025.108841_bib19
  article-title: Mechanical properties of thermal aged HTPB composite solid propellant under confining pressure
  publication-title: Def. Technol.
– volume: 366
  year: 2020
  ident: 10.1016/j.polymertesting.2025.108841_bib25
  article-title: Scale and REV analyses for porosity and pore connectivity measures in undisturbed soil
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2020.114206
– volume: 47
  start-page: 1
  year: 2022
  ident: 10.1016/j.polymertesting.2025.108841_bib9
  article-title: Mechanical properties of HTPB propellant under shear loading at low temperature
  publication-title: Propellants, Explos. Pyrotech.
– volume: 256
  year: 2024
  ident: 10.1016/j.polymertesting.2025.108841_bib15
  article-title: Interfacial debonding and cracking in a solid propellant composite under uniaxial tension: an in situ synchrotron X-ray tomography study
  publication-title: Compos. Sci. Technol.
  doi: 10.1016/j.compscitech.2024.110743
– volume: 329
  year: 2024
  ident: 10.1016/j.polymertesting.2025.108841_bib17
  article-title: Damage behavior of high particle volume fraction composites with initial damage by finite element meso-modeling
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2023.117785
– volume: 132
  year: 2024
  ident: 10.1016/j.polymertesting.2025.108841_bib7
  article-title: Mesoscopic failure behavior of HTPB propellant bonding interface under multi-angle pull-and-shear loading
  publication-title: Polym. Test.
  doi: 10.1016/j.polymertesting.2024.108365
– volume: 12
  year: 2022
  ident: 10.1016/j.polymertesting.2025.108841_bib28
  article-title: Experimental and simulation research on microscopic damage of HTPB propellant under tension-shear loading
  publication-title: AIP Adv.
  doi: 10.1063/5.0101388
– volume: 45
  start-page: 689
  year: 2022
  ident: 10.1016/j.polymertesting.2025.108841_bib5
  article-title: Analysis on stress and damage of solid motor grainunder the conditions of horizontal storageand periodic turnover
  publication-title: J. Solid Rocket Technol.
– volume: 14
  start-page: 107
  year: 2018
  ident: 10.1016/j.polymertesting.2025.108841_bib20
  article-title: Strength criterion of composite solid propellants under dynamic loading
  publication-title: Def. Technol.
– volume: 33
  start-page: 229
  year: 2015
  ident: 10.1016/j.polymertesting.2025.108841_bib3
  article-title: Effect of cumulative damage on rocket motor service life
  publication-title: J. Energetic Mater.
  doi: 10.1080/07370652.2014.970245
– volume: 46
  start-page: 561
  year: 2023
  ident: 10.1016/j.polymertesting.2025.108841_bib2
  article-title: Research progress on strength, damage and fracture failure of composite solid propellants
  publication-title: Chin. J. Explos. Propellants
– volume: 44
  start-page: 566
  year: 2023
  ident: 10.1016/j.polymertesting.2025.108841_bib4
  article-title: Research progress on structural integrity of solid rocket motor grain
  publication-title: J. Astronautics
– year: 2008
  ident: 10.1016/j.polymertesting.2025.108841_bib11
  article-title: Using tomography to characterize heterogeneous propellants
– volume: 4
  start-page: 1009
  year: 1959
  ident: 10.1016/j.polymertesting.2025.108841_bib26
  article-title: Equilibrium cracks formed during brittle fracture rectilinear cracks in plane plates
  publication-title: J. Appl. Math. Mech.
  doi: 10.1016/0021-8928(59)90036-X
– volume: 42
  start-page: 225
  issue: 3
  year: 2021
  ident: 10.1016/j.polymertesting.2025.108841_bib23
  article-title: Design and analysis of combined loading fixture and specimen for solid propellant
  publication-title: Journal of Ordnance Equipment Engineering
– year: 2023
  ident: 10.1016/j.polymertesting.2025.108841_bib21
  article-title: Macroscopic and mesoscopic properties of HTPB propellant under low temperature dynamic biaxial compression loading
  publication-title: Polym. Test.
  doi: 10.1016/j.polymertesting.2023.107922
– volume: 351
  year: 2025
  ident: 10.1016/j.polymertesting.2025.108841_bib18
  article-title: Multi-scale modeling of damage evolution for particle-filled polymer composites
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2024.118572
– volume: 145
  year: 2025
  ident: 10.1016/j.polymertesting.2025.108841_bib8
  article-title: Macro-microscopic study on the damage threshold strain of particle-filled polymer composites
  publication-title: Polym. Test.
– volume: 882
  year: 2023
  ident: 10.1016/j.polymertesting.2025.108841_bib14
  article-title: In situ X-ray tomography study on internal damage evolution within solid propellants of carrier rockets
  publication-title: Materials Science and Engineering: A
– volume: 245
  year: 2024
  ident: 10.1016/j.polymertesting.2025.108841_bib16
  article-title: Damage analysis of solid propellants with default defects based on macro-microscopic approach
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2024.113261
– volume: 43
  start-page: 411
  year: 2022
  ident: 10.1016/j.polymertesting.2025.108841_bib13
  article-title: Experimental study on the meso-damage evolution of HTPB propellant under uniaxial tension load
  publication-title: J. Propuls. Technol.
SSID ssj0005016
Score 2.4349384
Snippet The damage evolution of composite solid propellants is influenced by the stress state. In order to investigate the in-situ damage evolution mechanism of...
