Cyanide-free gold leaching in exceptionally mild chloride solutions

All the industrially applied gold leaching methods (historical chlorine gas based leaching, dominating state-of-the-art cyanide gold leaching, processes at precious metals plants) suffer from the characteristics related to aggressive and even toxic leaching media and high chemical consumption. This...

Full description

Saved in:
Bibliographic Details
Published inJournal of cleaner production Vol. 234; pp. 9 - 17
Main Authors Ahtiainen, Riina, Lundström, Mari
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 10.10.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract All the industrially applied gold leaching methods (historical chlorine gas based leaching, dominating state-of-the-art cyanide gold leaching, processes at precious metals plants) suffer from the characteristics related to aggressive and even toxic leaching media and high chemical consumption. This study targets environmentally sound cyanide-free gold leaching in mild chloride media in terms of minimizing chemical consumption. In the current study, it was investigated whether providing instant gold recovery (carbon-in-chloride-leach, CICl) could allow high gold recovery in a mild and non-toxic leaching environment. The investigated leaching parameters were S/L ratio, T, type of oxidant i.e. [Cu2+]/[Fe3+] and [Cl−]. The results showed that gold could be dissolved in exceptionally mild conditions, when an appropriate adsorption/reduction (activated carbon) site was provided immediately after leaching. It was found that impurity metals iron and copper originating from the gold ore (Fe 1.6% and Cu 0.05%), were advantageous self-initiating oxidants and 87% of gold could be dissolved in pure calcium chloride (2.8 M) solution. In addition, no bromide, which is a commonly added aggressive additive in modern cyanide-free processes, was required. The lowest chloride concentrations applied were comparable (0.6 M) or even milder (0.3 M) than those typical of seawater chloride concentrations, and could still result in gold recovery, 72% and 64%, respectively, with copper as oxidant. Conventionally gold extraction is assumed to require highly aggressive leaching media, high redox potentials, and high gold complex stability in the solution. The findings presented can provide a competitive environmental and economic edge and therefore new horizons for future cyanide-free gold chloride technologies, suggesting that in future, even seawater can act as the basis for cyanide free gold leaching. •Cyanide-free mild chloride leaching was investigated.•Gold could be recovered even at <520 mV vs. Ag/AgCl in carbon-in-chloride-leach mode.•Copper was a stronger oxidant than iron in gold leaching.•Gold was oxidized by in-situ dissolving impurities.•Seawater contains enough chlorides to dissolve gold
