Adaptations of quaking aspen (Populus tremuloides Michx.) for defense against herbivores

► Much of the ecological and evolutionary success of aspen is due to strategies it employs for protection from herbivory. ► Expression of chemical defense is determined by genetics, development, environment, and interactions among those factors. ► Defenses can be overwhelmed by high population densi...

Full description

Saved in:
Bibliographic Details
Published inForest ecology and management Vol. 299; pp. 14 - 21
Main Authors Lindroth, Richard L., St. Clair, Samuel B.
Format Journal Article Conference Proceeding
LanguageEnglish
Published Kidlington Elsevier B.V 01.07.2013
Elsevier
Subjects
Online AccessGet full text
ISSN0378-1127
1872-7042
DOI10.1016/j.foreco.2012.11.018

Cover

Loading…
Abstract ► Much of the ecological and evolutionary success of aspen is due to strategies it employs for protection from herbivory. ► Expression of chemical defense is determined by genetics, development, environment, and interactions among those factors. ► Defenses can be overwhelmed by high population densities of both insect and mammalian herbivores. ► Changing environmental conditions, coupled with high herbivore pressure, can compromise aspen defenses. ► Management practices should promote diverse expression of defense traits and control for herbivore population levels. Quaking aspen (Populus tremuloides) is a quintessential “foundation species” in early-successional forest ecosystems throughout much of North America. Although subject to damage by hundreds of species of herbivores, aspen has persisted in these environments due largely to a suite of defense strategies: resistance (traits that deter herbivores), tolerance (traits that facilitate recovery from damage) and escape (traits that reduce exposure to herbivores). Here, we review the current state of knowledge about aspen defense against herbivores, with particular focus on montane habitats of western North America. The principal chemical defenses of aspen are phenylpropanoid-derived compounds, including phenolic glycosides (salicinoids) and condensed tannins. Phenolic glycosides reduce feeding, growth and survival of insect herbivores and deter feeding by mammalian herbivores. Expression of chemical defense traits is strongly influenced by genotype, development, environment (biotic and abiotic) and interactions among those factors, and high levels of defense exact a cost to growth. The value of tolerance as a defense strategy likely increases with tree age. Both tolerance and escape via vertical growth are also highly genetically variable in aspen. The efficacy of aspen defense systems is context-dependent. Under conditions of low to moderate herbivore pressure, chemical defenses serve as effective deterrents, and well-defended genotypes are selectively favored. Under conditions of high herbivore pressure – whether insect or mammal – resistance fails and trees sustain high levels of damage. Under these conditions, genotypes with high levels of tolerance are likely selectively favored. Large-scale landscape modifiers, coupled with genetic, developmental and local environmental variation, produce temporal and spatial mosaics of defense across western landscapes. Competition with conifers, fire severity, and extreme climatic events all influence expression of defense and response to herbivore damage in aspen. Aspen’s extraordinary genetic variation and phenotypic plasticity are no match for the environmental stressors, particularly ungulate browsing, contributing to its decline in portions of the Interior West. Management approaches should capitalize on the genetic and environmental factors known to contribute to diverse expression of defense in aspen, while maintaining herbivore population densities below levels that overwhelm all combinations of defense traits.
AbstractList Quaking aspen (Populus tremuloides) is a quintessential “foundation species” in early-successional forest ecosystems throughout much of North America. Although subject to damage by hundreds of species of herbivores, aspen has persisted in these environments due largely to a suite of defense strategies: resistance (traits that deter herbivores), tolerance (traits that facilitate recovery from damage) and escape (traits that reduce exposure to herbivores). Here, we review the current state of knowledge about aspen defense against herbivores, with particular focus on montane habitats of western North America.The principal chemical defenses of aspen are phenylpropanoid-derived compounds, including phenolic glycosides (salicinoids) and condensed tannins. Phenolic glycosides reduce feeding, growth and survival of insect herbivores and deter feeding by mammalian herbivores. Expression of chemical defense traits is strongly influenced by genotype, development, environment (biotic and abiotic) and interactions among those factors, and high levels of defense exact a cost to growth. The value of tolerance as a defense strategy likely increases with tree age. Both tolerance and escape via vertical growth are also highly genetically variable in aspen.The efficacy of aspen defense systems is context-dependent. Under conditions of low to moderate herbivore pressure, chemical defenses serve as effective deterrents, and well-defended genotypes are selectively favored. Under conditions of high herbivore pressure – whether insect or mammal – resistance fails and trees sustain high levels of damage. Under these conditions, genotypes with high levels of tolerance are likely selectively favored.Large-scale landscape modifiers, coupled with genetic, developmental and local environmental variation, produce temporal and spatial mosaics of defense across western landscapes. Competition with conifers, fire severity, and extreme climatic events all influence expression of defense and response to herbivore damage in aspen.Aspen’s extraordinary genetic variation and phenotypic plasticity are no match for the environmental stressors, particularly ungulate browsing, contributing to its decline in portions of the Interior West. Management approaches should capitalize on the genetic and environmental factors known to contribute to diverse expression of defense in aspen, while maintaining herbivore population densities below levels that overwhelm all combinations of defense traits.
► Much of the ecological and evolutionary success of aspen is due to strategies it employs for protection from herbivory. ► Expression of chemical defense is determined by genetics, development, environment, and interactions among those factors. ► Defenses can be overwhelmed by high population densities of both insect and mammalian herbivores. ► Changing environmental conditions, coupled with high herbivore pressure, can compromise aspen defenses. ► Management practices should promote diverse expression of defense traits and control for herbivore population levels. Quaking aspen (Populus tremuloides) is a quintessential “foundation species” in early-successional forest ecosystems throughout much of North America. Although subject to damage by hundreds of species of herbivores, aspen has persisted in these environments due largely to a suite of defense strategies: resistance (traits that deter herbivores), tolerance (traits that facilitate recovery from damage) and escape (traits that reduce exposure to herbivores). Here, we review the current state of knowledge about aspen defense against herbivores, with particular focus on montane habitats of western North America. The principal chemical defenses of aspen are phenylpropanoid-derived compounds, including phenolic glycosides (salicinoids) and condensed tannins. Phenolic glycosides reduce feeding, growth and survival of insect herbivores and deter feeding by mammalian herbivores. Expression of chemical defense traits is strongly influenced by genotype, development, environment (biotic and abiotic) and interactions among those factors, and high levels of defense exact a cost to growth. The value of tolerance as a defense strategy likely increases with tree age. Both tolerance and escape via vertical growth are also highly genetically variable in aspen. The efficacy of aspen defense systems is context-dependent. Under conditions of low to moderate herbivore pressure, chemical defenses serve as effective deterrents, and well-defended genotypes are selectively favored. Under conditions of high herbivore pressure – whether insect or mammal – resistance fails and trees sustain high levels of damage. Under these conditions, genotypes with high levels of tolerance are likely selectively favored. Large-scale landscape modifiers, coupled with genetic, developmental and local environmental variation, produce temporal and spatial mosaics of defense across western landscapes. Competition with conifers, fire severity, and extreme climatic events all influence expression of defense and response to herbivore damage in aspen. Aspen’s extraordinary genetic variation and phenotypic plasticity are no match for the environmental stressors, particularly ungulate browsing, contributing to its decline in portions of the Interior West. Management approaches should capitalize on the genetic and environmental factors known to contribute to diverse expression of defense in aspen, while maintaining herbivore population densities below levels that overwhelm all combinations of defense traits.
Author St. Clair, Samuel B.
Lindroth, Richard L.
Author_xml – sequence: 1
  givenname: Richard L.
  surname: Lindroth
  fullname: Lindroth, Richard L.
  email: lindroth@wisc.edu
  organization: University of Wisconsin–Madison, Madison, WI 53706, USA
– sequence: 2
  givenname: Samuel B.
  surname: St. Clair
  fullname: St. Clair, Samuel B.
