Increase in the piezoelectric response of scandium-doped gallium nitride thin films sputtered using a metal interlayer for piezo MEMS

Wurtzite gallium nitride (GaN) has a polarity along the c-axis and piezoelectric properties the same as aluminum nitride. Since it has a high mechanical quality factor and high output sensitivity, it is expected to perform well in piezo micro-electro-mechanical system devices. This paper demonstrate...

Full description

Saved in:
Bibliographic Details
Published inApplied physics letters Vol. 114; no. 1
Main Authors Uehara, Masato, Mizuno, Takaaki, Aida, Yasuhiro, Yamada, Hiroshi, Umeda, Keiichi, Akiyama, Morito
Format Journal Article
LanguageEnglish
Published Melville American Institute of Physics 07.01.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Wurtzite gallium nitride (GaN) has a polarity along the c-axis and piezoelectric properties the same as aluminum nitride. Since it has a high mechanical quality factor and high output sensitivity, it is expected to perform well in piezo micro-electro-mechanical system devices. This paper demonstrates that Hf and Mo interlayers enable the preparation of highly (001)-oriented GaN films via conventional sputtering at a low temperature (400 °C). The piezoelectric coefficient d33 of the prepared undoped GaN films is equivalent to that of a single-crystal GaN. Furthermore, the results demonstrate that the piezoelectric response of GaN films increases significantly when they are doped with scandium (Sc). Although this enhancement was predicted theoretically, the piezoelectric response of Sc-doped GaN films prepared on Hf and Mo interlayers has shown great improvement. Moreover, bulk acoustic wave resonators constructed using Sc-doped GaN films show a piezoelectric coupling factor that is three times larger than that of a single-crystal GaN.
AbstractList Wurtzite gallium nitride (GaN) has a polarity along the c-axis and piezoelectric properties the same as aluminum nitride. Since it has a high mechanical quality factor and high output sensitivity, it is expected to perform well in piezo micro-electro-mechanical system devices. This paper demonstrates that Hf and Mo interlayers enable the preparation of highly (001)-oriented GaN films via conventional sputtering at a low temperature (400 °C). The piezoelectric coefficient d33 of the prepared undoped GaN films is equivalent to that of a single-crystal GaN. Furthermore, the results demonstrate that the piezoelectric response of GaN films increases significantly when they are doped with scandium (Sc). Although this enhancement was predicted theoretically, the piezoelectric response of Sc-doped GaN films prepared on Hf and Mo interlayers has shown great improvement. Moreover, bulk acoustic wave resonators constructed using Sc-doped GaN films show a piezoelectric coupling factor that is three times larger than that of a single-crystal GaN.
Author Mizuno, Takaaki
Umeda, Keiichi
Akiyama, Morito
Aida, Yasuhiro
Yamada, Hiroshi
Uehara, Masato
Author_xml – sequence: 1
  givenname: Masato
  surname: Uehara
  fullname: Uehara, Masato
  email: m.uehara@aist.go.jp
  organization: 3Murata Manufacturing Co., Ltd., 1-10-1, Higashikotari, Nagaokakyo, Kyoto 617–8555, Japan
