Low dark current Sb-based short-wavelength infrared photodetector
We have theoretically and experimentally demonstrated the feasibility of achieving ultra-low dark current in CpBnn type detectors based on a double-barrier InAs/GaSb/AlSb type-II superlattice. By employing a structure that separates the absorption region and depletion region, the diffusion, recombin...
Saved in:
Published in | AIP advances Vol. 14; no. 9; pp. 095305 - 095305-7 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Melville
American Institute of Physics
01.09.2024
AIP Publishing LLC |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We have theoretically and experimentally demonstrated the feasibility of achieving ultra-low dark current in CpBnn type detectors based on a double-barrier InAs/GaSb/AlSb type-II superlattice. By employing a structure that separates the absorption region and depletion region, the diffusion, recombination, tunneling, and surface dark currents of the photodetector (PD) have been suppressed. Experimental validation has shown that a detector with a diameter of 500 µm at a bias voltage of −0.5 V exhibits a dark current density of 2.5 × 10−6 A/cm2 at the operating temperature of 300 K. The development of PD with low dark current has paved the way for applications with high demands for low noise in the fields of gravitational wave detection and astronomical observation. |
---|---|
AbstractList | We have theoretically and experimentally demonstrated the feasibility of achieving ultra-low dark current in CpBnn type detectors based on a double-barrier InAs/GaSb/AlSb type-II superlattice. By employing a structure that separates the absorption region and depletion region, the diffusion, recombination, tunneling, and surface dark currents of the photodetector (PD) have been suppressed. Experimental validation has shown that a detector with a diameter of 500 µm at a bias voltage of −0.5 V exhibits a dark current density of 2.5 × 10−6 A/cm2 at the operating temperature of 300 K. The development of PD with low dark current has paved the way for applications with high demands for low noise in the fields of gravitational wave detection and astronomical observation. We have theoretically and experimentally demonstrated the feasibility of achieving ultra-low dark current in CpBnn type detectors based on a double-barrier InAs/GaSb/AlSb type-II superlattice. By employing a structure that separates the absorption region and depletion region, the diffusion, recombination, tunneling, and surface dark currents of the photodetector (PD) have been suppressed. Experimental validation has shown that a detector with a diameter of 500 µm at a bias voltage of −0.5 V exhibits a dark current density of 2.5 × 10−6 A/cm2 at the operating temperature of 300 K. The development of PD with low dark current has paved the way for applications with high demands for low noise in the fields of gravitational wave detection and astronomical observation. |
Author | Cheng, Yifan Zhang, Ye Song, Zhigang Jiang, Dongwei Zheng, Wanhua Zhang, Xiangyu Li, Mingming |
