Low dark current Sb-based short-wavelength infrared photodetector

We have theoretically and experimentally demonstrated the feasibility of achieving ultra-low dark current in CpBnn type detectors based on a double-barrier InAs/GaSb/AlSb type-II superlattice. By employing a structure that separates the absorption region and depletion region, the diffusion, recombin...

Full description

Saved in:
Bibliographic Details
Published inAIP advances Vol. 14; no. 9; pp. 095305 - 095305-7
Main Authors Li, Mingming, Cheng, Yifan, Zhang, Xiangyu, Zhang, Ye, Jiang, Dongwei, Song, Zhigang, Zheng, Wanhua
Format Journal Article
LanguageEnglish
Published Melville American Institute of Physics 01.09.2024
AIP Publishing LLC
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We have theoretically and experimentally demonstrated the feasibility of achieving ultra-low dark current in CpBnn type detectors based on a double-barrier InAs/GaSb/AlSb type-II superlattice. By employing a structure that separates the absorption region and depletion region, the diffusion, recombination, tunneling, and surface dark currents of the photodetector (PD) have been suppressed. Experimental validation has shown that a detector with a diameter of 500 µm at a bias voltage of −0.5 V exhibits a dark current density of 2.5 × 10−6 A/cm2 at the operating temperature of 300 K. The development of PD with low dark current has paved the way for applications with high demands for low noise in the fields of gravitational wave detection and astronomical observation.
AbstractList We have theoretically and experimentally demonstrated the feasibility of achieving ultra-low dark current in CpBnn type detectors based on a double-barrier InAs/GaSb/AlSb type-II superlattice. By employing a structure that separates the absorption region and depletion region, the diffusion, recombination, tunneling, and surface dark currents of the photodetector (PD) have been suppressed. Experimental validation has shown that a detector with a diameter of 500 µm at a bias voltage of −0.5 V exhibits a dark current density of 2.5 × 10−6 A/cm2 at the operating temperature of 300 K. The development of PD with low dark current has paved the way for applications with high demands for low noise in the fields of gravitational wave detection and astronomical observation.
We have theoretically and experimentally demonstrated the feasibility of achieving ultra-low dark current in CpBnn type detectors based on a double-barrier InAs/GaSb/AlSb type-II superlattice. By employing a structure that separates the absorption region and depletion region, the diffusion, recombination, tunneling, and surface dark currents of the photodetector (PD) have been suppressed. Experimental validation has shown that a detector with a diameter of 500 µm at a bias voltage of −0.5 V exhibits a dark current density of 2.5 × 10−6 A/cm2 at the operating temperature of 300 K. The development of PD with low dark current has paved the way for applications with high demands for low noise in the fields of gravitational wave detection and astronomical observation.
Author Cheng, Yifan
Zhang, Ye
Song, Zhigang
Jiang, Dongwei
Zheng, Wanhua
Zhang, Xiangyu
Li, Mingming
Author_xml – sequence: 1
  givenname: Mingming
  surname: Li
  fullname: Li, Mingming
  organization: Key Laboratory of Solid-State Optoelectronics Information Technology, Institute of Semiconductors, Chinese Academy of Sciences
– sequence: 2
  givenname: Yifan
  surname: Cheng
  fullname: Cheng, Yifan