– sequence: 2
  givenname: Takaaki
  surname: Mizuno
  fullname: Mizuno, Takaaki
  organization: Murata Manufacturing Co., Ltd
– sequence: 3
  givenname: Yasuhiro
  surname: Aida
  fullname: Aida, Yasuhiro
  organization: Murata Manufacturing Co., Ltd
– sequence: 4
  givenname: Hiroshi
  surname: Yamada
  fullname: Yamada, Hiroshi
  organization: 3Murata Manufacturing Co., Ltd., 1-10-1, Higashikotari, Nagaokakyo, Kyoto 617–8555, Japan
– sequence: 5
  givenname: Keiichi
  surname: Umeda
  fullname: Umeda, Keiichi
  organization: Murata Manufacturing Co., Ltd
– sequence: 6
  givenname: Morito
  surname: Akiyama
  fullname: Akiyama, Morito
  organization: Advanced Manufacturing Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)
BookMark eNp9kEFLAzEQhYMo2KoH_0HAk8K2yWaT3R6lVC1UPKjnJc1Oaso2WZOsoHf_t5FWBFFPw5v53nswQ7RvnQWETikZUSLYmI44EUJQtocGlJRlxiit9tGAEMIyMeH0EA1DWCfJc8YG6H1ulQcZABuL4xPgzsCbgxZU9EZhD6FzNl2dxkFJ25h-kzWugwavZNsmha1JZAPJnBK0aTcBh66PEXyC-mDsCku8gSjbVJG2rXwFj7Xz2yp8O7u9P0YHWrYBTnbzCD1ezR6mN9ni7no-vVxkik1YzJZFwSnwcqlpUxVS0zJpQWSldJNzSQpSAC9ywitRgpKcLytNKGNSVkstRMGO0Nk2t_PuuYcQ67XrvU2VdU4Fy0teTFiizreU8i4ED7ruvNlI_1pTUn9-uab17suJHf9glYkyGmejl6b91XGxdYQv8t_4P-EX57_Bums0-wCNK52q
CODEN APPLAB
CitedBy_id crossref_primary_10_1002_pssr_202300087
crossref_primary_10_1088_2053_1591_ab0a8b
crossref_primary_10_1039_D0TC05609J
crossref_primary_10_1063_5_0191816
crossref_primary_10_1063_5_0200057
crossref_primary_10_1063_5_0236507
crossref_primary_10_3390_coatings11040397
crossref_primary_10_1002_jnm_3206
crossref_primary_10_2109_jcersj2_21190
crossref_primary_10_1016_j_apsusc_2020_148277
crossref_primary_10_1364_PRJ_517719
crossref_primary_10_3390_ma14237377
crossref_primary_10_1016_j_ceramint_2021_02_177
crossref_primary_10_1063_5_0068059
crossref_primary_10_1007_s42247_024_00756_4
crossref_primary_10_1063_5_0060021
crossref_primary_10_1088_1361_6641_acb80e
crossref_primary_10_1109_TUFFC_2023_3241775
crossref_primary_10_1142_S0217984922501251
crossref_primary_10_3389_fmats_2025_1526968
crossref_primary_10_1016_j_diamond_2023_110731
crossref_primary_10_35848_1882_0786_ac8048
Cites_doi 10.1016/j.actamat.2015.08.019
10.1063/1.1317244
10.1063/1.4788728
10.1109/TUFFC.2014.006846
10.1063/1.4824179
10.1002/adma.200802611
10.1063/1.125560
10.1109/JMEMS.2017.2701372
10.1088/0957-4484/27/32/325403
10.1143/JJAP.44.1397
10.1063/1.121219
10.1088/0256-307X/18/10/338
10.1063/1.2405849
10.1016/j.optmat.2016.03.013
10.1063/1.4866969
10.1109/TUFFC.2005.1504003
10.1063/1.333084
10.1103/PhysRevB.66.201203
10.1063/1.4993254
10.1002/adma.201104365
10.1016/j.apsusc.2017.02.147
10.1140/epjb/e2006-00438-8
10.1103/PhysRevLett.104.137601
10.1038/srep05617
10.1063/1.4990533
10.1016/j.scriptamat.2018.09.001
10.1063/1.3251072
10.1557/mrs.2012.268
10.1016/j.physe.2005.05.050
10.1088/1361-6641/aa5fcd
10.1002/1521-396X(200106)185:2<247::AID-PSSA247>3.0.CO;2-H
10.2109/jcersj2.118.1166
10.1109/JMEMS.2014.2352617
10.1063/1.4948343
10.1103/PhysRevB.87.094107
ContentType Journal Article
Copyright Author(s)
2019 Author(s). Published under license by AIP Publishing.
Copyright_xml – notice: Author(s)
– notice: 2019 Author(s). Published under license by AIP Publishing.