  email: stclair@byu.edu
  organization: Brigham Young University, Provo, UT 84602, USA
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27500176$$DView record in Pascal Francis
BookMark eNqFkEtr3DAUhUVJoJM0_6BQbQrJwq5etuwuCiH0BQktNIHuhCxdTTT1SI5kh_bfV4NDF120q7v5zrmH7wQdhRgAoZeU1JTQ9s2udjGBiTUjlNWU1oR2z9CGdpJVkgh2hDaEy66ilMnn6CTnHSGkaUS3Qd8vrZ5mPfsYMo4OPyz6hw9brPMEAZ9_jdMyLhnPCfbLGL2FjG-8uf9ZX-DyE1twEDJgvdU-5BnfQxr8YxmTX6Bjp8cMZ0_3FN19eH979am6_vLx89XldWV4z-dqaIUeesr73poGBtZTwjo7cCO6YeDCdpwK5oBo6cA2Lbe8t1ZK0XDTNQwMP0Xna--U4sMCeVZ7nw2Mow4Ql6yoEC2TDWOyoK-fUJ2NHl3SwfispuT3Ov1ShSKEyrZwYuVMijkncH8QStRBuNqpVbg6CFeUqiK8xN7-FTN-NTsn7cf_hV-tYaej0ttUdt19K4AokzrW8gPxbiWg2Hz0kFQ2HoIB60vbrGz0_37xG_Psqgc
CODEN FECMDW
CitedBy_id crossref_primary_10_1111_csp2_12804
crossref_primary_10_1016_j_ufug_2020_126793
crossref_primary_10_1371_journal_pone_0203619
crossref_primary_10_1002_pca_2485
crossref_primary_10_1016_j_envexpbot_2017_08_003
crossref_primary_10_34133_2022_9892728
crossref_primary_10_1002_ece3_71163
crossref_primary_10_3390_f10080671
crossref_primary_10_1111_1365_2745_13504
crossref_primary_10_1016_j_foreco_2015_11_020
crossref_primary_10_1111_mec_14785
crossref_primary_10_1093_treephys_tpx088
crossref_primary_10_1016_j_foreco_2013_01_014
crossref_primary_10_1111_ele_13915
crossref_primary_10_1371_journal_pone_0111623
crossref_primary_10_1007_s00442_020_04622_y
crossref_primary_10_1111_1365_2435_13249
crossref_primary_10_1007_s00442_022_05158_z
crossref_primary_10_1007_s10886_023_01409_2
crossref_primary_10_1111_eea_12347
crossref_primary_10_1002_pca_2810
crossref_primary_10_1016_j_rala_2016_08_009
crossref_primary_10_1111_1365_2656_13034
crossref_primary_10_1007_s00442_015_3362_y
crossref_primary_10_1007_s10886_021_01283_w
crossref_primary_10_1186_s40168_024_01888_9
crossref_primary_10_1002_ecm_1544
crossref_primary_10_1016_j_rama_2018_12_006
crossref_primary_10_1139_cjfr_2022_0221
crossref_primary_10_1111_2041_210X_12596
crossref_primary_10_1016_j_envexpbot_2017_12_006
crossref_primary_10_1016_j_scitotenv_2018_03_344
crossref_primary_10_1007_s11829_016_9439_7
crossref_primary_10_1111_nph_17166
crossref_primary_10_1007_s10886_018_1006_5
crossref_primary_10_1371_journal_pone_0140971
crossref_primary_10_1007_s11829_014_9351_y
crossref_primary_10_1038_s41598_022_13225_x
crossref_primary_10_1111_1365_2745_12559
crossref_primary_10_1002_ece3_70046
crossref_primary_10_1186_s13007_021_00739_0
crossref_primary_10_1016_j_foreco_2020_118888
crossref_primary_10_1371_journal_pone_0250078
crossref_primary_10_1111_pce_13042
crossref_primary_10_3390_plants11182401
crossref_primary_10_1111_pce_12195
crossref_primary_10_1093_aob_mcaa070
crossref_primary_10_1016_j_applanim_2018_05_031
crossref_primary_10_1016_j_envexpbot_2021_104557
crossref_primary_10_1007_s10886_016_0677_z
crossref_primary_10_1111_1365_2435_13425
crossref_primary_10_1139_cjfr_2020_0343
crossref_primary_10_1007_s00442_019_04370_8
crossref_primary_10_1016_j_foreco_2017_04_014
crossref_primary_10_1007_s10342_019_01165_7
crossref_primary_10_1007_s10886_014_0530_1
crossref_primary_10_1093_jofore_fvaa030
crossref_primary_10_1016_j_baae_2015_04_001
crossref_primary_10_3389_fpls_2020_00651
crossref_primary_10_1093_jee_toad129
crossref_primary_10_1002_ecs2_2387
crossref_primary_10_1016_j_foreco_2018_09_049
crossref_primary_10_1073_pnas_2103162118
crossref_primary_10_1093_aobpla_ply044
crossref_primary_10_1111_gcb_16275
crossref_primary_10_3356_JRR_14_24_1
crossref_primary_10_1016_j_foreco_2013_02_017
crossref_primary_10_1093_plcell_koac135
crossref_primary_10_1007_s10886_017_0872_6
crossref_primary_10_1111_1365_2656_13063
crossref_primary_10_1007_s00442_018_4253_9
crossref_primary_10_1016_j_foreco_2017_02_018
crossref_primary_10_1111_mec_15158
crossref_primary_10_1016_j_phytochem_2014_10_018
crossref_primary_10_1111_nph_12811
crossref_primary_10_1093_treephys_tpw118
crossref_primary_10_1007_s10886_013_0371_3
crossref_primary_10_1002_ecs2_2016
crossref_primary_10_1111_gcb_16064
crossref_primary_10_1007_s10886_014_0507_0
crossref_primary_10_1016_j_sajb_2020_09_024
crossref_primary_10_1371_journal_pone_0200954
crossref_primary_10_1016_j_ecolind_2018_02_013
crossref_primary_10_1080_11956860_2018_1564484
crossref_primary_10_1007_s10886_021_01259_w
crossref_primary_10_1002_ece3_7439
crossref_primary_10_1094_PBIOMES_5_1
crossref_primary_10_1111_oik_01521
crossref_primary_10_1016_j_foreco_2018_09_024
crossref_primary_10_1094_PBIOMES_01_20_0009_FI
crossref_primary_10_1007_s10886_022_01355_5
crossref_primary_10_1111_1365_2435_13699
crossref_primary_10_1111_nph_14374
crossref_primary_10_1111_nph_17248
crossref_primary_10_7717_peerj_491
crossref_primary_10_1002_ece3_9229
crossref_primary_10_1093_treephys_tpy071
crossref_primary_10_1002_ece3_10541
crossref_primary_10_3389_fpls_2018_00793
crossref_primary_10_1007_s00442_016_3577_6
crossref_primary_10_1016_j_foreco_2020_118168
crossref_primary_10_1016_j_biotechadv_2015_02_012
crossref_primary_10_1002_ecs2_1661
crossref_primary_10_1111_nph_13444
crossref_primary_10_1007_s10886_013_0374_0
crossref_primary_10_1007_s11104_020_04466_8
crossref_primary_10_1016_j_foreco_2018_05_016
crossref_primary_10_1016_j_jhazmat_2018_03_031
crossref_primary_10_1139_cjm_2014_0362
crossref_primary_10_1039_C4AY02639J
crossref_primary_10_1093_jxb_erac260
crossref_primary_10_3390_f10121118
crossref_primary_10_1371_journal_pone_0154395
crossref_primary_10_1007_s00442_017_3944_y
crossref_primary_10_3389_fpls_2020_590063
crossref_primary_10_1002_ece3_3932
crossref_primary_10_1007_s11101_025_10066_0
crossref_primary_10_3389_fpls_2021_655517
crossref_primary_10_1007_s10886_015_0600_z
crossref_primary_10_1111_aje_13198
crossref_primary_10_1093_jpe_rty003
Cites_doi 10.1093/treephys/26.7.889
10.1111/j.1461-9563.2010.00475.x
10.1007/s10886-010-9763-9
10.2111/REM-D-10-00089.1
10.2307/1940804
10.1139/b06-137
10.1007/s10886-007-9281-6
10.1007/s10682-006-9154-4
10.1016/j.tree.2005.05.001
10.1093/treephys/tpr041
10.1890/0012-9658(2001)082[2731:IOLFAF]2.0.CO;2
10.1086/physzool.66.4.30163809
10.1111/j.1365-2435.2012.01984.x
10.1016/S0169-5347(98)01576-6
10.2111/1551-501X(2008)30[17:ADACAE]2.0.CO;2
10.1016/j.foreco.2012.07.004
10.1016/0305-1978(96)00043-9
10.1007/s10886-012-0081-2
10.1007/BF01012275
10.1007/s00442-005-0128-y
10.2307/1941684
10.1890/06-1431.1
10.1890/1051-0761(2007)017[0101:RAITFO]2.0.CO;2
10.1023/A:1010352307301
10.1007/s004420050213
10.1016/j.foreco.2005.03.018
10.1603/0046-225X-33.5.1505
10.2307/3237266
10.1890/1540-9295(2005)003[0479:LOFSCF]2.0.CO;2
10.1890/06-0064
10.1139/x97-031
10.1007/s11829-009-9073-8
10.1016/j.phytochem.2011.01.038
10.1093/aob/mcm220
10.1007/s10021-008-9173-9
10.1007/s00442-006-0373-8
10.1111/j.1461-9563.2008.00392.x
10.1016/j.foreco.2012.03.019
10.1038/nclimate1348
10.1007/s00442-003-1481-3
10.1890/0012-9615(1999)069[0025:EPSIHS]2.0.CO;2
10.1007/s00442-009-1283-3
10.1007/s10530-006-9071-z
10.1016/j.bse.2009.02.003
10.1890/03-5395
10.1111/j.1469-8137.2005.01613.x
10.1007/BF00988096
10.1007/s10886-006-9201-1
10.1016/0305-1978(87)90045-7
10.1890/0012-9658(2002)083[1701:IAFAAE]2.0.CO;2
10.1139/B07-109
10.1080/10106040903051975
10.2307/1368179
10.1371/journal.pone.0052369
10.1080/07352680903241279
10.1139/z93-314
10.1098/rspb.2011.1501
10.1111/j.1469-8137.2006.01798.x
10.1111/j.1365-2435.2007.01356.x
10.1007/s11258-011-9920-4
10.2307/1312652
10.1016/j.foreco.2011.03.038
10.1007/s00442-009-1340-y
10.1093/treephys/tpq100
10.1093/treephys/tpp058
10.1007/s10886-006-9059-2
ContentType Journal Article
Conference Proceeding
Copyright 2012 Elsevier B.V.
2014 INIST-CNRS
Copyright_xml – notice: 2012 Elsevier B.V.