  organization: Key Laboratory of Solid-State Optoelectronics Information Technology, Institute of Semiconductors, Chinese Academy of Sciences
– sequence: 3
  givenname: Xiangyu
  surname: Zhang
  fullname: Zhang, Xiangyu
  organization: Key Laboratory of Optoelectronic Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences
– sequence: 4
  givenname: Ye
  surname: Zhang
  fullname: Zhang, Ye
  organization: Key Laboratory of Optoelectronic Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences
– sequence: 5
  givenname: Dongwei
  surname: Jiang
  fullname: Jiang, Dongwei
  organization: 3Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
– sequence: 6
  givenname: Zhigang
  surname: Song
  fullname: Song, Zhigang
  organization: 3Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
– sequence: 7
  givenname: Wanhua
  surname: Zheng
  fullname: Zheng, Wanhua
  organization: 3Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
BookMark eNp9kE1LA0EMhgdRsNYe_AcLnhS2nUx2291jKX4UCh7U85D52HZr3akzU4v_3tVWERFzSUievAnvCTtsXGMZOwPeBz7EQd7ngo8AiwPWEZAXKQoxPPxRH7NeCEveRlYCL7IOG8_cNjHknxK98d42MblXqaJgTRIWzsd0S692ZZt5XCR1U3ny7WS9cNEZG62Ozp-yo4pWwfb2ucser68eJrfp7O5mOhnPUo0lxlQJQJVboTgpgpJEgWjbqjI8UwVmI2F0nmuDGRpOVKCCUkOlAXlVkTHYZdOdrnG0lGtfP5N_k45q-dlwfi7Jx1qvrLRclBXgEJUwmS2QlAJuDSgYalNmRat1vtNae_eysSHKpdv4pn1fIvDWrhHkvKUudpT2LgRvq--rwOWH4TKXe8NbdvCL1XWkWLsmeqpXf25c7jbCF_mP_DvbKpBm
CODEN AAIDBI
CitedBy_id crossref_primary_10_1016_j_ceramint_2025_01_237
Cites_doi 10.1364/oe.383685
10.1007/s11431-019-1463-6
10.1063/1.4720094
10.1063/1.3177333
10.1063/1.4932518
10.1016/j.infrared.2007.09.003
10.1103/physrevd.105.122004
10.1063/1.1529306
10.1063/1.4978378
10.1103/physrevb.65.165220
10.1063/1.2735559
10.1063/1.3005196
10.1117/2.1201111.003919
10.1364/OE.461854
10.1364/ol.402617
10.1016/j.infrared.2009.05.022
10.1088/1674-1056/acaa2e
10.1063/1.5094703
10.1016/j.infrared.2021.104006
10.1016/j.infrared.2019.103026
10.1038/s41598-019-41494-6
ContentType Journal Article
Copyright Author(s)
2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Copyright_xml – notice: Author(s)
– notice: 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
DBID AJDQP
AAYXX
CITATION
8FD
H8D
L7M
DOA
DOI 10.1063/5.0207138
DatabaseName AIP Open Access Journals
CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitleList
Technology Research Database
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: AJDQP
  name: AIP Open Access Journals
  url: https://publishing.aip.org/librarians/open-access-policy
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2158-3226
EndPage 095305-7
ExternalDocumentID oai_doaj_org_article_e029f1363b2d4e83abb10ed1b16cd948
10_1063_5_0207138
adv
GrantInformation_xml – fundername: National Key Research and Development Program of China
  grantid: 2021YFB2800304
  funderid: https://doi.org/10.13039/501100012166
– fundername: The Young Scientists Fund of National Natural Science Foundation of China
  grantid: 62004189
– fundername: Major Program of the National Natural Science Foundation of China
  grantid: 61790581
– fundername: The State Key Laboratory of Special Rare Metal Materials
  grantid: SKL2023K00X
– fundername: National Key Technologies R&D Program of China
  grantid: 2019YFA0705203
GroupedDBID 5VS
61.
AAFWJ
ABFTF
ACGFO
ADBBV
ADCTM
AEGXH
AENEX
AFPKN
AGKCL
AGLKD
AIAGR
AJDQP
ALMA_UNASSIGNED_HOLDINGS
BCNDV
EBS
FRP
GROUPED_DOAJ
HH5
KQ8
M~E
OK1
RIP
RNS
RQS
AAYXX
ABJGX
ADMLS
AHSDT
AKSGC
CITATION
8FD
H8D
L7M
ID FETCH-LOGICAL-c393t-b213b5e2b0aba19a2833eba1fd04b83472dc55cd343d0aa83b19c1fc130ffadd3