DBID AAYXX
CITATION
8FD
H8D
L7M
DOI 10.1063/1.5066613
DatabaseName CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitleList Technology Research Database

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1077-3118
ExternalDocumentID 10_1063_1_5066613
apl
GroupedDBID -DZ
-~X
.DC
1UP
2-P
23M
4.4
53G
5GY
5VS
6J9
A9.
AAAAW
AABDS
AAEUA
AAGZG
AAPUP
AAYIH
ABFTF
ABJNI
ABZEH
ACBEA
ACBRY
ACGFO
ACGFS
ACLYJ
ACNCT
ACZLF
ADCTM
AEGXH
AEJMO
AENEX
AFATG
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AIAGR
AJJCW
AJQPL
ALEPV
ALMA_UNASSIGNED_HOLDINGS
AQWKA
ATXIE
AWQPM
BPZLN
CS3
D0L
EBS
EJD
ESX
F.2
F5P
FDOHQ
FFFMQ
HAM
M6X
M71
M73
N9A
NPSNA
O-B
P2P
RIP
RNS
RQS
SJN
TAE
TN5
UCJ
UPT
WH7
XJE
YZZ
~02
AAGWI
AAYXX
ABJGX
ADMLS
BDMKI
CITATION
8FD
H8D
L7M
ID FETCH-LOGICAL-c393t-b4451e57bf1d84af1745160a8cfd25a0404e54205867eca55b8f0133aa8bf6643
ISSN 0003-6951
IngestDate Mon Jun 30 06:48:31 EDT 2025
Tue Jul 01 01:16:10 EDT 2025
Thu Apr 24 22:54:57 EDT 2025
Fri Jun 21 00:17:27 EDT 2024
Sun Jul 14 10:54:31 EDT 2019
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Published under license by AIP Publishing.
0003-6951/2019/114(1)/012902/5/$30.00
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c393t-b4451e57bf1d84af1745160a8cfd25a0404e54205867eca55b8f0133aa8bf6643
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8510-4738
0000-0001-5614-647X
0000-0002-2638-0975
0000-0002-8569-7788
PQID 2163275493
PQPubID 2050678
PageCount 5
ParticipantIDs proquest_journals_2163275493
crossref_primary_10_1063_1_5066613
crossref_citationtrail_10_1063_1_5066613
scitation_primary_10_1063_1_5066613
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-01-07
PublicationDateYYYYMMDD 2019-01-07
PublicationDate_xml – month: 01
  year: 2019
  text: 2019-01-07
  day: 07
PublicationDecade 2010
PublicationPlace Melville
PublicationPlace_xml – name: Melville
PublicationTitle Applied physics letters
PublicationYear 2019
Publisher American Institute of Physics
Publisher_xml – name: American Institute of Physics
References Akiyama, Kamohara, Kano, Teshigahara, Takeuchi, Kawahara (c2) 2009
Wang, Peng, Pan, Lin Wang (c11) 2017
Mayrhofer, Riedl, Euchner, Stöger-Pollach, Mayrhofer, Bittner, Schmid (c16) 2015
Abdelraheem, Blyth, Balkan (c7) 2001
Zur, McGill (c27) 1984
Zhang, Holec, Fu, Humphreys, Moram (c34) 2013
Wang (c10) 2012
Manna, Brennecka, Stevanović, Ciobanu (c15) 2017
Huang, Tay, Wu (c26) 2005
Rais-Zadeh, Gokhale, Ansari, Faucher, Theron, Cordier, Buchaillot (c4) 2014
Uehara, Shigemoto, Fujio, Nagase, Aida, Umeda, Akiyama (c14) 2017
Iriarte, Bjurstrom, Westlinder, Engelmark, Katardjiev (c24) 2005
Tholander, Abrikosov, Hultman, Tasnádi (c36) 2013
Akiyama, Kano, Teshigahara (c3) 2009
Yokoyama, Iwazaki, Onda, Nishihara, Sasajima, Ueda (c13) 2015
Reusch, Cherneva, Lu, Zukauskaite, Kirste, Holc, Datcheva, Stoychev, Lebedev, Ambacher (c32) 2017