– notice: 2014 INIST-CNRS
DBID FBQ
AAYXX
CITATION
IQODW
7S9
L.6
DOI 10.1016/j.foreco.2012.11.018
DatabaseName AGRIS
CrossRef
Pascal-Francis
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA


Database_xml – sequence: 1
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Forestry
EISSN 1872-7042
EndPage 21
ExternalDocumentID 27500176
10_1016_j_foreco_2012_11_018
US201400182638
S0378112712006949
GeographicLocations North America
GeographicLocations_xml – name: North America
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AAOAW
AAQFI
AATLK
AAXUO
ABFNM
ABFRF
ABFYP
ABJNI
ABLST
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
ADQTV
AEBSH
AEFWE
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLECG
BLXMC
CBWCG
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KCYFY
KOM
LW9
LY9
M41
MO0
N9A
N~3
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SAB
SCC
SDF
SDG
SDP
SES
SPCBC
SSA
SSJ
SSZ
T5K
WH7
Y6R
~02
~G-
~KM
0SF
29H
AALCJ
AALRI
AAQXK
ABGRD
ABPIF
ABTAH
ADMUD
AGHFR
AI.
AIDBO
ASPBG
AVWKF
AZFZN
FBQ
FEDTE
FGOYB
G-2
HLV
HMC
HVGLF
HZ~
NCXOZ
R2-
SEN
SEW
VH1
WUQ
ZKB
ZY4
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
EFKBS
IQODW
7S9
L.6
ID FETCH-LOGICAL-c393t-b64ab91399dc5eb291028db3c48bb34d83142fe0a7fed563d39dd77453c852ec3
IEDL.DBID .~1
ISSN 0378-1127
IngestDate Fri Jul 11 08:01:24 EDT 2025
Mon Jul 21 09:16:07 EDT 2025
Tue Jul 01 02:36:52 EDT 2025
Thu Apr 24 23:08:01 EDT 2025
Wed Dec 27 19:18:10 EST 2023
Fri Feb 23 02:32:30 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Aspen decline
Populus tremuloides
Herbivory
Plant–animal interactions
Phytochemistry
Fire
Herbivorous
Forest ecology
Biochemistry
Salicaceae
Animal plant relation
Dicotyledones
Fires
Plant―animal interactions
Angiospermae
Forestry
Hardwood forest tree
Spermatophyta
Adaptation
Language English
License CC BY 4.0
LinkModel DirectLink
MeetingName Resilience in Quaking Aspen: restoring ecosystem processes through applied science
MergedId FETCHMERGED-LOGICAL-c393t-b64ab91399dc5eb291028db3c48bb34d83142fe0a7fed563d39dd77453c852ec3
Notes http://dx.doi.org/10.1016/j.foreco.2012.11.018
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1446275227
PQPubID 24069
PageCount 8
ParticipantIDs proquest_miscellaneous_1446275227
pascalfrancis_primary_27500176
crossref_primary_10_1016_j_foreco_2012_11_018
crossref_citationtrail_10_1016_j_foreco_2012_11_018
fao_agris_US201400182638
elsevier_sciencedirect_doi_10_1016_j_foreco_2012_11_018
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-07-01
PublicationDateYYYYMMDD 2013-07-01
PublicationDate_xml – month: 07
  year: 2013
  text: 2013-07-01
  day: 01
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle Forest ecology and management
PublicationYear 2013
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Mitton, Grant (b0230) 1996; 46
Reich, Bakken, Carlson, Frelich, Friedman, Grigal (b0260) 2001; 82
Ellison, Bank, Clinton, Colburn, Elliott, Ford, Foster, Kloeppel, Knoepp, Lovett, Mohan, Orwig, Rodenhouse, Sobczak, Stinson, Stone, Swan, Thompson, Von Holle, Webster (b0085) 2005; 3
Vigue, Lindroth (b0335) 2010; 12
Kashian, Romme, Regan (b0145) 2007; 17
Palo (b0250) 1984; 10
Stevens, Lindroth (b0310) 2005; 145
Hwang, Lindroth (b0105) 1997; 111
Donaldson, Kruger, Lindroth (b0060) 2006; 169
Donaldson, Lindroth (b0075) 2008; 10
Stohlgren, Binkley, Chong, Kalkhan, Schell, Bull, Otsuki, Newman, Bashkin, Son (b0320) 1999; 69
Brodie, Post, Watson, Berger (b0360) 2012; 279
Bailey, Whitham (b0010) 2002; 83
Holeski, Vogelzang, Stanosz, Lindroth (b0100) 2009; 37
Jakubas, Gullion, Clausen (b0115) 1989; 15
Lindroth, Kinney, Platz (b0195) 1993; 74
Tsai, Harding, Tschaplinski, Lindroth, Yuan (b0330) 2006; 172
Wooley, Donaldson, Gusse, Lindroth, Stevens (b0340) 2007; 100
Osier, Lindroth (b0245) 2006; 148
Jakubas, Karasov, Guglielmo (b0120) 1993; 66
Stevens, Waller, Lindroth (b0315) 2007; 21
Smith, Collette, Boynton, Lillrose, Stevens, Bekker, Eggett, St Clair (b0285) 2011; 31
Strauss, Agrawal (b0325) 1999; 14
Lindroth, R.L., 2001. Adaptations of quaking aspen for defense against damage by herbivores and related environmental agents. In: Shepperd, W.D., Binkley, D.B., Bartos, D.L., Stohlgren, T.J., Eskew, L.G., (Eds.), Sustaining Aspen in Western Landscapes: Symposium Proceedings. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. Fort Collins, pp. 273-284.
Boege, Marquis (b0020) 2005; 20
Lindroth, Donaldson, Stevens, Gusse (b0175) 2007; 33
Logan, Regniere, Gray, Munson (b0200) 2007; 17
Osier, Lindroth (b0235) 2001; 27
Donaldson, Lindroth (b0070) 2007; 88
Lindroth, Hwang (b0185) 1996; 30
Jones, Lile, Tate (b0130) 2011; 64
Romme, Turner, Wallace, Walker (b0265) 1995; 76
Karban, Baldwin (b0140) 1997
Smith, O’Loughlin, Buck, St. Clair (b0290) 2011; 262
Madritch, M.D., Lindroth, R.L., 2012. Condensed tannins increase nitrogen recovery by trees following insect defoliation. Ecology (submitted for publication).
Donaldson, Stevens, Barnhill, Lindroth (b0080) 2006; 32
Constabel, Lindroth (b0040) 2010; 8
Smith, Smith (b0280) 2005; 213
Boeckler, Gershezon, Unsicker (b0015) 2011; 72
Osier, Lindroth (b0240) 2004; 139
Wooley, S.C., Walker, S., Vernon, J., Lindroth, R.L., 2008. Aspen Decline, Aspen Chemistry, and Elk Herbivory: Are They Linked? Aspen Chemical Ecology can Inform the Discussion of Aspen Decline in the West. Rangelands, pp. 17–21.
Endress, Wisdom, Vavra, Parks, Dick, Naylor, Boyd (b0090) 2012; 276
Roth, McDonald, Lindroth (b0270) 1997; 27
Calder, Horn, St. Clair (b0030) 2011; 31
Li, Holopainen, Kokko, Tervahauta, Blande (b0365) 2012; 26
Stevens, Gusse, Lindroth (b0300) 2012; 38
Donaldson, Lindroth (b0065) 2004; 33
Kuhn, Safford, Jones, Tate (b0160) 2011; 212
McArthur, Robbins, Hagerman, Hanley (b0220) 1993; 71
Young, Wagner, Clausen, Doak (b0350) 2010; 36
Diner, Berteaux, Fyles, Lindroth (b0050) 2009; 160
Chen, Liu, Tschaplinski, Zhao (b0035) 2009; 28
Schweitzer, Madritch, Bailey, Leroy, Fischer, Rehill, Lindroth, Hagerman, Wooley, Hart, Whitham (b0275) 2008; 11
Bailey, Schweitzer, Rehill, Irschick, Whitham, Lindroth (b0005) 2007; 9
Kaye, Binkley, Stohlgren (b0150) 2005; 15
Doak, Wagner, Watson (b0055) 2007; 85
Kanaga, Latta IV, Mock, Ryel, Lindroth, Pfrender (b0135) 2009; 3
Jakubas, Gullion (b0110) 1991; 93
Currit, St. Clair (b0045) 2010; 25
Messier, Parent, Bergeron (b0225) 1998; 9
Buck, J.R., St. Clair, S.B., 2012. Aspen increase soil moisture, nutrients, organic matter and respiration in Rocky Mountain forest communities. PLoS ONE, in press.
