Adaptations of quaking aspen (Populus tremuloides Michx.) for defense against herbivores
► Much of the ecological and evolutionary success of aspen is due to strategies it employs for protection from herbivory. ► Expression of chemical defense is determined by genetics, development, environment, and interactions among those factors. ► Defenses can be overwhelmed by high population densi...
Saved in:
Published in | Forest ecology and management Vol. 299; pp. 14 - 21 |
---|---|
Main Authors | , |
Format | Journal Article Conference Proceeding |
Language | English |
Published |
Kidlington
Elsevier B.V
01.07.2013
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 0378-1127 1872-7042 |
DOI | 10.1016/j.foreco.2012.11.018 |
Cover
Loading…
Abstract | ► Much of the ecological and evolutionary success of aspen is due to strategies it employs for protection from herbivory. ► Expression of chemical defense is determined by genetics, development, environment, and interactions among those factors. ► Defenses can be overwhelmed by high population densities of both insect and mammalian herbivores. ► Changing environmental conditions, coupled with high herbivore pressure, can compromise aspen defenses. ► Management practices should promote diverse expression of defense traits and control for herbivore population levels.
Quaking aspen (Populus tremuloides) is a quintessential “foundation species” in early-successional forest ecosystems throughout much of North America. Although subject to damage by hundreds of species of herbivores, aspen has persisted in these environments due largely to a suite of defense strategies: resistance (traits that deter herbivores), tolerance (traits that facilitate recovery from damage) and escape (traits that reduce exposure to herbivores). Here, we review the current state of knowledge about aspen defense against herbivores, with particular focus on montane habitats of western North America.
The principal chemical defenses of aspen are phenylpropanoid-derived compounds, including phenolic glycosides (salicinoids) and condensed tannins. Phenolic glycosides reduce feeding, growth and survival of insect herbivores and deter feeding by mammalian herbivores. Expression of chemical defense traits is strongly influenced by genotype, development, environment (biotic and abiotic) and interactions among those factors, and high levels of defense exact a cost to growth. The value of tolerance as a defense strategy likely increases with tree age. Both tolerance and escape via vertical growth are also highly genetically variable in aspen.
The efficacy of aspen defense systems is context-dependent. Under conditions of low to moderate herbivore pressure, chemical defenses serve as effective deterrents, and well-defended genotypes are selectively favored. Under conditions of high herbivore pressure – whether insect or mammal – resistance fails and trees sustain high levels of damage. Under these conditions, genotypes with high levels of tolerance are likely selectively favored.
Large-scale landscape modifiers, coupled with genetic, developmental and local environmental variation, produce temporal and spatial mosaics of defense across western landscapes. Competition with conifers, fire severity, and extreme climatic events all influence expression of defense and response to herbivore damage in aspen.
Aspen’s extraordinary genetic variation and phenotypic plasticity are no match for the environmental stressors, particularly ungulate browsing, contributing to its decline in portions of the Interior West. Management approaches should capitalize on the genetic and environmental factors known to contribute to diverse expression of defense in aspen, while maintaining herbivore population densities below levels that overwhelm all combinations of defense traits. |
---|---|
AbstractList | Quaking aspen (Populus tremuloides) is a quintessential “foundation species” in early-successional forest ecosystems throughout much of North America. Although subject to damage by hundreds of species of herbivores, aspen has persisted in these environments due largely to a suite of defense strategies: resistance (traits that deter herbivores), tolerance (traits that facilitate recovery from damage) and escape (traits that reduce exposure to herbivores). Here, we review the current state of knowledge about aspen defense against herbivores, with particular focus on montane habitats of western North America.The principal chemical defenses of aspen are phenylpropanoid-derived compounds, including phenolic glycosides (salicinoids) and condensed tannins. Phenolic glycosides reduce feeding, growth and survival of insect herbivores and deter feeding by mammalian herbivores. Expression of chemical defense traits is strongly influenced by genotype, development, environment (biotic and abiotic) and interactions among those factors, and high levels of defense exact a cost to growth. The value of tolerance as a defense strategy likely increases with tree age. Both tolerance and escape via vertical growth are also highly genetically variable in aspen.The efficacy of aspen defense systems is context-dependent. Under conditions of low to moderate herbivore pressure, chemical defenses serve as effective deterrents, and well-defended genotypes are selectively favored. Under conditions of high herbivore pressure – whether insect or mammal – resistance fails and trees sustain high levels of damage. Under these conditions, genotypes with high levels of tolerance are likely selectively favored.Large-scale landscape modifiers, coupled with genetic, developmental and local environmental variation, produce temporal and spatial mosaics of defense across western landscapes. Competition with conifers, fire severity, and extreme climatic events all influence expression of defense and response to herbivore damage in aspen.Aspen’s extraordinary genetic variation and phenotypic plasticity are no match for the environmental stressors, particularly ungulate browsing, contributing to its decline in portions of the Interior West. Management approaches should capitalize on the genetic and environmental factors known to contribute to diverse expression of defense in aspen, while maintaining herbivore population densities below levels that overwhelm all combinations of defense traits. ► Much of the ecological and evolutionary success of aspen is due to strategies it employs for protection from herbivory. ► Expression of chemical defense is determined by genetics, development, environment, and interactions among those factors. ► Defenses can be overwhelmed by high population densities of both insect and mammalian herbivores. ► Changing environmental conditions, coupled with high herbivore pressure, can compromise aspen defenses. ► Management practices should promote diverse expression of defense traits and control for herbivore population levels. Quaking aspen (Populus tremuloides) is a quintessential “foundation species” in early-successional forest ecosystems throughout much of North America. Although subject to damage by hundreds of species of herbivores, aspen has persisted in these environments due largely to a suite of defense strategies: resistance (traits that deter herbivores), tolerance (traits that facilitate recovery from damage) and escape (traits that reduce exposure to herbivores). Here, we review the current state of knowledge about aspen defense against herbivores, with particular focus on montane habitats of western North America. The principal chemical defenses of aspen are phenylpropanoid-derived compounds, including phenolic glycosides (salicinoids) and condensed tannins. Phenolic glycosides reduce feeding, growth and survival of insect herbivores and deter feeding by mammalian herbivores. Expression of chemical defense traits is strongly influenced by genotype, development, environment (biotic and abiotic) and interactions