Tasnadi, Alling, Hoglund, Wingqvist, Birch, Hultman, Abrikosov (c35) 2010
Lueng, Chan, Surya, Choy (c19) 2000
Guy, Muensit, Goldys (c21) 1999
Ansari, Rais-Zadeh (c6) 2017
Yanagitani, Suzuki (c18) 2014
Alsaad, Ahmad (c29) 2006
Anggraini, Uehara, Yamada, Akiyama (c17) 2019
Akiyama, Tabaru, Nishikubo, Teshigahara, Kano (c30) 2010
Yoshikawa, Reusch, Holc, Iankov, Zuerbig, Zukauskaite, Nebel, Ambacher, Lebedev (c33) 2016
Akiyama, Umeda, Honda, Nagase (c37) 2013
Gokhale, Rais-Zadeh (c12) 2014
Muensit, Guy (c20) 1998
Tawfik, Hyun, Ryu, Ha, Lee (c8) 2016
Mensah, Mensah, Elloh, Banini, Sam, Allotey (c23) 2005
Farrer, Bellaiche (c28) 2002
Jamond, Chretien, Houze, Lu, Largeau, Maugain, Travers, Harmand, Glas, Lefeuvre, Tchernycheva, Gogneau (c9) 2016
Chen, Lu, Wang, Liu, Han, Yuan, Wang, Wang, He, Li, Yan, Chen (c22) 2001
Piazza, Felmetsger, Muralt, Olsson Iii, Ruby (c1) 2012
Kamohara, Akiyama, Ueno, Sakamoto, Kano, Teshigahara, Kawahara, Kuwano (c25) 2006
(2023080303315183800_c7) 2001; 185
(2023080303315183800_c29) 2006; 54
(2023080303315183800_c24) 2005; 52
(2023080303315183800_c1) 2012; 37
(2023080303315183800_c22) 2001; 18
(2023080303315183800_c19) 2000; 88
(2023080303315183800_c28) 2002; 66
(2023080303315183800_c2) 2009; 21
(2023080303315183800_c14) 2017; 111
(2023080303315183800_c3) 2009; 95
(2023080303315183800_c15) 2017; 122
(2023080303315183800_c11) 2017; 32
(2023080303315183800_c35) 2010; 104
(2023080303315183800_c31) 2015
(2023080303315183800_c5) 2017
(2023080303315183800_c23) 2005; 28
(2023080303315183800_c36) 2013; 87
(2023080303315183800_c13) 2015; 62
(2023080303315183800_c6) 2017; 26
(2023080303315183800_c18) 2014; 104
(2023080303315183800_c4) 2014; 23
(2023080303315183800_c12) 2014; 4
(2023080303315183800_c21) 1999; 75
(2023080303315183800_c27) 1984; 55
(2023080303315183800_c26) 2005; 44
(2023080303315183800_c16) 2015; 100
(2023080303315183800_c34) 2013; 114
(2023080303315183800_c17) 2019; 159
(2023080303315183800_c25) 2006; 89
(2023080303315183800_c20) 1998; 72
(2023080303315183800_c32) 2017; 407
(2023080303315183800_c10) 2012; 24
(2023080303315183800_c30) 2010; 118
(2023080303315183800_c8) 2016; 55
(2023080303315183800_c9) 2016; 27
(2023080303315183800_c33) 2016; 108
(2023080303315183800_c37) 2013; 102
References_xml – start-page: 201203(R)
  year: 2002
  ident: c28
  publication-title: Phys. Rev. B
– start-page: 740
  year: 2017
  ident: c6
  publication-title: J. Microelectromech. Syst.
– start-page: 4133
  year: 1999
  ident: c21
  publication-title: Appl. Phys. Lett.
– start-page: 1051
  year: 2012
  ident: c1
  publication-title: MRS Bull.
– start-page: 9
  year: 2019
  ident: c17
  publication-title: Scr. Mater.
– start-page: 082911
  year: 2014
  ident: c18
  publication-title: Appl. Phys. Lett.
– start-page: 243507
  year: 2006
  ident: c25
  publication-title: Appl. Phys. Lett.