AbstractList All the industrially applied gold leaching methods (historical chlorine gas based leaching, dominating state-of-the-art cyanide gold leaching, processes at precious metals plants) suffer from the characteristics related to aggressive and even toxic leaching media and high chemical consumption. This study targets environmentally sound cyanide-free gold leaching in mild chloride media in terms of minimizing chemical consumption. In the current study, it was investigated whether providing instant gold recovery (carbon-in-chloride-leach, CICl) could allow high gold recovery in a mild and non-toxic leaching environment. The investigated leaching parameters were S/L ratio, T, type of oxidant i.e. [Cu2+]/[Fe3+] and [Cl−]. The results showed that gold could be dissolved in exceptionally mild conditions, when an appropriate adsorption/reduction (activated carbon) site was provided immediately after leaching. It was found that impurity metals iron and copper originating from the gold ore (Fe 1.6% and Cu 0.05%), were advantageous self-initiating oxidants and 87% of gold could be dissolved in pure calcium chloride (2.8 M) solution. In addition, no bromide, which is a commonly added aggressive additive in modern cyanide-free processes, was required. The lowest chloride concentrations applied were comparable (0.6 M) or even milder (0.3 M) than those typical of seawater chloride concentrations, and could still result in gold recovery, 72% and 64%, respectively, with copper as oxidant. Conventionally gold extraction is assumed to require highly aggressive leaching media, high redox potentials, and high gold complex stability in the solution. The findings presented can provide a competitive environmental and economic edge and therefore new horizons for future cyanide-free gold chloride technologies, suggesting that in future, even seawater can act as the basis for cyanide free gold leaching. •Cyanide-free mild chloride leaching was investigated.•Gold could be recovered even at <520 mV vs. Ag/AgCl in carbon-in-chloride-leach mode.•Copper was a stronger oxidant than iron in gold leaching.•Gold was oxidized by in-situ dissolving impurities.•Seawater contains enough chlorides to dissolve gold
Author Lundström, Mari
Ahtiainen, Riina
Author_xml – sequence: 1
  givenname: Riina
  surname: Ahtiainen
  fullname: Ahtiainen, Riina
  email: riina.ahtiainen@outotec.com
  organization: Outotec (Finland) Oy, Finland
– sequence: 2
  givenname: Mari
  surname: Lundström
  fullname: Lundström, Mari
  email: mari.lundstrom@aalto.fi
  organization: Aalto University, School of Chemical Technology, Department of Chemical and Metallurgical Engineering, Finland
BookMark eNqFkMtKAzEYhYNUsK0-gjAvMGMyl1xWIoM3KLjRdcjlnzZDmpRkFPv2Tmn3rs7i8B0O3wotQgyA0D3BFcGEPozVaDwcUqxqTESFaUUEu0JLwpkoCeN0gZZYdKKkXU1v0CrnEWPCMGuXqO-PKjgL5ZAAim30tvCgzM6FbeFCAb8GDpOLQXl_LPZurs3OxzQTRY7--1TlW3Q9KJ_h7pJr9PXy_Nm_lZuP1_f-aVOaRjRTqRkTbMAN060CjbUVtcVG8I6yWgtouRKUQM0HMBR3uuV64J21LdNAwAjbrFF33jUp5pxgkIfk9iodJcHyZEKO8mJCnkxITOVsYuYezxzM534cJJmNg2DAugRmkja6fxb-AJcGbXo
CitedBy_id crossref_primary_10_1016_j_hydromet_2023_106028
crossref_primary_10_1016_j_hydromet_2020_105374
crossref_primary_10_1016_j_hydromet_2024_106304
crossref_primary_10_1038_s41893_021_00697_4
crossref_primary_10_1080_08827508_2021_1910510
crossref_primary_10_21285_1814_3520_2022_4_688_696
crossref_primary_10_1051_e3sconf_202126702064
crossref_primary_10_1126_sciadv_adm9311
crossref_primary_10_1016_j_jenvman_2021_114022
crossref_primary_10_1016_j_seppur_2020_117499
crossref_primary_10_1007_s12613_020_2142_9