among those factors, and high levels of defense exact a cost to growth. The value of tolerance as a defense strategy likely increases with tree age. Both tolerance and escape via vertical growth are also highly genetically variable in aspen. The efficacy of aspen defense systems is context-dependent. Under conditions of low to moderate herbivore pressure, chemical defenses serve as effective deterrents, and well-defended genotypes are selectively favored. Under conditions of high herbivore pressure – whether insect or mammal – resistance fails and trees sustain high levels of damage. Under these conditions, genotypes with high levels of tolerance are likely selectively favored. Large-scale landscape modifiers, coupled with genetic, developmental and local environmental variation, produce temporal and spatial mosaics of defense across western landscapes. Competition with conifers, fire severity, and extreme climatic events all influence expression of defense and response to herbivore damage in aspen. Aspen’s extraordinary genetic variation and phenotypic plasticity are no match for the environmental stressors, particularly ungulate browsing, contributing to its decline in portions of the Interior West. Management approaches should capitalize on the genetic and environmental factors known to contribute to diverse expression of defense in aspen, while maintaining herbivore population densities below levels that overwhelm all combinations of defense traits. |
Author | St. Clair, Samuel B. Lindroth, Richard L. |
Author_xml | – sequence: 1 givenname: Richard L. surname: Lindroth fullname: Lindroth, Richard L. email: lindroth@wisc.edu organization: University of Wisconsin–Madison, Madison, WI 53706, USA – sequence: 2 givenname: Samuel B. surname: St. Clair fullname: St. Clair, Samuel B. email: stclair@byu.edu organization: Brigham Young University, Provo, UT 84602, USA |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27500176$$DView record in Pascal Francis |
BookMark | eNqFkEtr3DAUhUVJoJM0_6BQbQrJwq5etuwuCiH0BQktNIHuhCxdTTT1SI5kh_bfV4NDF120q7v5zrmH7wQdhRgAoZeU1JTQ9s2udjGBiTUjlNWU1oR2z9CGdpJVkgh2hDaEy66ilMnn6CTnHSGkaUS3Qd8vrZ5mPfsYMo4OPyz6hw9brPMEAZ9_jdMyLhnPCfbLGL2FjG-8uf9ZX-DyE1twEDJgvdU-5BnfQxr8YxmTX6Bjp8cMZ0_3FN19eH979am6_vLx89XldWV4z-dqaIUeesr73poGBtZTwjo7cCO6YeDCdpwK5oBo6cA2Lbe8t1ZK0XDTNQwMP0Xna--U4sMCeVZ7nw2Mow4Ql6yoEC2TDWOyoK-fUJ2NHl3SwfispuT3Ov1ShSKEyrZwYuVMijkncH8QStRBuNqpVbg6CFeUqiK8xN7-FTN-NTsn7cf_hV-tYaej0ttUdt19K4AokzrW8gPxbiWg2Hz0kFQ2HoIB60vbrGz0_37xG_Psqgc |
CODEN | FECMDW |
CitedBy_id | crossref_primary_10_1111_csp2_12804 crossref_primary_10_1016_j_ufug_2020_126793 crossref_primary_10_1371_journal_pone_0203619 crossref_primary_10_1002_pca_2485 crossref_primary_10_1016_j_envexpbot_2017_08_003 crossref_primary_10_34133_2022_9892728 crossref_primary_10_1002_ece3_71163 crossref_primary_10_3390_f10080671 crossref_primary_10_1111_1365_2745_13504 crossref_primary_10_1016_j_foreco_2015_11_020 crossref_primary_10_1111_mec_14785 crossref_primary_10_1093_treephys_tpx088 crossref_primary_10_1016_j_foreco_2013_01_014 crossref_primary_10_1111_ele_13915 crossref_primary_10_1371_journal_pone_0111623 crossref_primary_10_1007_s00442_020_04622_y crossref_primary_10_1111_1365_2435_13249 crossref_primary_10_1007_s00442_022_05158_z crossref_primary_10_1007_s10886_023_01409_2 crossref_primary_10_1111_eea_12347 crossref_primary_10_1002_pca_2810 crossref_primary_10_1016_j_rala_2016_08_009 crossref_primary_10_1111_1365_2656_13034 crossref_primary_10_1007_s00442_015_3362_y crossref_primary_10_1007_s10886_021_01283_w crossref_primary_10_1186_s40168_024_01888_9 crossref_primary_10_1002_ecm_1544 crossref_primary_10_1016_j_rama_2018_12_006 crossref_primary_10_1139_cjfr_2022_0221 crossref_primary_10_1111_2041_210X_12596 crossref_primary_10_1016_j_envexpbot_2017_12_006 crossref_primary_10_1016_j_scitotenv_2018_03_344 crossref_primary_10_1007_s11829_016_9439_7 crossref_primary_10_1111_nph_17166 crossref_primary_10_1007_s10886_018_1006_5 crossref_primary_10_1371_journal_pone_0140971 crossref_primary_10_1007_s11829_014_9351_y crossref_primary_10_1038_s41598_022_13225_x crossref_primary_10_1111_1365_2745_12559 crossref_primary_10_1002_ece3_70046 crossref_primary_10_1186_s13007_021_00739_0 crossref_primary_10_1016_j_foreco_2020_118888 crossref_primary_10_1371_journal_pone_0250078 crossref_primary_10_1111_pce_13042 crossref_primary_10_3390_plants11182401 crossref_primary_10_1111_pce_12195 crossref_primary_10_1093_aob_mcaa070 crossref_primary_10_1016_j_applanim_2018_05_031 crossref_primary_10_1016_j_envexpbot_2021_104557 crossref_primary_10_1007_s10886_016_0677_z crossref_primary_10_1111_1365_2435_13425 crossref_primary_10_1139_cjfr_2020_0343 crossref_primary_10_1007_s00442_019_04370_8 crossref_primary_10_1016_j_foreco_2017_04_014 crossref_primary_10_1007_s10342_019_01165_7 crossref_primary_10_1007_s10886_014_0530_1 crossref_primary_10_1093_jofore_fvaa030 crossref_primary_10_1016_j_baae_2015_04_001 crossref_primary_10_3389_fpls_2020_00651 crossref_primary_10_1093_jee_toad129 crossref_primary_10_1002_ecs2_2387 crossref_primary_10_1016_j_foreco_2018_09_049 crossref_primary_10_1073_pnas_2103162118 crossref_primary_10_1093_aobpla_ply044 crossref_primary_10_1111_gcb_16275 crossref_primary_10_3356_JRR_14_24_1 crossref_primary_10_1016_j_foreco_2013_02_017 crossref_primary_10_1093_plcell_koac135 crossref_primary_10_1007_s10886_017_0872_6 crossref_primary_10_1111_1365_2656_13063 crossref_primary_10_1007_s00442_018_4253_9 crossref_primary_10_1016_j_foreco_2017_02_018 crossref_primary_10_1111_mec_15158 crossref_primary_10_1016_j_phytochem_2014_10_018 crossref_primary_10_1111_nph_12811 crossref_primary_10_1093_treephys_tpw118 crossref_primary_10_1007_s10886_013_0371_3 crossref_primary_10_1002_ecs2_2016 crossref_primary_10_1111_gcb_16064 crossref_primary_10_1007_s10886_014_0507_0 crossref_primary_10_1016_j_sajb_2020_09_024 crossref_primary_10_1371_journal_pone_0200954 crossref_primary_10_1016_j_ecolind_2018_02_013 crossref_primary_10_1080_11956860_2018_1564484 crossref_primary_10_1007_s10886_021_01259_w crossref_primary_10_1002_ece3_7439 crossref_primary_10_1094_PBIOMES_5_1 crossref_primary_10_1111_oik_01521 crossref_primary_10_1016_j_foreco_2018_09_024 crossref_primary_10_1094_PBIOMES_01_20_0009_FI crossref_primary_10_1007_s10886_022_01355_5 crossref_primary_10_1111_1365_2435_13699 crossref_primary_10_1111_nph_14374 crossref_primary_10_1111_nph_17248 crossref_primary_10_7717_peerj_491 crossref_primary_10_1002_ece3_9229 crossref_primary_10_1093_treephys_tpy071 crossref_primary_10_1002_ece3_10541 crossref_primary_10_3389_fpls_2018_00793 crossref_primary_10_1007_s00442_016_3577_6 crossref_primary_10_1016_j_foreco_2020_118168 crossref_primary_10_1016_j_biotechadv_2015_02_012 crossref_primary_10_1002_ecs2_1661 crossref_primary_10_1111_nph_13444 crossref_primary_10_1007_s10886_013_0374_0 crossref_primary_10_1007_s11104_020_04466_8 crossref_primary_10_1016_j_foreco_2018_05_016 crossref_primary_10_1016_j_jhazmat_2018_03_031 crossref_primary_10_1139_cjm_2014_0362 crossref_primary_10_1039_C4AY02639J crossref_primary_10_1093_jxb_erac260 crossref_primary_10_3390_f10121118 crossref_primary_10_1371_journal_pone_0154395 crossref_primary_10_1007_s00442_017_3944_y crossref_primary_10_3389_fpls_2020_590063 crossref_primary_10_1002_ece3_3932 crossref_primary_10_1007_s11101_025_10066_0 crossref_primary_10_3389_fpls_2021_655517 crossref_primary_10_1007_s10886_015_0600_z crossref_primary_10_1111_aje_13198 crossref_primary_10_1093_jpe_rty003 |
