Detailed spatial analysis of renewables’ potential and heat: A study of Groningen Province in the northern Netherlands
•Renewable supply potentials are strongly dependent on spatial policies.•Spatial policy changes can unlock vast potentials of renewable energy.•Combining windfarms and ground-based photovoltaics is realistic and efficient.•Heat demand density is greatly influenced by buildings’ spatial footprint. Sp...
Saved in:
Published in | Applied energy Vol. 318; p. 119149 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
15.07.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Renewable supply potentials are strongly dependent on spatial policies.•Spatial policy changes can unlock vast potentials of renewable energy.•Combining windfarms and ground-based photovoltaics is realistic and efficient.•Heat demand density is greatly influenced by buildings’ spatial footprint.
Spatially sensitive regional renewables’ potentials are greatly influenced by existing land-use claims and related spatial and environmental policies. Similarly, heat particularly related to low-temperature demand applications in the built environment (BE) is highly spatially explicit. This study developed an analytical approach for a detailed spatial analysis of future solar PV, onshore wind, biomass, and geothermal and industrial waste heat potentials at a regional level and applied in the Dutch Province of Groningen. We included spatial policies, various spatial claims, and other land-use constraints in developing renewable scenarios for 2030 and 2050. We simultaneously considered major spatial claims and multiple renewable energy sources. Claims considered are the BE, agriculture, forest, nature, and network and energy infrastructure, with each connected to social, ecological, environmental, technical, economic, and policy-related constraints. Heat demand was further analyzed by creating highly granular demand density maps, comparing them with regional heat supply potential, and identifying the economic feasibility of heat networks. We analyzed the possibilities of combining multiple renewables on the same land. The 2050 renewable scenarios results ranged 2–66 PJ for solar PV and 0–48 PJ for onshore wind and biomass ranged 3.5–25 PJ for both 2030 and 2050. These large ranges of potentials show the significant impact of spatial constraints and underline the need for understanding how they shape future energy policies. The heat demand density map shows that future heat networks are feasible in large population centers. Our approach is pragmatic and replicable in other regions, subject to data availability. |
---|---|
AbstractList | Spatially sensitive regional renewables’ potentials are greatly influenced by existing land-use claims and related spatial and environmental policies. Similarly, heat particularly related to low-temperature demand applications in the built environment (BE) is highly spatially explicit. This study developed an analytical approach for a detailed spatial analysis of future solar PV, onshore wind, biomass, and geothermal and industrial waste heat potentials at a regional level and applied in the Dutch Province of Groningen. We included spatial policies, various spatial claims, and other land-use constraints in developing renewable scenarios for 2030 and 2050. We simultaneously considered major spatial claims and multiple renewable energy sources. Claims considered are the BE, agriculture, forest, nature, and network and energy infrastructure, with each connected to social, ecological, environmental, technical, economic, and policy-related constraints. Heat demand was further analyzed by creating highly granular demand density maps, comparing them with regional heat supply potential, and identifying the economic feasibility of heat networks. We analyzed the possibilities of combining multiple renewables on the same land. The 2050 renewable scenarios results ranged 2–66 PJ for solar PV and 0–48 PJ for onshore wind and biomass ranged 3.5–25 PJ for both 2030 and 2050. These large ranges of potentials show the significant impact of spatial constraints and underline the need for understanding how they shape future energy policies. The heat demand density map shows that future heat networks are feasible in large population centers. Our approach is pragmatic and replicable in other regions, subject to data availability. •Renewable supply potentials are strongly dependent on spatial policies.•Spatial policy changes can unlock vast potentials of renewable energy.•Combining windfarms and ground-based photovoltaics is realistic and efficient.•Heat demand density is greatly influenced by buildings’ spatial footprint. Spatially sensitive regional renewables’ potentials are greatly influenced by existing land-use claims and related spatial and environmental policies. Similarly, heat particularly related to low-temperature demand applications in the built environment (BE) is highly spatially explicit. This study developed an analytical approach for a detailed spatial analysis of future solar PV, onshore wind, biomass, and geothermal and industrial waste heat potentials at a regional level and applied in the Dutch Province of Groningen. We included spatial policies, various spatial claims, and other land-use constraints in developing renewable scenarios for 2030 and 2050. We simultaneously considered major spatial claims and multiple renewable energy sources. Claims considered are the BE, agriculture, forest, nature, and network and energy infrastructure, with each connected to social, ecological, environmental, technical, economic, and policy-related constraints. Heat demand was further analyzed by creating highly granular demand density maps, comparing them with regional heat supply potential, and identifying the economic feasibility of heat networks. We analyzed the possibilities of combining multiple renewables on the same land. The 2050 renewable scenarios results ranged 2–66 PJ for solar PV and 0–48 PJ for onshore wind and biomass ranged 3.5–25 PJ for both 2030 and 2050. These large ranges of potentials show the significant impact of spatial constraints and underline the need for understanding how they shape future energy policies. The heat demand density map shows that future heat networks are feasible in large population centers. Our approach is pragmatic and replicable in other regions, subject to data availability. |
ArticleNumber | 119149 |
Author | Sahoo, Somadutta Faaij, André Sijm, Jos van Stralen, Joost N.P. Zuidema, Christian |
Author_xml | – sequence: 1 givenname: Somadutta surname: Sahoo fullname: Sahoo, Somadutta email: somadutta.sahoo@rug.nl organization: Department of Spatial Planning and Environment, Faculty of Spatial Sciences, University of Groningen, the Netherlands – sequence: 2 givenname: Christian surname: Zuidema fullname: Zuidema, Christian organization: Department of Spatial Planning and Environment, Faculty of Spatial Sciences, University of Groningen, the Netherlands – sequence: 3 givenname: Joost N.P. surname: van Stralen fullname: van Stralen, Joost N.P. organization: Energy Transition Studies, Netherlands Organization for Applied Scientific Research (TNO), Amsterdam, the Netherlands – sequence: 4 givenname: Jos surname: Sijm fullname: Sijm, Jos organization: Energy Transition Studies, Netherlands Organization for Applied Scientific Research (TNO), Amsterdam, the Netherlands – sequence: 5 givenname: André surname: Faaij fullname: Faaij, André organization: Energy Transition Studies, Netherlands Organization for Applied Scientific Research (TNO), Amsterdam, the Netherlands |
BookMark | eNqFkEFOGzEYha0qlZrQXqHyks0E2zMe2xULolDSSqjtInvL8fwDjgZ7sB1odlyD63ESHIVuumH1Nu97evpmaOKDB4S-UjKnhLZn27kZwUO82c8ZYWxOqaKN-oCmVApWKUrlBE1JTdqKtVR9QrOUtoQQRhmZor-XkI0boMNpNNmZARtvhn1yCYcex7L7aDYDpJenZzyGDP6t0-FbMPkbXuCUd93-UF7F4J2_AY__xPDgvAXsPM63gH2IJaLHv-CQQ8HTZ_SxN0OCL295gtZX39fLH9X179XP5eK6srWqc2X6WgluGy5gY3m7saD6RrBmwy3nHVW1bBXnRgrbqV40YEAwS2opJQPB2_oEnR5nxxjud5CyvnPJwlA-QNglzQSVrKZE8lI9P1ZtDClF6LV1uTgJPseiSFOiD771Vv_zrQ--9dF3wdv_8DG6OxP374MXRxCKhgcHUSfroOjrXASbdRfcexOvvZ-jfg |
CitedBy_id | crossref_primary_10_1016_j_renene_2024_120713 crossref_primary_10_1016_j_renene_2023_119549 crossref_primary_10_1016_j_rser_2025_115470 crossref_primary_10_1016_j_applthermaleng_2024_124627 crossref_primary_10_4081_gh_2025_1293 |
Cites_doi | 10.1016/j.renene.2019.03.100 10.1016/j.apenergy.2018.03.081 10.1016/j.egypro.2017.09.544 10.1016/j.enconman.2004.07.009 10.1016/j.agsy.2010.03.010 10.1016/j.biortech.2013.10.011 10.1016/j.landusepol.2018.11.036 10.1260/0144-5987.33.2.243 10.1016/j.renene.2017.05.077 10.1016/j.enpol.2012.12.013 10.1121/1.3160293 10.1016/j.renene.2016.11.057 10.1016/j.rser.2011.04.010 10.1016/j.renene.2010.03.014 10.1016/j.enpol.2010.05.042 10.1016/j.geothermics.2017.06.015 10.3390/en11061333 10.1016/j.rser.2015.07.054 10.1016/j.energy.2020.117429 10.1016/S0961-9534(00)00091-X 10.2172/1218707 10.1016/j.landurbplan.2015.02.001 10.1016/j.rser.2020.110694 10.1007/s11356-019-06260-1 10.1016/S0960-1481(00)00169-5 10.1016/j.renene.2018.08.064 10.1016/j.jclepro.2018.11.008 10.1016/j.jclepro.2020.120602 10.1016/j.renene.2019.12.078 10.1016/j.renene.2015.04.017 10.1016/j.apenergy.2013.11.008 10.1016/j.seta.2015.11.007 10.1016/j.eiar.2014.06.005 10.1016/j.eneco.2007.02.001 10.1016/j.apenergy.2016.02.089 10.1016/j.rser.2015.10.024 10.1016/j.enconman.2013.02.004 10.1016/j.rser.2019.109309 10.1016/j.renene.2013.12.038 10.1016/j.scs.2017.10.002 10.1007/s10098-019-01754-5 10.3390/en10050720 10.1016/j.energy.2019.03.189 10.1016/j.rser.2012.01.027 10.1016/j.applthermaleng.2018.04.043 10.1016/j.renene.2011.03.005 10.1016/j.apenergy.2021.118035 10.1016/j.apenergy.2017.09.113 10.1016/S0961-9534(02)00191-5 10.1002/jpln.200625222 10.1016/j.biombioe.2004.01.008 10.1016/S0961-9534(98)00002-6 10.1016/j.enpol.2014.07.015 10.1016/S0960-8524(00)00016-X 10.1109/TAPENERGY.2017.8397360 10.1007/s12053-016-9463-6 10.1016/j.renene.2018.08.105 10.1007/s10098-017-1405-2 10.1016/j.apenergy.2017.10.024 10.3997/2214-4609.201401010 |