crossref_primary_10_1021_acsestengg_1c00453
crossref_primary_10_1016_j_mineng_2021_107275
crossref_primary_10_1021_acsanm_1c00716
crossref_primary_10_1007_s12613_019_1955_x
crossref_primary_10_1016_j_mineng_2021_107042
crossref_primary_10_1021_acssuschemeng_4c00377
crossref_primary_10_1016_j_mineng_2023_108074
crossref_primary_10_1016_j_seppur_2024_127433
crossref_primary_10_1016_j_jclepro_2022_133341
crossref_primary_10_1016_j_jenvman_2023_117768
crossref_primary_10_1016_j_seppur_2024_128329
crossref_primary_10_1016_j_ijbiomac_2023_126491
crossref_primary_10_1016_j_psep_2022_10_007
crossref_primary_10_1016_j_mineng_2020_106559
crossref_primary_10_1071_CH22182
crossref_primary_10_1039_D0GC00985G
crossref_primary_10_3390_met14050550
crossref_primary_10_1016_j_molliq_2023_122691
crossref_primary_10_1021_acssuschemeng_0c04008
crossref_primary_10_1016_j_jclepro_2021_129115
crossref_primary_10_1016_j_mineng_2020_106610
crossref_primary_10_1016_j_cej_2021_132283
crossref_primary_10_1016_j_exis_2021_101018
crossref_primary_10_1007_s42461_024_00930_6
crossref_primary_10_1016_j_mineng_2023_108265
crossref_primary_10_1016_j_cej_2022_138506
crossref_primary_10_1007_s10163_022_01476_9
crossref_primary_10_1016_j_inoche_2023_111298
crossref_primary_10_1016_j_jenvman_2021_113312
crossref_primary_10_3390_min13101270
crossref_primary_10_3390_met13071289
crossref_primary_10_1016_j_psep_2023_06_077
Cites_doi 10.1039/c1cc13616j
10.1016/j.jclepro.2004.09.005
10.1016/j.hydromet.2004.10.013
10.1016/j.minpro.2014.02.002
10.1021/j100825a037
ContentType Journal Article
Copyright 2019 The Authors
Copyright_xml – notice: 2019 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.jclepro.2019.06.197
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-1786
EndPage 17
ExternalDocumentID 10_1016_j_jclepro_2019_06_197
S0959652619321584
GroupedDBID --K
--M
..I
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABFYP
ABJNI
ABLST
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADHUB
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HMC
IHE
J1W
JARJE
K-O
KCYFY
KOM
LY9
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SPC
SPCBC
SSJ
SSR
SSZ
T5K
~G-
29K
AAHBH
AAQXK
AAXKI
AAYXX
ABFNM
ABTAH
ABXDB
ADMUD
AFJKZ
AKRWK
ASPBG
AVWKF
AZFZN
CITATION
D-I
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SEN
SEW
WUQ
ZY4
ID FETCH-LOGICAL-c393t-b7797f037b4aeb0bd92d0c985672b9e48a961e28fec605b48bf85dd47be1ec9d3
IEDL.DBID AIKHN
ISSN 0959-6526
IngestDate Thu Sep 26 17:03:51 EDT 2024
Fri Feb 23 02:32:55 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Material efficiency
Cyanide-free leaching
Sustainability
Carbon in chloride leach
Seawater
Language English
License This is an open access article under the CC BY license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c393t-b7797f037b4aeb0bd92d0c985672b9e48a961e28fec605b48bf85dd47be1ec9d3
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0959652619321584
PageCount 9
ParticipantIDs crossref_primary_10_1016_j_jclepro_2019_06_197
elsevier_sciencedirect_doi_10_1016_j_jclepro_2019_06_197
PublicationCentury 2000
PublicationDate 2019-10-10
PublicationDateYYYYMMDD 2019-10-10
PublicationDate_xml – month: 10
  year: 2019
  text: 2019-10-10