IEDL.DBID AJDQP
ISSN 2158-3226
IngestDate Wed Aug 27 01:24:51 EDT 2025
Mon Jun 30 16:32:51 EDT 2025
Thu Apr 24 22:58:06 EDT 2025
Thu Jul 03 08:17:17 EDT 2025
Tue Sep 10 04:00:23 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c393t-b213b5e2b0aba19a2833eba1fd04b83472dc55cd343d0aa83b19c1fc130ffadd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0001-7723-4986
0009-0003-2469-8511
0000-0002-0933-5611
0000-0001-9158-6681
OpenAccessLink http://dx.doi.org/10.1063/5.0207138
PQID 3102157150
PQPubID 2050671
PageCount 7
ParticipantIDs scitation_primary_10_1063_5_0207138
proquest_journals_3102157150
crossref_primary_10_1063_5_0207138
crossref_citationtrail_10_1063_5_0207138
doaj_primary_oai_doaj_org_article_e029f1363b2d4e83abb10ed1b16cd948
PublicationCentury 2000
PublicationDate 20240901
2024-09-01
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 09
  year: 2024
  text: 20240901
  day: 01
PublicationDecade 2020
PublicationPlace Melville
PublicationPlace_xml – name: Melville
PublicationTitle AIP advances
PublicationYear 2024
Publisher American Institute of Physics
AIP Publishing LLC
Publisher_xml – name: American Institute of Physics
– name: AIP Publishing LLC
References Jiang, Chang, Zhou, Li, Chen, Jiang, Hao, Wang, Wu, Xu, Niu (c12) 2023; 32
Klipstein, Aronov, Berkowicz, Fraenkel, Glozman, Grossman, Klin, Lukomsky, Shtrichman, Snapi (c13) 2011; 10
Zhang, Gu, Tian, Li, Zhu, Zheng (c22) 2008; 51
Alchaar, Rodriguez, Höglund, Naureen, Christol (c18) 2019; 9
Ting (c19) 2009; 95
Dehzangi, McClintock, Haddadi, Wu, Chevallier, Razeghi (c11) 2019; 9
Cao, Ahn, Goode, Shumko, Gorceix, Coulter (c5) 2011; 437
Haddadi, Chevallier, Dehzangi, Razeghi (c7) 2017; 110
Cui, Chen, Jiang, Wu, Wang, Xu, Niu (c16) 2022; 121
Nguyen, Hoffman, Delaunay, Huang, Razeghi, Pellegrino (c8) 2008; 93
Dadey (c21) 2022; 30
Wolde (c20) 2019; 102
Liu, Chuang (c14) 2002; 65
Grote (c4) 2007; 78
Zhang, Hou, Wang, Song, Chen, Bin, Li, Zhao, Wang (c1) 2020; 45
Yan, Liu, Zhang, Xu (c6) 2020; 63
Yang, Fuchs, Schmitz, Pletschen (c17) 2002; 81
Haddadi, Suo, Adhikary, Dianat, Chevallier, Hoang, Razeghi (c10) 2015; 10
Nguyen, Ting, Hill, Soibel, Keo, Gunapala (c15) 2009; 52
Kapasi, Eichholz, McRae, Ward, Slagmolen, Legge, Hardman, Altin, McClelland (c3) 2020; 28
Meylahn, Knust, Willke (c2) 2022; 105
Hoang, Chen, Haddadi, Abdollahi Pour, Razeghi (c9) 2012; 100
(2024090913032015000_c7) 2017; 110
(2024090913032015000_c22) 2008; 51
(2024090913032015000_c20) 2019; 102
(2024090913032015000_c16) 2022; 121
(2024090913032015000_c18) 2019; 9
(2024090913032015000_c14) 2002; 65
(2024090913032015000_c21) 2022; 30
(2024090913032015000_c3) 2020; 28
(2024090913032015000_c12) 2023; 32
(2024090913032015000_c15) 2009; 52
(2024090913032015000_c17) 2002; 81
(2024090913032015000_c2) 2022; 105
(2024090913032015000_c10) 2015; 10
(2024090913032015000_c5) 2011; 437
(2024090913032015000_c19) 2009; 95
(2024090913032015000_c4) 2007; 78
(2024090913032015000_c8) 2008; 93
(2024090913032015000_c9) 2012; 100
(2024090913032015000_c11) 2019; 9
(2024090913032015000_c13) 2011; 10
(2024090913032015000_c1) 2020; 45
(2024090913032015000_c6) 2020; 63
References_xml – volume: 10
  start-page: 003919
  year: 2011
  ident: c13
  publication-title: SPIE Newsroom
– volume: 100
  start-page: 211101
  year: 2012
  ident: c9
  publication-title: Appl. Phys. Lett.
– volume: 9
  start-page: 5003
  year: 2019
  ident: c11
  publication-title: Sci. Rep.
– volume: 10
  start-page: 141104
  year: 2015
  ident: c10
  publication-title: Appl. Phys. Lett.