Author_xml | – sequence: 1 givenname: Mingming surname: Li fullname: Li, Mingming organization: Key Laboratory of Solid-State Optoelectronics Information Technology, Institute of Semiconductors, Chinese Academy of Sciences – sequence: 2 givenname: Yifan surname: Cheng fullname: Cheng, Yifan organization: Key Laboratory of Solid-State Optoelectronics Information Technology, Institute of Semiconductors, Chinese Academy of Sciences – sequence: 3 givenname: Xiangyu surname: Zhang fullname: Zhang, Xiangyu organization: Key Laboratory of Optoelectronic Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences – sequence: 4 givenname: Ye surname: Zhang fullname: Zhang, Ye organization: Key Laboratory of Optoelectronic Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences – sequence: 5 givenname: Dongwei surname: Jiang fullname: Jiang, Dongwei organization: 3Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China – sequence: 6 givenname: Zhigang surname: Song fullname: Song, Zhigang organization: 3Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China – sequence: 7 givenname: Wanhua surname: Zheng fullname: Zheng, Wanhua organization: 3Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China |
BookMark | eNp9kE1LA0EMhgdRsNYe_AcLnhS2nUx2291jKX4UCh7U85D52HZr3akzU4v_3tVWERFzSUievAnvCTtsXGMZOwPeBz7EQd7ngo8AiwPWEZAXKQoxPPxRH7NeCEveRlYCL7IOG8_cNjHknxK98d42MblXqaJgTRIWzsd0S692ZZt5XCR1U3ny7WS9cNEZG62Ozp-yo4pWwfb2ucser68eJrfp7O5mOhnPUo0lxlQJQJVboTgpgpJEgWjbqjI8UwVmI2F0nmuDGRpOVKCCUkOlAXlVkTHYZdOdrnG0lGtfP5N_k45q-dlwfi7Jx1qvrLRclBXgEJUwmS2QlAJuDSgYalNmRat1vtNae_eysSHKpdv4pn1fIvDWrhHkvKUudpT2LgRvq--rwOWH4TKXe8NbdvCL1XWkWLsmeqpXf25c7jbCF_mP_DvbKpBm |
CODEN | AAIDBI |
CitedBy_id | crossref_primary_10_1016_j_ceramint_2025_01_237 |
Cites_doi | 10.1364/oe.383685 10.1007/s11431-019-1463-6 10.1063/1.4720094 10.1063/1.3177333 10.1063/1.4932518 10.1016/j.infrared.2007.09.003 10.1103/physrevd.105.122004 10.1063/1.1529306 10.1063/1.4978378 10.1103/physrevb.65.165220 10.1063/1.2735559 10.1063/1.3005196 10.1117/2.1201111.003919 10.1364/OE.461854 10.1364/ol.402617 10.1016/j.infrared.2009.05.022 10.1088/1674-1056/acaa2e 10.1063/1.5094703 10.1016/j.infrared.2021.104006 10.1016/j.infrared.2019.103026 10.1038/s41598-019-41494-6 |
ContentType | Journal Article |
Copyright | Author(s) 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
Copyright_xml | – notice: Author(s) – notice: 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
DBID | AJDQP AAYXX CITATION 8FD H8D L7M DOA |
DOI | 10.1063/5.0207138 |
DatabaseName | AIP Open Access Journals CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | Technology Research Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: AJDQP name: AIP Open Access Journals url: https://publishing.aip.org/librarians/open-access-policy sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2158-3226 |
EndPage | 095305-7 |
ExternalDocumentID | oai_doaj_org_article_e029f1363b2d4e83abb10ed1b16cd948 10_1063_5_0207138 adv |
GrantInformation_xml | – fundername: National Key Research and Development Program of China grantid: 2021YFB2800304 funderid: https://doi.org/10.13039/501100012166 – fundername: The Young Scientists Fund of National Natural Science Foundation of China grantid: 62004189 – fundername: Major Program of the National Natural Science Foundation of China grantid: 61790581 – fundername: The State Key Laboratory of Special Rare Metal Materials grantid: SKL2023K00X – fundername: National Key Technologies R&D Program of China grantid: 2019YFA0705203 |
GroupedDBID | 5VS 61. AAFWJ ABFTF ACGFO ADBBV ADCTM AEGXH AENEX AFPKN AGKCL AGLKD AIAGR AJDQP ALMA_UNASSIGNED_HOLDINGS BCNDV EBS FRP GROUPED_DOAJ HH5 KQ8 M~E OK1 RIP RNS RQS AAYXX ABJGX ADMLS AHSDT AKSGC CITATION 8FD H8D L7M |