ContentType | Journal Article |
Copyright | 2022 The Author(s) |
Copyright_xml | – notice: 2022 The Author(s) |
DBID | 6I. AAFTH AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.apenergy.2022.119149 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Environmental Sciences |
EISSN | 1872-9118 |
ExternalDocumentID | 10_1016_j_apenergy_2022_119149 S0306261922005244 |
GeographicLocations | Netherlands |
GeographicLocations_xml | – name: Netherlands |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAFTH AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE JJJVA KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SES SPC SPCBC SSR SST SSZ T5K TN5 ~02 ~G- AAHBH AAQXK AATTM AAXKI AAYOK AAYWO AAYXX ABEFU ABFNM ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- RIG SAC SEW SSH WUQ ZY4 7S9 L.6 |
ID | FETCH-LOGICAL-c393t-af3975c457ebc56bce9f4724b5c55d19386955a87cd9f74eae72c038882e7563 |
IEDL.DBID | .~1 |
ISSN | 0306-2619 |
IngestDate | Fri Jul 11 00:29:54 EDT 2025 Thu Apr 24 23:13:17 EDT 2025 Tue Jul 01 04:01:07 EDT 2025 Fri Feb 23 02:40:42 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | GBPV RES BE FLH DH wfs PV Land-use constraints RIVM DM GHI LV And biomass HV NNN Regional level TNO Scenarios IWH LHV PBL Odt GJ NIMBY GO kt MV Heat demand GIS GW NACE TJ LER GEV ha NG Renewable potential KEV |
Language | English |
License | This is an open access article under the CC BY license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c393t-af3975c457ebc56bce9f4724b5c55d19386955a87cd9f74eae72c038882e7563 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0306261922005244 |
PQID | 2718231085 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_2718231085 crossref_citationtrail_10_1016_j_apenergy_2022_119149 crossref_primary_10_1016_j_apenergy_2022_119149 elsevier_sciencedirect_doi_10_1016_j_apenergy_2022_119149 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-07-15 |
PublicationDateYYYYMMDD | 2022-07-15 |
PublicationDate_xml | – month: 07 year: 2022 text: 2022-07-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Applied energy |
PublicationYear | 2022 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Tahri, Hakdaoui, Maanan (b0295) 2015; 51 TenneT_Nederland. TenneT Assets (hoogspanning) 2020. https://www.arcgis.com/home/item.html?id=646a6dee22bf485587bc4daf98da1306 (accessed March 14, 2020). Provincie Groningen. Omgevingsvisie Provincie Groningen 2016 - 2020 (in Dutch). 2016. Rabou LPLM, Deurwaarder EP, Elbersen HW, Scott EL. Biomassa in de Nederlandse energiehuishouding in 2030 (in Dutch). 2006. Díaz-Cuevas, Domínguez-Bravo, Prieto-Campos (b0560) 2019; 21 Ramachandra, Shruthi (b0120) 2005; 46 Noordelijke Rekenkamer. Energietransitie provincie Groningen (in Dutch). 2016. Paping, Van de Ven, Wohl (b0400) 2014 Provincie Groningen. Structuurvisie Eemsmond-Delfzijl (in Dutch). Https://Www.Provinciegroningen.Nl/Fileadmin/User_upload/Documenten/Beleid_en_documenten/Documentenzoeker/Wonen_en_welzijn/Structuurvisie-Eemsmond-Delfzijl.Pdf: 2017. Faaij, Steetskamp, Van Wijk, Turkenburg (b0015) 1998; 14 Latinopoulos, Kechagia (b0060) 2015; 78 Alami Merrouni, Elwali Elalaoui, Mezrhab, Mezrhab, Ghennioui (b0290) 2018; 119 Hoogwijk, Faaij, Van Den Broek, Berndes, Gielen, Turkenburg (b0370) 2003; 25 Askegaard, Eriksen (b0395) 2007; 170 Hammond, Norman (b0520) 2014; 116 Eurostat. Share of energy from renewable sources 2021. https://ec.europa.eu/eurostat/databrowser/view/nrg_ind_ren/default/table?lang=en (accessed June 28, 2021). Moller, Lund, Sommer (b0435) 2000; 74 Gigović, Pamučar, Božanić, Ljubojević (b0360) 2017; 103 IEA. Outlook for biogas and biomethane. Prospects for organic growth. World Energy Outlook Special Report. 2020. Aly, Jensen, Pedersen (b0280) 2017; 113 Dupraz, Marrou, Talbot, Dufour, Nogier, Ferard (b0530) 2011; 36 Kiavarz, Jelokhani-Niaraki (b0165) 2017; 70 Janke (b0040) 2010; 35 Daniëls, Van Dril (b0480) 2007; 29 Smil (b0010) 2010 Al Garni, Awasthi (b0055) 2017; 206 Trommsdorff, Kang, Reise, Schindele, Bopp, Ehmann (b0550) 2021; 140 Kramers L, Van Wees JDAM, Mijnlieff HF, Kronimus RA. ThermoGIS - An integrated web-based information system for geothermal exploration and governmental decision support for M. In: 72nd Eur Assoc Geosci Eng Conf Exhib 2010 A New Spring Geosci Inc SPE Eur 2010 2010;5:3688–92. https://doi.org/10.3997/2214-4609.201401010. Dinesh, Pearce (b0535) 2016; 54 Gasunie. Verkenning 2050 (in Dutch). 2018. Valle, Simonneau, Sourd, Pechier, Hamard, Frisson (b0540) 2017; 206 Palmas, Siewert, von Haaren (b0555) 2015; 52 Sijm J, Janssen G, Morales-España G, Van Stralen J, Hernandes-Serna R, Smekens K. The role of large-scale energy storage in the energy system of the Netherlands, 2030-2050. Amsterdam: 2020. https://doi.org/TNO 2020 P11106. Lensink S, Schoots K. Eindadvies basisbedragen SDE++2020. 2021. Wyrwa, Chen (b0170) 2017; 10 Kausika, Dolla, Van Sark (b0085) 2017; 134 Pellegrino J, Margolis N, Miller M, Justiniano M, Arvind Thedki. Energy Use, Loss and Opportunities Analysis: US Manufacturing and Mining. 2004. Scherpbier, Eerens (b0500) 2020 Provincie Groningen. Vol ambitie op weg naar transitie - Programma Energietransitie 2016-2019 (in Dutch). 2018. PBL Netherlands Environmental Assessment Agency. MIDDEN: Manufacturing Industry Decarbonisation Data Exchange Network publications | PBL Planbureau voor de Leefomgeving n.d. https://www.pbl.nl/en/middenweb/publications (accessed June 24, 2020). Ros, Nardy. The potential of a circular grass refinery supply chain in the Netherlands NJ (Nardy) Ros. Wageningen University, 2017. TNO. Map Viewer | Thermogis n.d. https://www.thermogis.nl/en/map-viewer (accessed September 2, 2019). ENEXIS. Open data | Enexis - Energie in goede banen (in Dutch) 2021. https://www.enexis.nl/over-ons/wat-bieden-we/andere-diensten/open-data (accessed March 23, 2021). CBS. StatLine - Solar power; assets businesses and homes, region (2018 breakdown), 2012-2018 2019. https://opendata.cbs.nl/#/CBS/nl/dataset/84518NED/table (accessed February 17, 2021). Majumdar, Pasqualetti (b0310) 2019; 134 Planbureau voor de Leefomgeving, DNV GL. Het potentieel van zonnestroom in de gebouwde omgeving van Nederland (in Dutch). 2014. Scheepers M, Palacios, Silvana Gamboa Jegu E, De Oliveira LPN, Rutten L, Stralen J Van, Smekens K, et al. Towards a sustainable energy system for the Netherlands in 2050. 2020. TopDutch. How the TopDutch region is accelerating the protein transition › TopDutch. n.d. https://www.topdutch.com/stories/how-the-topdutch-region-is-accelerating-the-protein-transition (accessed May 7, 2021). Doorga, Rughooputh, Boojhawon (b0305) 2019; 133 Folkerts W, van Sark W, de Keizer C, van Hooff W, van den Donker M. ROADMAP PV Systemen en Toepassingen (in Dutch). 2017. Meha, Novosel, Duić (b0180) 2020; 199 Van Der Schoot JR. Variety research grasses in the Netherlands. 2013. Rumbayan, Nagasaka (b0050) 2012, 2012 CBS. Dwellings and non-residential stock; changes, utility function, regions 2021. https://opendata.cbs.nl/statline/#/CBS/en/dataset/81955ENG/table (accessed February 9, 2021). Dias, Gouveia, Lourenço, Seixas (b0110) 2019; 81 Devine-Wright P. Reconsidering public attitudes and public acceptance of renewable energy technologies : a critical review. vol. 1.4. 2007. Spijkerboer, Zuidema, Busscher, Arts (b0090) 2019; 209 McKenna, Norman (b0485) 2010; 38 De Moor, Velghe, Wierinck, Michels, Ryckaert, De Vocht (b0605) 2013; 150 van der Niet, Rooijers, van der Veen, Voulis, Wirtz, Lubben (b0330) 2019 Arun K. Geospatial approach for wind farm site selection – A Kerala Scenario. IEEE Int. Conf. Technol. Adv. Power Energy (TAP Energy), IEEE; 2017. Yousefi H. Geothermal Power Plant Site Selection Using Gis in Sabalan Area , Geothermal Power Plant Site Selection Using Gis in Sabalan 2014. Baban, Parry (b0130) 2001; 24 Gasunie. About Gasunie » N.V. Nederlandse Gasunie 2018. https://www.gasunie.nl/en/about-gasunie (accessed October 24, 2018). van der Hilst, Lesschen, van Dam, Riksen, Verweij, Sanders (b0140) 2012; 16 Giamalaki, Tsoutsos (b0320) 2019; 141 Amaducci, Yin, Colauzzi (b0545) 2018; 220 Persson, Möller, Werner (b0510) 2014; 74 Gebrezgabher, Meuwissen, Prins, Lansink (b0440) 2010; 57 van Stralen, Dalla Longa, Daniëls, Smekens, van der Zwaan (b0575) 2020 Brueckner, Arbter, Pehnt, Laevemann (b0505) 2017; 10 Londo, Vleeshouwers, Dekker, De Graaf (b0380) 2001; 20 Watson, Hudson (b0080) 2015; 138 RVO. Routekaart Hernieuwbaar Gas (in Dutch). 2014. IRENA. Biomass for heat and power - Technology Brief. 2015. Bennui, Rattanamanee, Puetpaiboon, Phukpattaranont, Chetpattananondh (b0350) 2007; 2007 Noorollahi, Yousefi, Mohammadi (b0065) 2016; 13 Aydin, Kentel, Sebnem (b0125) 2013; 70 J.