Cites_doi | 10.1093/treephys/26.7.889 10.1111/j.1461-9563.2010.00475.x 10.1007/s10886-010-9763-9 10.2111/REM-D-10-00089.1 10.2307/1940804 10.1139/b06-137 10.1007/s10886-007-9281-6 10.1007/s10682-006-9154-4 10.1016/j.tree.2005.05.001 10.1093/treephys/tpr041 10.1890/0012-9658(2001)082[2731:IOLFAF]2.0.CO;2 10.1086/physzool.66.4.30163809 10.1111/j.1365-2435.2012.01984.x 10.1016/S0169-5347(98)01576-6 10.2111/1551-501X(2008)30[17:ADACAE]2.0.CO;2 10.1016/j.foreco.2012.07.004 10.1016/0305-1978(96)00043-9 10.1007/s10886-012-0081-2 10.1007/BF01012275 10.1007/s00442-005-0128-y 10.2307/1941684 10.1890/06-1431.1 10.1890/1051-0761(2007)017[0101:RAITFO]2.0.CO;2 10.1023/A:1010352307301 10.1007/s004420050213 10.1016/j.foreco.2005.03.018 10.1603/0046-225X-33.5.1505 10.2307/3237266 10.1890/1540-9295(2005)003[0479:LOFSCF]2.0.CO;2 10.1890/06-0064 10.1139/x97-031 10.1007/s11829-009-9073-8 10.1016/j.phytochem.2011.01.038 10.1093/aob/mcm220 10.1007/s10021-008-9173-9 10.1007/s00442-006-0373-8 10.1111/j.1461-9563.2008.00392.x 10.1016/j.foreco.2012.03.019 10.1038/nclimate1348 10.1007/s00442-003-1481-3 10.1890/0012-9615(1999)069[0025:EPSIHS]2.0.CO;2 10.1007/s00442-009-1283-3 10.1007/s10530-006-9071-z 10.1016/j.bse.2009.02.003 10.1890/03-5395 10.1111/j.1469-8137.2005.01613.x 10.1007/BF00988096 10.1007/s10886-006-9201-1 10.1016/0305-1978(87)90045-7 10.1890/0012-9658(2002)083[1701:IAFAAE]2.0.CO;2 10.1139/B07-109 10.1080/10106040903051975 10.2307/1368179 10.1371/journal.pone.0052369 10.1080/07352680903241279 10.1139/z93-314 10.1098/rspb.2011.1501 10.1111/j.1469-8137.2006.01798.x 10.1111/j.1365-2435.2007.01356.x 10.1007/s11258-011-9920-4 10.2307/1312652 10.1016/j.foreco.2011.03.038 10.1007/s00442-009-1340-y 10.1093/treephys/tpq100 10.1093/treephys/tpp058 10.1007/s10886-006-9059-2 |
ContentType | Journal Article Conference Proceeding |
Copyright | 2012 Elsevier B.V. 2014 INIST-CNRS |
Copyright_xml | – notice: 2012 Elsevier B.V. – notice: 2014 INIST-CNRS |
DBID | FBQ AAYXX CITATION IQODW 7S9 L.6 |
DOI | 10.1016/j.foreco.2012.11.018 |
DatabaseName | AGRIS CrossRef Pascal-Francis AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
Database_xml | – sequence: 1 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Forestry |
EISSN | 1872-7042 |
EndPage | 21 |
ExternalDocumentID | 27500176 10_1016_j_foreco_2012_11_018 US201400182638 S0378112712006949 |
GeographicLocations | North America |
GeographicLocations_xml | – name: North America |
GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AAOAW AAQFI AATLK AAXUO ABFNM ABFRF ABFYP ABJNI ABLST ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACIUM ACRLP ADBBV ADEZE ADQTV AEBSH AEFWE AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CBWCG CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KCYFY KOM LW9 LY9 M41 MO0 N9A N~3 O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SAB SCC SDF SDG SDP SES SPCBC SSA SSJ SSZ T5K WH7 Y6R ~02 ~G- ~KM 0SF 29H AALCJ AALRI AAQXK ABGRD ABPIF ABTAH ADMUD AGHFR AI. AIDBO ASPBG AVWKF AZFZN FBQ FEDTE FGOYB G-2 HLV HMC HVGLF HZ~ NCXOZ R2- SEN SEW VH1 WUQ ZKB ZY4 AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH EFKBS IQODW 7S9 L.6 |
ID | FETCH-LOGICAL-c393t-b64ab91399dc5eb291028db3c48bb34d83142fe0a7fed563d39dd77453c852ec3 |
IEDL.DBID | .~1 |
ISSN | 0378-1127 |
IngestDate | Fri Jul 11 08:01:24 EDT 2025 Mon Jul 21 09:16:07 EDT 2025 Tue Jul 01 02:36:52 EDT 2025 Thu Apr 24 23:08:01 EDT 2025 Wed Dec 27 19:18:10 EST 2023 Fri Feb 23 02:32:30 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Aspen decline Populus tremuloides Herbivory Plant–animal interactions Phytochemistry Fire Herbivorous Forest ecology Biochemistry Salicaceae Animal plant relation Dicotyledones Fires Plant―animal interactions Angiospermae Forestry Hardwood forest tree Spermatophyta Adaptation |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MeetingName | Resilience in Quaking Aspen: restoring ecosystem processes through applied science |
MergedId | FETCHMERGED-LOGICAL-c393t-b64ab91399dc5eb291028db3c48bb34d83142fe0a7fed563d39dd77453c852ec3 |
Notes | http://dx.doi.org/10.1016/j.foreco.2012.11.018 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1446275227 |
PQPubID | 24069 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_1446275227 pascalfrancis_primary_27500176 crossref_primary_10_1016_j_foreco_2012_11_018 crossref_citationtrail_10_1016_j_foreco_2012_11_018 fao_agris_US201400182638 elsevier_sciencedirect_doi_10_1016_j_foreco_2012_11_018 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-07-01 |
PublicationDateYYYYMMDD | 2013-07-01 |
PublicationDate_xml | – month: 07 year: 2013 text: 2013-07-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Kidlington |
PublicationPlace_xml | – name: Kidlington |
PublicationTitle | Forest ecology and management |
PublicationYear | 2013 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Mitton, Grant (b0230) 1996; 46 Reich, Bakken, Carlson, Frelich, Friedman, Grigal (b0260) 2001; 82 Ellison, Bank, Clinton, Colburn, Elliott, Ford, Foster, Kloeppel, Knoepp, Lovett, Mohan, Orwig, Rodenhouse, Sobczak, Stinson, Stone, Swan, Thompson, Von Holle, Webster (b0085) 2005; 3 Vigue, Lindroth (b0335) 2010; 12 Kashian, Romme, Regan (b0145) 2007; 17 Palo (b0250) 1984; 10 Stevens, Lindroth (b0310) 2005; 145 Hwang, Lindroth (b0105) 1997; 111 Donaldson, Kruger, Lindroth (b0060) 2006; 169 Donaldson, Lindroth (b0075) 2008; 10 Stohlgren, Binkley, Chong, Kalkhan, Schell, Bull, Otsuki, Newman, Bashkin, Son (b0320) 1999; 69 Brodie, Post, Watson, Berger (b0360) 2012; 279 Bailey, Whitham (b0010) 2002; 83 Holeski, Vogelzang, Stanosz, Lindroth (b0100) 2009; 37 Jakubas, Gullion, Clausen (b0115) 1989; 15 Lindroth, Kinney, Platz (b0195) 1993; 74 Tsai, Harding, Tschaplinski, Lindroth, Yuan (b0330) 2006; 172 Wooley, Donaldson, Gusse, Lindroth, Stevens (b0340) 2007; 100 Osier, Lindroth (b0245) 2006; 148 Jakubas, Karasov, Guglielmo (b0120) 1993; 66 Stevens, Waller, Lindroth (b0315) 2007; 21 Smith, Collette, Boynton, Lillrose, Stevens, Bekker, Eggett, St Clair (b0285) 2011; 31 Strauss, Agrawal (b0325) 1999; 14 Lindroth, R.L., 2001. Adaptations of quaking aspen for defense against damage by herbivores and related environmental agents. In: Shepperd, W.D., Binkley, D.B., Bartos, D.L., Stohlgren, T.J., Eskew, L.G., (Eds.), Sustaining Aspen in Western Landscapes: Symposium Proceedings. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. Fort Collins, pp. 273-284. Boege, Marquis (b0020) 2005; 20 Lindroth, Donaldson, Stevens, Gusse (b0175) 2007; 33 Logan, Regniere, Gray, Munson (b0200) 2007; 17 Osier, Lindroth (b0235) 2001; 27 Donaldson, Lindroth (b0070) 2007; 88 Lindroth, Hwang (b0185) 1996; 30 Jones, Lile, Tate (b0130) 2011; 64 Romme, Turner, Wallace, Walker (b0265) 1995; 76 Karban, Baldwin (b0140) 1997 Smith, O’Loughlin, Buck, St. Clair (b0290) 2011; 262 Madritch, M.D., Lindroth, R.L., 2012. Condensed tannins increase nitrogen recovery by trees following insect defoliation. Ecology (submitted for publication). Donaldson, Stevens, Barnhill, Lindroth (b0080) 2006; 32 Constabel, Lindroth (b0040) 2010; 8 Smith, Smith (b0280) 2005; 213 Boeckler, Gershezon, Unsicker (b0015) 2011; 72 Osier, Lindroth (b0240) 2004; 139 Wooley, S.C., Walker, S., Vernon, J., Lindroth, R.L., 2008. Aspen Decline, Aspen Chemistry, and Elk Herbivory: Are They Linked? Aspen Chemical Ecology can Inform the Discussion of Aspen Decline in the West. Rangelands, pp. 17–21. Endress, Wisdom, Vavra, Parks, Dick, Naylor, Boyd (b0090) 2012; 276 Roth, McDonald, Lindroth (b0270) 1997; 27 Calder, Horn, St. Clair (b0030) 2011; 31 Li, Holopainen, Kokko, Tervahauta, Blande (b0365) 2012; 26 Stevens, Gusse, Lindroth (b0300) 2012; 38 Donaldson, Lindroth (b0065) 2004; 33 Kuhn, Safford, Jones, Tate (b0160) 2011; 212 McArthur, Robbins, Hagerman, Hanley (b0220) 1993; 71 Young, Wagner, Clausen, Doak (b0350) 2010; 36 Diner, Berteaux, Fyles, Lindroth (b0050) 2009; 160 Chen, Liu, Tschaplinski, Zhao (b0035) 2009; 28 Schweitzer, Madritch, Bailey, Leroy, Fischer, Rehill, Lindroth, Hagerman, Wooley, Hart, Whitham (b0275) 2008; 11 Bailey, Schweitzer, Rehill, Irschick, Whitham, Lindroth (b0005) 2007; 9 Kaye, Binkley, Stohlgren (b0150) 2005; 15 Doak, Wagner, Watson (b0055) 2007; 85 Kanaga, Latta IV, Mock, Ryel, Lindroth, Pfrender (b0135) 2009; 3 Jakubas, Gullion (b0110) 1991; 93 