St. Clair, Monson, Smith, Cahill, Calder (b0295) 2009; 29
Philippe, Bohlmann (b0255) 2007; 85
Stevens, Kruger, Lindroth (b0305) 2008; 22
Martin, Maron (b0215) 2012; 2
Zegler, Moore, Fairweather, Ireland, Fulé (b0355) 2012; 282
Madritch, Greene, Lindroth (b0205) 2009; 160
Lindroth, Hwang (b0190) 1996; 24
Hanninen (b0095) 2006; 26
Lindroth, Hsia, Scriber (b0180) 1987; 15
Kuhn, Pettersson, Feld, Nie, Tolzin-Banasch, M’rabet, Pasteels, Boland (b0155) 2007; 33
Kuhn (10.1016/j.foreco.2012.11.018_b0155) 2007; 33
Currit (10.1016/j.foreco.2012.11.018_b0045) 2010; 25
Boege (10.1016/j.foreco.2012.11.018_b0020) 2005; 20
Brodie (10.1016/j.foreco.2012.11.018_b0360) 2012; 279
McArthur (10.1016/j.foreco.2012.11.018_b0220) 1993; 71
Kashian (10.1016/j.foreco.2012.11.018_b0145) 2007; 17
Schweitzer (10.1016/j.foreco.2012.11.018_b0275) 2008; 11
Smith (10.1016/j.foreco.2012.11.018_b0290) 2011; 262
Chen (10.1016/j.foreco.2012.11.018_b0035) 2009; 28
Logan (10.1016/j.foreco.2012.11.018_b0200) 2007; 17
Smith (10.1016/j.foreco.2012.11.018_b0285) 2011; 31
Constabel (10.1016/j.foreco.2012.11.018_b0040) 2010; 8
Stevens (10.1016/j.foreco.2012.11.018_b0300) 2012; 38
Lindroth (10.1016/j.foreco.2012.11.018_b0185) 1996; 30
Jakubas (10.1016/j.foreco.2012.11.018_b0110) 1991; 93
Hanninen (10.1016/j.foreco.2012.11.018_b0095) 2006; 26
Lindroth (10.1016/j.foreco.2012.11.018_b0175) 2007; 33
Messier (10.1016/j.foreco.2012.11.018_b0225) 1998; 9
Kaye (10.1016/j.foreco.2012.11.018_b0150) 2005; 15
Kanaga (10.1016/j.foreco.2012.11.018_b0135) 2009; 3
Donaldson (10.1016/j.foreco.2012.11.018_b0070) 2007; 88
Donaldson (10.1016/j.foreco.2012.11.018_b0080) 2006; 32
Tsai (10.1016/j.foreco.2012.11.018_b0330) 2006; 172
Diner (10.1016/j.foreco.2012.11.018_b0050) 2009; 160
Mitton (10.1016/j.foreco.2012.11.018_b0230) 1996; 46
Ellison (10.1016/j.foreco.2012.11.018_b0085) 2005; 3
St. Clair (10.1016/j.foreco.2012.11.018_b0295) 2009; 29
Donaldson (10.1016/j.foreco.2012.11.018_b0075) 2008; 10
Kuhn (10.1016/j.foreco.2012.11.018_b0160) 2011; 212
Lindroth (10.1016/j.foreco.2012.11.018_b0195) 1993; 74
Lindroth (10.1016/j.foreco.2012.11.018_b0180) 1987; 15
Bailey (10.1016/j.foreco.2012.11.018_b0005) 2007; 9
Strauss (10.1016/j.foreco.2012.11.018_b0325) 1999; 14
Osier (10.1016/j.foreco.2012.11.018_b0240) 2004; 139
Stevens (10.1016/j.foreco.2012.11.018_b0315) 2007; 21
Smith (10.1016/j.foreco.2012.11.018_b0280) 2005; 213
Donaldson (10.1016/j.foreco.2012.11.018_b0065) 2004; 33
Stevens (10.1016/j.foreco.2012.11.018_b0305) 2008; 22
Young (10.1016/j.foreco.2012.11.018_b0350) 2010; 36
Stevens (10.1016/j.foreco.2012.11.018_b0310) 2005; 145
Doak (10.1016/j.foreco.2012.11.018_b0055) 2007; 85
Karban (10.1016/j.foreco.2012.11.018_b0140) 1997
10.1016/j.foreco.2012.11.018_b0170
Madritch (10.1016/j.foreco.2012.11.018_b0205) 2009; 160
Calder (10.1016/j.foreco.2012.11.018_b0030) 2011; 31
Lindroth (10.1016/j.foreco.2012.11.018_b0190) 1996; 24
10.1016/j.foreco.2012.11.018_b0210
Hwang (10.1016/j.foreco.2012.11.018_b0105) 1997; 111
Endress (10.1016/j.foreco.2012.11.018_b0090) 2012; 276
Wooley (10.1016/j.foreco.2012.11.018_b0340) 2007; 100
Stohlgren (10.1016/j.foreco.2012.11.018_b0320) 1999; 69
Osier (10.1016/j.foreco.2012.11.018_b0245) 2006; 148
Romme (10.1016/j.foreco.2012.11.018_b0265) 1995; 76
Holeski (10.1016/j.foreco.2012.11.018_b0100) 2009; 37
Li (10.1016/j.foreco.2012.11.018_b0365) 2012; 26
Roth (10.1016/j.foreco.2012.11.018_b0270) 1997; 27
Jakubas (10.1016/j.foreco.2012.11.018_b0120) 1993; 66
Palo (10.1016/j.foreco.2012.11.018_b0250) 1984; 10
Martin (10.1016/j.foreco.2012.11.018_b0215) 2012; 2
Osier (10.1016/j.foreco.2012.11.018_b0235) 2001; 27
Jones (10.1016/j.foreco.2012.11.018_b0130) 2011; 64
Donaldson (10.1016/j.foreco.2012.11.018_b0060) 2006; 169
Reich (10.1016/j.foreco.2012.11.018_b0260) 2001; 82
Zegler (10.1016/j.foreco.2012.11.018_b0355) 2012; 282
Bailey (10.1016/j.foreco.2012.11.018_b0010) 2002; 83
Philippe (10.1016/j.foreco.2012.11.018_b0255) 2007; 85
Vigue (10.1016/j.foreco.2012.11.018_b0335) 2010; 12
Boeckler (10.1016/j.foreco.2012.11.018_b0015) 2011; 72
Jakubas (10.1016/j.foreco.2012.11.018_b0115) 1989; 15
10.1016/j.foreco.2012.11.018_b0025
10.1016/j.foreco.2012.11.018_b0345
References_xml – volume: 279
  start-page: 1366
  year: 2012
  end-page: 1370
  ident: b0360
  article-title: Climate change intensification of herbivore impacts on tree recruitment
  publication-title: Proc. Royal Soc. B
– volume: 36
  start-page: 369
  year: 2010
  end-page: 377
  ident: b0350
  article-title: Induction of phenolic glycosides in aspen (
  publication-title: J. Chem. Ecol.
– volume: 24
  start-page: 357
  year: 1996
  end-page: 364
  ident: b0190
  article-title: Clonal variation in foliar chemistry of quaking aspen (
  publication-title: Biochem. Syst. Ecol.
– volume: 14
  start-page: 179
  year: 1999
  end-page: 185
  ident: b0325
  article-title: The ecology and evolution of plant tolerance to herbivory
  publication-title: Trends Ecol. Evol.
– volume: 172
  start-page: 47
  year: 2006
  end-page: 62
  ident: b0330
  article-title: Genome-wide analysis of the structural genes regulating defense phenylpropanoid metabolism in
  publication-title: New Phytol.
– volume: 15
  start-page: 1284
  year: 2005
  end-page: 1295
  ident: b0150
  article-title: Effects of conifers and elk browsing on quaking aspen forests in the central Rocky Mountains, USA.
  publication-title: Ecol. Appl.
– volume: 83
  start-page: 1701
  year: 2002
  end-page: 1712
  ident: b0010
  article-title: Interactions among fire, aspen, and elk affect insect diversity: reversal of a community response
  publication-title: Ecology
– volume: 3
  start-page: 479
  year: 2005
  end-page: 486
  ident: b0085
  article-title: Loss of foundation species: consequences for the structure and dynamics of forested ecosystems
  publication-title: Front. Ecol. Environ
– year: 1997
  ident: b0140
  article-title: Induced Responses to Herbivory
– volume: 160
  start-page: 687
  year: 2009
  end-page: 695
  ident: b0050
  article-title: Behavioral archives link the chemistry and clonal structure of trembling aspen to the food choice of North American porcupine
  publication-title: Oecologia
– volume: 33
  start-page: 5
  year: 2007
  end-page: 24
  ident: b0155
  article-title: Sequestration of plant-derived phenolglucosides by larvae of the leaf beetle
  publication-title: J. Chem. Ecol.
– volume: 82
  start-page: 2731
  year: 2001
  end-page: 2748
  ident: b0260
  article-title: Influence of logging, fire, and forest type on biodiversity and productivity in southern boreal forests
  publication-title: Ecology
– volume: 276
  start-page: 33
  year: 2012
  end-page: 40
  ident: b0090
  article-title: Effects of ungulate herbivory on aspen, cottonwood, and willow development under forest fuels treatment regimes
  publication-title: Forest Ecol. Mgnage.
– volume: 30
  start-page: 25
  year: 1996
  end-page: 56
  ident: b0185
  article-title: Diversity, redundancy and multiplicity in chemical defense systems of aspen
  publication-title: Rec. Adv. Phytochem.
– volume: 282
  start-page: 196
  year: 2012
  end-page: 207
  ident: b0355
  article-title: mortality near the southwestern edge of its range
  publication-title: Forest Ecol. Mgnage.
– volume: 22
  start-page: 40
  year: 2008
  end-page: 47
  ident: b0305
  article-title: Variation in tolerance to herbivory is mediated by differences in biomass allocation in aspen
  publication-title: Funct. Ecol.
– volume: 145
  start-page: 298
  year: 2005
  end-page: 306
  ident: b0310
  article-title: Induced resistance in the indeterminate growth of aspen (
  publication-title: Oecologia
– volume: 17
  start-page: 101
  year: 2007
  end-page: 117
  ident: b0200
  article-title: Risk assessment in the face of a changing environment: gypsy moth and climate change in Utah
  publication-title: Ecol. Appl.
– volume: 15
  start-page: 677
  year: 1987
  end-page: 680
  ident: b0180
  article-title: Characterization of phenolic glycosides from quaking aspen (
  publication-title: Biochem. Syst. Ecol.