-D. van Wees, Kronimus, van Putten, Pluymaekers, Mijnlieff, van Hooff (b0150) 2012; 91 Gasforeningen, SBGF, SGC, Business Region Goteborg, E.ON, Goteborg Energi, et al. Basic Data on biogas - Sweden. 2007. Groningen P of. Provincie Groningen 2012;2013. http://www.provinciegroningen.nl/servicelinks-provincie-groningen/english/ (accessed April 22, 2021). Marques-Perez, Guaita-Pradas, Gallego, Segura (b0070) 2020; 257 Sánchez-Lozano, Henggeler Antunes, García-Cascales, Dias (b0105) 2014; 66 Van Haaren, Fthenakis (b0075) 2011; 15 CBS. StatLine - Agriculture; crops, livestock and land use by general farm type, region 2019:1. https://opendata.cbs.nl/statline/#/CBS/en/dataset/80783eng/table?ts=1560159415718 (accessed December 4, 2019). TKI NIEUW GAS (Topsector Energy), Netherlands Enterprise Agency (RVO), FME. Excelling in Hydrogen - Dutch technology for a climate-neutral world. 2021. Provincie Groningen. Ontwerp Natuurbeheerplan Groningen 2021. 2020. Provincie Groningen. Provincie Groningen (in Dutch) 2021. https://www.provinciegroningen.nl/ (accessed February 18, 2021). Moraitis, Kausika, Nortier, van Sark (b0035) 2018; 11 CBS. StatLine - Land use; all categories, municipalities n.d. https://opendata.cbs.nl/statline/#/CBS/en/dataset/70262eng/table?dl=3DD4 (accessed July 26, 2020). Pedersen, van den Berg, Bakker, Bouma (b0365) 2009; 126 Persson, Wiechers, Möller, Werner (b0525) 2019; 176 Koc, Turk, Şahin (b0045) 2019; 26 Sahoo, van Stralen, Zuidema, Sijm, Yamu, Faaij (b0100) 2022; 306 Gorsevski, Cathcart, Mirzaei, Jamali, Ye, Gomezdelcampo (b0355) 2013; 55 Planbureau voor de Leefomgeving, Rijksinstituut voor Volksgezondheid en Milieu, CBS, Nederland R voor O, TNO. Klimaat- en Energieverkenning 2020. 2020. Noorollahi, Mohammadi, Yousefi, Anvari-Moghaddam (b0300) 2020; 12 Provincie Groningen. Verordening van Provinciale Staten van de provincie Groningen houdende ruimtelijke ordening Omgevingsverordening Provincie Groningen 2016 (in Dutch). 2020. Vrijlandt MAW, Struijk ELM, Brunner LG, Veldkamp JG, Witmans N, Maljers D, et al. ThermoGIS update: a renewed view on geothermal potential in the Netherlands. Eur. Geotherm. Congr. 2019, Den Haag: 2019, p. 11–4. Papapetrou, Kosmadakis, Cipollina, La Commare, Micale (b0515) 2018; 138 Noorollahi, Ghasempour, Jalilinasrabady (b0155) 2015; 33 Hermansen JE, Jørgensen U, Lærke PE, Manevski K, Jensen SK, Weisbjerg MR, et al. Green biomass - protein pro- duction through bio-refining green biomass - protein pro- duction through bio-refining. dca - danish centre for food and agriculture; 2017. Planbureau voor de Leefomgeving, Rijksinstituut voor Volksgezondheid en Milieu, CBS, Rijksdienst voor Ondernemend Nederland, TNO. Klimaat en Energieverkenning 2019 (Dutch). 2019. Veenstra A. Ruimte voor zonne-energie in Nederland 2020-2050 (in Dutch). 2015. NREL (b0325) 2016 Brewer, Ames, Solan, Lee, Carlisle (b0115) 2015; 81 World Bank Group, ESMAP, Technical University of Denmark, VORTEX. Global Wind Atlas 2021. https://globalwindatlas.info/ (accessed January 19, 2021). Van Den Pol-Dasselaar A, Durksz D, Klop A, Gosselink JMJ. Grasraffinage in de veehouderij (in Dutch). 2012. Uyan (b0285) 2017; 19 Provincie Groningen. Energiemonitor provincie Groningen (in Dutch) 2021. https://energiemonitor.provincie-groningen.nl/ (accessed February 9, 2021). van den Meiracker R, Vredenbregt J, de Boer V, Gumbs J, Fransen S. the Reuse of Grass Waste in Southwest Drenthe. Wageningen UR, 2015. PDOK. National Georegister n.d. https://www.nationaalgeoregister.nl/geonetwork/srv/dut/catalog.search#/home (accessed September 10.1016/j.apenergy.2022.119149_b0205 Valle (10.1016/j.apenergy.2022.119149_b0540) 2017; 206 Gigović (10.1016/j.apenergy.2022.119149_b0360) 2017; 103 Noorollahi (10.1016/j.apenergy.2022.119149_b0300) 2020; 12 Daniëls (10.1016/j.apenergy.2022.119149_b0480) 2007; 29 10.1016/j.apenergy.2022.119149_b0570 10.1016/j.apenergy.2022.119149_b0450 10.1016/j.apenergy.2022.119149_b0210 J.-D. van Wees (10.1016/j.apenergy.2022.119149_b0150) 2012; 91 10.1016/j.apenergy.2022.119149_b0455 10.1016/j.apenergy.2022.119149_b0215 10.1016/j.apenergy.2022.119149_b0335 10.1016/j.apenergy.2022.119149_b0610 10.1016/j.apenergy.2022.119149_b0615 Colak (10.1016/j.apenergy.2022.119149_b0315) 2020; 149 Dinesh (10.1016/j.apenergy.2022.119149_b0535) 2016; 54 Dias (10.1016/j.apenergy.2022.119149_b0110) 2019; 81 Noorollahi (10.1016/j.apenergy.2022.119149_b0065) 2016; 13 Doorga (10.1016/j.apenergy.2022.119149_b0305) 2019; 133 Díaz-Cuevas (10.1016/j.apenergy.2022.119149_b0560) 2019; 21 Trommsdorff (10.1016/j.apenergy.2022.119149_b0550) 2021; 140 Baban (10.1016/j.apenergy.2022.119149_b0130) 2001; 24 10.1016/j.apenergy.2022.119149_b0185 10.1016/j.apenergy.2022.119149_b0580 10.1016/j.apenergy.2022.119149_b0220 10.1016/j.apenergy.2022.119149_b0340 Gorsevski (10.1016/j.apenergy.2022.119149_b0355) 2013; 55 10.1016/j.apenergy.2022.119149_b0585 10.1016/j.apenergy.2022.119149_b0345 10.1016/j.apenergy.2022.119149_b0620 van der Hilst (10.1016/j.apenergy.2022.119149_b0135) 2010; 103 10.1016/j.apenergy.2022.119149_b0225 10.1016/j.apenergy.2022.119149_b0425 Al Garni (10.1016/j.apenergy.2022.119149_b0055) 2017; 206 Wyrwa (10.1016/j.apenergy.2022.119149_b0170) 2017; 10 Watson (10.1016/j.apenergy.2022.119149_b0080) 2015; 138 Bódis (10.1016/j.apenergy.2022.119149_b0275) 2019; 114 10.1016/j.apenergy.2022.119149_b0390 Janke (10.1016/j.apenergy.2022.119149_b0040) 2010; 35 Spijkerboer (10.1016/j.apenergy.2022.119149_b0090) 2019; 209 10.1016/j.apenergy.2022.119149_b0270 Londo (10.1016/j.apenergy.2022.119149_b0385) 2004; 27 Miró (10.1016/j.apenergy.2022.119149_b0465) 2016; 169 10.1016/j.apenergy.2022.119149_b0030 10.1016/j.apenergy.2022.119149_b0430 Moller (10.1016/j.apenergy.2022.119149_b0435) 2000; 74 Persson (10.1016/j.apenergy.2022.119149_b0525) 2019; 176 Tahri (10.1016/j.apenergy.2022.119149_b0295) 2015; 51 Londo (10.1016/j.apenergy.2022.119149_b0380) 2001; 20 Gebrezgabher (10.1016/j.apenergy.2022.119149_b0440) 2010; 57 Aly (10.1016/j.apenergy.2022.119149_b0280) 2017; 113 Bennui (10.1016/j.apenergy.2022.119149_b0350) 2007; 2007 Majumdar (10.1016/j.apenergy.2022.119149_b0310) 2019; 134 10.1016/j.apenergy.2022.119149_b0160 Alami Merrouni (10.1016/j.apenergy.2022.119149_b0290) 2018; 119 van der Niet (10.1016/j.apenergy.2022.119149_b0330) 2019 Pedersen (10.1016/j.apenergy.2022.119149_b0365) 2009; 126 10.1016/j.apenergy.2022.119149_b0200 10.1016/j.apenergy.2022.119149_b0565 Faaij (10.1016/j.apenergy.2022.119149_b0015) 1998; 14 10.1016/j.apenergy.2022.119149_b0600 10.1016/j.apenergy.2022.119149_b0445 10.1016/j.apenergy.2022.119149_b0405 De Moor (10.1016/j.apenergy.2022.119149_b0605) 2013; 150 van der Hilst (10.1016/j.apenergy.2022.119149_b0140) 2012; 16 Kramers (10.1016/j.apenergy.2022.119149_b0460) 2012; 91 Hammond (10.1016/j.apenergy.2022.119149_b0520) 2014; 116 Van Haaren (10.1016/j.apenergy.2022.119149_b0075) 2011; 15 Papapetrou (10.1016/j.apenergy.2022.119149_b0515) 2018; 138 10.1016/j.apenergy.2022.119149_b0490 Ruiz (10.1016/j.apenergy.2022.119149_b0375) 2019; 26 10.1016/j.apenergy.2022.119149_b0250 10.1016/j.apenergy.2022.119149_b0495 10.1016/j.apenergy.2022.119149_b0255 Moraitis (10.1016/j.apenergy.2022.119149_b0035) 2018; 11 Brewer (10.1016/j.apenergy.2022.119149_b0115) 2015; 81 10.1016/j.apenergy.2022.119149_b0410 10.1016/j.apenergy.2022.119149_b0415 Smil (10.1016/j.apenergy.2022.119149_b0010) 2010 Hoogwijk (10.1016/j.apenergy.2022.119149_b0370) 2003; 25 Ramachandra (10.1016/j.apenergy.2022.119149_b0120) 2005; 46 Uyan (10.1016/j.apenergy.2022.119149_b0285) 2017; 19 Amaducci (10.1016/j.apenergy.2022.119149_b0545) 2018; 220 10.1016/j.apenergy.2022.119149_b0260 10.1016/j.apenergy.2022.119149_b0020 Dupraz (10.1016/j.apenergy.2022.119149_b0530) 2011; 36 10.1016/j.apenergy.2022.119149_b0145 10.1016/j.apenergy.2022.119149_b0420 10.1016/j.apenergy.2022.119149_b0265 10.1016/j.apenergy.2022.119149_b0025 Persson (10.1016/j.apenergy.2022.119149_b0510) 2014; 74 Noorollahi (10.1016/j.apenergy.2022.119149_b0155) 2015; 33 Meha (10.1016/j.apenergy.2022.119149_b0180) 2020; 199 Torabi Moghadam (10.1016/j.apenergy.2022.119149_b0175) 2018; 37 Aydin (10.1016/j.apenergy.2022.119149_b0125) 2013; 70 Brueckner (10.1016/j.apenergy.2022.119149_b0505) 2017; 10 10.1016/j.apenergy.2022.119149_b0190 NREL (10.1016/j.apenergy.2022.119149_b0325) 2016 Koc (10.1016/j.apenergy.2022.119149_b0045) 2019; 26 10.1016/j.apenergy.2022.119149_b0590 Marques-Perez (10.1016/j.apenergy.2022.119149_b0070) 2020; 257 10.1016/j.apenergy.2022.119149_b0195 10.1016/j.apenergy.2022.119149_b0470 Scherpbier (10.1016/j.apenergy.2022.119149_b0500) 2020 10.1016/j.apenergy.2022.119149_b0230 Askegaard (10.1016/j.apenergy.2022.119149_b0395) 2007; 170 10.1016/j.apenergy.2022.119149_b0475 10.1016/j.apenergy.2022.119149_b0595 Sánchez-Lozano (10.1016/j.apenergy.2022.119149_b0105) 2014; 66 10.1016/j.apenergy.2022.119149_b0235 Sahoo (10.1016/j.apenergy.2022.119149_b0100) 2022; 306 van Stralen (10.1016/j.apenergy.2022.119149_b0575) 2020 Latinopoulos (10.1016/j.apenergy.2022.119149_b0060) 2015; 78 Paping (10.1016/j.apenergy.2022.119149_b0400) 2014 McKenna (10.1016/j.apenergy.2022.119149_b0485) 2010; 38 Rumbayan (10.1016/j.apenergy.2022.119149_b0050) 2012 Pluymaekers (10.1016/j.apenergy.2022.119149_b0095) 2012; 91 Kiavarz (10.1016/j.apenergy.2022.119149_b0165) 2017; 70 Giamalaki (10.1016/j.apenergy.2022.119149_b0320) 2019; 141 Kausika (10.1016/j.apenergy.2022.119149_b0085) 2017; 134 10.1016/j.apenergy.2022.119149_b0240 Palmas (10.1016/j.apenergy.2022.119149_b0555) 2015; 52 10.1016/j.apenergy.2022.119149_b0245 10.1016/j.apenergy.2022.119149_b0005 |