Currit, St. Clair (b0045) 2010; 25 Messier, Parent, Bergeron (b0225) 1998; 9 Buck, J.R., St. Clair, S.B., 2012. Aspen increase soil moisture, nutrients, organic matter and respiration in Rocky Mountain forest communities. PLoS ONE, in press. St. Clair, Monson, Smith, Cahill, Calder (b0295) 2009; 29 Philippe, Bohlmann (b0255) 2007; 85 Stevens, Kruger, Lindroth (b0305) 2008; 22 Martin, Maron (b0215) 2012; 2 Zegler, Moore, Fairweather, Ireland, Fulé (b0355) 2012; 282 Madritch, Greene, Lindroth (b0205) 2009; 160 Lindroth, Hwang (b0190) 1996; 24 Hanninen (b0095) 2006; 26 Lindroth, Hsia, Scriber (b0180) 1987; 15 Kuhn, Pettersson, Feld, Nie, Tolzin-Banasch, M’rabet, Pasteels, Boland (b0155) 2007; 33 Kuhn (10.1016/j.foreco.2012.11.018_b0155) 2007; 33 Currit (10.1016/j.foreco.2012.11.018_b0045) 2010; 25 Boege (10.1016/j.foreco.2012.11.018_b0020) 2005; 20 Brodie (10.1016/j.foreco.2012.11.018_b0360) 2012; 279 McArthur (10.1016/j.foreco.2012.11.018_b0220) 1993; 71 Kashian (10.1016/j.foreco.2012.11.018_b0145) 2007; 17 Schweitzer (10.1016/j.foreco.2012.11.018_b0275) 2008; 11 Smith (10.1016/j.foreco.2012.11.018_b0290) 2011; 262 Chen (10.1016/j.foreco.2012.11.018_b0035) 2009; 28 Logan (10.1016/j.foreco.2012.11.018_b0200) 2007; 17 Smith (10.1016/j.foreco.2012.11.018_b0285) 2011; 31 Constabel (10.1016/j.foreco.2012.11.018_b0040) 2010; 8 Stevens (10.1016/j.foreco.2012.11.018_b0300) 2012; 38 Lindroth (10.1016/j.foreco.2012.11.018_b0185) 1996; 30 Jakubas (10.1016/j.foreco.2012.11.018_b0110) 1991; 93 Hanninen (10.1016/j.foreco.2012.11.018_b0095) 2006; 26 Lindroth (10.1016/j.foreco.2012.11.018_b0175) 2007; 33 Messier (10.1016/j.foreco.2012.11.018_b0225) 1998; 9 Kaye (10.1016/j.foreco.2012.11.018_b0150) 2005; 15 Kanaga (10.1016/j.foreco.2012.11.018_b0135) 2009; 3 Donaldson (10.1016/j.foreco.2012.11.018_b0070) 2007; 88 Donaldson (10.1016/j.foreco.2012.11.018_b0080) 2006; 32 Tsai (10.1016/j.foreco.2012.11.018_b0330) 2006; 172 Diner (10.1016/j.foreco.2012.11.018_b0050) 2009; 160 Mitton (10.1016/j.foreco.2012.11.018_b0230) 1996; 46 Ellison (10.1016/j.foreco.2012.11.018_b0085) 2005; 3 St. Clair (10.1016/j.foreco.2012.11.018_b0295) 2009; 29 Donaldson (10.1016/j.foreco.2012.11.018_b0075) 2008; 10 Kuhn (10.1016/j.foreco.2012.11.018_b0160) 2011; 212 Lindroth (10.1016/j.foreco.2012.11.018_b0195) 1993; 74 Lindroth (10.1016/j.foreco.2012.11.018_b0180) 1987; 15 Bailey (10.1016/j.foreco.2012.11.018_b0005) 2007; 9 Strauss (10.1016/j.foreco.2012.11.018_b0325) 1999; 14 Osier (10.1016/j.foreco.2012.11.018_b0240) 2004; 139 Stevens (10.1016/j.foreco.2012.11.018_b0315) 2007; 21 Smith (10.1016/j.foreco.2012.11.018_b0280) 2005; 213 Donaldson (10.1016/j.foreco.2012.11.018_b0065) 2004; 33 Stevens (10.1016/j.foreco.2012.11.018_b0305) 2008; 22 Young (10.1016/j.foreco.2012.11.018_b0350) 2010; 36 Stevens (10.1016/j.foreco.2012.11.018_b0310) 2005; 145 Doak (10.1016/j.foreco.2012.11.018_b0055) 2007; 85 Karban (10.1016/j.foreco.2012.11.018_b0140) 1997 10.1016/j.foreco.2012.11.018_b0170 Madritch (10.1016/j.foreco.2012.11.018_b0205) 2009; 160 Calder (10.1016/j.foreco.2012.11.018_b0030) 2011; 31 Lindroth (10.1016/j.foreco.2012.11.018_b0190) 1996; 24 10.1016/j.foreco.2012.11.018_b0210 Hwang (10.1016/j.foreco.2012.11.018_b0105) 1997; 111 Endress (10.1016/j.foreco.2012.11.018_b0090) 2012; 276 Wooley (10.1016/j.foreco.2012.11.018_b0340) 2007; 100 Stohlgren (10.1016/j.foreco.2012.11.018_b0320) 1999; 69 Osier (10.1016/j.foreco.2012.11.018_b0245) 2006; 148 Romme (10.1016/j.foreco.2012.11.018_b0265) 1995; 76 Holeski (10.1016/j.foreco.2012.11.018_b0100) 2009; 37 Li (10.1016/j.foreco.2012.11.018_b0365) 2012; 26 Roth (10.1016/j.foreco.2012.11.018_b0270) 1997; 27 Jakubas (10.1016/j.foreco.2012.11.018_b0120) 1993; 66 Palo (10.1016/j.foreco.2012.11.018_b0250) 1984; 10 Martin (10.1016/j.foreco.2012.11.018_b0215) 2012; 2 Osier (10.1016/j.foreco.2012.11.018_b0235) 2001; 27 Jones (10.1016/j.foreco.2012.11.018_b0130) 2011; 64 Donaldson (10.1016/j.foreco.2012.11.018_b0060) 2006; 169 Reich (10.1016/j.foreco.2012.11.018_b0260) 2001; 82 Zegler (10.1016/j.foreco.2012.11.018_b0355) 2012; 282 Bailey (10.1016/j.foreco.2012.11.018_b0010) 2002; 83 Philippe (10.1016/j.foreco.2012.11.018_b0255) 2007; 85 Vigue (10.1016/j.foreco.2012.11.018_b0335) 2010; 12 Boeckler (10.1016/j.foreco.2012.11.018_b0015) 2011; 72 Jakubas (10.1016/j.foreco.2012.11.018_b0115) 1989; 15 10.1016/j.foreco.2012.11.018_b0025 10.1016/j.foreco.2012.11.018_b0345 |
References_xml | – volume: 279 start-page: 1366 year: 2012 end-page: 1370 ident: b0360 article-title: Climate change intensification of herbivore impacts on tree recruitment publication-title: Proc. Royal Soc. B – volume: 36 start-page: 369 year: 2010 end-page: 377 ident: b0350 article-title: Induction of phenolic glycosides in aspen ( publication-title: J. Chem. Ecol. – volume: 24 start-page: 357 year: 1996 end-page: 364 ident: b0190 article-title: Clonal variation in foliar chemistry of quaking aspen ( publication-title: Biochem. Syst. Ecol. – volume: 14 start-page: 179 year: 1999 end-page: 185 ident: b0325 article-title: The ecology and evolution of plant tolerance to herbivory publication-title: Trends Ecol. Evol. – volume: 172 start-page: 47 year: 2006 end-page: 62 ident: b0330 article-title: Genome-wide analysis of the structural genes regulating defense phenylpropanoid metabolism in publication-title: New Phytol. – volume: 15 start-page: 1284 year: 2005 end-page: 1295 ident: b0150 article-title: Effects of conifers and elk browsing on quaking aspen forests in the central Rocky Mountains, USA. publication-title: Ecol. Appl. – volume: 83 start-page: 1701 year: 2002 end-page: 1712 ident: b0010 article-title: Interactions among fire, aspen, and elk affect insect diversity: reversal of a community response publication-title: Ecology – volume: 3 start-page: 479 year: 2005 end-page: 486 ident: b0085 article-title: Loss of foundation species: consequences for the structure and dynamics of forested ecosystems publication-title: Front. Ecol. Environ – year: 1997 ident: b0140 article-title: Induced Responses to Herbivory – volume: 160 start-page: 687 year: 2009 end-page: 695 ident: b0050 article-title: Behavioral archives link the chemistry and clonal structure of trembling aspen to the food choice of North American porcupine publication-title: Oecologia – volume: 33 start-page: 5 year: 2007 end-page: 24 ident: b0155 article-title: Sequestration of plant-derived phenolglucosides by larvae of the leaf beetle publication-title: J. Chem. Ecol. – volume: 82 start-page: 2731 year: 2001 end-page: 2748 ident: b0260 article-title: Influence of logging, fire, and forest type on biodiversity and productivity in southern boreal forests publication-title: Ecology – volume: 276 start-page: 33 year: 2012 end-page: 40 ident: b0090 article-title: Effects of ungulate herbivory on aspen, cottonwood, and willow development under forest fuels treatment regimes publication-title: Forest Ecol. Mgnage. – volume: 30 start-page: 25 year: 1996 end-page: 56 ident: b0185 article-title: Diversity, redundancy and multiplicity in chemical defense systems of aspen publication-title: Rec. Adv. Phytochem. – volume: 282 start-page: 196 year: 2012 end-page: 207 ident: b0355 article-title: mortality near the southwestern edge of its range publication-title: Forest Ecol. Mgnage. – volume: 22 start-page: 40 year: 2008 end-page: 47 ident: b0305 article-title: Variation in tolerance to herbivory is mediated by differences in biomass allocation in aspen publication-title: Funct. Ecol. – volume: 145 start-page: 298 year: 2005 end-page: 306 ident: b0310 article-title: Induced resistance in the indeterminate growth of aspen ( publication-title: Oecologia – volume: 17 start-page: 101 year: 2007 end-page: 117 ident: b0200 article-title: Risk assessment in the face of a changing environment: gypsy moth and climate change in Utah publication-title: Ecol. Appl. – volume: 15 start-page: 677 year: 