– volume: 65
  start-page: 165220
  year: 2002
  ident: c14
  publication-title: Phys. Rev. B
– volume: 105
  start-page: 122004
  year: 2022
  ident: c2
  article-title: Stabilized laser system at 1550 nm wavelength for future gravitational-wave detectors
  publication-title: Phys. Rev. D
– volume: 51
  start-page: 316
  year: 2008
  ident: c22
  publication-title: Infrared Phys. Technol.
– volume: 28
  start-page: 3280
  year: 2020
  ident: c3
  article-title: Tunable narrow-linewidth laser at 2 μm wavelength for gravitational wave detector research
  publication-title: Opt. Express
– volume: 78
  start-page: 054704
  year: 2007
  ident: c4
  article-title: High power, low-noise, and multiply resonant photodetector for interferometric gravitational wave detectors
  publication-title: Rev. Sci. Instrum.
– volume: 121
  start-page: 104006
  year: 2022
  ident: c16
  publication-title: Infrared Phys. Technol.
– volume: 95
  start-page: 023508
  year: 2009
  ident: c19
  article-title: A high-performance long wavelength superlattice complementary barrier infrared detector
  publication-title: Appl. Phys. Lett.
– volume: 63
  start-page: 1656
  year: 2020
  ident: c6
  article-title: Research progress based on observations of the new vacuum solar telescope
  publication-title: Sci. China: Technol. Sci.
– volume: 93
  start-page: 163502
  year: 2008
  ident: c8
  publication-title: Appl. Phys. Lett.
– volume: 9
  start-page: 055012
  year: 2019
  ident: c18
  publication-title: AIP Adv.
– volume: 110
  start-page: 101104
  year: 2017
  ident: c7
  publication-title: Appl. Phys. Lett.
– volume: 102
  start-page: 103026
  year: 2019
  ident: c20
  article-title: Accuracy of activation energy from Arrhenius plots and temperaturedependent internal photoemission spectroscopy
  publication-title: Infrared Phys. Technol.
– volume: 52
  start-page: 317
  year: 2009
  ident: c15
  publication-title: Infrared Phys. Technol.
– volume: 45
  start-page: 4911
  year: 2020
  ident: c1
  article-title: 5 W ultra-low-noise 2 μm single-frequency fiber laser for next-generation gravitational wave detectors
  publication-title: Opt. Lett.
– volume: 30
  start-page: 27285
  year: 2022
  ident: c21
  article-title: Narrow bandgap Al In As Sb for mid-infrared photodetectors
  publication-title: Opt. Express
– volume: 81
  start-page: 4757
  year: 2002
  ident: c17
  publication-title: Appl. Phys. Lett.
– volume: 437
  start-page: 345
  year: 2011
  ident: c5
  article-title: The new solar telescope in big bear: Polarimetry II
  publication-title: Solar Polarization
– volume: 32
  start-page: 038503
  year: 2023
  ident: c12
  publication-title: Chin. Phys. B
– volume: 28
  start-page: 3280
  year: 2020
  ident: 2024090913032015000_c3
  article-title: Tunable narrow-linewidth laser at 2 μm wavelength for gravitational wave detector research
  publication-title: Opt. Express
  doi: 10.1364/oe.383685
– volume: 63
  start-page: 1656
  year: 2020
  ident: 2024090913032015000_c6
  article-title: Research progress based on observations of the new vacuum solar telescope
  publication-title: Sci. China: Technol. Sci.
  doi: 10.1007/s11431-019-1463-6
– volume: 100
  start-page: 211101
  year: 2012
  ident: 2024090913032015000_c9
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4720094
– volume: 95
  start-page: 023508
  year: 2009
  ident: 2024090913032015000_c19
  article-title: A high-performance long wavelength superlattice complementary barrier infrared detector
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3177333
– volume: 10
  start-page: 141104
  year: 2015
  ident: 2024090913032015000_c10
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4932518
– volume: 51
  start-page: 316
  year: 2008
  ident: 2024090913032015000_c22
  publication-title: Infrared Phys. Technol.