ID | FETCH-LOGICAL-c393t-b213b5e2b0aba19a2833eba1fd04b83472dc55cd343d0aa83b19c1fc130ffadd3 |
IEDL.DBID | AJDQP |
ISSN | 2158-3226 |
IngestDate | Wed Aug 27 01:24:51 EDT 2025 Mon Jun 30 16:32:51 EDT 2025 Thu Apr 24 22:58:06 EDT 2025 Thu Jul 03 08:17:17 EDT 2025 Tue Sep 10 04:00:23 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
License | All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c393t-b213b5e2b0aba19a2833eba1fd04b83472dc55cd343d0aa83b19c1fc130ffadd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0009-0001-7723-4986 0009-0003-2469-8511 0000-0002-0933-5611 0000-0001-9158-6681 |
OpenAccessLink | http://dx.doi.org/10.1063/5.0207138 |
PQID | 3102157150 |
PQPubID | 2050671 |
PageCount | 7 |
ParticipantIDs | scitation_primary_10_1063_5_0207138 proquest_journals_3102157150 crossref_primary_10_1063_5_0207138 crossref_citationtrail_10_1063_5_0207138 doaj_primary_oai_doaj_org_article_e029f1363b2d4e83abb10ed1b16cd948 |
PublicationCentury | 2000 |
PublicationDate | 20240901 2024-09-01 |
PublicationDateYYYYMMDD | 2024-09-01 |
PublicationDate_xml | – month: 09 year: 2024 text: 20240901 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Melville |
PublicationPlace_xml | – name: Melville |
PublicationTitle | AIP advances |
PublicationYear | 2024 |
Publisher | American Institute of Physics AIP Publishing LLC |
Publisher_xml | – name: American Institute of Physics – name: AIP Publishing LLC |
References | Jiang, Chang, Zhou, Li, Chen, Jiang, Hao, Wang, Wu, Xu, Niu (c12) 2023; 32 Klipstein, Aronov, Berkowicz, Fraenkel, Glozman, Grossman, Klin, Lukomsky, Shtrichman, Snapi (c13) 2011; 10 Zhang, Gu, Tian, Li, Zhu, Zheng (c22) 2008; 51 Alchaar, Rodriguez, Höglund, Naureen, Christol (c18) 2019; 9 Ting (c19) 2009; 95 Dehzangi, McClintock, Haddadi, Wu, Chevallier, Razeghi (c11) 2019; 9 Cao, Ahn, Goode, Shumko, Gorceix, Coulter (c5) 2011; 437 Haddadi, Chevallier, Dehzangi, Razeghi (c7) 2017; 110 Cui, Chen, Jiang, Wu, Wang, Xu, Niu (c16) 2022; 121 Nguyen, Hoffman, Delaunay, Huang, Razeghi, Pellegrino (c8) 2008; 93 Dadey (c21) 2022; 30 Wolde (c20) 2019; 102 Liu, Chuang (c14) 2002; 65 Grote (c4) 2007; 78 Zhang, Hou, Wang, Song, Chen, Bin, Li, Zhao, Wang (c1) 2020; 45 Yan, Liu, Zhang, Xu (c6) 2020; 63 Yang, Fuchs, Schmitz, Pletschen (c17) 2002; 81 Haddadi, Suo, Adhikary, Dianat, Chevallier, Hoang, Razeghi (c10) 2015; 10 Nguyen, Ting, Hill, Soibel, Keo, Gunapala (c15) 2009; 52 Kapasi, Eichholz, McRae, Ward, Slagmolen, Legge, Hardman, Altin, McClelland (c3) 2020; 28 Meylahn, Knust, Willke (c2) 2022; 105 Hoang, Chen, Haddadi, Abdollahi Pour, Razeghi (c9) 2012; 100 (2024090913032015000_c7) 2017; 110 (2024090913032015000_c22) 2008; 51 (2024090913032015000_c20) 2019; 102 (2024090913032015000_c16) 2022; 121 (2024090913032015000_c18) 2019; 9 (2024090913032015000_c14) 2002; 65 (2024090913032015000_c21) 2022; 30 (2024090913032015000_c3) 2020; 28 (2024090913032015000_c12) 2023; 32 (2024090913032015000_c15) 2009; 52 (2024090913032015000_c17) 2002; 81 (2024090913032015000_c2) 2022; 105 (2024090913032015000_c10) 2015; 10 (2024090913032015000_c5) 2011; 437 (2024090913032015000_c19) 2009; 95 (2024090913032015000_c4) 2007; 78 (2024090913032015000_c8) 2008; 93 (2024090913032015000_c9) 2012; 100 (2024090913032015000_c11) 2019; 9 (2024090913032015000_c13) 2011; 10 (2024090913032015000_c1) 2020; 45 (2024090913032015000_c6) 2020; 63 |