1987 end-page: 680 ident: b0180 article-title: Characterization of phenolic glycosides from quaking aspen ( publication-title: Biochem. Syst. Ecol. – volume: 46 start-page: 25 year: 1996 end-page: 31 ident: b0230 article-title: Genetic variation and the natural history of quaking aspen publication-title: Bioscience – volume: 100 start-page: 1337 year: 2007 end-page: 1346 ident: b0340 article-title: Extrafloral nectaries in aspen ( publication-title: Ann. Bot. – volume: 32 start-page: 1415 year: 2006 end-page: 1429 ident: b0080 article-title: Age-related shifts in leaf chemistry of clonal aspen ( publication-title: J. Chem. Ecol. – volume: 33 start-page: 1049 year: 2007 end-page: 1064 ident: b0175 article-title: Browse quality in quaking aspen ( publication-title: J. Chem. Ecol. – volume: 148 start-page: 293 year: 2006 end-page: 303 ident: b0245 article-title: Genotype and environment determine allocation to and costs of resistance in quaking aspen publication-title: Oecologia – volume: 25 start-page: 133 year: 2010 end-page: 147 ident: b0045 article-title: Assessing the impact of extreme climatic events on aspen defoliation using MODIS imagery publication-title: Geocart. Int. – volume: 64 start-page: 625 year: 2011 end-page: 632 ident: b0130 article-title: Cattle selection for aspen and meadow vegetation: implications for restoration publication-title: Range. Ecol. Manage. – reference: Madritch, M.D., Lindroth, R.L., 2012. Condensed tannins increase nitrogen recovery by trees following insect defoliation. Ecology (submitted for publication). – volume: 160 start-page: 119 year: 2009 end-page: 127 ident: b0205 article-title: Genetic mosaics of ecosystem functioning across aspen-dominated landscapes publication-title: Oecologia – volume: 37 start-page: 139 year: 2009 end-page: 145 ident: b0100 article-title: Incidence of publication-title: Biochem. Syst. Ecol. – volume: 10 start-page: 399 year: 2008 end-page: 410 ident: b0075 article-title: Effects of variable phytochemistry and budbreak phenology on defoliation of aspen during a forest tent caterpillar outbreak publication-title: Agric. Forest Entomol. – volume: 71 start-page: 2236 year: 1993 end-page: 2243 ident: b0220 article-title: Diet selection by a ruminant generalist browser in relation to plant chemistry publication-title: Can. J. Zool. – volume: 213 start-page: 338 year: 2005 end-page: 348 ident: b0280 article-title: Twenty-year change in aspen dominance in pure aspen and mixed aspen/conifer stands on the Uncompahgre Plateau, Colorado USA publication-title: Forest Ecol. Mgnage. – volume: 27 start-page: 1281 year: 1997 end-page: 1290 ident: b0270 article-title: Atmospheric CO publication-title: Can. J. For. Res. – volume: 2 start-page: 195 year: 2012 end-page: 200 ident: b0215 article-title: Climate impacts on bird and plant communities from altered animal-plant interactions publication-title: Nat. Clim. Chang. – volume: 72 start-page: 1497 year: 2011 end-page: 1509 ident: b0015 article-title: Phenolic glycosides of the Salicaceae and their role as anti-herbivore defenses publication-title: Phytochemistry – volume: 262 start-page: 325 year: 2011 end-page: 330 ident: b0290 article-title: The influences of conifer succession, physiographic conditions and herbivory on quaking aspen regeneration after fire publication-title: Forest Ecol. Manage. – volume: 38 start-page: 306 year: 2012 end-page: 314 ident: b0300 article-title: Genotypic differences and prior defoliation affect re-growth and phytochemistry after coppicing in publication-title: J. Chem. Ecol. – volume: 169 start-page: 561 year: 2006 end-page: 570 ident: b0060 article-title: Competition- and resource-mediated tradeoffs between growth and defense chemistry in trembling aspen ( publication-title: New Phytol. – reference: Lindroth, R.L., 2001. Adaptations of quaking aspen for defense against damage by herbivores and related environmental agents. In: Shepperd, W.D., Binkley, D.B., Bartos, D.L., Stohlgren, T.J., Eskew, L.G., (Eds.), Sustaining Aspen in Western Landscapes: Symposium Proceedings. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. Fort Collins, pp. 273-284. – volume: 85 start-page: 1 year: 2007 end-page: 9 ident: b0055 article-title: Variable extrafloral nectar expression and its consequences in quaking aspen publication-title: Can. J. Bot. – volume: 111 start-page: 99 year: 1997 end-page: 108 ident: b0105 article-title: Clonal variation in foliar chemistry of aspen: effects on gypsy moths and forest tent caterpillars publication-title: Oecologia – volume: 11 start-page: 1005 year: 2008 end-page: 1020 ident: b0275 article-title: From genes to ecosystems: the genetic basis of condensed tannins and their role in nutrient regulation in a publication-title: Ecosystems – volume: 3 start-page: 249 year: 2009 end-page: 258 ident: b0135 article-title: Plant genotypic diversity and environmental stress interact to negatively affect arthropod community diversity publication-title: Arthr. -Plant Inter. – volume: 76 start-page: 2097 year: 1995 end-page: 2106 ident: b0265 article-title: Aspen, elk and fire in northern Yellowstone National Park publication-title: Ecology – volume: 28 start-page: 375 year: 2009 end-page: 392 ident: b0035 article-title: Genomics of secondary metabolism in publication-title: Crit. Rev. Plant Sci. – volume: 139 start-page: 55 year: 2004 end-page: 65 ident: b0240 article-title: Long-term effects of defoliation on quaking aspen in relation to genotype and nutrient availability: plant growth, phytochemistry and insect performance publication-title: Oecologia – volume: 212 start-page: 1451 year: 2011 end-page: 1463 ident: b0160 article-title: Aspen ( publication-title: Plant Ecol. – volume: 26 start-page: 1176 year: 2012 end-page: 1185 ident: b0365 article-title: Herbivore-induced aspen volatiles temporally regulate two different indirect defences in neighbouring plants publication-title: Funct. Ecol. – volume: 9 start-page: 715 year: 2007 end-page: 722 ident: b0005 article-title: Rapid shifts in the chemical composition of aspen forests: an introduced herbivore as an agent of natural selection publication-title: Biol. Invas. – volume: 31 start-page: 68 year: 2011 end-page: 77 ident: b0285 article-title: Developmental contributions to phenotypic variation in functional leaf traits within quaking aspen clones publication-title: Tree Physiol. – volume: 31 start-page: 582 year: 2011 end-page: 591 ident: b0030 article-title: Conifer expansion reduces the competitive ability and herbivore defense of aspen by modifying light environment and soil chemistry publication-title: Tree Physiol. – volume: 33 start-page: 1505 year: 2004 end-page: 1511 ident: b0065 article-title: Cottonwood leaf beetle (Coleoptera: Chrysomelidea) performance in relation to variable phytochemistry in juvenile aspen ( publication-title: Environ. Entomol. – volume: 93 start-page: 473 year: 1991 end-page: 485 ident: b0110 article-title: Use of quaking aspen flower buds by ruffed grouse: its relationship to grouse densities and bud chemical composition publication-title: The Condor – volume: 17 start-page: 1296 year: 2007 end-page: 1311 ident: b0145 article-title: Reconciling divergent interpretations of quaking aspen decline on the northern Colorado Front Range publication-title: Ecol. Appl. – reference: Wooley, S.C., Walker, S., Vernon, J., Lindroth, R.L., 2008. Aspen Decline, Aspen Chemistry, and Elk Herbivory: Are They Linked? Aspen Chemical Ecology can Inform the Discussion of Aspen Decline in the West. Rangelands, pp. 17–21. – volume: 12 start-page: 267 year: 2010 end-page: 276 ident: b0335 article-title: Effects of genotype, elevated CO publication-title: Agric. Forest Entomol. – volume: 8 start-page: 279 year: 2010 end-page: 305 ident: b0040 article-title: The impact of genomics on advances in herbivore defense and secondary metabolism in publication-title: The Genetics