SourceID doaj
crossref
elsevier
SourceType Open Website
Index Database
Publisher
StartPage 108841
SubjectTerms Damage evolution
HTPB propellant
Micro computed tomography
Multi-angle tensile shear
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQBx4DggKivOSha6Q8bCeZEK1aVQyIoZW6RXZiV0VNUrVh4N9z5yQQJhiYYkXyyfJdfN9Fn78jZOhmbhzFvnakp4TDfMMdabh2FIeXHDCq0pYg-yJmC_a85MtOqy_khNXywPXGYZNDyeBzhsyomQIThikvTr0sYxIvaeLpCzmvLaZacgcgmUMy_GZzbcvNR653FUpXFCuoC32O9LqIeT8SktXt7-SlTq6ZnpHTBiTSp3px5-RAF31yNG57s_XJSUdG8IJsJh2ZfiqLjO7XedOWi1r9WAqDHKl3NJM5nCC0NHQ2fx3RLf6Lh0goKoq3yXbUEgzBxmqjqSW3w3OPXa_pprR0-0uymE7m45nTdFFw0iAOKicFjAO7FvoGqo8w9FIVaR_8JmBkUmxU5AkZcqN84wppRJiGQrgpEzpGqZkguCK9oiz0NaFhxGGyhJSusHUZkyxUCjAAlHgmZbE7ILzdymRbi2UkLYvsLfnpggRdkNQuGJAR7vvXHJS8ti8gEJImEJLfAmFAHluvJQ16qFEBmFr_aRk3_7GMW3KMJmtG7x3pVbt3fQ-4pVIPNkQ_AcJB7a8
  priority: 102
  providerName: Directory of Open Access Journals
Title Experimental and simulation study on micro damage of HTPB propellant under multi angle tensile shear loading
URI https://dx.doi.org/10.1016/j.polymertesting.2025.108841
https://doaj.org/article/b00a4146663e4bb59f4b19c1dd4a6421
Volume 148
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwEB4hkHaXA2LZXVFYKh-4ZpuHH80JQQUqIKE9gMQtshO76qpNqhIOXPjtzDgJpLeVOMWxHMfyjMYz1jffAJyGRZiO09gGOjIy4LETgXbCBkZgp0Af1VgPkL2T0wd-8yget2DS5cIQrLK1_Y1N99a67Rm1uzlazecjgiXFKUf_WDREYpTBzhVp-Z_XHswj9OVPaXBAo7_A6QfGa1UtXpZ2XROhRTnDaDEWBLob82jjmPJs_r3TqncCXe3DXus6svNmdd9hy5YH8HXSVWw7gN0eueAPWFz2yPuZLgv2NF-2xbqYZ5Vl2FgSII8Veol2hVWOTe__XrAV3dCjfpQ1oxyzNfOwQ5xjtrDMQ97x-US1sNmi8iD8n_BwdXk_mQZtbYUgT9KkDnL0fETqVOwwJlEqys3YxihNiS2XU_miSGolnIldKLWTKldShjmXNiUCmiT5BdtlVdpDYGos8GONB72hgmZcc2UMegYY-Lmcp-EARLeV2aqh0Mg6bNm_bFMEGYkga0QwgAva9_dviAjbd1TrWdZqQoZWQ-M_MQhLLDeoYY6bKM2jouCacngHcNZJLdvQK5xq_l_LOPr0DMfwjd4akO9v2K7Xz_YEXZnaDL2uDmHn_Pp2ejf0FwJv1I73DQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT9swFH9iIME4TIwNUbYxH7hmzYftNCc0KlDHGOJQJG6WndhVUZtUJTtw4W_nPSfZ0tuknWI5jmP5vbyP6OffAzgLizAbZbENdGRkwGMnAu2EDYzAToExqrEeIHsrJ_f8-kE8bMG4OwtDsMrW9jc23VvrtmfY7uZwNZ8PCZYUZxzjY9EQib2BHY6fL5Ux-PbSw3mEvv4pjQ5o-C6c_QV5rarF89Kua2K0KGeYLsaCUHcjHm34KU_n33NXPRd0dQDv2tiRfW-W9x62bHkIe-OuZNsh7PfYBT_A4rLH3s90WbCn-bKt1sU8rSzDxpIQeazQSzQsrHJsMr27YCv6RY8KUtaMDpmtmccd4hyzhWUe847XJyqGzRaVR-F_hPury-l4ErTFFYI8yZI6yDH0EZlLY4dJSZpGuRnZGMUpseVyql8USZ0KZ2IXSu1kmqdShjmXNiMGmiQ5gu2yKu0xsHQk8GGNnt5QRTOueWoMhgaY-bmcZ-EARLeVatVwaKgOXPaoNkWgSASqEcEALmjf_zxDTNi-o1rPVKsKCs2GxndiFpZYblDFHDdRlkdFwTUd4h3AeSc1taFYONX8n5Zx8t8zfIW9yfTXjbr5cfvzE7ylOw3i9zNs1-vf9gvGNbU59Xr7Cqh896Y
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Experimental+and+simulation+study+on+micro+damage+of+HTPB+propellant+under+multi+angle+tensile+shear+loading&rft.jtitle=Polymer+testing&rft.au=Jiaxiang%2C+Wang&rft.au=Hongfu%2C+Qiang&rft.au=Shudi%2C+Pei&rft.au=Shiqi%2C+Li&rft.date=2025-07-01&rft.issn=0142-9418&rft.volume=148&rft.spage=108841&rft_id=info:doi/10.1016%2Fj.polymertesting.2025.108841&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_polymertesting_2025_108841
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0142-9418&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0142-9418&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0142-9418&client=summon