  day: 10
PublicationDecade 2010
PublicationTitle Journal of cleaner production
PublicationYear 2019
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Lalancette, Dubreuil, Lemieux (bib14) 2015; vol. 17
Hasab, Rashchi, Raygan (bib11) 2013; 49
Dreisinger, Murray, Hunter, Baxter, Ferron, Fleming (bib5) 2005
Muir (bib20) 2002
Lundström, Aromaa, Forsén, Hyvärinen, Barker (bib15) 2005; 77
Miettinen, Ahtiainen, Valkama, Paatero, Hietala, Haapalainen (bib18) 2014
Mohammadnejad, Provis, Van Deventer (bib19) 2014; 128
Habashi (bib9) 2005
Flaming (bib8) 2002
Lundström, O'Callaghan, Haakana, Ahtiainen, Karonen (bib16) 2016
Abbott, Frisch, Gurman, Hillman, Hartley, Holyoak, Ryder (bib1) 2011; 47
Dundee Sustainable Technologies (bib6) 2014
Marsden, House (bib17) 2006
Aylmore (bib3) 2005
Ahtiainen, Lundström (bib2) 2016; 52
Yoshimura, Abe (bib22) 2017
Ferron, Fleming, Dreisinger, O'Kane (bib7) 2003
Hilson, Monhemius (bib12) 2006; 17
Harris, White (bib10) 2011
Sutin, Rowley, Dodson (bib21) 1961; 65
Aylmore (bib4) 2016
Intec Ltd (bib13) 2009
Hasab (10.1016/j.jclepro.2019.06.197_bib11) 2013; 49
Dundee Sustainable Technologies (10.1016/j.jclepro.2019.06.197_bib6)
Dreisinger (10.1016/j.jclepro.2019.06.197_bib5) 2005
Lalancette (10.1016/j.jclepro.2019.06.197_bib14) 2015; vol. 17
Aylmore (10.1016/j.jclepro.2019.06.197_bib3) 2005
Ahtiainen (10.1016/j.jclepro.2019.06.197_bib2) 2016; 52
Habashi (10.1016/j.jclepro.2019.06.197_bib9) 2005
Yoshimura (10.1016/j.jclepro.2019.06.197_bib22) 2017
Harris (10.1016/j.jclepro.2019.06.197_bib10) 2011
Ferron (10.1016/j.jclepro.2019.06.197_bib7) 2003
Aylmore (10.1016/j.jclepro.2019.06.197_bib4) 2016
Hilson (10.1016/j.jclepro.2019.06.197_bib12) 2006; 17
Lundström (10.1016/j.jclepro.2019.06.197_bib16) 2016
Intec Ltd (10.1016/j.jclepro.2019.06.197_bib13)
Muir (10.1016/j.jclepro.2019.06.197_bib20) 2002
Marsden (10.1016/j.jclepro.2019.06.197_bib17) 2006
Abbott (10.1016/j.jclepro.2019.06.197_bib1) 2011; 47
Sutin (10.1016/j.jclepro.2019.06.197_bib21) 1961; 65
Flaming (10.1016/j.jclepro.2019.06.197_bib8) 2002
Lundström (10.1016/j.jclepro.2019.06.197_bib15) 2005; 77
Miettinen (10.1016/j.jclepro.2019.06.197_bib18) 2014
Mohammadnejad (10.1016/j.jclepro.2019.06.197_bib19) 2014; 128
References_xml – start-page: 759
  year: 2002
  end-page: 778
  ident: bib20
  article-title: Basic principles of chloride hydrometallurgy
  publication-title: Proceedings of Chloride Metallurgy 32nd Annual Hydrometallurgy Meeting 2002, Montréal, Canada
  contributor:
    fullname: Muir
– start-page: 501
  year: 2005
  end-page: 540
  ident: bib3
  article-title: Chapter 21: alternative lixiviants, to cyanide for leaching gold ores
  publication-title: Advances in Gold Ore Processing
  contributor:
    fullname: Aylmore
– volume: 17
  start-page: 1158
  year: 2006
  end-page: 1167
  ident: bib12
  article-title: Alternatives to cyanide in the gold mining industry: what prospects for the future?
  publication-title: J. Clean. Prod.
  contributor:
    fullname: Monhemius
– volume: 128
  start-page: 1
  year: 2014
  end-page: 5
  ident: bib19
  article-title: The effect of grinding mechanism in the preg-robbing of gold onto quartz
  publication-title: Int. J. Miner. Process.