References_xml | – volume: 10 start-page: 003919 year: 2011 ident: c13 publication-title: SPIE Newsroom – volume: 100 start-page: 211101 year: 2012 ident: c9 publication-title: Appl. Phys. Lett. – volume: 9 start-page: 5003 year: 2019 ident: c11 publication-title: Sci. Rep. – volume: 10 start-page: 141104 year: 2015 ident: c10 publication-title: Appl. Phys. Lett. – volume: 65 start-page: 165220 year: 2002 ident: c14 publication-title: Phys. Rev. B – volume: 105 start-page: 122004 year: 2022 ident: c2 article-title: Stabilized laser system at 1550 nm wavelength for future gravitational-wave detectors publication-title: Phys. Rev. D – volume: 51 start-page: 316 year: 2008 ident: c22 publication-title: Infrared Phys. Technol. – volume: 28 start-page: 3280 year: 2020 ident: c3 article-title: Tunable narrow-linewidth laser at 2 μm wavelength for gravitational wave detector research publication-title: Opt. Express – volume: 78 start-page: 054704 year: 2007 ident: c4 article-title: High power, low-noise, and multiply resonant photodetector for interferometric gravitational wave detectors publication-title: Rev. Sci. Instrum. – volume: 121 start-page: 104006 year: 2022 ident: c16 publication-title: Infrared Phys. Technol. – volume: 95 start-page: 023508 year: 2009 ident: c19 article-title: A high-performance long wavelength superlattice complementary barrier infrared detector publication-title: Appl. Phys. Lett. – volume: 63 start-page: 1656 year: 2020 ident: c6 article-title: Research progress based on observations of the new vacuum solar telescope publication-title: Sci. China: Technol. Sci. – volume: 93 start-page: 163502 year: 2008 ident: c8 publication-title: Appl. Phys. Lett. – volume: 9 start-page: 055012 year: 2019 ident: c18 publication-title: AIP Adv. – volume: 110 start-page: 101104 year: 2017 ident: c7 publication-title: Appl. Phys. Lett. – volume: 102 start-page: 103026 year: 2019 ident: c20 article-title: Accuracy of activation energy from Arrhenius plots and temperaturedependent internal photoemission spectroscopy publication-title: Infrared Phys. Technol. – volume: 52 start-page: 317 year: 2009 ident: c15 publication-title: Infrared Phys. Technol. – volume: 45 start-page: 4911 year: 2020 ident: c1 article-title: 5 W ultra-low-noise 2 μm single-frequency fiber laser for next-generation gravitational wave detectors publication-title: Opt. Lett. – volume: 30 start-page: 27285 year: 2022 ident: c21 article-title: Narrow bandgap Al In As Sb for mid-infrared photodetectors publication-title: Opt. Express – volume: 81 start-page: 4757 year: 2002 ident: c17 publication-title: Appl. Phys. Lett. – volume: 437 start-page: 345 year: 2011 ident: c5 article-title: The new solar telescope in big bear: Polarimetry II publication-title: Solar Polarization – volume: 32 start-page: 038503 year: 2023 ident: c12 publication-title: Chin. Phys. B – volume: 28 start-page: 3280 year: 2020 ident: 2024090913032015000_c3 article-title: Tunable narrow-linewidth laser at 2 μm wavelength for gravitational wave detector research publication-title: Opt. Express doi: 10.1364/oe.383685 – volume: 63 start-page: 1656 year: 2020 ident: 2024090913032015000_c6 article-title: Research progress based on observations of the new vacuum solar telescope publication-title: Sci. China: Technol. Sci. doi: 10.1007/s11431-019-1463-6 – volume: 