References_xml | – volume: 13 start-page: 38 year: 2016 end-page: 50 ident: b0065 article-title: Multi-criteria decision support system for wind farm site selection using GIS publication-title: Sustain Energy Technol Assessments – reference: Yousefi H. Geothermal Power Plant Site Selection Using Gis in Sabalan Area , Geothermal Power Plant Site Selection Using Gis in Sabalan 2014. – volume: 14 start-page: 439 year: 1998 end-page: 456 ident: b0015 article-title: Exploration of the land potential for the production of biomass for energy in the Netherlands publication-title: Biomass Bioenergy – volume: 10 start-page: 720 year: 2017 ident: b0170 article-title: Mapping urban heat demand with the use of gis-based tools publication-title: Energies – reference: Lensink S, Schoots K. Eindadvies basisbedragen SDE++2020. 2021. – reference: Provincie Groningen. Energiemonitor provincie Groningen (in Dutch) 2021. https://energiemonitor.provincie-groningen.nl/ (accessed February 9, 2021). – reference: TKI NIEUW GAS (Topsector Energy), Netherlands Enterprise Agency (RVO), FME. Excelling in Hydrogen - Dutch technology for a climate-neutral world. 2021. – reference: Rabou LPLM, Deurwaarder EP, Elbersen HW, Scott EL. Biomassa in de Nederlandse energiehuishouding in 2030 (in Dutch). 2006. – volume: 114 year: 2019 ident: b0275 article-title: A high-resolution geospatial assessment of the rooftop solar photovoltaic potential in the European Union publication-title: Renew Sustain Energy Rev – reference: Provincie Groningen. Provincie Groningen (in Dutch) 2021. https://www.provinciegroningen.nl/ (accessed February 18, 2021). – reference: Planbureau voor de Leefomgeving, DNV GL. Het potentieel van zonnestroom in de gebouwde omgeving van Nederland (in Dutch). 2014. – reference: TopDutch. How the TopDutch region is accelerating the protein transition › TopDutch. n.d. https://www.topdutch.com/stories/how-the-topdutch-region-is-accelerating-the-protein-transition (accessed May 7, 2021). – reference: Veenstra A. Ruimte voor zonne-energie in Nederland 2020-2050 (in Dutch). 2015. – volume: 138 start-page: 20 year: 2015 end-page: 31 ident: b0080 article-title: Regional Scale wind farm and solar farm suitability assessment using GIS-assisted multi-criteria evaluation publication-title: Landsc Urban Plan – volume: 57 start-page: 109 year: 2010 end-page: 115 ident: b0440 article-title: Economic analysis of anaerobic digestion-A case of Green power biogas plant in the Netherlands. NJAS - Wageningen publication-title: J Life Sci – reference: Planbureau voor de Leefomgeving, Rijksinstituut voor Volksgezondheid en Milieu, CBS, Rijksdienst voor Ondernemend Nederland, TNO. Klimaat en Energieverkenning 2019 (Dutch). 2019. – reference: Scheepers M, Palacios, Silvana Gamboa Jegu E, De Oliveira LPN, Rutten L, Stralen J Van, Smekens K, et al. Towards a sustainable energy system for the Netherlands in 2050. 2020. – volume: 91 start-page: 651 year: 2012 end-page: 665 ident: b0150 article-title: Geothermal aquifer performance assessment for direct heat production-Methodology and application to Rotliegend aquifers publication-title: Geol En Mijnbouw/Netherlands J Geosci – volume: 38 start-page: 5878 year: 2010 end-page: 5891 ident: b0485 article-title: Spatial modelling of industrial heat loads and recovery potentials in the UK publication-title: Energy Policy – reference: Provincie Groningen. Ontwerp Natuurbeheerplan Groningen 2021. 2020. – volume: 257 start-page: 120602 year: 2020 ident: b0070 article-title: Territorial planning for photovoltaic power plants using an outranking approach and GIS publication-title: J Clean Prod – volume: 119 start-page: 863 year: 2018 end-page: 873 ident: b0290 article-title: Large scale PV sites selection by combining GIS and Analytical Hierarchy Process publication-title: Case study: Eastern Morocco Renew Energy – volume: 169 start-page: 866 year: 2016 end-page: 873 ident: b0465 article-title: Methodologies to estimate industrial waste heat potential by transferring key figures: A case study for Spain publication-title: Appl Energy – reference: TNO. Map Viewer | Thermogis n.d. https://www.thermogis.nl/en/map-viewer (accessed September 2, 2019). – reference: RVO. Routekaart Hernieuwbaar Gas (in Dutch). 2014. – reference: CBS. StatLine - Arable crops; production, to region 2021. https://opendata.cbs.nl/statline/#/CBS/en/dataset/7100eng/table (accessed May 10, 2021). – reference: CBS. StatLine - Solar power; assets businesses and homes, region (2018 breakdown), 2012-2018 2019. https://opendata.cbs.nl/#/CBS/nl/dataset/84518NED/table (accessed February 17, 2021). – volume: 46 start-page: 1561 year: 2005 end-page: 1578 ident: b0120 article-title: Wind energy potential mapping in Karnataka, India, using GIS publication-title: Energy Convers Manag – volume: 126 start-page: 634 year: 2009 end-page: 643 ident: b0365 article-title: Response to noise from modern wind farms in The Netherlands publication-title: J Acoust Soc Am – volume: 55 start-page: 374 year: 2013 end-page: 385 ident: b0355 article-title: A group-based spatial decision support system for wind farm site selection in Northwest Ohio publication-title: Energy Policy – reference: PBL Netherlands Environmental Assessment Agency. MIDDEN: Manufacturing Industry Decarbonisation Data Exchange Network publications | PBL Planbureau voor de Leefomgeving n.d. https://www.pbl.nl/en/middenweb/publications (accessed June 24, 2020). – volume: 170 start-page: 773 year: 2007 end-page: 780 ident: b0395 article-title: Growth of legume and nonlegume catch crops and residual-N effects in spring barley on coarse sand publication-title: J Plant Nutr Soil Sci – volume: 141 start-page: 64 year: 2019 end-page: 75 ident: b0320 article-title: Sustainable siting of solar power installations in Mediterranean using a GIS/AHP approach publication-title: Renew Energy – volume: 10 start-page: 513 year: 2017 end-page: 525 ident: b0505 article-title: Industrial waste heat potential in Germany—a bottom-up analysis publication-title: Energy Effic – volume: 103 start-page: 501 year: 2017 end-page: 521 ident: b0360 article-title: Application of the GIS-DANP-MABAC multi-criteria model for selecting the location of wind farms: A case study of Vojvodina publication-title: Serbia Renew Energy – reference: van den Meiracker R, Vredenbregt J, de Boer V, Gumbs J, Fransen S. the Reuse of Grass Waste in Southwest Drenthe. Wageningen UR, 2015. – reference: Gasforeningen, SBGF, SGC, Business Region Goteborg, E.ON, Goteborg Energi, et al. Basic Data on biogas - Sweden. 2007. – reference: Van Den Pol-Dasselaar A, Durksz D, Klop A, Gosselink JMJ. Grasraffinage in de veehouderij (in Dutch). 2012. – volume: 20 start-page: 337 year: 2001 end-page: 350 ident: b0380 article-title: Energy farming in Dutch desiccation abatement areas: Yields and benefits compared to grass cultivation publication-title: Biomass Bioenergy – year: 2020 ident: b0575 article-title: OPERA: a new high-resolution energy system model for sector integration research publication-title: Environ Model Assess – reference: Sijm J, Janssen G, Morales-España G, Van Stralen J, Hernandes-Serna R, Smekens K. The role of large-scale energy storage in the energy system of the Netherlands, 2030-2050. Amsterdam: 2020. https://doi.org/TNO 2020 P11106. – reference: Van Der Schoot JR. Variety research grasses in the Netherlands. 2013. – reference: Kramers L, Van Wees JDAM, Mijnlieff HF, Kronimus RA. ThermoGIS - An integrated web-based information system for geothermal exploration and governmental decision support for M. In: 72nd Eur Assoc Geosci Eng Conf Exhib 2010 A New Spring Geosci Inc SPE Eur 2010 2010;5:3688–92. https://doi.org/10.3997/2214-4609.201401010. – reference: Vrijlandt MAW, Struijk ELM, Brunner LG, Veldkamp JG, Witmans N, Maljers D, et al. ThermoGIS update: a renewed view on geothermal potential in the Netherlands. Eur. Geotherm. Congr. 2019, Den Haag: 2019, p. 11–4. – volume: 26 start-page: 32298 year: 2019 end-page: 32310 ident: b0045 article-title: Multi-criteria of wind-solar site selection problem using a GIS-AHP-based approach with an application in Igdir Province/Turkey publication-title: Environ Sci Pollut Res – volume: 81 start-page: 825 year: 2015 end-page: 836 ident: b0115 article-title: Using GIS analytics and social preference data to evaluate utility-scale solar power site suitability publication-title: Renew Energy – volume: 140 start-page: 110694 year: 2021 ident: b0550 article-title: Combining food and energy production: Design of an agrivoltaic system applied in arable and vegetable farming in Germany publication-title: Renew Sustain Energy Rev – reference: IEA. Outlook for biogas and biomethane. Prospects for organic growth. World Energy Outlook Special Report. 2020. – reference: World Bank Group, ESMAP, Technical University of Denmark, VORTEX. Global Wind Atlas 2021. https://globalwindatlas.info/ (accessed January 19, 2021). – volume: 138 start-page: 207 year: 2018 end-page: 216 ident: b0515 article-title: Industrial waste heat: Estimation of the technically available resource in the EU per industrial sector, temperature level and country publication-title: Appl Therm Eng – reference: Folkerts W, van Sark W, de Keizer C, van Hooff W, van den Donker M. ROADMAP PV Systemen en Toepassingen (in Dutch). 