  contributor:
    fullname: Van Deventer
– year: 2016
  ident: bib16
  article-title: Process for Recovering Gold, WO2016/066905 A1, May 6, 2016
  contributor:
    fullname: Karonen
– year: 2003
  ident: bib7
  article-title: Chloride as an Alternative to Cyanide for the Extraction of Gold – Going Full Circle?, SGS Minerals Service Technical Bulletin, 2003-01
  contributor:
    fullname: O'Kane
– year: 2011
  ident: bib10
  article-title: Process for the Recovery of Gold from an Ore in Chloride Medium with a Nitrogen Species, WO2011/100821 A1, August 25, 2011
  contributor:
    fullname: White
– volume: 77
  start-page: 89
  year: 2005
  end-page: 95
  ident: bib15
  article-title: Leaching of chalcopyrite in cupric chloride solution
  publication-title: Hydrometallurgy
  contributor:
    fullname: Barker
– year: 2014
  ident: bib18
  article-title: Method of Preparing a Gold-Containing Solution and Process Arrangement for Recovering Gold and Silver, WO2014/17765 A1, November 6, 2014
  contributor:
    fullname: Haapalainen
– volume: 52
  start-page: 244
  year: 2016
  end-page: 251
  ident: bib2
  article-title: Preg-robbing of gold in chloride-bromide solution
  publication-title: Physicochemical Problems of Minerals Processing
  contributor:
    fullname: Lundström
– year: 2005
  ident: bib5
  article-title: The Application of the Platsol
  publication-title: Proceedings of ALTA 2005 Nickel/Cobalt Sessions, Perth, Australia
  contributor:
    fullname: Fleming
– year: 2005
  ident: bib9
  article-title: Gold – an historical introduction
  publication-title: Advances in Gold Ore Processing
  contributor:
    fullname: Habashi
– volume: 47
  start-page: 10031
  year: 2011
  end-page: 10033
  ident: bib1
  article-title: Ionometallurgy: designer redox properties for metal processing
  publication-title: Chem. Commun.
  contributor:
    fullname: Ryder
– year: 2009
  ident: bib13
  contributor:
    fullname: Intec Ltd
– volume: 49
  start-page: 61
  year: 2013
  end-page: 70
  ident: bib11
  article-title: Chloride-hypochlorite oxidation and leaching of refractory sulfide gold concentrate
  publication-title: Physicochemical Problems of Minerals Processing
  contributor:
    fullname: Raygan
– start-page: 1
  year: 2006
  end-page: 17
  ident: bib17
  article-title: The Chemistry of Gold Extraction
  contributor:
    fullname: House
– year: 2017
  ident: bib22
  article-title: Method for Recovering Gold from an Ore or a Refining Intermediate Containing Gold, WO2017/170960 A1, October 5, 2017
  contributor:
    fullname: Abe
– year: 2002
  ident: bib8
  article-title: Platsol
  contributor:
    fullname: Flaming
– volume: 65
  start-page: 1248
  year: 1961
  end-page: 1252
  ident: bib21
  article-title: Chloride complex of iron(III) ions and the kinetics of the chloride-catalyzed exchange reaction between iron(II) and iron(III) in light and heavy water
  publication-title: J. Phys. Chem. A
  contributor:
    fullname: Dodson
– year: 2014
  ident: bib6
  contributor:
    fullname: Dundee Sustainable Technologies
– start-page: 447
  year: 2016
  end-page: 484
  ident: bib4
  article-title: Chapter 27: alternative lixiviants to cyanide for leaching gold ores
  publication-title: Gold Ore Processing: Project Development and Operations
  contributor:
    fullname: Aylmore
– volume: vol. 17
  year: 2015
  ident: bib14
  publication-title: An Improvement Closed Loop Method for Gold and Silver Extraction by Halogens, WO2015/135053 A1, September
  contributor:
    fullname: Lemieux
– start-page: 501
  year: 2005
  ident: 10.1016/j.jclepro.2019.06.197_bib3
  article-title: Chapter 21: alternative lixiviants, to cyanide for leaching gold ores
  contributor:
    fullname: Aylmore
– year: 2005
  ident: 10.1016/j.jclepro.2019.06.197_bib9
  article-title: Gold – an historical introduction
  contributor:
    fullname: Habashi
– volume: 47
  start-page: 10031
  year: 2011
  ident: 10.1016/j.jclepro.2019.06.197_bib1
  article-title: Ionometallurgy: designer redox properties for metal processing
  publication-title: Chem. Commun.
  doi: 10.1039/c1cc13616j
  contributor:
    fullname: Abbott
– year: 2016
  ident: 10.1016/j.jclepro.2019.06.197_bib16
  contributor:
    fullname: Lundström
– volume: 17
  start-page: 1158
  year: 2006
  ident: 10.1016/j.jclepro.2019.06.197_bib12
  article-title: Alternatives to cyanide in the gold mining industry: what prospects for the future?