– volume: 46
  start-page: 25
  year: 1996
  end-page: 31
  ident: b0230
  article-title: Genetic variation and the natural history of quaking aspen
  publication-title: Bioscience
– volume: 100
  start-page: 1337
  year: 2007
  end-page: 1346
  ident: b0340
  article-title: Extrafloral nectaries in aspen (
  publication-title: Ann. Bot.
– volume: 32
  start-page: 1415
  year: 2006
  end-page: 1429
  ident: b0080
  article-title: Age-related shifts in leaf chemistry of clonal aspen (
  publication-title: J. Chem. Ecol.
– volume: 33
  start-page: 1049
  year: 2007
  end-page: 1064
  ident: b0175
  article-title: Browse quality in quaking aspen (
  publication-title: J. Chem. Ecol.
– volume: 148
  start-page: 293
  year: 2006
  end-page: 303
  ident: b0245
  article-title: Genotype and environment determine allocation to and costs of resistance in quaking aspen
  publication-title: Oecologia
– volume: 25
  start-page: 133
  year: 2010
  end-page: 147
  ident: b0045
  article-title: Assessing the impact of extreme climatic events on aspen defoliation using MODIS imagery
  publication-title: Geocart. Int.
– volume: 64
  start-page: 625
  year: 2011
  end-page: 632
  ident: b0130
  article-title: Cattle selection for aspen and meadow vegetation: implications for restoration
  publication-title: Range. Ecol. Manage.
– reference: Madritch, M.D., Lindroth, R.L., 2012. Condensed tannins increase nitrogen recovery by trees following insect defoliation. Ecology (submitted for publication).
– volume: 160
  start-page: 119
  year: 2009
  end-page: 127
  ident: b0205
  article-title: Genetic mosaics of ecosystem functioning across aspen-dominated landscapes
  publication-title: Oecologia
– volume: 37
  start-page: 139
  year: 2009
  end-page: 145
  ident: b0100
  article-title: Incidence of
  publication-title: Biochem. Syst. Ecol.
– volume: 10
  start-page: 399
  year: 2008
  end-page: 410
  ident: b0075
  article-title: Effects of variable phytochemistry and budbreak phenology on defoliation of aspen during a forest tent caterpillar outbreak
  publication-title: Agric. Forest Entomol.
– volume: 71
  start-page: 2236
  year: 1993
  end-page: 2243
  ident: b0220
  article-title: Diet selection by a ruminant generalist browser in relation to plant chemistry
  publication-title: Can. J. Zool.
– volume: 213
  start-page: 338
  year: 2005
  end-page: 348
  ident: b0280
  article-title: Twenty-year change in aspen dominance in pure aspen and mixed aspen/conifer stands on the Uncompahgre Plateau, Colorado USA
  publication-title: Forest Ecol. Mgnage.
– volume: 27
  start-page: 1281
  year: 1997
  end-page: 1290
  ident: b0270
  article-title: Atmospheric CO
  publication-title: Can. J. For. Res.
– volume: 2
  start-page: 195
  year: 2012
  end-page: 200
  ident: b0215
  article-title: Climate impacts on bird and plant communities from altered animal-plant interactions
  publication-title: Nat. Clim. Chang.
– volume: 72
  start-page: 1497
  year: 2011
  end-page: 1509
  ident: b0015
  article-title: Phenolic glycosides of the Salicaceae and their role as anti-herbivore defenses
  publication-title: Phytochemistry
– volume: 262
  start-page: 325
  year: 2011
  end-page: 330
  ident: b0290
  article-title: The influences of conifer succession, physiographic conditions and herbivory on quaking aspen regeneration after fire
  publication-title: Forest Ecol. Manage.
– volume: 38
  start-page: 306
  year: 2012
  end-page: 314
  ident: b0300
  article-title: Genotypic differences and prior defoliation affect re-growth and phytochemistry after coppicing in
  publication-title: J. Chem. Ecol.
– volume: 169
  start-page: 561
  year: 2006
  end-page: 570
  ident: b0060
  article-title: Competition- and resource-mediated tradeoffs between growth and defense chemistry in trembling aspen (
  publication-title: New Phytol.
– reference: Lindroth, R.L., 2001. Adaptations of quaking aspen for defense against damage by herbivores and related environmental agents. In: Shepperd, W.D., Binkley, D.B., Bartos, D.L., Stohlgren, T.J., Eskew, L.G., (Eds.), Sustaining Aspen in Western Landscapes: Symposium Proceedings. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. Fort Collins, pp. 273-284.
– volume: 85
  start-page: 1
  year: 2007
  end-page: 9
  ident: b0055
  article-title: Variable extrafloral nectar expression and its consequences in quaking aspen
  publication-title: Can. J. Bot.
– volume: 111
  start-page: 99
  year: 1997
  end-page: 108
  ident: b0105
  article-title: Clonal variation in foliar chemistry of aspen: effects on gypsy moths and forest tent caterpillars
  publication-title: Oecologia
– volume: 11
  start-page: 1005
  year: 2008
  end-page: 1020
  ident: b0275
  article-title: From genes to ecosystems: the genetic basis of condensed tannins and their role in nutrient regulation in a
  publication-title: Ecosystems
– volume: 3
  start-page: 249
  year: 2009
  end-page: 258
  ident: b0135
  article-title: Plant genotypic diversity and environmental stress interact to negatively affect arthropod community diversity
  publication-title: Arthr. -Plant Inter.
– volume: 76
  start-page: 2097
  year: 1995
  end-page: 2106
  ident: b0265
  article-title: Aspen, elk and fire in northern Yellowstone National Park
  publication-title: Ecology
– volume: 28
  start-page: 375
  year: 2009
  end-page: 392
  ident: b0035
  article-title: Genomics of secondary metabolism in
  publication-title: Crit. Rev. Plant Sci.
– volume: 139
  start-page: 55
  year: 2004
  end-page: 65
  ident: b0240
  article-title: Long-term effects of defoliation on quaking aspen in relation to genotype and nutrient availability: plant growth, phytochemistry and insect performance
  publication-title: Oecologia
– volume: 212
  start-page: 1451
  year: 2011
  end-page: 1463
  ident: b0160
  article-title: Aspen (
  publication-title: Plant Ecol.
– volume: 26
  start-page: 1176
  year: 2012
  end-page: 1185
  ident: b0365
  article-title: Herbivore-induced aspen volatiles temporally regulate two different indirect defences in neighbouring plants
  publication-title: Funct. Ecol.
– volume: 9
  start-page: 715
  year: 2007
  end-page: 722
  ident: b0005
  article-title: Rapid shifts in the chemical composition of aspen forests: an introduced herbivore as an agent of natural selection
  publication-title: Biol. Invas.
– volume: 31
  start-page: 68
  year: 2011
  end-page: 77
  ident: b0285
  article-title: Developmental contributions to phenotypic variation in functional leaf traits within quaking aspen clones
  publication-title: Tree Physiol.
– volume: 31
  start-page: 582
  year: 2011
  end-page: 591
  ident: b0030
  article-title: Conifer expansion reduces the competitive ability and herbivore defense of aspen by modifying light environment and soil chemistry
  publication-title: Tree Physiol.
– volume: 33
  start-page: 1505
  year: 2004
  end-page: 1511
  ident: b0065
  article-title: Cottonwood leaf beetle (Coleoptera: Chrysomelidea) performance in relation to variable phytochemistry in juvenile aspen (
  publication-title: Environ. Entomol.
– volume: 93
  start-page: 473
  year: 1991
  end-page: 485
  ident: b0110
  article-title: Use of quaking aspen flower buds by ruffed grouse: its relationship to grouse densities and bud chemical composition
  publication-title: The Condor
– volume: 17
  start-page: 1296
  year: 2007
  end-page: 1311
  ident: b0145
  article-title: Reconciling divergent interpretations of quaking aspen decline on the northern Colorado Front Range
  publication-title: Ecol. Appl.
– reference: Wooley, S.C., Walker, S., Vernon, J., Lindroth, R.L., 2008. Aspen Decline, Aspen Chemistry, and Elk Herbivory: Are They Linked? Aspen Chemical Ecology can Inform the Discussion of Aspen Decline in the West. Rangelands, pp. 17–21.
– volume: 12
  start-page: 267
  year: 2010
  end-page: 276
  ident: b0335
  article-title: Effects of genotype, elevated CO
  publication-title: Agric. Forest Entomol.
– volume: 8
  start-page: 279
  year: 2010
  end-page: 305
  ident: b0040
  article-title: The impact of genomics on advances in herbivore defense and secondary metabolism in
  publication-title: The Genetics and Genomics of Populus. Plant Genetics and Genomics
– volume: 85
  start-page: 1111
  year: 2007
  end-page: 1126
  ident: b0255
  article-title: Poplar defense against insect herbivores
  publication-title: Can. J. Bot.
– volume: 74
  start-page: 763
  year: 1993
  end-page: 777
  ident: b0195
  article-title: Responses of deciduous trees to elevated atmospheric CO
  publication-title: Ecology
– volume: 29
  start-page: 1259
  year: 2009
  end-page: 1268
  ident: b0295
  article-title: Altered leaf morphology, leaf resource dilution and defense chemistry induction in frost-defoliated aspen (
  publication-title: Tree Physiol.
– volume: 88
  start-page: 729
  year: 2007
  end-page: 739
  ident: b0070
  article-title: Genetics, environment, and their interaction determine efficacy of chemical defense in trembling aspen
  publication-title: Ecology
– reference: Buck, J.R., St. Clair, S.B., 2012. Aspen increase soil moisture, nutrients, organic matter and respiration in Rocky Mountain forest communities. PLoS ONE, in press.