2017. – volume: 70 start-page: 90 year: 2013 end-page: 106 ident: b0125 article-title: GIS-based site selection methodology for hybrid renewable energy systems: A case study from western Turkey publication-title: Energy Convers Manag – reference: Eurostat. Share of energy from renewable sources 2021. https://ec.europa.eu/eurostat/databrowser/view/nrg_ind_ren/default/table?lang=en (accessed June 28, 2021). – volume: 24 start-page: 59 year: 2001 end-page: 71 ident: b0130 article-title: Developing and applying a GIS-assisted approach to locating wind farms in the UK publication-title: Renew Energy – year: 2016 ident: b0325 article-title: Rooftop Solar Photovoltaic Technical Potential in the United States: A Detailed publication-title: Assessment – volume: 54 start-page: 299 year: 2016 end-page: 308 ident: b0535 article-title: The potential of agrivoltaic systems publication-title: Renew Sustain Energy Rev – reference: Gasunie. Verkenning 2050 (in Dutch). 2018. – reference: Devine-Wright P. Reconsidering public attitudes and public acceptance of renewable energy technologies : a critical review. vol. 1.4. 2007. – volume: 2007 start-page: 90 year: 2007 end-page: 112 ident: b0350 article-title: Site Selection for Large Wind Turbine Using Gis publication-title: Int Conf Eng Environ - ICEE- – volume: 134 start-page: 110 year: 2017 end-page: 120 ident: b0085 article-title: Assessment of policy based residential solar PV potential using GIS-based multicriteria decision analysis: A case study of Apeldoorn, the Netherlands publication-title: Energy Procedia – volume: 78 start-page: 550 year: 2015 end-page: 560 ident: b0060 article-title: A GIS-based multi-criteria evaluation for wind farm site selection. A regional scale application in Greece. Renew publication-title: Energy – volume: 15 start-page: 3332 year: 2011 end-page: 3340 ident: b0075 article-title: GIS-based wind farm site selection using spatial multi-criteria analysis (SMCA): Evaluating the case for New York State publication-title: Renew Sustain Energy Rev – year: 2019 ident: b0330 article-title: Systeemstudie energie-infrastructuur Groningen & Drenthe (in Dutch) publication-title: Delft – year: 2010 ident: b0010 article-title: Energy transitions: history, requirements, prospects publication-title: ABC-CLIO – reference: Provincie Groningen. Verordening van Provinciale Staten van de provincie Groningen houdende ruimtelijke ordening Omgevingsverordening Provincie Groningen 2016 (in Dutch). 2020. – volume: 33 start-page: 243 year: 2015 end-page: 258 ident: b0155 article-title: A GIS based integration method for geothermal resources exploration and site selection publication-title: Energy Explor Exploit – volume: 21 start-page: 1855 year: 2019 end-page: 1869 ident: b0560 article-title: Integrating MCDM and GIS for renewable energy spatial models: assessing the individual and combined potential for wind, solar and biomass energy in Southern Spain publication-title: Clean Technol Environ Policy – start-page: 36 year: 2012, 2012, end-page: 41 ident: b0050 article-title: Prioritization decision for renewable energy development using analytic hierarchy process and geographic information system publication-title: 2012 Int Conf OnAdvanced Mechatron Syst ICAMechS – volume: 91 start-page: 637 year: 2012 end-page: 649 ident: b0460 article-title: Direct heat resource assessment and subsurface information systems for geothermal aquifers; The Dutch perspective publication-title: Geol En Mijnbouw/Netherlands J Geosci – volume: 74 start-page: 663 year: 2014 end-page: 681 ident: b0510 article-title: Heat Roadmap Europe: Identifying strategic heat synergy regions publication-title: Energy Policy – volume: 35 start-page: 2228 year: 2010 end-page: 2234 ident: b0040 article-title: Multicriteria GIS modeling of wind and solar farms in Colorado publication-title: Renew Energy – volume: 12 start-page: 1 year: 2020 end-page: 19 ident: b0300 article-title: A spatial-based integration model for regional scale solar energy technical potential publication-title: Sustain – reference: Provincie Groningen. Vol ambitie op weg naar transitie - Programma Energietransitie 2016-2019 (in Dutch). 2018. – volume: 150 start-page: 187 year: 2013 end-page: 194 ident: b0605 article-title: Feasibility of grass co-digestion in an agricultural digester, influence on process parameters and residue composition publication-title: Bioresour Technol – reference: Gasunie. About Gasunie » N.V. Nederlandse Gasunie 2018. https://www.gasunie.nl/en/about-gasunie (accessed October 24, 2018). – reference: Fog E. Biogas til økologi: Halm og kløvergræs kan producere meget gas (in Danish) 2021. https://www.landbrugsinfo.dk/public/7/b/8/oekologi_biogas_biogas_til_oekologi_halm_og_kloevergraes_kan_producere_meget_gas (accessed June 2, 2021). – volume: 206 start-page: 1495 year: 2017 end-page: 1507 ident: b0540 article-title: Increasing the total productivity of a land by combining mobile photovoltaic panels and food crops publication-title: Appl Energy – reference: Pellegrino J, Margolis N, Miller M, Justiniano M, Arvind Thedki. Energy Use, Loss and Opportunities Analysis: US Manufacturing and Mining. 2004. – volume: 19 start-page: 2231 year: 2017 end-page: 2244 ident: b0285 article-title: Optimal site selection for solar power plants using multi-criteria evaluation: A case study from the Ayranci region in Karaman publication-title: Turkey Clean Technol Environ Policy – volume: 176 start-page: 604 year: 2019 end-page: 622 ident: b0525 article-title: Heat Roadmap Europe: Heat distribution costs publication-title: Energy – volume: 103 start-page: 403 year: 2010 end-page: 417 ident: b0135 article-title: Potential, spatial distribution and economic performance of regional biomass chains: The North of the Netherlands as example publication-title: Agric Syst – volume: 133 start-page: 1201 year: 2019 end-page: 1219 ident: b0305 article-title: Multi-criteria GIS-based modelling technique for identifying potential solar farm sites: A case study in Mauritius publication-title: Renew Energy – reference: Ros, Nardy. The potential of a circular grass refinery supply chain in the Netherlands NJ (Nardy) Ros. Wageningen University, 2017. – year: 2020 ident: b0500 article-title: Decarbonisation options for the Dutch Chloro-alkali Industry – volume: 52 start-page: 9 year: 2015 end-page: 17 ident: b0555 article-title: Exploring the decision-space for renewable energy generation to enhance spatial efficiency publication-title: Environ Impact Assess Rev – reference: Groningen P of. Provincie Groningen 2012;2013. http://www.provinciegroningen.nl/servicelinks-provincie-groningen/english/ (accessed April 22, 2021). – reference: PDOK. National Georegister n.d. https://www.nationaalgeoregister.nl/geonetwork/srv/dut/catalog.search#/home (accessed September 24, 2020). – volume: 91 start-page: 621 year: 2012 end-page: 636 ident: b0095 article-title: Reservoir characterisation of aquifers for direct heat production: Methodology and screening of the potential reservoirs for the Netherlands publication-title: Geol En Mijnbouw/Netherlands J Geosci – year: 2014 ident: b0400 article-title: Opportunities for the refinement of grass - publication-title: FrieslandCampina – volume: 81 start-page: 725 year: 2019 end-page: 735 ident: b0110 article-title: Interplay between the potential of photovoltaic systems and agricultural land use publication-title: Land Use Policy – volume: 16 start-page: 2053 year: 2012 end-page: 2069 ident: b0140 article-title: Spatial variation of environmental impacts of regional biomass chains publication-title: Renew Sustain Energy Rev – volume: 37 start-page: 70 year: 2018 end-page: 84 ident: b0175 article-title: A GIS-statistical approach for assessing built environment energy use at urban scale publication-title: Sustain Cities Soc – reference: Planbureau voor de Leefomgeving, Rijksinstituut voor Volksgezondheid en Milieu, CBS, Nederland R voor O, TNO. Klimaat- en Energieverkenning 2020. 2020. – reference: Hermansen JE, Jørgensen U, Lærke PE, Manevski K, Jensen SK, Weisbjerg MR, et al. Green biomass - protein pro- duction through bio-refining green biomass - protein pro- duction through bio-refining. dca - danish centre for food and agriculture; 2017. – volume: 149 start-page: 565 year: 2020 end-page: 576 ident: b0315 article-title: Optimal site selection for solar photovoltaic (PV) power plants using GIS and AHP: A case study of Malatya Province publication-title: Turkey Renew Energy – volume: 25 start-page: 119 year: 2003 end-page: 133 ident: b0370 article-title: Exploration of the ranges of the global potential of biomass for energy publication-title: Biomass Bioenergy – reference: IRENA. Biomass for heat and power - Technology Brief. 