and Genomics of Populus. Plant Genetics and Genomics – volume: 85 start-page: 1111 year: 2007 end-page: 1126 ident: b0255 article-title: Poplar defense against insect herbivores publication-title: Can. J. Bot. – volume: 74 start-page: 763 year: 1993 end-page: 777 ident: b0195 article-title: Responses of deciduous trees to elevated atmospheric CO publication-title: Ecology – volume: 29 start-page: 1259 year: 2009 end-page: 1268 ident: b0295 article-title: Altered leaf morphology, leaf resource dilution and defense chemistry induction in frost-defoliated aspen ( publication-title: Tree Physiol. – volume: 88 start-page: 729 year: 2007 end-page: 739 ident: b0070 article-title: Genetics, environment, and their interaction determine efficacy of chemical defense in trembling aspen publication-title: Ecology – reference: Buck, J.R., St. Clair, S.B., 2012. Aspen increase soil moisture, nutrients, organic matter and respiration in Rocky Mountain forest communities. PLoS ONE, in press. – volume: 9 start-page: 511 year: 1998 end-page: 520 ident: b0225 article-title: Effects of overstory and understory vegetation on the understory light environment in mixed boreal forests publication-title: J. Veget. Sci. – volume: 27 start-page: 1289 year: 2001 end-page: 1313 ident: b0235 article-title: Effects of genotype, nutrient availability, and defoliation on aspen phytochemistry and insect performance publication-title: J. Chem. Ecol. – volume: 26 start-page: 889 year: 2006 end-page: 898 ident: b0095 article-title: Climate warming and the risk of frost damage to boreal forest trees: identification of critical ecophysiological traits publication-title: Tree Physiol. – volume: 15 start-page: 1899 year: 1989 end-page: 1917 ident: b0115 article-title: Ruffed grouse feeding behavior and its relationship to the secondary metabolites of quaking aspen flower buds publication-title: J. Chem. Ecol. – volume: 66 start-page: 580 year: 1993 end-page: 601 ident: b0120 article-title: Coniferyl benzoate in quaking aspen ( publication-title: Physiol. Zoo. – volume: 69 start-page: 25 year: 1999 end-page: 46 ident: b0320 article-title: Exotic plant species invade hot spots of native plant diversity publication-title: Ecol. Monogr. – volume: 20 start-page: 441 year: 2005 end-page: 448 ident: b0020 article-title: Facing herbivory as you grow up: the ontogeny of resistance in plants publication-title: Trends Ecol. Evol. – volume: 21 start-page: 829 year: 2007 end-page: 847 ident: b0315 article-title: Resistance and tolerance in publication-title: Evol. Ecol. – volume: 10 start-page: 499 year: 1984 end-page: 520 ident: b0250 article-title: Distribution of birch ( publication-title: J. Chem. Ecol. – volume: 26 start-page: 889 year: 2006 ident: 10.1016/j.foreco.2012.11.018_b0095 article-title: Climate warming and the risk of frost damage to boreal forest trees: identification of critical ecophysiological traits publication-title: Tree Physiol. doi: 10.1093/treephys/26.7.889 – volume: 12 start-page: 267 year: 2010 ident: 10.1016/j.foreco.2012.11.018_b0335 article-title: Effects of genotype, elevated CO2, and elevated O3 on aspen phytochemistry and aspen leaf beetle Chrysomela crotchi performance publication-title: Agric. Forest Entomol. doi: 10.1111/j.1461-9563.2010.00475.x – volume: 36 start-page: 369 year: 2010 ident: 10.1016/j.foreco.2012.11.018_b0350 article-title: Induction of phenolic glycosides in aspen (Populus tremuloides) in response to epidermal leaf mining by an outbreak insect species, Phyllocnistis populiella publication-title: J. Chem. Ecol. doi: 10.1007/s10886-010-9763-9 – volume: 64 start-page: 625 year: 2011 ident: 10.1016/j.foreco.2012.11.018_b0130 article-title: Cattle selection for aspen and meadow vegetation: implications for restoration publication-title: Range. Ecol. Manage. doi: 10.2111/REM-D-10-00089.1 – volume: 74 start-page: 763 year: 1993 ident: 10.1016/j.foreco.2012.11.018_b0195 article-title: Responses of deciduous trees to elevated atmospheric CO2: productivity, phytochemistry and insect performance publication-title: Ecology doi: 10.2307/1940804 – volume: 85 start-page: 1 year: 2007 ident: 10.1016/j.foreco.2012.11.018_b0055 article-title: Variable extrafloral nectar expression and its consequences in quaking aspen publication-title: Can. J. Bot. doi: 10.1139/b06-137 – volume: 33 start-page: 1049 year: 2007 ident: 10.1016/j.foreco.2012.11.018_b0175 article-title: Browse quality in quaking aspen (Populus tremuloides): effects of genotype, nutrients, defoliation, and coppicing publication-title: J. Chem. Ecol. doi: 10.1007/s10886-007-9281-6 – volume: 21 start-page: 829 year: 2007 ident: 10.1016/j.foreco.2012.11.018_b0315 article-title: Resistance and tolerance in Populus tremuloides: genetic variation, costs, and environmental dependency publication-title: Evol. Ecol. doi: 10.1007/s10682-006-9154-4 – volume: 20 start-page: 441 year: 2005 ident: 10.1016/j.foreco.2012.11.018_b0020 article-title: Facing herbivory as you grow up: the ontogeny of resistance in plants publication-title: Trends Ecol. Evol. doi: 10.1016/j.tree.2005.05.001 – volume: 31 start-page: 582 year: 2011 ident: 10.1016/j.foreco.2012.11.018_b0030 article-title: Conifer expansion reduces the competitive ability and herbivore defense of aspen by modifying light environment and soil chemistry publication-title: Tree Physiol. doi: 10.1093/treephys/tpr041 – ident: 10.1016/j.foreco.2012.11.018_b0210 – volume: 82 start-page: 2731 year: 2001 ident: 10.1016/j.foreco.2012.11.018_b0260 article-title: Influence of logging, fire, and forest type on biodiversity and productivity in southern boreal forests publication-title: Ecology doi: 10.1890/0012-9658(2001)082[2731:IOLFAF]2.0.CO;2 – volume: 66 start-page: 580 year: 1993 ident: 10.1016/j.foreco.2012.11.018_b0120 article-title: Coniferyl benzoate in quaking aspen (Populus tremuloides): its effect on energy and nitrogen digestion and retention in ruffed grouse (Bonasa umbellus) publication-title: Physiol. Zoo. doi: 10.1086/physzool.66.4.30163809 – volume: 26 start-page: 1176 year: 2012 ident: 10.1016/j.foreco.2012.11.018_b0365 article-title: Herbivore-induced aspen volatiles temporally regulate two different indirect defences in neighbouring plants publication-title: Funct. Ecol. doi: 10.1111/j.1365-2435.2012.01984.x – volume: 14 start-page: 179 year: 1999 ident: 10.1016/j.foreco.2012.11.018_b0325 article-title: The ecology and evolution of plant tolerance to herbivory publication-title: Trends Ecol. Evol. doi: 10.1016/S0169-5347(98)01576-6 – ident: 10.1016/j.foreco.2012.11.018_b0345 doi: 10.2111/1551-501X(2008)30[17:ADACAE]2.0.CO;2 – volume: 282 start-page: 196 year: 2012 ident: 10.1016/j.foreco.2012.11.018_b0355 article-title: Populus tremuloides mortality near the southwestern edge of its range publication-title: Forest Ecol. Mgnage. doi: 10.1016/j.foreco.2012.07.004 – volume: 24 start-page: 357 year: 1996 ident: 10.1016/j.foreco.2012.11.018_b0190 article-title: Clonal variation in foliar chemistry of quaking aspen (Populus tremuloides Michx.) publication-title: Biochem. Syst. Ecol. doi: 10.1016/0305-1978(96)00043-9 – volume: 38 start-page: 306 year: 2012 ident: 10.1016/j.foreco.2012.11.018_b0300 article-title: Genotypic differences and prior defoliation affect re-growth and phytochemistry after coppicing in Populus tremuloides publication-title: J. Chem. Ecol. doi: 10.1007/s10886-012-0081-2 – volume: 15 start-page: 1899 year: 1989 ident: 10.1016/j.foreco.2012.11.018_b0115 article-title: Ruffed grouse feeding behavior and its relationship to the secondary metabolites of quaking aspen flower buds publication-title: J. Chem. Ecol. doi: 10.1007/BF01012275 – volume: 145 start-page: 298 year: 2005 ident: 10.1016/j.foreco.2012.11.018_b0310 article-title: Induced resistance in the indeterminate growth of aspen (Populus tremuloides) publication-title: Oecologia doi: 10.1007/s00442-005-0128-y – volume: 76 start-page: 2097 year: 1995 ident: 10.1016/j.foreco.2012.11.018_b0265 article-title: Aspen, elk and fire in northern Yellowstone National Park publication-title: Ecology doi: 10.2307/1941684 – volume: 17 start-page: 1296 year: 2007 ident: 10.1016/j.foreco.2012.11.018_b0145 article-title: Reconciling divergent interpretations of quaking aspen decline on the northern Colorado Front Range publication-title: Ecol. Appl. doi: 10.1890/06-1431.1 – volume: 17 start-page: 101 year: 2007 ident: 10.1016/j.foreco.2012.11.018_b0200 article-title: Risk assessment in the face of a changing environment: gypsy moth and climate change in Utah publication-title: Ecol. Appl. doi: 10.1890/1051-0761(2007)017[0101:RAITFO]2.0.CO;2 – volume: 27 start-page: 1289 year: 2001 ident: 10.1016/j.foreco.2012.11.018_b0235 article-title: Effects of genotype, nutrient availability, and defoliation on aspen phytochemistry and insect performance publication-title: J. Chem. Ecol. doi: 10.1023/A:1010352307301 – volume: 111 start-page: 99 year: 1997 ident: 10.1016/j.foreco.2012.11.018_b0105 article-title: Clonal variation in foliar chemistry of aspen: effects on gypsy moths and forest tent caterpillars publication-title: Oecologia doi: 10.1007/s004420050213 – year: 1997 ident: 10.1016/j.foreco.2012.11.018_b0140 – volume: 213 start-page: 338 year: 2005 ident: 10.1016/j.foreco.2012.11.018_b0280 article-title: Twenty-year change in aspen dominance in pure aspen and mixed aspen/conifer stands on the Uncompahgre Plateau, Colorado USA publication-title: Forest Ecol. Mgnage. doi: 10.1016/j.foreco.2005.03.018 – volume: 33 start-page: 1505 year: 2004 ident: 10.1016/j.foreco.2012.11.018_b0065 article-title: Cottonwood leaf beetle (Coleoptera: Chrysomelidea) performance in relation to variable phytochemistry in juvenile aspen (Populus tremuloides Michx.) publication-title: Environ. Entomol. doi: 10.1603/0046-225X-33.5.1505 – volume: 9 start-page: 511 year: 1998 ident: 10.1016/j.foreco.2012.11.018_b0225 article-title: Effects of overstory and understory vegetation on the understory light environment in mixed boreal forests publication-title: J. Veget. Sci. doi: 10.2307/3237266 – volume: 3 start-page: 479 year: 2005 ident: 10.1016/j.foreco.2012.11.018_b0085 article-title: Loss of foundation species: consequences for the structure and dynamics of forested ecosystems publication-title: Front. Ecol. Environ. doi: 10.1890/1540-9295(2005)003[0479:LOFSCF]2.0.CO;2 – volume: 88 start-page: 729 year: 2007 ident: 10.1016/j.foreco.2012.11.018_b0070 article-title: Genetics, environment, and their interaction determine efficacy of chemical defense in trembling aspen publication-title: Ecology doi: 10.1890/06-0064 – volume: 27 start-page: 1281 year: 1997 ident: 10.1016/j.foreco.2012.11.018_b0270 article-title: Atmospheric CO2 and soil water availability: consequences for tree-insect interactions publication-title: Can. J. For. Res. doi: 10.1139/x97-031 – volume: 3 start-page: 249 year: 2009 ident: 10.1016/j.foreco.2012.11.018_b0135 article-title: Plant genotypic diversity and environmental stress interact to negatively affect arthropod community diversity publication-title: Arthr. -Plant Inter. doi: 10.1007/s11829-009-9073-8 – volume: 72 start-page: 1497 year: 2011 ident: 10.1016/j.foreco.2012.11.018_b0015 article-title: Phenolic glycosides of the Salicaceae and their role as anti-herbivore defenses publication-title: Phytochemistry doi: 10.1016/j.phytochem.2011.01.038 – volume: 100 start-page: 1337 year: 2007 ident: 10.1016/j.foreco.2012.11.018_b0340 article-title: Extrafloral nectaries in aspen (Populus tremuloides): heritable genetic variation and herbivore-induced expression publication-title: Ann. Bot. doi: 10.1093/aob/mcm220 – volume: 11 start-page: 1005 year: 2008 ident: 10.1016/j.foreco.2012.11.018_b0275 article-title: From genes to ecosystems: the genetic basis of condensed tannins and their role in nutrient regulation in a Populus model system publication-title: Ecosystems doi: 10.1007/s10021-008-9173-9 – volume: 148 start-page: 293 year: 2006 ident: 10.1016/j.foreco.2012.11.018_b0245 article-title: Genotype and environment determine allocation to and costs of resistance in quaking aspen publication-title: Oecologia doi: 10.1007/s00442-006-0373-8 – volume: 10 start-page: 399 year: 2008 ident: 10.1016/j.foreco.2012.11.018_b0075 article-title: Effects of variable phytochemistry and budbreak phenology on defoliation of aspen during a forest tent caterpillar outbreak publication-title: Agric. Forest Entomol. doi: 10.1111/j.1461-9563.2008.00392.x – volume: 276 start-page: 33 year: 2012 ident: 10.1016/j.foreco.2012.11.018_b0090 article-title: Effects of ungulate herbivory on aspen, cottonwood, and willow development under forest fuels treatment regimes publication-title: Forest Ecol. Mgnage. doi: 10.1016/j.foreco.2012.03.019 – volume: 2 start-page: 195 year: 2012 ident: 10.1016/j.foreco.2012.11.018_b0215 article-title: Climate impacts on bird and plant communities from altered animal-plant interactions publication-title: Nat. Clim. Chang. doi: 10.1038/nclimate1348 – volume: 139 start-page: 55 year: 2004 ident: 10.1016/j.foreco.2012.11.018_b0240 article-title: Long-term effects of defoliation on quaking aspen in relation to genotype and nutrient availability: plant growth, phytochemistry and insect performance publication-title: Oecologia doi: 10.1007/s00442-003-1481-3 – ident: 10.1016/j.foreco.2012.11.018_b0170 – volume: 69 start-page: 25 year: 1999 ident: 10.1016/j.foreco.2012.11.018_b0320 article-title: Exotic plant species invade hot spots of native plant diversity publication-title: Ecol. Monogr. doi: 10.1890/0012-9615(1999)069[0025:EPSIHS]2.0.CO;2 – volume: 160 start-page: 119 year: 2009 ident: 10.1016/j.foreco.2012.11.018_b0205 article-title: Genetic mosaics of ecosystem functioning across aspen-dominated landscapes publication-title: Oecologia doi: 10.1007/s00442-009-1283-3 – volume: 9 start-page: 715 year: 2007 ident: 10.1016/j.foreco.2012.11.018_b0005 article-title: Rapid shifts in the chemical composition of aspen forests: an introduced herbivore as an agent of natural selection publication-title: Biol. Invas. doi: 10.1007/s10530-006-9071-z – volume: 37 start-page: 139 year: 2009 ident: 10.1016/j.foreco.2012.11.018_b0100 article-title: Incidence of Venturia shoot blight damage in aspen (Populus tremuloides Michx.) varies with tree chemistry and genotype publication-title: Biochem. Syst. Ecol. doi: 10.1016/j.bse.2009.02.003 – volume: 15 start-page: 1284 year: 2005 ident: 10.1016/j.foreco.2012.11.018_b0150 article-title: Effects of conifers and elk browsing on quaking aspen forests in the central Rocky Mountains, USA. publication-title: Ecol. Appl. doi: 10.1890/03-5395 – volume: 169 start-page: 561 year: 2006 ident: 10.1016/j.foreco.2012.11.018_b0060 article-title: Competition- and resource-mediated tradeoffs between growth and defense chemistry in trembling aspen (Populus tremuloides) publication-title: New Phytol. doi: 10.1111/j.1469-8137.2005.01613.x – volume: 10 start-page: 499 year: 1984 ident: 10.1016/j.foreco.2012.11.018_b0250 article-title: Distribution of birch (Betula spp.), willow (Salix spp.), and poplar (Populus spp.) secondary metabolites and their potential role as chemical defense against herbivores publication-title: J. Chem. Ecol. doi: 10.1007/BF00988096 – volume: 33 start-page: 5 year: 2007 ident: 10.1016/j.foreco.2012.11.018_b0155 article-title: Sequestration of plant-derived phenolglucosides by larvae of the leaf beetle Chrysomela lapponica: thioglucosides as mechanistic probes publication-title: J. Chem. Ecol. doi: 10.1007/s10886-006-9201-1 – volume: 15 start-page: 677 year: 1987 ident: 10.1016/j.foreco.2012.11.018_b0180 article-title: Characterization of phenolic glycosides from quaking aspen (Populus tremuloides) publication-title: Biochem. Syst. Ecol. doi: 10.1016/0305-1978(87)90045-7 – volume: 