100 start-page: 211101 year: 2012 ident: 2024090913032015000_c9 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4720094 – volume: 95 start-page: 023508 year: 2009 ident: 2024090913032015000_c19 article-title: A high-performance long wavelength superlattice complementary barrier infrared detector publication-title: Appl. Phys. Lett. doi: 10.1063/1.3177333 – volume: 10 start-page: 141104 year: 2015 ident: 2024090913032015000_c10 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4932518 – volume: 51 start-page: 316 year: 2008 ident: 2024090913032015000_c22 publication-title: Infrared Phys. Technol. doi: 10.1016/j.infrared.2007.09.003 – volume: 105 start-page: 122004 year: 2022 ident: 2024090913032015000_c2 article-title: Stabilized laser system at 1550 nm wavelength for future gravitational-wave detectors publication-title: Phys. Rev. D doi: 10.1103/physrevd.105.122004 – volume: 81 start-page: 4757 year: 2002 ident: 2024090913032015000_c17 publication-title: Appl. Phys. Lett. doi: 10.1063/1.1529306 – volume: 110 start-page: 101104 year: 2017 ident: 2024090913032015000_c7 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4978378 – volume: 65 start-page: 165220 year: 2002 ident: 2024090913032015000_c14 publication-title: Phys. Rev. B doi: 10.1103/physrevb.65.165220 – volume: 78 start-page: 054704 year: 2007 ident: 2024090913032015000_c4 article-title: High power, low-noise, and multiply resonant photodetector for interferometric gravitational wave detectors publication-title: Rev. Sci. Instrum. doi: 10.1063/1.2735559 – volume: 93 start-page: 163502 year: 2008 ident: 2024090913032015000_c8 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3005196 – volume: 437 start-page: 345 issue: 6 year: 2011 ident: 2024090913032015000_c5 article-title: The new solar telescope in big bear: Polarimetry II publication-title: Solar Polarization – volume: 10 start-page: 003919 year: 2011 ident: 2024090913032015000_c13 publication-title: SPIE Newsroom doi: 10.1117/2.1201111.003919 – volume: 30 start-page: 27285 year: 2022 ident: 2024090913032015000_c21 article-title: Narrow bandgap Al0.15In0.85As0.77Sb0.23 for mid-infrared photodetectors publication-title: Opt. Express doi: 10.1364/OE.461854 – volume: 45 start-page: 4911 year: 2020 ident: 2024090913032015000_c1 article-title: 5 W ultra-low-noise 2 μm single-frequency fiber laser for next-generation gravitational wave detectors publication-title: Opt. Lett. doi: 10.1364/ol.402617 – volume: 52 start-page: 317 year: 2009 ident: 2024090913032015000_c15 publication-title: Infrared Phys. Technol. doi: 10.1016/j.infrared.2009.05.022 – volume: 32 start-page: 038503 year: 2023 ident: 2024090913032015000_c12 publication-title: Chin. Phys. B doi: 10.1088/1674-1056/acaa2e – volume: 9 start-page: 055012 year: 2019 ident: 2024090913032015000_c18 publication-title: AIP Adv. doi: 10.1063/1.5094703 – volume: 121 start-page: 104006 year: 2022 ident: 2024090913032015000_c16 publication-title: Infrared Phys. Technol. doi: 10.1016/j.infrared.2021.104006 – volume: 102 start-page: 103026 year: 2019 ident: 2024090913032015000_c20 article-title: Accuracy of activation energy from Arrhenius plots and temperaturedependent internal photoemission spectroscopy publication-title: Infrared Phys. Technol. doi: 10.1016/j.infrared.2019.103026 – volume: 9 start-page: 5003 year: 2019 ident: 2024090913032015000_c11 publication-title: Sci. Rep. doi: 10.1038/s41598-019-41494-6 |