2015. – volume: 26 year: 2019 ident: b0375 article-title: ENSPRESO - an open, EU-28 wide, transparent and coherent database of wind, solar and biomass energy potentials publication-title: Energy Strateg Rev – volume: 209 start-page: 1593 year: 2019 end-page: 1603 ident: b0090 article-title: Institutional harmonization for spatial integration of renewable energy: Developing an analytical approach publication-title: J Clean Prod – volume: 29 start-page: 847 year: 2007 end-page: 867 ident: b0480 article-title: Save production: A bottom-up energy model for Dutch industry and agriculture publication-title: Energy Econ – volume: 70 start-page: 295 year: 2017 end-page: 304 ident: b0165 article-title: Geothermal prospectivity mapping using GIS-based Ordered Weighted Averaging approach: A case study in Japan’s Akita and Iwate provinces publication-title: Geothermics – volume: 306 start-page: 118035 year: 2022 ident: b0100 article-title: Regionalization of a national integrated energy system model: A case study of the northern Netherlands publication-title: Appl Energy – reference: RUG G. Basic Data Portal n.d. https://geodienst.xyz/data/ (accessed April 5, 2020). – volume: 113 start-page: 159 year: 2017 end-page: 175 ident: b0280 article-title: Solar power potential of Tanzania: Identifying CSP and PV hot spots through a GIS multicriteria decision making analysis publication-title: Renew Energy – reference: Noordelijke Rekenkamer. Energietransitie provincie Groningen (in Dutch). 2016. – volume: 27 start-page: 205 year: 2004 end-page: 221 ident: b0385 article-title: Willow short-rotation coppice in multiple land-use systems: Evaluation of four combination options in the Dutch context publication-title: Biomass Bioenergy – volume: 36 start-page: 2725 year: 2011 end-page: 2732 ident: b0530 article-title: Combining solar photovoltaic panels and food crops for optimising land use: Towards new agrivoltaic schemes publication-title: Renew Energy – reference: ENEXIS. Open data | Enexis - Energie in goede banen (in Dutch) 2021. https://www.enexis.nl/over-ons/wat-bieden-we/andere-diensten/open-data (accessed March 23, 2021). – volume: 74 start-page: 223 year: 2000 end-page: 229 ident: b0435 article-title: Solid-liquid separation of livestock slurry: efficiency and cost publication-title: Bioresour Technol – volume: 66 start-page: 478 year: 2014 end-page: 494 ident: b0105 article-title: GIS-based photovoltaic solar farms site selection using ELECTRE-TRI: Evaluating the case for Torre Pacheco, Murcia publication-title: Southeast of Spain Renew Energy – volume: 220 start-page: 545 year: 2018 end-page: 561 ident: b0545 article-title: Agrivoltaic systems to optimise land use for electric energy production publication-title: Appl Energy – volume: 134 start-page: 1213 year: 2019 end-page: 1231 ident: b0310 article-title: Analysis of land availability for utility-scale power plants and assessment of solar photovoltaic development in the state of Arizona, USA publication-title: Renew Energy – reference: Arun K. Geospatial approach for wind farm site selection – A Kerala Scenario. IEEE Int. Conf. Technol. Adv. Power Energy (TAP Energy), IEEE; 2017. – reference: TenneT_Nederland. TenneT Assets (hoogspanning) 2020. https://www.arcgis.com/home/item.html?id=646a6dee22bf485587bc4daf98da1306 (accessed March 14, 2020). – reference: CBS. Dwellings and non-residential stock; changes, utility function, regions 2021. https://opendata.cbs.nl/statline/#/CBS/en/dataset/81955ENG/table (accessed February 9, 2021). – reference: Provincie Groningen. Omgevingsvisie Provincie Groningen 2016 - 2020 (in Dutch). 2016. – reference: CBS. StatLine - Land use; all categories, municipalities n.d. https://opendata.cbs.nl/statline/#/CBS/en/dataset/70262eng/table?dl=3DD4 (accessed July 26, 2020). – volume: 11 start-page: 1333 year: 2018 ident: b0035 article-title: Urban environment and solar PV performance: The case of the Netherlands publication-title: Energies – volume: 116 start-page: 387 year: 2014 end-page: 397 ident: b0520 article-title: Heat recovery opportunities in UK industry publication-title: Appl Energy – volume: 199 start-page: 117429 year: 2020 ident: b0180 article-title: Bottom-up and top-down heat demand mapping methods for small municipalities, case Gllogoc publication-title: Energy – volume: 51 start-page: 1354 year: 2015 end-page: 1362 ident: b0295 article-title: The evaluation of solar farm locations applying Geographic Information System and Multi-Criteria Decision-Making methods: Case study in southern Morocco publication-title: Renew Sustain Energy Rev – volume: 206 start-page: 1225 year: 2017 end-page: 1240 ident: b0055 article-title: Solar PV power plant site selection using a GIS-AHP based approach with application in Saudi Arabia publication-title: Appl Energy – reference: CBS. StatLine - Agriculture; crops, livestock and land use by general farm type, region 2019:1. https://opendata.cbs.nl/statline/#/CBS/en/dataset/80783eng/table?ts=1560159415718 (accessed December 4, 2019). – reference: Provincie Groningen. Structuurvisie Eemsmond-Delfzijl (in Dutch). Https://Www.Provinciegroningen.Nl/Fileadmin/User_upload/Documenten/Beleid_en_documenten/Documentenzoeker/Wonen_en_welzijn/Structuurvisie-Eemsmond-Delfzijl.Pdf: 2017. – ident: 10.1016/j.apenergy.2022.119149_b0585 – volume: 91 start-page: 651 issue: 4 year: 2012 ident: 10.1016/j.apenergy.2022.119149_b0150 article-title: Geothermal aquifer performance assessment for direct heat production-Methodology and application to Rotliegend aquifers publication-title: Geol En Mijnbouw/Netherlands J Geosci – volume: 141 start-page: 64 year: 2019 ident: 10.1016/j.apenergy.2022.119149_b0320 article-title: Sustainable siting of solar power installations in Mediterranean using a GIS/AHP approach publication-title: Renew Energy doi: 10.1016/j.renene.2019.03.100 – volume: 220 start-page: 545 year: 2018 ident: 10.1016/j.apenergy.2022.119149_b0545 article-title: Agrivoltaic systems to optimise land use for electric energy production publication-title: Appl Energy doi: 10.1016/j.apenergy.2018.03.081 – volume: 78 start-page: 550 year: 2015 ident: 10.1016/j.apenergy.2022.119149_b0060 article-title: A GIS-based multi-criteria evaluation for wind farm site selection. A regional scale application in Greece. Renew publication-title: Energy – ident: 10.1016/j.apenergy.2022.119149_b0430 – volume: 57 start-page: 109 year: 2010 ident: 10.1016/j.apenergy.2022.119149_b0440 article-title: Economic analysis of anaerobic digestion-A case of Green power biogas plant in the Netherlands. NJAS - Wageningen publication-title: J Life Sci – ident: 10.1016/j.apenergy.2022.119149_b0250 – volume: 134 start-page: 110 year: 2017 ident: 10.1016/j.apenergy.2022.119149_b0085 article-title: Assessment of policy based residential solar PV potential using GIS-based multicriteria decision analysis: A case study of Apeldoorn, the Netherlands publication-title: Energy Procedia doi: 10.1016/j.egypro.2017.09.544 – ident: 10.1016/j.apenergy.2022.119149_b0415 – volume: 46 start-page: 1561 year: 2005 ident: 10.1016/j.apenergy.2022.119149_b0120 article-title: Wind energy potential mapping in Karnataka, India, using GIS publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2004.07.009 – volume: 103 start-page: 403 issue: 7 year: 2010 ident: 10.1016/j.apenergy.2022.119149_b0135 article-title: Potential, spatial distribution and economic performance of regional biomass chains: The North of the Netherlands as example publication-title: Agric Syst doi: 10.1016/j.agsy.2010.03.010 – volume: 150 start-page: 187 year: 2013 ident: 10.1016/j.apenergy.2022.119149_b0605 article-title: Feasibility of grass co-digestion in an agricultural digester, influence on process parameters and residue composition publication-title: Bioresour Technol doi: 10.1016/j.biortech.2013.10.011 – ident: 10.1016/j.apenergy.2022.119149_b0235 – volume: 81 start-page: 725 year: 2019 ident: 10.1016/j.apenergy.2022.119149_b0110 article-title: Interplay between the potential of photovoltaic systems and agricultural land use publication-title: Land Use Policy doi: 10.1016/j.landusepol.2018.11.036 – volume: 33 start-page: 243 year: 2015 ident: 10.1016/j.apenergy.2022.119149_b0155 article-title: A GIS based integration method for geothermal resources exploration and site selection publication-title: Energy Explor Exploit doi: 10.1260/0144-5987.33.2.243 – volume: 113 start-page: 159 year: 2017 ident: 10.1016/j.apenergy.2022.119149_b0280 article-title: Solar power potential of Tanzania: Identifying CSP and PV hot spots through a GIS multicriteria decision making analysis publication-title: Renew Energy doi: 10.1016/j.renene.2017.05.077 – volume: 55 start-page: 374 year: 2013 ident: 10.1016/j.apenergy.2022.119149_b0355 article-title: A group-based spatial decision support system for wind farm site selection in Northwest Ohio publication-title: Energy Policy doi: 10.1016/j.enpol.2012.12.013 – volume: 126 start-page: 634 year: 2009 ident: 10.1016/j.apenergy.2022.119149_b0365 article-title: Response to noise from modern wind farms in The Netherlands publication-title: J Acoust Soc Am doi: 10.1121/1.3160293 – ident: 10.1016/j.apenergy.2022.119149_b0020 – ident: 10.1016/j.apenergy.2022.119149_b0450 – volume: 103 start-page: 501 year: 2017 ident: 10.1016/j.apenergy.2022.119149_b0360 article-title: Application of the GIS-DANP-MABAC multi-criteria model for selecting the location of wind farms: A case study of Vojvodina publication-title: Serbia Renew Energy doi: 10.1016/j.renene.2016.11.057 – volume: 26 year: 2019 ident: 10.1016/j.apenergy.2022.119149_b0375 article-title: ENSPRESO - an open, EU-28 wide, transparent and coherent database of wind, solar and biomass energy potentials publication-title: Energy Strateg Rev – volume: 15 start-page: 3332 year: 2011 ident: 10.1016/j.apenergy.2022.119149_b0075 