– volume: 9
  start-page: 511
  year: 1998
  end-page: 520
  ident: b0225
  article-title: Effects of overstory and understory vegetation on the understory light environment in mixed boreal forests
  publication-title: J. Veget. Sci.
– volume: 27
  start-page: 1289
  year: 2001
  end-page: 1313
  ident: b0235
  article-title: Effects of genotype, nutrient availability, and defoliation on aspen phytochemistry and insect performance
  publication-title: J. Chem. Ecol.
– volume: 26
  start-page: 889
  year: 2006
  end-page: 898
  ident: b0095
  article-title: Climate warming and the risk of frost damage to boreal forest trees: identification of critical ecophysiological traits
  publication-title: Tree Physiol.
– volume: 15
  start-page: 1899
  year: 1989
  end-page: 1917
  ident: b0115
  article-title: Ruffed grouse feeding behavior and its relationship to the secondary metabolites of quaking aspen flower buds
  publication-title: J. Chem. Ecol.
– volume: 66
  start-page: 580
  year: 1993
  end-page: 601
  ident: b0120
  article-title: Coniferyl benzoate in quaking aspen (
  publication-title: Physiol. Zoo.
– volume: 69
  start-page: 25
  year: 1999
  end-page: 46
  ident: b0320
  article-title: Exotic plant species invade hot spots of native plant diversity
  publication-title: Ecol. Monogr.
– volume: 20
  start-page: 441
  year: 2005
  end-page: 448
  ident: b0020
  article-title: Facing herbivory as you grow up: the ontogeny of resistance in plants
  publication-title: Trends Ecol. Evol.
– volume: 21
  start-page: 829
  year: 2007
  end-page: 847
  ident: b0315
  article-title: Resistance and tolerance in
  publication-title: Evol. Ecol.
– volume: 10
  start-page: 499
  year: 1984
  end-page: 520
  ident: b0250
  article-title: Distribution of birch (
  publication-title: J. Chem. Ecol.
– volume: 26
  start-page: 889
  year: 2006
  ident: 10.1016/j.foreco.2012.11.018_b0095
  article-title: Climate warming and the risk of frost damage to boreal forest trees: identification of critical ecophysiological traits
  publication-title: Tree Physiol.
  doi: 10.1093/treephys/26.7.889
– volume: 12
  start-page: 267
  year: 2010
  ident: 10.1016/j.foreco.2012.11.018_b0335
  article-title: Effects of genotype, elevated CO2, and elevated O3 on aspen phytochemistry and aspen leaf beetle Chrysomela crotchi performance
  publication-title: Agric. Forest Entomol.
  doi: 10.1111/j.1461-9563.2010.00475.x
– volume: 36
  start-page: 369
  year: 2010
  ident: 10.1016/j.foreco.2012.11.018_b0350
  article-title: Induction of phenolic glycosides in aspen (Populus tremuloides) in response to epidermal leaf mining by an outbreak insect species, Phyllocnistis populiella
  publication-title: J. Chem. Ecol.
  doi: 10.1007/s10886-010-9763-9
– volume: 64
  start-page: 625
  year: 2011
  ident: 10.1016/j.foreco.2012.11.018_b0130
  article-title: Cattle selection for aspen and meadow vegetation: implications for restoration
  publication-title: Range. Ecol. Manage.
  doi: 10.2111/REM-D-10-00089.1
– volume: 74
  start-page: 763
  year: 1993
  ident: 10.1016/j.foreco.2012.11.018_b0195
  article-title: Responses of deciduous trees to elevated atmospheric CO2: productivity, phytochemistry and insect performance
  publication-title: Ecology
  doi: 10.2307/1940804
– volume: 85
  start-page: 1
  year: 2007
  ident: 10.1016/j.foreco.2012.11.018_b0055
  article-title: Variable extrafloral nectar expression and its consequences in quaking aspen
  publication-title: Can. J. Bot.
  doi: 10.1139/b06-137
– volume: 33
  start-page: 1049
  year: 2007
  ident: 10.1016/j.foreco.2012.11.018_b0175
  article-title: Browse quality in quaking aspen (Populus tremuloides): effects of genotype, nutrients, defoliation, and coppicing
  publication-title: J. Chem. Ecol.
  doi: 10.1007/s10886-007-9281-6
– volume: 21
  start-page: 829
  year: 2007
  ident: 10.1016/j.foreco.2012.11.018_b0315
  article-title: Resistance and tolerance in Populus tremuloides: genetic variation, costs, and environmental dependency
  publication-title: Evol. Ecol.
  doi: 10.1007/s10682-006-9154-4
– volume: 20
  start-page: 441
  year: 2005
  ident: 10.1016/j.foreco.2012.11.018_b0020
  article-title: Facing herbivory as you grow up: the ontogeny of resistance in plants
  publication-title: Trends Ecol. Evol.
  doi: 10.1016/j.tree.2005.05.001
– volume: 31
  start-page: 582
  year: 2011
  ident: 10.1016/j.foreco.2012.11.018_b0030
  article-title: Conifer expansion reduces the competitive ability and herbivore defense of aspen by modifying light environment and soil chemistry
  publication-title: Tree Physiol.
  doi: 10.1093/treephys/tpr041
– ident: 10.1016/j.foreco.2012.11.018_b0210
– volume: 82
  start-page: 2731
  year: 2001
  ident: 10.1016/j.foreco.2012.11.018_b0260
  article-title: Influence of logging, fire, and forest type on biodiversity and productivity in southern boreal forests
  publication-title: Ecology
  doi: 10.1890/0012-9658(2001)082[2731:IOLFAF]2.0.CO;2
– volume: 66
  start-page: 580
  year: 1993
  ident: 10.1016/j.foreco.2012.11.018_b0120
  article-title: Coniferyl benzoate in quaking aspen (Populus tremuloides): its effect on energy and nitrogen digestion and retention in ruffed grouse (Bonasa umbellus)
  publication-title: Physiol. Zoo.
  doi: 10.1086/physzool.66.4.30163809
– volume: 26
  start-page: 1176
  year: 2012
  ident: 10.1016/j.foreco.2012.11.018_b0365
  article-title: Herbivore-induced aspen volatiles temporally regulate two different indirect defences in neighbouring plants
  publication-title: Funct. Ecol.
  doi: 10.1111/j.1365-2435.2012.01984.x
– volume: 14
  start-page: 179
  year: 1999
  ident: 10.1016/j.foreco.2012.11.018_b0325
  article-title: The ecology and evolution of plant tolerance to herbivory
  publication-title: Trends Ecol. Evol.
  doi: 10.1016/S0169-5347(98)01576-6
– ident: 10.1016/j.foreco.2012.11.018_b0345
  doi: 10.2111/1551-501X(2008)30[17:ADACAE]2.0.CO;2
– volume: 282
  start-page: 196
  year: 2012
  ident: 10.1016/j.foreco.2012.11.018_b0355
  article-title: Populus tremuloides mortality near the southwestern edge of its range
  publication-title: Forest Ecol. Mgnage.
  doi: 10.1016/j.foreco.2012.07.004
– volume: 24
  start-page: 357
  year: 1996
  ident: 10.1016/j.foreco.2012.11.018_b0190
  article-title: Clonal variation in foliar chemistry of quaking aspen (Populus tremuloides Michx.)
  publication-title: Biochem. Syst. Ecol.
  doi: 10.1016/0305-1978(96)00043-9
– volume: 38
  start-page: 306
  year: 2012
  ident: 10.1016/j.foreco.2012.11.018_b0300
  article-title: Genotypic differences and prior defoliation affect re-growth and phytochemistry after coppicing in Populus tremuloides
  publication-title: J. Chem. Ecol.
  doi: 10.1007/s10886-012-0081-2
– volume: 15
  start-page: 1899
  year: 1989
  ident: 10.1016/j.foreco.2012.11.018_b0115
  article-title: Ruffed grouse feeding behavior and its relationship to the secondary metabolites of quaking aspen flower buds
  publication-title: J. Chem. Ecol.
  doi: 10.1007/BF01012275
– volume: 145
  start-page: 298
  year: 2005
  ident: 10.1016/j.foreco.2012.11.018_b0310
  article-title: Induced resistance in the indeterminate growth of aspen (Populus tremuloides)
  publication-title: Oecologia
  doi: 10.1007/s00442-005-0128-y
– volume: 76
  start-page: 2097
  year: 1995
  ident: 10.1016/j.foreco.2012.11.018_b0265
  article-title: Aspen, elk and fire in northern Yellowstone National Park
  publication-title: Ecology
  doi: 10.2307/1941684
– volume: 17
  start-page: 1296
  year: 2007
  ident: 10.1016/j.foreco.2012.11.018_b0145
  article-title: Reconciling divergent interpretations of quaking aspen decline on the northern Colorado Front Range
  publication-title: Ecol. Appl.
  doi: 10.1890/06-1431.1
– volume: 17
  start-page: 101
  year: 2007
  ident: 10.1016/j.foreco.2012.11.018_b0200
  article-title: Risk assessment in the face of a changing environment: gypsy moth and climate change in Utah
  publication-title: Ecol. Appl.
  doi: 10.1890/1051-0761(2007)017[0101:RAITFO]2.0.CO;2
– volume: 27
  start-page: 1289
  year: 2001
  ident: 10.1016/j.foreco.2012.11.018_b0235
  article-title: Effects of genotype, nutrient availability, and defoliation on aspen phytochemistry and insect performance
  publication-title: J. Chem. Ecol.