  doi: 10.1016/j.infrared.2007.09.003
– volume: 105
  start-page: 122004
  year: 2022
  ident: 2024090913032015000_c2
  article-title: Stabilized laser system at 1550 nm wavelength for future gravitational-wave detectors
  publication-title: Phys. Rev. D
  doi: 10.1103/physrevd.105.122004
– volume: 81
  start-page: 4757
  year: 2002
  ident: 2024090913032015000_c17
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1529306
– volume: 110
  start-page: 101104
  year: 2017
  ident: 2024090913032015000_c7
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4978378
– volume: 65
  start-page: 165220
  year: 2002
  ident: 2024090913032015000_c14
  publication-title: Phys. Rev. B
  doi: 10.1103/physrevb.65.165220
– volume: 78
  start-page: 054704
  year: 2007
  ident: 2024090913032015000_c4
  article-title: High power, low-noise, and multiply resonant photodetector for interferometric gravitational wave detectors
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.2735559
– volume: 93
  start-page: 163502
  year: 2008
  ident: 2024090913032015000_c8
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3005196
– volume: 437
  start-page: 345
  issue: 6
  year: 2011
  ident: 2024090913032015000_c5
  article-title: The new solar telescope in big bear: Polarimetry II
  publication-title: Solar Polarization
– volume: 10
  start-page: 003919
  year: 2011
  ident: 2024090913032015000_c13
  publication-title: SPIE Newsroom
  doi: 10.1117/2.1201111.003919
– volume: 30
  start-page: 27285
  year: 2022
  ident: 2024090913032015000_c21
  article-title: Narrow bandgap Al0.15In0.85As0.77Sb0.23 for mid-infrared photodetectors
  publication-title: Opt. Express
  doi: 10.1364/OE.461854
– volume: 45
  start-page: 4911
  year: 2020
  ident: 2024090913032015000_c1
  article-title: 5 W ultra-low-noise 2 μm single-frequency fiber laser for next-generation gravitational wave detectors
  publication-title: Opt. Lett.
  doi: 10.1364/ol.402617
– volume: 52
  start-page: 317
  year: 2009
  ident: 2024090913032015000_c15
  publication-title: Infrared Phys. Technol.
  doi: 10.1016/j.infrared.2009.05.022
– volume: 32
  start-page: 038503
  year: 2023
  ident: 2024090913032015000_c12
  publication-title: Chin. Phys. B
  doi: 10.1088/1674-1056/acaa2e
– volume: 9
  start-page: 055012
  year: 2019
  ident: 2024090913032015000_c18
  publication-title: AIP Adv.
  doi: 10.1063/1.5094703
– volume: 121
  start-page: 104006
  year: 2022
  ident: 2024090913032015000_c16
  publication-title: Infrared Phys. Technol.
  doi: 10.1016/j.infrared.2021.104006
– volume: 102
  start-page: 103026
  year: 2019
  ident: 2024090913032015000_c20
  article-title: Accuracy of activation energy from Arrhenius plots and temperaturedependent internal photoemission spectroscopy
  publication-title: Infrared Phys. Technol.
  doi: 10.1016/j.infrared.2019.103026
– volume: 9
  start-page: 5003
  year: 2019
  ident: 2024090913032015000_c11
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-41494-6
SSID ssj0000491084
Score 2.3376017
Snippet We have theoretically and experimentally demonstrated the feasibility of achieving ultra-low dark current in CpBnn type detectors based on a double-barrier...