– start-page: 378
  year: 1984
  ident: c27
  publication-title: J. Appl. Phys.
– start-page: 094107
  year: 2013
  ident: c36
  publication-title: Phys. Rev. B
– start-page: 133510
  year: 2013
  ident: c34
  publication-title: J. Appl. Phys.
– start-page: 162107
  year: 2009
  ident: c3
  publication-title: Appl. Phys. Lett.
– start-page: 247
  year: 2001
  ident: c7
  publication-title: Phys. Status Solidi (a)
– start-page: 043005
  year: 2017
  ident: c11
  publication-title: Semicond. Sci. Technol.
– start-page: 105101
  year: 2017
  ident: c15
  publication-title: J. Appl. Phys.
– start-page: 1418
  year: 2001
  ident: c22
  publication-title: Chin. Phys. Lett.
– start-page: 5360
  year: 2000
  ident: c19
  publication-title: J. Appl. Phys.
– start-page: 112901
  year: 2017
  ident: c14
  publication-title: Appl. Phys. Lett.
– start-page: 5617
  year: 2014
  ident: c12
  publication-title: Sci. Rep.
– start-page: 151
  year: 2006
  ident: c29
  publication-title: Eur. Phys. J. B
– start-page: 1252
  year: 2014
  ident: c4
  publication-title: J. Microelectromech. Syst.
– start-page: 17
  year: 2016
  ident: c8
  publication-title: Opt. Mater.
– start-page: 1397
  year: 2005
  ident: c26
  publication-title: Jpn. J. Appl. Phys., Part 1
– start-page: 500
  year: 2005
  ident: c23
  publication-title: Physica E
– start-page: 1166
  year: 2010
  ident: c30
  publication-title: J. Ceram. Soc. Jpn.
– start-page: 1170
  year: 2005
  ident: c24
  publication-title: IEEE Trans. Ultrason., Ferroelectr., Freq. Control
– start-page: 307
  year: 2017
  ident: c32
  publication-title: Appl. Surf. Sci.
– start-page: 593
  year: 2009
  ident: c2
  publication-title: Adv. Mater.
– start-page: 325403
  year: 2016
  ident: c9
  publication-title: Nanotechnology
– start-page: 021915
  year: 2013
  ident: c37
  publication-title: Appl. Phys. Lett.
– start-page: 4632
  year: 2012
  ident: c10
  publication-title: Adv. Mater.
– start-page: 1007
  year: 2015
  ident: c13
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
– start-page: 137601
  year: 2010
  ident: c35
  publication-title: Phys. Rev. Lett.
– start-page: 81
  year: 2015
  ident: c16
  publication-title: Acta Mater.
– start-page: 1896
  year: 1998
  ident: c20
  publication-title: Appl. Phys. Lett.
– start-page: 171903
  year: 2016
  ident: c33
  publication-title: Appl. Phys. Lett.
– volume: 100
  start-page: 81
  year: 2015
  ident: 2023080303315183800_c16
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2015.08.019
– volume: 88
  start-page: 5360
  issue: 9
  year: 2000
  ident: 2023080303315183800_c19
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1317244
– volume: 102
  start-page: 021915
  issue: 2
  year: 2013
  ident: 2023080303315183800_c37
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4788728
– volume: 62
  start-page: 1007
  issue: 6
  year: 2015
  ident: 2023080303315183800_c13
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
  doi: 10.1109/TUFFC.2014.006846
– volume: 114
  start-page: 133510
  issue: 13
  year: 2013
  ident: 2023080303315183800_c34
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4824179
– volume: 21
  start-page: 593
  issue: 5
  year: 2009
  ident: 2023080303315183800_c2
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200802611
– volume: 75
  start-page: 4133
  issue: 26
  year: 1999
  ident: 2023080303315183800_c21
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.125560
– volume: 26
  start-page: 740
  year: 2017
  ident: 2023080303315183800_c6
  publication-title: J. Microelectromech. Syst.