  doi: 10.1023/A:1010352307301
– volume: 111
  start-page: 99
  year: 1997
  ident: 10.1016/j.foreco.2012.11.018_b0105
  article-title: Clonal variation in foliar chemistry of aspen: effects on gypsy moths and forest tent caterpillars
  publication-title: Oecologia
  doi: 10.1007/s004420050213
– year: 1997
  ident: 10.1016/j.foreco.2012.11.018_b0140
– volume: 213
  start-page: 338
  year: 2005
  ident: 10.1016/j.foreco.2012.11.018_b0280
  article-title: Twenty-year change in aspen dominance in pure aspen and mixed aspen/conifer stands on the Uncompahgre Plateau, Colorado USA
  publication-title: Forest Ecol. Mgnage.
  doi: 10.1016/j.foreco.2005.03.018
– volume: 33
  start-page: 1505
  year: 2004
  ident: 10.1016/j.foreco.2012.11.018_b0065
  article-title: Cottonwood leaf beetle (Coleoptera: Chrysomelidea) performance in relation to variable phytochemistry in juvenile aspen (Populus tremuloides Michx.)
  publication-title: Environ. Entomol.
  doi: 10.1603/0046-225X-33.5.1505
– volume: 9
  start-page: 511
  year: 1998
  ident: 10.1016/j.foreco.2012.11.018_b0225
  article-title: Effects of overstory and understory vegetation on the understory light environment in mixed boreal forests
  publication-title: J. Veget. Sci.
  doi: 10.2307/3237266
– volume: 3
  start-page: 479
  year: 2005
  ident: 10.1016/j.foreco.2012.11.018_b0085
  article-title: Loss of foundation species: consequences for the structure and dynamics of forested ecosystems
  publication-title: Front. Ecol. Environ.
  doi: 10.1890/1540-9295(2005)003[0479:LOFSCF]2.0.CO;2
– volume: 88
  start-page: 729
  year: 2007
  ident: 10.1016/j.foreco.2012.11.018_b0070
  article-title: Genetics, environment, and their interaction determine efficacy of chemical defense in trembling aspen
  publication-title: Ecology
  doi: 10.1890/06-0064
– volume: 27
  start-page: 1281
  year: 1997
  ident: 10.1016/j.foreco.2012.11.018_b0270
  article-title: Atmospheric CO2 and soil water availability: consequences for tree-insect interactions
  publication-title: Can. J. For. Res.
  doi: 10.1139/x97-031
– volume: 3
  start-page: 249
  year: 2009
  ident: 10.1016/j.foreco.2012.11.018_b0135
  article-title: Plant genotypic diversity and environmental stress interact to negatively affect arthropod community diversity
  publication-title: Arthr. -Plant Inter.
  doi: 10.1007/s11829-009-9073-8
– volume: 72
  start-page: 1497
  year: 2011
  ident: 10.1016/j.foreco.2012.11.018_b0015
  article-title: Phenolic glycosides of the Salicaceae and their role as anti-herbivore defenses
  publication-title: Phytochemistry
  doi: 10.1016/j.phytochem.2011.01.038
– volume: 100
  start-page: 1337
  year: 2007
  ident: 10.1016/j.foreco.2012.11.018_b0340
  article-title: Extrafloral nectaries in aspen (Populus tremuloides): heritable genetic variation and herbivore-induced expression
  publication-title: Ann. Bot.
  doi: 10.1093/aob/mcm220
– volume: 11
  start-page: 1005
  year: 2008
  ident: 10.1016/j.foreco.2012.11.018_b0275
  article-title: From genes to ecosystems: the genetic basis of condensed tannins and their role in nutrient regulation in a Populus model system
  publication-title: Ecosystems
  doi: 10.1007/s10021-008-9173-9
– volume: 148
  start-page: 293
  year: 2006
  ident: 10.1016/j.foreco.2012.11.018_b0245
  article-title: Genotype and environment determine allocation to and costs of resistance in quaking aspen
  publication-title: Oecologia
  doi: 10.1007/s00442-006-0373-8
– volume: 10
  start-page: 399
  year: 2008
  ident: 10.1016/j.foreco.2012.11.018_b0075
  article-title: Effects of variable phytochemistry and budbreak phenology on defoliation of aspen during a forest tent caterpillar outbreak
  publication-title: Agric. Forest Entomol.
  doi: 10.1111/j.1461-9563.2008.00392.x
– volume: 276
  start-page: 33
  year: 2012
  ident: 10.1016/j.foreco.2012.11.018_b0090
  article-title: Effects of ungulate herbivory on aspen, cottonwood, and willow development under forest fuels treatment regimes
  publication-title: Forest Ecol. Mgnage.
  doi: 10.1016/j.foreco.2012.03.019
– volume: 2
  start-page: 195
  year: 2012
  ident: 10.1016/j.foreco.2012.11.018_b0215
  article-title: Climate impacts on bird and plant communities from altered animal-plant interactions
  publication-title: Nat. Clim. Chang.
  doi: 10.1038/nclimate1348
– volume: 139
  start-page: 55
  year: 2004
  ident: 10.1016/j.foreco.2012.11.018_b0240
  article-title: Long-term effects of defoliation on quaking aspen in relation to genotype and nutrient availability: plant growth, phytochemistry and insect performance
  publication-title: Oecologia
  doi: 10.1007/s00442-003-1481-3
– ident: 10.1016/j.foreco.2012.11.018_b0170
– volume: 69
  start-page: 25
  year: 1999
  ident: 10.1016/j.foreco.2012.11.018_b0320
  article-title: Exotic plant species invade hot spots of native plant diversity
  publication-title: Ecol. Monogr.
  doi: 10.1890/0012-9615(1999)069[0025:EPSIHS]2.0.CO;2
– volume: 160
  start-page: 119
  year: 2009
  ident: 10.1016/j.foreco.2012.11.018_b0205
  article-title: Genetic mosaics of ecosystem functioning across aspen-dominated landscapes
  publication-title: Oecologia
  doi: 10.1007/s00442-009-1283-3
– volume: 9
  start-page: 715
  year: 2007
  ident: 10.1016/j.foreco.2012.11.018_b0005
  article-title: Rapid shifts in the chemical composition of aspen forests: an introduced herbivore as an agent of natural selection
  publication-title: Biol. Invas.
  doi: 10.1007/s10530-006-9071-z
– volume: 37
  start-page: 139
  year: 2009
  ident: 10.1016/j.foreco.2012.11.018_b0100
  article-title: Incidence of Venturia shoot blight damage in aspen (Populus tremuloides Michx.) varies with tree chemistry and genotype
  publication-title: Biochem. Syst. Ecol.
  doi: 10.1016/j.bse.2009.02.003
– volume: 15
  start-page: 1284
  year: 2005
  ident: 10.1016/j.foreco.2012.11.018_b0150
  article-title: Effects of conifers and elk browsing on quaking aspen forests in the central Rocky Mountains, USA.
  publication-title: Ecol. Appl.
  doi: 10.1890/03-5395
– volume: 169
  start-page: 561
  year: 2006
  ident: 10.1016/j.foreco.2012.11.018_b0060
  article-title: Competition- and resource-mediated tradeoffs between growth and defense chemistry in trembling aspen (Populus tremuloides)
  publication-title: New Phytol.
  doi: 10.1111/j.1469-8137.2005.01613.x
– volume: 10
  start-page: 499
  year: 1984
  ident: 10.1016/j.foreco.2012.11.018_b0250
  article-title: Distribution of birch (Betula spp.), willow (Salix spp.), and poplar (Populus spp.) secondary metabolites and their potential role as chemical defense against herbivores
  publication-title: J. Chem. Ecol.
  doi: 10.1007/BF00988096
– volume: 33
  start-page: 5
  year: 2007
  ident: 10.1016/j.foreco.2012.11.018_b0155
  article-title: Sequestration of plant-derived phenolglucosides by larvae of the leaf beetle Chrysomela lapponica: thioglucosides as mechanistic probes
  publication-title: J. Chem. Ecol.
  doi: 10.1007/s10886-006-9201-1
– volume: 15
  start-page: 677
  year: 1987
  ident: 10.1016/j.foreco.2012.11.018_b0180
  article-title: Characterization of phenolic glycosides from quaking aspen (Populus tremuloides)
  publication-title: Biochem. Syst. Ecol.
  doi: 10.1016/0305-1978(87)90045-7
– volume: 83
  start-page: 1701
  year: 2002
  ident: 10.1016/j.foreco.2012.11.018_b0010
  article-title: Interactions among fire, aspen, and elk affect insect diversity: reversal of a community response
  publication-title: Ecology
  doi: 10.1890/0012-9658(2002)083[1701:IAFAAE]2.0.CO;2
– volume: 85
  start-page: 1111
  year: 2007
  ident: 10.1016/j.foreco.2012.11.018_b0255
  article-title: Poplar defense against insect herbivores
  publication-title: Can. J. Bot.
  doi: 10.1139/B07-109
– volume: 25
  start-page: 133
  year: 2010
  ident: 10.1016/j.foreco.2012.11.018_b0045
  article-title: Assessing the impact of extreme climatic events on aspen defoliation using MODIS imagery
  publication-title: Geocart. Int.
  doi: 10.1080/10106040903051975
– volume: 93
  start-page: 473
  year: 1991
  ident: 10.1016/j.foreco.2012.11.018_b0110
  article-title: Use of quaking aspen flower buds by ruffed grouse: its relationship to grouse densities and bud chemical composition
  publication-title: The Condor
  doi: 10.2307/1368179
– ident: 10.1016/j.foreco.2012.11.018_b0025
  doi: 10.1371/journal.pone.0052369
– volume: 30
  start-page: 25
  year: 1996
  ident: 10.1016/j.foreco.2012.11.018_b0185
  article-title: Diversity, redundancy and multiplicity in chemical defense systems of aspen
  publication-title: Rec. Adv. Phytochem.