article-title: GIS-based wind farm site selection using spatial multi-criteria analysis (SMCA): Evaluating the case for New York State publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2011.04.010 – year: 2019 ident: 10.1016/j.apenergy.2022.119149_b0330 article-title: Systeemstudie energie-infrastructuur Groningen & Drenthe (in Dutch) publication-title: Delft – ident: 10.1016/j.apenergy.2022.119149_b0335 – ident: 10.1016/j.apenergy.2022.119149_b0610 – volume: 35 start-page: 2228 year: 2010 ident: 10.1016/j.apenergy.2022.119149_b0040 article-title: Multicriteria GIS modeling of wind and solar farms in Colorado publication-title: Renew Energy doi: 10.1016/j.renene.2010.03.014 – volume: 38 start-page: 5878 year: 2010 ident: 10.1016/j.apenergy.2022.119149_b0485 article-title: Spatial modelling of industrial heat loads and recovery potentials in the UK publication-title: Energy Policy doi: 10.1016/j.enpol.2010.05.042 – volume: 70 start-page: 295 year: 2017 ident: 10.1016/j.apenergy.2022.119149_b0165 article-title: Geothermal prospectivity mapping using GIS-based Ordered Weighted Averaging approach: A case study in Japan’s Akita and Iwate provinces publication-title: Geothermics doi: 10.1016/j.geothermics.2017.06.015 – ident: 10.1016/j.apenergy.2022.119149_b0580 – ident: 10.1016/j.apenergy.2022.119149_b0270 – volume: 11 start-page: 1333 issue: 6 year: 2018 ident: 10.1016/j.apenergy.2022.119149_b0035 article-title: Urban environment and solar PV performance: The case of the Netherlands publication-title: Energies doi: 10.3390/en11061333 – ident: 10.1016/j.apenergy.2022.119149_b0215 – volume: 51 start-page: 1354 year: 2015 ident: 10.1016/j.apenergy.2022.119149_b0295 article-title: The evaluation of solar farm locations applying Geographic Information System and Multi-Criteria Decision-Making methods: Case study in southern Morocco publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2015.07.054 – volume: 199 start-page: 117429 year: 2020 ident: 10.1016/j.apenergy.2022.119149_b0180 article-title: Bottom-up and top-down heat demand mapping methods for small municipalities, case Gllogoc publication-title: Energy doi: 10.1016/j.energy.2020.117429 – ident: 10.1016/j.apenergy.2022.119149_b0455 – ident: 10.1016/j.apenergy.2022.119149_b0025 – ident: 10.1016/j.apenergy.2022.119149_b0220 – volume: 20 start-page: 337 year: 2001 ident: 10.1016/j.apenergy.2022.119149_b0380 article-title: Energy farming in Dutch desiccation abatement areas: Yields and benefits compared to grass cultivation publication-title: Biomass Bioenergy doi: 10.1016/S0961-9534(00)00091-X – ident: 10.1016/j.apenergy.2022.119149_b0490 doi: 10.2172/1218707 – ident: 10.1016/j.apenergy.2022.119149_b0390 – volume: 2007 start-page: 90 year: 2007 ident: 10.1016/j.apenergy.2022.119149_b0350 article-title: Site Selection for Large Wind Turbine Using Gis publication-title: Int Conf Eng Environ - ICEE- – volume: 138 start-page: 20 year: 2015 ident: 10.1016/j.apenergy.2022.119149_b0080 article-title: Regional Scale wind farm and solar farm suitability assessment using GIS-assisted multi-criteria evaluation publication-title: Landsc Urban Plan doi: 10.1016/j.landurbplan.2015.02.001 – ident: 10.1016/j.apenergy.2022.119149_b0200 – volume: 140 start-page: 110694 year: 2021 ident: 10.1016/j.apenergy.2022.119149_b0550 article-title: Combining food and energy production: Design of an agrivoltaic system applied in arable and vegetable farming in Germany publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2020.110694 – year: 2010 ident: 10.1016/j.apenergy.2022.119149_b0010 article-title: Energy transitions: history, requirements, prospects publication-title: ABC-CLIO – ident: 10.1016/j.apenergy.2022.119149_b0030 – volume: 26 start-page: 32298 year: 2019 ident: 10.1016/j.apenergy.2022.119149_b0045 article-title: Multi-criteria of wind-solar site selection problem using a GIS-AHP-based approach with an application in Igdir Province/Turkey publication-title: Environ Sci Pollut Res doi: 10.1007/s11356-019-06260-1 – volume: 24 start-page: 59 year: 2001 ident: 10.1016/j.apenergy.2022.119149_b0130 article-title: Developing and applying a GIS-assisted approach to locating wind farms in the UK publication-title: Renew Energy doi: 10.1016/S0960-1481(00)00169-5 – volume: 134 start-page: 1213 year: 2019 ident: 10.1016/j.apenergy.2022.119149_b0310 article-title: Analysis of land availability for utility-scale power plants and assessment of solar photovoltaic development in the state of Arizona, USA publication-title: Renew Energy doi: 10.1016/j.renene.2018.08.064 – ident: 10.1016/j.apenergy.2022.119149_b0265 – volume: 209 start-page: 1593 year: 2019 ident: 10.1016/j.apenergy.2022.119149_b0090 article-title: Institutional harmonization for spatial integration of renewable energy: Developing an analytical approach publication-title: J Clean Prod doi: 10.1016/j.jclepro.2018.11.008 – ident: 10.1016/j.apenergy.2022.119149_b0565 – ident: 10.1016/j.apenergy.2022.119149_b0410 – start-page: 36 year: 2012 ident: 10.1016/j.apenergy.2022.119149_b0050 article-title: Prioritization decision for renewable energy development using analytic hierarchy process and geographic information system – volume: 257 start-page: 120602 year: 2020 ident: 10.1016/j.apenergy.2022.119149_b0070 article-title: Territorial planning for photovoltaic power plants using an outranking approach and GIS publication-title: J Clean Prod doi: 10.1016/j.jclepro.2020.120602 – ident: 10.1016/j.apenergy.2022.119149_b0240 – year: 2014 ident: 10.1016/j.apenergy.2022.119149_b0400 article-title: Opportunities for the refinement of grass - publication-title: FrieslandCampina – volume: 149 start-page: 565 year: 2020 ident: 10.1016/j.apenergy.2022.119149_b0315 article-title: Optimal site selection for solar photovoltaic (PV) power plants using GIS and AHP: A case study of Malatya Province publication-title: Turkey Renew Energy doi: 10.1016/j.renene.2019.12.078 – volume: 81 start-page: 825 year: 2015 ident: 10.1016/j.apenergy.2022.119149_b0115 article-title: Using GIS analytics and social preference data to evaluate utility-scale solar power site suitability publication-title: Renew Energy doi: 10.1016/j.renene.2015.04.017 – year: 2016 ident: 10.1016/j.apenergy.2022.119149_b0325 article-title: Rooftop Solar Photovoltaic Technical Potential in the United States: A Detailed publication-title: Assessment – ident: 10.1016/j.apenergy.2022.119149_b0005 – volume: 116 start-page: 387 year: 2014 ident: 10.1016/j.apenergy.2022.119149_b0520 article-title: Heat recovery opportunities in UK industry publication-title: Appl Energy doi: 10.1016/j.apenergy.2013.11.008 – volume: 13 start-page: 38 year: 2016 ident: 10.1016/j.apenergy.2022.119149_b0065 article-title: Multi-criteria decision support system for wind farm site selection using GIS publication-title: Sustain Energy Technol Assessments doi: 10.1016/j.seta.2015.11.007 – volume: 52 start-page: 9 year: 2015 ident: 10.1016/j.apenergy.2022.119149_b0555 article-title: Exploring the decision-space for renewable energy generation to enhance spatial efficiency publication-title: Environ Impact Assess Rev doi: 10.1016/j.eiar.2014.06.005 – volume: 29 start-page: 847 year: 2007 ident: 10.1016/j.apenergy.2022.119149_b0480 article-title: Save production: A bottom-up energy model for Dutch industry and agriculture publication-title: Energy Econ doi: 10.1016/j.eneco.2007.02.001 – year: 2020 ident: 10.1016/j.apenergy.2022.119149_b0500 – volume: 169 start-page: 866 year: 2016 ident: 10.1016/j.apenergy.2022.119149_b0465 article-title: Methodologies to estimate industrial waste heat potential by transferring key figures: A case study for Spain publication-title: Appl Energy doi: 10.1016/j.apenergy.2016.02.089 – volume: 91 start-page: 637 year: 2012 ident: 10.1016/j.apenergy.2022.119149_b0460 article-title: Direct heat resource assessment and subsurface information systems for geothermal aquifers; The Dutch perspective publication-title: Geol En Mijnbouw/Netherlands J Geosci – ident: 10.1016/j.apenergy.2022.119149_b0405 – ident: 10.1016/j.apenergy.2022.119149_b0245 – volume: 12 start-page: 1 year: 2020 ident: 10.1016/j.apenergy.2022.119149_b0300 article-title: A spatial-based integration model for regional scale solar energy technical potential publication-title: Sustain – ident: 10.1016/j.apenergy.2022.119149_b0260 – volume: 54 start-page: 299 year: 2016 ident: 10.1016/j.apenergy.2022.119149_b0535 article-title: The potential of agrivoltaic systems publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2015.10.024 – volume: 70 start-page: 90 year: 2013 ident: 10.1016/j.apenergy.2022.119149_b0125 article-title: GIS-based site selection methodology for hybrid renewable energy systems: A case study from western Turkey publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2013.02.004 – volume: 114 year: 2019 ident: 10.1016/j.apenergy.2022.119149_b0275 article-title: A high-resolution geospatial assessment of the rooftop solar photovoltaic potential in the European Union publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2019.109309 – ident: 10.1016/j.apenergy.2022.119149_b0420 – ident: 10.1016/j.apenergy.2022.119149_b0340 – ident: 10.1016/j.apenergy.2022.119149_b0160 – volume: 66 start-page: 478 year: 2014 ident: 10.1016/j.apenergy.2022.119149_b0105 article-title: GIS-based photovoltaic solar farms