83 start-page: 1701 year: 2002 ident: 10.1016/j.foreco.2012.11.018_b0010 article-title: Interactions among fire, aspen, and elk affect insect diversity: reversal of a community response publication-title: Ecology doi: 10.1890/0012-9658(2002)083[1701:IAFAAE]2.0.CO;2 – volume: 85 start-page: 1111 year: 2007 ident: 10.1016/j.foreco.2012.11.018_b0255 article-title: Poplar defense against insect herbivores publication-title: Can. J. Bot. doi: 10.1139/B07-109 – volume: 25 start-page: 133 year: 2010 ident: 10.1016/j.foreco.2012.11.018_b0045 article-title: Assessing the impact of extreme climatic events on aspen defoliation using MODIS imagery publication-title: Geocart. Int. doi: 10.1080/10106040903051975 – volume: 93 start-page: 473 year: 1991 ident: 10.1016/j.foreco.2012.11.018_b0110 article-title: Use of quaking aspen flower buds by ruffed grouse: its relationship to grouse densities and bud chemical composition publication-title: The Condor doi: 10.2307/1368179 – ident: 10.1016/j.foreco.2012.11.018_b0025 doi: 10.1371/journal.pone.0052369 – volume: 30 start-page: 25 year: 1996 ident: 10.1016/j.foreco.2012.11.018_b0185 article-title: Diversity, redundancy and multiplicity in chemical defense systems of aspen publication-title: Rec. Adv. Phytochem. – volume: 28 start-page: 375 year: 2009 ident: 10.1016/j.foreco.2012.11.018_b0035 article-title: Genomics of secondary metabolism in Populus: interactions with biotic and abiotic environments publication-title: Crit. Rev. Plant Sci. doi: 10.1080/07352680903241279 – volume: 71 start-page: 2236 year: 1993 ident: 10.1016/j.foreco.2012.11.018_b0220 article-title: Diet selection by a ruminant generalist browser in relation to plant chemistry publication-title: Can. J. Zool. doi: 10.1139/z93-314 – volume: 279 start-page: 1366 year: 2012 ident: 10.1016/j.foreco.2012.11.018_b0360 article-title: Climate change intensification of herbivore impacts on tree recruitment publication-title: Proc. Royal Soc. B doi: 10.1098/rspb.2011.1501 – volume: 172 start-page: 47 year: 2006 ident: 10.1016/j.foreco.2012.11.018_b0330 article-title: Genome-wide analysis of the structural genes regulating defense phenylpropanoid metabolism in Populus publication-title: New Phytol. doi: 10.1111/j.1469-8137.2006.01798.x – volume: 22 start-page: 40 year: 2008 ident: 10.1016/j.foreco.2012.11.018_b0305 article-title: Variation in tolerance to herbivory is mediated by differences in biomass allocation in aspen publication-title: Funct. Ecol. doi: 10.1111/j.1365-2435.2007.01356.x – volume: 212 start-page: 1451 year: 2011 ident: 10.1016/j.foreco.2012.11.018_b0160 article-title: Aspen (Populus tremuloides) stands and their contribution to plant diversity in a semiarid coniferous landscape publication-title: Plant Ecol. doi: 10.1007/s11258-011-9920-4 – volume: 46 start-page: 25 year: 1996 ident: 10.1016/j.foreco.2012.11.018_b0230 article-title: Genetic variation and the natural history of quaking aspen publication-title: Bioscience doi: 10.2307/1312652 – volume: 262 start-page: 325 year: 2011 ident: 10.1016/j.foreco.2012.11.018_b0290 article-title: The influences of conifer succession, physiographic conditions and herbivory on quaking aspen regeneration after fire publication-title: Forest Ecol. Manage. doi: 10.1016/j.foreco.2011.03.038 – volume: 160 start-page: 687 year: 2009 ident: 10.1016/j.foreco.2012.11.018_b0050 article-title: Behavioral archives link the chemistry and clonal structure of trembling aspen to the food choice of North American porcupine publication-title: Oecologia doi: 10.1007/s00442-009-1340-y – volume: 31 start-page: 68 year: 2011 ident: 10.1016/j.foreco.2012.11.018_b0285 article-title: Developmental contributions to phenotypic variation in functional leaf traits within quaking aspen clones publication-title: Tree Physiol. doi: 10.1093/treephys/tpq100 – volume: 29 start-page: 1259 year: 2009 ident: 10.1016/j.foreco.2012.11.018_b0295 article-title: Altered leaf morphology, leaf resource dilution and defense chemistry induction in frost-defoliated aspen (Populus tremuloides) publication-title: Tree Physiol. doi: 10.1093/treephys/tpp058 – volume: 8 start-page: 279 year: 2010 ident: 10.1016/j.foreco.2012.11.018_b0040 article-title: The impact of genomics on advances in herbivore defense and secondary metabolism in Populus – volume: 32 start-page: 1415 year: 2006 ident: 10.1016/j.foreco.2012.11.018_b0080 article-title: Age-related shifts in leaf chemistry of clonal aspen (Populus tremuloides) publication-title: J. Chem. Ecol. doi: 10.1007/s10886-006-9059-2 |
SSID | ssj0005548 |
Score | 2.442523 |
Snippet | ► Much of the ecological and evolutionary success of aspen is due to strategies it employs for protection from herbivory. ► Expression of chemical defense is... Quaking aspen (Populus tremuloides) is a quintessential “foundation species” in early-successional forest ecosystems throughout much of North America. Although... |
SourceID | proquest pascalfrancis crossref fao elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 14 |
SubjectTerms | adaptation Animal and plant ecology Animal, plant and microbial ecology Aspen decline Biological and medical sciences browsing conifers environmental factors Fire fire severity forest ecosystems Forestry Fundamental and applied biological sciences. Psychology genetic variation genotype glycosides habitats herbivores Herbivory insect growth insects landscapes North America phenotypic plasticity Phytochemistry Plant–animal interactions population density Populus tremuloides proanthocyanidins Synecology Terrestrial ecosystems tree age trees ungulates |
Title | Adaptations of quaking aspen (Populus tremuloides Michx.) for defense against herbivores |
URI | https://dx.doi.org/10.1016/j.foreco.2012.11.018 https://www.proquest.com/docview/1446275227 |
Volume | 299 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9RAFB5qRfFFtCrdqssIPuhDdpM5k2TncSmWVbEIdWHfhrmlRGqyNpuiL_52z8mlWBQKviYz4TDf5Fw4l4-x1xB8krrcRVY6GUlVULOygCiGkOcWjYIF6nf-dJqt1vLDJt3sseOxF4bKKgfd3-v0TlsPT-bDac63ZTk_i4G6JEWeUFSsJDXx0fQ6vNOzX3-UeaQdgxYtjmj12D7X1XihX4hBHhV4iRnN8iTqj3-bpzuFqalu0jR4dEXPefGX-u5s0skj9nBwJvmyl_cx2wvVAbvX00v-PGD3iXeTyNyesM3Sm22fdW94XfDvbcdCxU2zDRV_85lovNqG7y7Dt_aiLn1oOBWJ_pi95Sg996HAcDdwc25K9Cc5Am3LK_r6U7Y-effleBUNpAqRAwW7yGbSWJoFqrxLMaxW5GF4C04urAXpF5BIUYTY5EXwaQYelPfoI6bgFqkIDp6x_aquwiHjaP4zmySFErGXlL5RLs0Re2UpOxhgwmA8S-2GieNEfHGhx9Kyr7pHQBMCGIxoRGDCoutd237ixi3r8xEmfePmaDQKt-w8RFS1OUd1qtdngoLNmOItwFfTG1BfS0Lj8FGJZRP2asRe4w9JWRZThbptNAXYuEqI_Oi_JXvOHoiOdoPKgl-w_d1lG16i87Oz0-52T9nd5fuPq9PfzDMBBA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9RAFD60W7y8iFZL10sdwQd9SDeZmSQ7j0uxbG27CO3Cvg2ZS0qkJmuzEf33npNLpSgUfE1mwmG-yblwLh_Ae-FdFNvUBkZaGUiVU7MyF0EofJoaNApGUL_z-SKZL-XnVbzagqOhF4bKKnvd3-n0Vlv3Tyb9aU7WRTG5CAV1SfI0oqhYSbUNOzSdSo5gZ3ZyOl_8qfSIWxItWh_QhqGDri3zQtcQ4zyq8eKHNM6T2D_-baG286yi0smsxtPLO9qLvzR4a5aOn8KT3p9ks07kZ7Dly1140DFM_tqFh0S9SXxuz2E1c9m6S7zXrMrZ96YlomJZvfYl-_CFmLyamm1u_LfmuiqcrxnVif48_MhQeuZ8jhGvZ9lVVqBLyRBrU_ygr7-A5fGny6N50PMqBFYosQlMIjND40CVszFG1oqcDGeElVNjhHRTEUme-zBLc-_iRDihnEM3MRZ2GnNvxR6Myqr0-8DQA0hMFOWKh05SBkfZOEX4laEEoRdjEMNZatsPHSfui2s9VJd91R0CmhDAeEQjAmMIbnetu6Eb96xPB5j0ncuj0S7cs3MfUdXZFWpUvbzgFG-GFHIJfHVwB-pbSWgiPuqxZAzvBuw1_pOUaMlKXzW1phgbV3Gevvxvyd7Co_nl-Zk-O1mcvoLHvGXhoCrh1zDa3DT-DfpCG3PQ3_XfmroDtQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Forest+ecology+and+management&rft.atitle=Adaptations+of+quaking+aspen+%28Populus+tremuloides+Michx.%29+for+defense+against+herbivores&rft.au=LINDROTH%2C+Richard+L&rft.au=ST.+CLAIR%2C+Samuel+B&rft.date=2013-07-01&rft.pub=Elsevier&rft.issn=0378-1127&rft.volume=299&rft.spage=14&rft.epage=21&rft_id=info:doi/10.1016%2Fj.foreco.2012.11.018&rft.externalDBID=n%2Fa&rft.externalDocID=27500176 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-1127&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-1127&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-1127&client=summon |