  doi: 10.1109/JMEMS.2017.2701372
– volume: 27
  start-page: 325403
  issue: 32
  year: 2016
  ident: 2023080303315183800_c9
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/27/32/325403
– volume: 44
  start-page: 1397
  issue: 3
  year: 2005
  ident: 2023080303315183800_c26
  publication-title: Jpn. J. Appl. Phys., Part 1
  doi: 10.1143/JJAP.44.1397
– volume: 72
  start-page: 1896
  issue: 15
  year: 1998
  ident: 2023080303315183800_c20
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.121219
– volume: 18
  start-page: 1418
  issue: 10
  year: 2001
  ident: 2023080303315183800_c22
  publication-title: Chin. Phys. Lett.
  doi: 10.1088/0256-307X/18/10/338
– volume: 89
  start-page: 243507
  year: 2006
  ident: 2023080303315183800_c25
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2405849
– volume: 55
  start-page: 17
  year: 2016
  ident: 2023080303315183800_c8
  publication-title: Opt. Mater.
  doi: 10.1016/j.optmat.2016.03.013
– volume: 104
  start-page: 082911
  issue: 8
  year: 2014
  ident: 2023080303315183800_c18
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4866969
– volume: 52
  start-page: 1170
  issue: 7
  year: 2005
  ident: 2023080303315183800_c24
  publication-title: IEEE Trans. Ultrason., Ferroelectr., Freq. Control
  doi: 10.1109/TUFFC.2005.1504003
– volume: 55
  start-page: 378
  issue: 2
  year: 1984
  ident: 2023080303315183800_c27
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.333084
– volume: 66
  start-page: 201203(R)
  issue: 20
  year: 2002
  ident: 2023080303315183800_c28
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.66.201203
– volume: 122
  start-page: 105101
  issue: 10
  year: 2017
  ident: 2023080303315183800_c15
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4993254
– volume: 24
  start-page: 4632
  issue: 34
  year: 2012
  ident: 2023080303315183800_c10
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201104365
– volume: 407
  start-page: 307
  year: 2017
  ident: 2023080303315183800_c32
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2017.02.147
– volume: 54
  start-page: 151
  issue: 2
  year: 2006
  ident: 2023080303315183800_c29
  publication-title: Eur. Phys. J. B
  doi: 10.1140/epjb/e2006-00438-8
– volume: 104
  start-page: 137601
  issue: 13
  year: 2010
  ident: 2023080303315183800_c35
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.104.137601
– volume: 4
  start-page: 5617
  year: 2014
  ident: 2023080303315183800_c12
  publication-title: Sci. Rep.
  doi: 10.1038/srep05617
– volume: 111
  start-page: 112901
  issue: 11
  year: 2017
  ident: 2023080303315183800_c14
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4990533
– volume: 159
  start-page: 9
  year: 2019
  ident: 2023080303315183800_c17
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2018.09.001
– start-page: 1291
  year: 2015
  ident: 2023080303315183800_c31
– volume: 95
  start-page: 162107
  issue: 16
  year: 2009
  ident: 2023080303315183800_c3
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3251072
– volume: 37
  start-page: 1051
  issue: 11
  year: 2012
  ident: 2023080303315183800_c1
  publication-title: MRS Bull.
  doi: 10.1557/mrs.2012.268
– year: 2017
  ident: 2023080303315183800_c5
– volume: 28
  start-page: 500
  issue: 4
  year: 2005
  ident: 2023080303315183800_c23
  publication-title: Physica E
  doi: 10.1016/j.physe.2005.05.050
– volume: 32
  start-page: 043005
  issue: 4
  year: 2017
  ident: 2023080303315183800_c11
  publication-title: Semicond. Sci. Technol.
  doi: 10.1088/1361-6641/aa5fcd
– volume: 185
  start-page: 247
  issue: 2
  year: 2001
  ident: 2023080303315183800_c7
  publication-title: Phys. Status Solidi (a)
  doi: 10.1002/1521-396X(200106)185:2<247::AID-PSSA247>3.0.CO;2-H
– volume: 118
  start-page: 1166
  year: 2010
  ident: 2023080303315183800_c30
  publication-title: J. Ceram. Soc. Jpn.