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2004.09.005
  contributor:
    fullname: Hilson
– volume: 77
  start-page: 89
  year: 2005
  ident: 10.1016/j.jclepro.2019.06.197_bib15
  article-title: Leaching of chalcopyrite in cupric chloride solution
  publication-title: Hydrometallurgy
  doi: 10.1016/j.hydromet.2004.10.013
  contributor:
    fullname: Lundström
– start-page: 1
  year: 2006
  ident: 10.1016/j.jclepro.2019.06.197_bib17
  contributor:
    fullname: Marsden
– year: 2002
  ident: 10.1016/j.jclepro.2019.06.197_bib8
  contributor:
    fullname: Flaming
– volume: 49
  start-page: 61
  year: 2013
  ident: 10.1016/j.jclepro.2019.06.197_bib11
  article-title: Chloride-hypochlorite oxidation and leaching of refractory sulfide gold concentrate
  publication-title: Physicochemical Problems of Minerals Processing
  contributor:
    fullname: Hasab
– start-page: 759
  year: 2002
  ident: 10.1016/j.jclepro.2019.06.197_bib20
  article-title: Basic principles of chloride hydrometallurgy
  contributor:
    fullname: Muir
– year: 2017
  ident: 10.1016/j.jclepro.2019.06.197_bib22
  contributor:
    fullname: Yoshimura
– start-page: 447
  year: 2016
  ident: 10.1016/j.jclepro.2019.06.197_bib4
  article-title: Chapter 27: alternative lixiviants to cyanide for leaching gold ores
  contributor:
    fullname: Aylmore
– year: 2011
  ident: 10.1016/j.jclepro.2019.06.197_bib10
  contributor:
    fullname: Harris
– year: 2014
  ident: 10.1016/j.jclepro.2019.06.197_bib18
  contributor:
    fullname: Miettinen
– year: 2003
  ident: 10.1016/j.jclepro.2019.06.197_bib7
  contributor:
    fullname: Ferron
– volume: 128
  start-page: 1
  year: 2014
  ident: 10.1016/j.jclepro.2019.06.197_bib19
  article-title: The effect of grinding mechanism in the preg-robbing of gold onto quartz
  publication-title: Int. J. Miner. Process.
  doi: 10.1016/j.minpro.2014.02.002
  contributor:
    fullname: Mohammadnejad
– volume: 52
  start-page: 244
  year: 2016
  ident: 10.1016/j.jclepro.2019.06.197_bib2
  article-title: Preg-robbing of gold in chloride-bromide solution
  publication-title: Physicochemical Problems of Minerals Processing
  contributor:
    fullname: Ahtiainen
– volume: vol. 17
  year: 2015
  ident: 10.1016/j.jclepro.2019.06.197_bib14
  contributor:
    fullname: Lalancette
– year: 2005
  ident: 10.1016/j.jclepro.2019.06.197_bib5
  article-title: The Application of the PlatsolTM Process to copper-nickel-cobalt-PGE/PGM Concentrates from polymet mining's northmet deposit
  contributor:
    fullname: Dreisinger
– ident: 10.1016/j.jclepro.2019.06.197_bib6
  contributor:
    fullname: Dundee Sustainable Technologies
– volume: 65
  start-page: 1248
  year: 1961
  ident: 10.1016/j.jclepro.2019.06.197_bib21
  article-title: Chloride complex of iron(III) ions and the kinetics of the chloride-catalyzed exchange reaction between iron(II) and iron(III) in light and heavy water
  publication-title: J. Phys. Chem. A
  doi: 10.1021/j100825a037
  contributor:
    fullname: Sutin
– ident: 10.1016/j.jclepro.2019.06.197_bib13
  contributor:
    fullname: Intec Ltd
SSID ssj0017074
Score 2.5337455
Snippet All the industrially applied gold leaching methods (historical chlorine gas based leaching, dominating state-of-the-art cyanide gold leaching, processes at...