SourceID doaj
proquest
crossref
scitation
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 095305
SubjectTerms Dark current
Diffusion barriers
Gravitational waves
Infrared detectors
Low noise
Operating temperature
Photometers
Superlattices
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4iiF7EJ64vinrwUm06SR9HFZdF1Isu7K0kmcRFpRW34t930naXFRQv3koZyjCT9vummXzD2IlQFi3EOnQ2caFwfpC7RBliiorw26Bujkff3SeDobgZydHcqC_fE9bKA7eBO7dRnDsOCegYhc1Aac0ji1zzxGAummO-hHlzxdRzy3t5lImplFAC5_KMiBFVZNk3AGp0-r-Ry2VCnnYTfA5n-mtstSOIwUXr2DpbsOUGW2oaNc1kk13cVp8B1f4vgWmVlYIHHXoowmAyJiodfio_SqJ8qscBLZ53318evI2rukJbN3_ot9iwf_14NQi7MQihgRzqUMcctLSxjpRWPFdECMDSlcNI6AxEGqOR0iAIwEipDDTPDXeG0Mk5-nzBNlssq9LusCDOuUCCfGchFUgPtLnXt0cwEvNEqh47ncammIbBj6p4LZq96gQKWXRh7LGjmelbK4zxk9GlD_DMwGtZNzcow0WX4eKvDPfY_jQ9RfeCTQrwI8llSnS2x45nKfvdk93_8GSPrcTEadoWs322WL9_2APiJLU-bJbfF6lV3mg
  priority: 102
  providerName: Directory of Open Access Journals
Title Low dark current Sb-based short-wavelength infrared photodetector
URI http://dx.doi.org/10.1063/5.0207138
https://www.proquest.com/docview/3102157150
https://doaj.org/article/e029f1363b2d4e83abb10ed1b16cd948
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1RS9xAEB70pOiLVGvpqT2C-tCXtNmd3VzyeK0VERVFBd_C7s6uB5Y78SL-fWeT3KGg0LcQJkuYmc33zc5kBuBAGU8epU2Dz0OqQhzkrkmnNCTD-O3INr9Hn53nxzfq5FbfLsH-Bxn8HH_pn8xoOJQqlmFFMjkuerAyOjm8vFgcpTDJFVmh5n2DXj_zBm2apvxvmOQqw0yb8X4FKkefYb1jg8moNd8GLPnJJnxqqjLd7AuMTqfPCQf694lr2yglVzaNuEPJbMy8OX02cW7E5K4eJ-wpj7GYPHkYT-sp-bo5jt-Cm6O_13-O027mQeqwxDq1UqDVXtrMWCNKw-iPnq8CZcoWqIaSnNaOUCFlxhRoRelEcAxFIfC3Cr9CbzKd-G-QyFIoYnwPHoeKeEFfxmb2hE5TmWvThx9z3VRzNcS5FP-qJjGdY6WrTo192FuIPrRdMN4T-h0VvBCIjaubG2zNqtsHlc9kGQTmaCUpX6CxVmSehBW5o1LxIrtz81TdbppVGOeP6yFz1z7sL0z28Zts_5fUDqxJZihtwdgu9OrHJ_-dGUZtB-xhh2enV4PO0wZNpP4CZz7OeQ
linkProvider American Institute of Physics
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fT9swELZY0cRe0H4w0Y2xiO2BF0Ocs9PkseOHChS0aSDxZtk-e52G2qoN8O_vnKQdSEPiLYrOlnXn5Ptsn79j7Ks0Hj1klgefBy5DLOSuUHHsoSH8dmjr69HnF_ngSp5eq-s2NyfehaFBzPfM72kjEYx3-60D-Q1xztvpP8GBHPbVHnEdWmQVL9gqrcbzosNW-6eHP74vN1mI_oq0kAtFoYdtHuFQLdf_iGOuEQA1Z-EP4Ob4NVtveWLSb8b1hq348Vv2ss7XdPN3rD-c3CdoZn8S1wgsJT8tj4iEyXxEjJrfm1hRYvyrGiU0h2YxzTyZjibVBH1Vb9RvsKvjo8uDAW-rIXAHJVTcZgKs8plNjTWiNMQLwNNTwFTaAmQvQ6eUQ5CAqTEFWFE6ERyBVAj0F4P3rDOejP0mS7JSSCTkDx56EqlDX0aZewSnsMyV6bLdhW_0wg2xYsWNro-sc9BKt27ssp2l6bTRx_if0bfo4KVBlLSuX1CQdRtg7dOsDAJysBlKX4CxVqQehRW5w1JSJ1uL8Oj2O5triJXJVY9YbZd9WYbs6ZF8eJbVZ7Y2uDwf6uHJxdlH9iojHtOklW2xTjW79Z-Ih1R2u51tfwE8z9jv
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Low+dark+current+Sb-based+short-wavelength+infrared+photodetector&rft.jtitle=AIP+advances&rft.au=Li%2C+Mingming&rft.au=Cheng%2C+Yifan&rft.au=Zhang%2C+Xiangyu&rft.au=Zhang%2C+Ye&rft.date=2024-09-01&rft.issn=2158-3226&rft.eissn=2158-3226&rft.volume=14&rft.issue=9&rft_id=info:doi/10.1063%2F5.0207138&rft.externalDBID=n%2Fa&rft.externalDocID=10_1063_5_0207138
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2158-3226&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2158-3226&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2158-3226&client=summon