  doi: 10.2109/jcersj2.118.1166
– volume: 23
  start-page: 1252
  issue: 6
  year: 2014
  ident: 2023080303315183800_c4
  publication-title: J. Microelectromech. Syst.
  doi: 10.1109/JMEMS.2014.2352617
– volume: 108
  start-page: 171903
  issue: 17
  year: 2016
  ident: 2023080303315183800_c33
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4948343
– volume: 87
  start-page: 094107
  issue: 9
  year: 2013
  ident: 2023080303315183800_c36
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.87.094107
SSID ssj0005233
Score 2.4146245
Snippet Wurtzite gallium nitride (GaN) has a polarity along the c-axis and piezoelectric properties the same as aluminum nitride. Since it has a high mechanical...
SourceID proquest
crossref
scitation
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Aluminum
Applied physics
Electronics
Gallium nitrides
Interlayers
Mechanical systems
Microelectromechanical systems
Piezoelectricity
Polarity
Q factors
Scandium
Single crystals
Thin films
Wurtzite
Title Increase in the piezoelectric response of scandium-doped gallium nitride thin films sputtered using a metal interlayer for piezo MEMS
URI http://dx.doi.org/10.1063/1.5066613
https://www.proquest.com/docview/2163275493
Volume 114
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb5RAFJ9oG6MejFaNrdVM1IMJoV0YBthjozUbY42Ju0l7IgPMpMTdhSxLD3v3__bNJ6xuTPVCWBiGDe83j997vA-E3snatyVJiPw0yKXrhsMeGK5FGnBa5sDwuar2-TWezKLPl_Sy_6KrskvW-Umx2ZlX8j9ShWMgV5kl-w-SdZPCAdgH-cIWJAzbW8kYFreMKec2WLGp-KbWjW1UZWYV_qqcAm0h01e6hV_WDVBM-bkdfnmwnldVyeFimEFU80XrtY1qXQ2DOuVGUE2mVWUOGfvJgKGryER1K-_i3Pi0bR1bw2m1v6T15ipZyNH2GZfloXWKUAvWvpN2telUC3Bvyn4w4LQOhlWphl-xtruuVu6CK7Zg-swEjrbX1dB5IfOlAl93uXUKmfjx2NSc5VoHjxLpOjVq2SppnWo6ROMfyh_YlvRDnFBpk-kM199qabNmfhfth2BRgErcP_t48eX7IB6IENteUf4jW4YqJqduym3y0lsk94Gu6MiJATmZPkaPjFWBzzREnqA7fHmAHg5qTR6ge9-0TJ6inxY2uFpigA3egg22sMG1wNuwwQY22MAGS9hgBRvsYIMVbDDDCja4hw0G2OhbYQmbZ2j26Xz6YeKbbhx-QcZk7eeylB2nSS6CMo2YAFOWBvGIpYUoQ8rgZRBxGoUjmsYJLxileSrAviCMpbmIgfg-R3vLeslfIJyQiIMaSEagQaIwiHMOPBO2Rc6YSGJ6iN7bx5zZBys7pswzFTIRkyzIjEQO0Rs3tNH1WXYNOrayyszybTO4LwkTGo3h9Fsnv79NsmPUTb3qR2RNKY5uNddL9KBfDcdob73q-Csgt-v8tYHlL9pQqhs
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Increase+in+the+piezoelectric+response+of+scandium-doped+gallium+nitride+thin+films+sputtered+using+a+metal+interlayer+for+piezo+MEMS&rft.jtitle=Applied+physics+letters&rft.au=Uehara%2C+Masato&rft.au=Mizuno%2C+Takaaki&rft.au=Aida%2C+Yasuhiro&rft.au=Yamada%2C+Hiroshi&rft.date=2019-01-07&rft.issn=0003-6951&rft.eissn=1077-3118&rft.volume=114&rft.issue=1&rft_id=info:doi/10.1063%2F1.5066613&rft.externalDocID=apl
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-6951&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-6951&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-6951&client=summon