SSID | ssj0000491084 |
Score | 2.3376017 |
Snippet | We have theoretically and experimentally demonstrated the feasibility of achieving ultra-low dark current in CpBnn type detectors based on a double-barrier... |
SourceID | doaj proquest crossref scitation |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 095305 |
SubjectTerms | Dark current Diffusion barriers Gravitational waves Infrared detectors Low noise Operating temperature Photometers Superlattices |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4iiF7EJ64vinrwUm06SR9HFZdF1Isu7K0kmcRFpRW34t930naXFRQv3koZyjCT9vummXzD2IlQFi3EOnQ2caFwfpC7RBliiorw26Bujkff3SeDobgZydHcqC_fE9bKA7eBO7dRnDsOCegYhc1Aac0ji1zzxGAummO-hHlzxdRzy3t5lImplFAC5_KMiBFVZNk3AGp0-r-Ry2VCnnYTfA5n-mtstSOIwUXr2DpbsOUGW2oaNc1kk13cVp8B1f4vgWmVlYIHHXoowmAyJiodfio_SqJ8qscBLZ53318evI2rukJbN3_ot9iwf_14NQi7MQihgRzqUMcctLSxjpRWPFdECMDSlcNI6AxEGqOR0iAIwEipDDTPDXeG0Mk5-nzBNlssq9LusCDOuUCCfGchFUgPtLnXt0cwEvNEqh47ncammIbBj6p4LZq96gQKWXRh7LGjmelbK4zxk9GlD_DMwGtZNzcow0WX4eKvDPfY_jQ9RfeCTQrwI8llSnS2x45nKfvdk93_8GSPrcTEadoWs322WL9_2APiJLU-bJbfF6lV3mg priority: 102 providerName: Directory of Open Access Journals |
Title | Low dark current Sb-based short-wavelength infrared photodetector |
URI | http://dx.doi.org/10.1063/5.0207138 https://www.proquest.com/docview/3102157150 https://doaj.org/article/e029f1363b2d4e83abb10ed1b16cd948 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1RS9xAEB70pOiLVGvpqT2C-tCXtNmd3VzyeK0VERVFBd_C7s6uB5Y78SL-fWeT3KGg0LcQJkuYmc33zc5kBuBAGU8epU2Dz0OqQhzkrkmnNCTD-O3INr9Hn53nxzfq5FbfLsH-Bxn8HH_pn8xoOJQqlmFFMjkuerAyOjm8vFgcpTDJFVmh5n2DXj_zBm2apvxvmOQqw0yb8X4FKkefYb1jg8moNd8GLPnJJnxqqjLd7AuMTqfPCQf694lr2yglVzaNuEPJbMy8OX02cW7E5K4eJ-wpj7GYPHkYT-sp-bo5jt-Cm6O_13-O027mQeqwxDq1UqDVXtrMWCNKw-iPnq8CZcoWqIaSnNaOUCFlxhRoRelEcAxFIfC3Cr9CbzKd-G-QyFIoYnwPHoeKeEFfxmb2hE5TmWvThx9z3VRzNcS5FP-qJjGdY6WrTo192FuIPrRdMN4T-h0VvBCIjaubG2zNqtsHlc9kGQTmaCUpX6CxVmSehBW5o1LxIrtz81TdbppVGOeP6yFz1z7sL0z28Zts_5fUDqxJZihtwdgu9OrHJ_-dGUZtB-xhh2enV4PO0wZNpP4CZz7OeQ |
linkProvider | American Institute of Physics |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fT9swELZY0cRe0H4w0Y2xiO2BF0Ocs9PkseOHChS0aSDxZtk-e52G2qoN8O_vnKQdSEPiLYrOlnXn5Ptsn79j7Ks0Hj1klgefBy5DLOSuUHHsoSH8dmjr69HnF_ngSp5eq-s2NyfehaFBzPfM72kjEYx3-60D-Q1xztvpP8GBHPbVHnEdWmQVL9gqrcbzosNW-6eHP74vN1mI_oq0kAtFoYdtHuFQLdf_iGOuEQA1Z-EP4Ob4NVtveWLSb8b1hq348Vv2ss7XdPN3rD-c3CdoZn8S1wgsJT8tj4iEyXxEjJrfm1hRYvyrGiU0h2YxzTyZjibVBH1Vb9RvsKvjo8uDAW-rIXAHJVTcZgKs8plNjTWiNMQLwNNTwFTaAmQvQ6eUQ5CAqTEFWFE6ERyBVAj0F4P3rDOejP0mS7JSSCTkDx56EqlDX0aZewSnsMyV6bLdhW_0wg2xYsWNro-sc9BKt27ssp2l6bTRx_if0bfo4KVBlLSuX1CQdRtg7dOsDAJysBlKX4CxVqQehRW5w1JSJ1uL8Oj2O5triJXJVY9YbZd9WYbs6ZF8eJbVZ7Y2uDwf6uHJxdlH9iojHtOklW2xTjW79Z-Ih1R2u51tfwE8z9jv |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Low+dark+current+Sb-based+short-wavelength+infrared+photodetector&rft.jtitle=AIP+advances&rft.au=Li%2C+Mingming&rft.au=Cheng%2C+Yifan&rft.au=Zhang%2C+Xiangyu&rft.au=Zhang%2C+Ye&rft.date=2024-09-01&rft.issn=2158-3226&rft.eissn=2158-3226&rft.volume=14&rft.issue=9&rft_id=info:doi/10.1063%2F5.0207138&rft.externalDBID=n%2Fa&rft.externalDocID=10_1063_5_0207138 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2158-3226&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2158-3226&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2158-3226&client=summon |