SourceID crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 9
SubjectTerms Carbon in chloride leach
Cyanide-free leaching
Material efficiency
Seawater
Sustainability
Title Cyanide-free gold leaching in exceptionally mild chloride solutions
URI https://dx.doi.org/10.1016/j.jclepro.2019.06.197
Volume 234
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED71scCAeIryqDKwps3DceKxqkAFRBeo1C2K7SukKmlVFYku_HbOxClFQgyMcWQ7-nL67uJ8_gxwFVENhBj4rooz4TIeBa5QJpaVopCmmPLRLOg_DPlgxO7G0bgG_WovjJFVWu4vOf2LrW1L16LZXeR599GsYNHY3JQgPuXROjQpHTHWgGbv9n4w3PxMoClZablnlB4B_97I0512pjQecZUReQnj5Okb-6ffUtRW2rnZhz1bLzq98pEOoIbFIexuuQgeQb-_zopcoztZIjrP85l2ZlYj6eSFg-9WuZLNZmvnNafb6sXo7jQ6m8A7htHN9VN_4NqzEVwVinDlyjgW8cQLY8kylJ7UItCeEknE40AKZEkmOMGcTFDRB4tkiZwkkdYsluijEjo8gUYxL_AUnEh5MqAmnnDJPKUzP6OiCZPIC7NI8rAFnQqOdFFaYKSVNmyaWvxSg1_q8ZTwa0FSgZb-eJcp0fTfXc_-3_UcdsyVySu-dwGN1fINL6lgWMk21DsfftuGxScVy8D3
link.rule.ids 315,786,790,4521,24144,27955,27956,45618,45712
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV27TsMwFLVKGYAB8RTl6YE1zctx4hFFVAXaLrRSNyu2byBVSKuqSHTh27GbpBQJMbDash0dX917Yh0fI3QbaA4E4LmWDBNmERp4FpMmlqXUIa1jygVzoN8f0O6IPI6DcQPF9V0YI6uscn-Z01fZumqxKzTtWZbZz-YES89NDQVxdR3dQtuGDRhdV_tzrfNw9YKkNNwzOg-Pfl_jsSftiZ5NZyoj8WLGx9M15k-_FaiNotM5QPsVW8R35QcdogYUR2hvw0PwGMXxMikyBVY6B8Av01zhvFJI4qzA8FHpVpI8X-K3THfLV6O6U4DXYXeCRp37Ydy1qpcRLOkzf2GJMGRh6vihIAkIRyjmKUeyKKChJxiQKGFUgxylIPXviiCRSKNAKRIKcEEy5Z-iZjEt4AzhQDrC0000ooI4UiVuoikTRIHjJ4Ggfgu1azj4rDTA4LUybMIr_LjBjzuUa_xaKKpB4z92kusk_ffQ8_8PvUE73WG_x3sPg6cLtGt6TIVxnUvUXMzf4UpTh4W4XoXGF8k3wcw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cyanide-free+gold+leaching+in+exceptionally+mild+chloride+solutions&rft.jtitle=Journal+of+cleaner+production&rft.au=Ahtiainen%2C+Riina&rft.au=Lundstr%C3%B6m%2C+Mari&rft.date=2019-10-10&rft.pub=Elsevier+Ltd&rft.issn=0959-6526&rft.eissn=1879-1786&rft.volume=234&rft.spage=9&rft.epage=17&rft_id=info:doi/10.1016%2Fj.jclepro.2019.06.197&rft.externalDocID=S0959652619321584
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0959-6526&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0959-6526&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0959-6526&client=summon