– volume: 28
  start-page: 375
  year: 2009
  ident: 10.1016/j.foreco.2012.11.018_b0035
  article-title: Genomics of secondary metabolism in Populus: interactions with biotic and abiotic environments
  publication-title: Crit. Rev. Plant Sci.
  doi: 10.1080/07352680903241279
– volume: 71
  start-page: 2236
  year: 1993
  ident: 10.1016/j.foreco.2012.11.018_b0220
  article-title: Diet selection by a ruminant generalist browser in relation to plant chemistry
  publication-title: Can. J. Zool.
  doi: 10.1139/z93-314
– volume: 279
  start-page: 1366
  year: 2012
  ident: 10.1016/j.foreco.2012.11.018_b0360
  article-title: Climate change intensification of herbivore impacts on tree recruitment
  publication-title: Proc. Royal Soc. B
  doi: 10.1098/rspb.2011.1501
– volume: 172
  start-page: 47
  year: 2006
  ident: 10.1016/j.foreco.2012.11.018_b0330
  article-title: Genome-wide analysis of the structural genes regulating defense phenylpropanoid metabolism in Populus
  publication-title: New Phytol.
  doi: 10.1111/j.1469-8137.2006.01798.x
– volume: 22
  start-page: 40
  year: 2008
  ident: 10.1016/j.foreco.2012.11.018_b0305
  article-title: Variation in tolerance to herbivory is mediated by differences in biomass allocation in aspen
  publication-title: Funct. Ecol.
  doi: 10.1111/j.1365-2435.2007.01356.x
– volume: 212
  start-page: 1451
  year: 2011
  ident: 10.1016/j.foreco.2012.11.018_b0160
  article-title: Aspen (Populus tremuloides) stands and their contribution to plant diversity in a semiarid coniferous landscape
  publication-title: Plant Ecol.
  doi: 10.1007/s11258-011-9920-4
– volume: 46
  start-page: 25
  year: 1996
  ident: 10.1016/j.foreco.2012.11.018_b0230
  article-title: Genetic variation and the natural history of quaking aspen
  publication-title: Bioscience
  doi: 10.2307/1312652
– volume: 262
  start-page: 325
  year: 2011
  ident: 10.1016/j.foreco.2012.11.018_b0290
  article-title: The influences of conifer succession, physiographic conditions and herbivory on quaking aspen regeneration after fire
  publication-title: Forest Ecol. Manage.
  doi: 10.1016/j.foreco.2011.03.038
– volume: 160
  start-page: 687
  year: 2009
  ident: 10.1016/j.foreco.2012.11.018_b0050
  article-title: Behavioral archives link the chemistry and clonal structure of trembling aspen to the food choice of North American porcupine
  publication-title: Oecologia
  doi: 10.1007/s00442-009-1340-y
– volume: 31
  start-page: 68
  year: 2011
  ident: 10.1016/j.foreco.2012.11.018_b0285
  article-title: Developmental contributions to phenotypic variation in functional leaf traits within quaking aspen clones
  publication-title: Tree Physiol.
  doi: 10.1093/treephys/tpq100
– volume: 29
  start-page: 1259
  year: 2009
  ident: 10.1016/j.foreco.2012.11.018_b0295
  article-title: Altered leaf morphology, leaf resource dilution and defense chemistry induction in frost-defoliated aspen (Populus tremuloides)
  publication-title: Tree Physiol.
  doi: 10.1093/treephys/tpp058
– volume: 8
  start-page: 279
  year: 2010
  ident: 10.1016/j.foreco.2012.11.018_b0040
  article-title: The impact of genomics on advances in herbivore defense and secondary metabolism in Populus
– volume: 32
  start-page: 1415
  year: 2006
  ident: 10.1016/j.foreco.2012.11.018_b0080
  article-title: Age-related shifts in leaf chemistry of clonal aspen (Populus tremuloides)
  publication-title: J. Chem. Ecol.
  doi: 10.1007/s10886-006-9059-2
SSID ssj0005548
Score 2.442523
Snippet ► Much of the ecological and evolutionary success of aspen is due to strategies it employs for protection from herbivory. ► Expression of chemical defense is...
Quaking aspen (Populus tremuloides) is a quintessential “foundation species” in early-successional forest ecosystems throughout much of North America. Although...
SourceID proquest
pascalfrancis
crossref
fao
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 14
SubjectTerms adaptation
Animal and plant ecology
Animal, plant and microbial ecology
Aspen decline
Biological and medical sciences
browsing
conifers
environmental factors
Fire
fire severity
forest ecosystems
Forestry
Fundamental and applied biological sciences. Psychology
genetic variation
genotype
glycosides
habitats
herbivores
Herbivory
insect growth
insects
landscapes
North America
phenotypic plasticity
Phytochemistry
Plant–animal interactions
population density
Populus tremuloides
proanthocyanidins
Synecology
Terrestrial ecosystems
tree age
trees
ungulates
Title Adaptations of quaking aspen (Populus tremuloides Michx.) for defense against herbivores
URI https://dx.doi.org/10.1016/j.foreco.2012.11.018
https://www.proquest.com/docview/1446275227
Volume 299
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9RAFB5qRfFFtCrdqssIPuhDdpM5k2TncSmWVbEIdWHfhrmlRGqyNpuiL_52z8mlWBQKviYz4TDf5Fw4l4-x1xB8krrcRVY6GUlVULOygCiGkOcWjYIF6nf-dJqt1vLDJt3sseOxF4bKKgfd3-v0TlsPT-bDac63ZTk_i4G6JEWeUFSsJDXx0fQ6vNOzX3-UeaQdgxYtjmj12D7X1XihX4hBHhV4iRnN8iTqj3-bpzuFqalu0jR4dEXPefGX-u5s0skj9nBwJvmyl_cx2wvVAbvX00v-PGD3iXeTyNyesM3Sm22fdW94XfDvbcdCxU2zDRV_85lovNqG7y7Dt_aiLn1oOBWJ_pi95Sg996HAcDdwc25K9Cc5Am3LK_r6U7Y-effleBUNpAqRAwW7yGbSWJoFqrxLMaxW5GF4C04urAXpF5BIUYTY5EXwaQYelPfoI6bgFqkIDp6x_aquwiHjaP4zmySFErGXlL5RLs0Re2UpOxhgwmA8S-2GieNEfHGhx9Kyr7pHQBMCGIxoRGDCoutd237ixi3r8xEmfePmaDQKt-w8RFS1OUd1qtdngoLNmOItwFfTG1BfS0Lj8FGJZRP2asRe4w9JWRZThbptNAXYuEqI_Oi_JXvOHoiOdoPKgl-w_d1lG16i87Oz0-52T9nd5fuPq9PfzDMBBA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9RAFD60W7y8iFZL10sdwQd9SDeZmSQ7j0uxbG27CO3Cvg2ZS0qkJmuzEf33npNLpSgUfE1mwmG-yblwLh_Ae-FdFNvUBkZaGUiVU7MyF0EofJoaNApGUL_z-SKZL-XnVbzagqOhF4bKKnvd3-n0Vlv3Tyb9aU7WRTG5CAV1SfI0oqhYSbUNOzSdSo5gZ3ZyOl_8qfSIWxItWh_QhqGDri3zQtcQ4zyq8eKHNM6T2D_-baG286yi0smsxtPLO9qLvzR4a5aOn8KT3p9ks07kZ7Dly1140DFM_tqFh0S9SXxuz2E1c9m6S7zXrMrZ96YlomJZvfYl-_CFmLyamm1u_LfmuiqcrxnVif48_MhQeuZ8jhGvZ9lVVqBLyRBrU_ygr7-A5fGny6N50PMqBFYosQlMIjND40CVszFG1oqcDGeElVNjhHRTEUme-zBLc-_iRDihnEM3MRZ2GnNvxR6Myqr0-8DQA0hMFOWKh05SBkfZOEX4laEEoRdjEMNZatsPHSfui2s9VJd91R0CmhDAeEQjAmMIbnetu6Eb96xPB5j0ncuj0S7cs3MfUdXZFWpUvbzgFG-GFHIJfHVwB-pbSWgiPuqxZAzvBuw1_pOUaMlKXzW1phgbV3Gevvxvyd7Co_nl-Zk-O1mcvoLHvGXhoCrh1zDa3DT-DfpCG3PQ3_XfmroDtQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Forest+ecology+and+management&rft.atitle=Adaptations+of+quaking+aspen+%28Populus+tremuloides+Michx.%29+for+defense+against+herbivores&rft.au=LINDROTH%2C+Richard+L&rft.au=ST.+CLAIR%2C+Samuel+B&rft.date=2013-07-01&rft.pub=Elsevier&rft.issn=0378-1127&rft.volume=299&rft.spage=14&rft.epage=21&rft_id=info:doi/10.1016%2Fj.foreco.2012.11.018&rft.externalDBID=n%2Fa&rft.externalDocID=27500176
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-1127&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-1127&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-1127&client=summon