site selection using ELECTRE-TRI: Evaluating the case for Torre Pacheco, Murcia publication-title: Southeast of Spain Renew Energy doi: 10.1016/j.renene.2013.12.038 – ident: 10.1016/j.apenergy.2022.119149_b0600 – volume: 91 start-page: 621 issue: 4 year: 2012 ident: 10.1016/j.apenergy.2022.119149_b0095 article-title: Reservoir characterisation of aquifers for direct heat production: Methodology and screening of the potential reservoirs for the Netherlands publication-title: Geol En Mijnbouw/Netherlands J Geosci – volume: 37 start-page: 70 year: 2018 ident: 10.1016/j.apenergy.2022.119149_b0175 article-title: A GIS-statistical approach for assessing built environment energy use at urban scale publication-title: Sustain Cities Soc doi: 10.1016/j.scs.2017.10.002 – ident: 10.1016/j.apenergy.2022.119149_b0495 – ident: 10.1016/j.apenergy.2022.119149_b0620 – volume: 21 start-page: 1855 year: 2019 ident: 10.1016/j.apenergy.2022.119149_b0560 article-title: Integrating MCDM and GIS for renewable energy spatial models: assessing the individual and combined potential for wind, solar and biomass energy in Southern Spain publication-title: Clean Technol Environ Policy doi: 10.1007/s10098-019-01754-5 – ident: 10.1016/j.apenergy.2022.119149_b0590 – volume: 10 start-page: 720 issue: 5 year: 2017 ident: 10.1016/j.apenergy.2022.119149_b0170 article-title: Mapping urban heat demand with the use of gis-based tools publication-title: Energies doi: 10.3390/en10050720 – ident: 10.1016/j.apenergy.2022.119149_b0185 – volume: 176 start-page: 604 year: 2019 ident: 10.1016/j.apenergy.2022.119149_b0525 article-title: Heat Roadmap Europe: Heat distribution costs publication-title: Energy doi: 10.1016/j.energy.2019.03.189 – ident: 10.1016/j.apenergy.2022.119149_b0205 – ident: 10.1016/j.apenergy.2022.119149_b0225 – volume: 119 start-page: 863 year: 2018 ident: 10.1016/j.apenergy.2022.119149_b0290 article-title: Large scale PV sites selection by combining GIS and Analytical Hierarchy Process publication-title: Case study: Eastern Morocco Renew Energy – volume: 16 start-page: 2053 issue: 4 year: 2012 ident: 10.1016/j.apenergy.2022.119149_b0140 article-title: Spatial variation of environmental impacts of regional biomass chains publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2012.01.027 – ident: 10.1016/j.apenergy.2022.119149_b0595 – ident: 10.1016/j.apenergy.2022.119149_b0570 – volume: 138 start-page: 207 year: 2018 ident: 10.1016/j.apenergy.2022.119149_b0515 article-title: Industrial waste heat: Estimation of the technically available resource in the EU per industrial sector, temperature level and country publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2018.04.043 – year: 2020 ident: 10.1016/j.apenergy.2022.119149_b0575 article-title: OPERA: a new high-resolution energy system model for sector integration research publication-title: Environ Model Assess – ident: 10.1016/j.apenergy.2022.119149_b0475 – volume: 36 start-page: 2725 year: 2011 ident: 10.1016/j.apenergy.2022.119149_b0530 article-title: Combining solar photovoltaic panels and food crops for optimising land use: Towards new agrivoltaic schemes publication-title: Renew Energy doi: 10.1016/j.renene.2011.03.005 – volume: 306 start-page: 118035 year: 2022 ident: 10.1016/j.apenergy.2022.119149_b0100 article-title: Regionalization of a national integrated energy system model: A case study of the northern Netherlands publication-title: Appl Energy doi: 10.1016/j.apenergy.2021.118035 – volume: 206 start-page: 1495 year: 2017 ident: 10.1016/j.apenergy.2022.119149_b0540 article-title: Increasing the total productivity of a land by combining mobile photovoltaic panels and food crops publication-title: Appl Energy doi: 10.1016/j.apenergy.2017.09.113 – ident: 10.1016/j.apenergy.2022.119149_b0445 – ident: 10.1016/j.apenergy.2022.119149_b0615 – volume: 25 start-page: 119 year: 2003 ident: 10.1016/j.apenergy.2022.119149_b0370 article-title: Exploration of the ranges of the global potential of biomass for energy publication-title: Biomass Bioenergy doi: 10.1016/S0961-9534(02)00191-5 – volume: 170 start-page: 773 year: 2007 ident: 10.1016/j.apenergy.2022.119149_b0395 article-title: Growth of legume and nonlegume catch crops and residual-N effects in spring barley on coarse sand publication-title: J Plant Nutr Soil Sci doi: 10.1002/jpln.200625222 – ident: 10.1016/j.apenergy.2022.119149_b0195 – volume: 27 start-page: 205 year: 2004 ident: 10.1016/j.apenergy.2022.119149_b0385 article-title: Willow short-rotation coppice in multiple land-use systems: Evaluation of four combination options in the Dutch context publication-title: Biomass Bioenergy doi: 10.1016/j.biombioe.2004.01.008 – ident: 10.1016/j.apenergy.2022.119149_b0470 – volume: 14 start-page: 439 year: 1998 ident: 10.1016/j.apenergy.2022.119149_b0015 article-title: Exploration of the land potential for the production of biomass for energy in the Netherlands publication-title: Biomass Bioenergy doi: 10.1016/S0961-9534(98)00002-6 – ident: 10.1016/j.apenergy.2022.119149_b0210 – volume: 74 start-page: 663 year: 2014 ident: 10.1016/j.apenergy.2022.119149_b0510 article-title: Heat Roadmap Europe: Identifying strategic heat synergy regions publication-title: Energy Policy doi: 10.1016/j.enpol.2014.07.015 – volume: 74 start-page: 223 year: 2000 ident: 10.1016/j.apenergy.2022.119149_b0435 article-title: Solid-liquid separation of livestock slurry: efficiency and cost publication-title: Bioresour Technol doi: 10.1016/S0960-8524(00)00016-X – ident: 10.1016/j.apenergy.2022.119149_b0425 – ident: 10.1016/j.apenergy.2022.119149_b0345 doi: 10.1109/TAPENERGY.2017.8397360 – volume: 10 start-page: 513 year: 2017 ident: 10.1016/j.apenergy.2022.119149_b0505 article-title: Industrial waste heat potential in Germany—a bottom-up analysis publication-title: Energy Effic doi: 10.1007/s12053-016-9463-6 – volume: 133 start-page: 1201 year: 2019 ident: 10.1016/j.apenergy.2022.119149_b0305 article-title: Multi-criteria GIS-based modelling technique for identifying potential solar farm sites: A case study in Mauritius publication-title: Renew Energy doi: 10.1016/j.renene.2018.08.105 – ident: 10.1016/j.apenergy.2022.119149_b0190 – volume: 19 start-page: 2231 year: 2017 ident: 10.1016/j.apenergy.2022.119149_b0285 article-title: Optimal site selection for solar power plants using multi-criteria evaluation: A case study from the Ayranci region in Karaman publication-title: Turkey Clean Technol Environ Policy doi: 10.1007/s10098-017-1405-2 – volume: 206 start-page: 1225 year: 2017 ident: 10.1016/j.apenergy.2022.119149_b0055 article-title: Solar PV power plant site selection using a GIS-AHP based approach with application in Saudi Arabia publication-title: Appl Energy doi: 10.1016/j.apenergy.2017.10.024 – ident: 10.1016/j.apenergy.2022.119149_b0145 doi: 10.3997/2214-4609.201401010 – ident: 10.1016/j.apenergy.2022.119149_b0255 – ident: 10.1016/j.apenergy.2022.119149_b0230 |
SSID | ssj0002120 |
Score | 2.4186618 |
Snippet | •Renewable supply potentials are strongly dependent on spatial policies.•Spatial policy changes can unlock vast potentials of renewable energy.•Combining... Spatially sensitive regional renewables’ potentials are greatly influenced by existing land-use claims and related spatial and environmental policies.... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 119149 |
SubjectTerms | analytical methods And biomass biomass economic feasibility energy forests heat Heat demand industrial wastes infrastructure land use Land-use constraints Netherlands Regional level Renewable potential Scenarios wind |
Title | Detailed spatial analysis of renewables’ potential and heat: A study of Groningen Province in the northern Netherlands |
URI | https://dx.doi.org/10.1016/j.apenergy.2022.119149 https://www.proquest.com/docview/2718231085 |
Volume | 318 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA6lXvQgWhXfRPC6faTJPrwVrVbFIljBW0hms1CRbekDPYl_w7_nLzGTZrUK0oPH3Z0sSyaZ-TaZ7wshx0wDBw0qaMRIyWFJFiitwU53m_1ElmahRr7zTTfs3POrB_FQIqcFFwbLKn3sn8V0F639nZrvzdqw36_dIdp1-N-JB3HUBOU8wlFeff0u82BemtEaB2g9xxJ-rKqhcQw7-5_IWNVpnSV_Jahfodrln_M1suqBI23Nvm2dlExeIStzcoIVstX-Zq1ZUz9txxvk5cwVipqUjrGA2j5TXouEDjKKopbPyKAaf7y90-FgggVEzialGKpPaIs6FVo0vhi59VuT01u3GAGG9nNqUSTNcQfIjHI6xyHeJL3zdu-0E_gjFwJoJs1JoDKLTwRwERkNItRgkoxHjGsBQqQW7MVhIoSKI0iTLOJGmYgBCsrEzEQibG6Rcj7IzTahCQMU7oFYceCNOqi65qCi1MI9BszwHSKKbpbg5cjxVIwnWdSdPcrCPRLdI2fu2SG1r3bDmSDHwhZJ4UX5Y2hJmzUWtj0q3C7tvMPNFJWbwXQsmU3qiI1jsfuP9--RZbzCxeKG2CflyWhqDizKmehDN4wPyVLr8rrT_QQSswCJ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTiMxEC1BOAAHxDIIhs1Ic21CHLsXbhFb2KKRyEjcLLvaLQWhTpQEzRznN_g9vgSX44aAhDhwbbtaLZdd9dqu9wzwixsUaFBHjZQoOTwrIm0MuuXusp8s8iI2xHe-6cTtP-LyTt7NwHHFhaGyyhD7JzHdR-vwpB5Gsz7o9eq3hHY9_vfiQULMwhypU8kazLUurtqd14DMgzqj6x-RwRRR-P5AD6wn2blfRc4PvNxZ9lmO-hCtfQo6W4algB1Za_J5KzBjy1VYnFIUXIX10zfimusaVu5oDf6d-FpRm7MR1VC7Nh3kSFi_YKRr-ZdIVKPn_09s0B9TDZHvkzOK1kesxbwQLXU-H_otXFuy334_Ai3rlcwBSVbSIZAdlmyKRvwDumen3eN2FG5diLCZNceRLhxEkShkYg3K2KDNCpFwYSRKmTu8l8aZlDpNMM-KRFhtE46kKZNym8i4uQ61sl_aDWAZR9LuwVQLFI1D1IdGoE5yh_g4cis2QVbDrDAoktPFGA-qKj27V5V7FLlHTdyzCfVXu8FEk-NLi6zyono3u5RLHF_a7lduV27p0XmKLm3_caS4y-sEj1P58xvv34P5dvfmWl1fdK62YIFaaO-4IbehNh4-2h0HesZmN0zqF88IAzo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detailed+spatial+analysis+of+renewables%E2%80%99+potential+and+heat%3A+A+study+of+Groningen+Province+in+the+northern+Netherlands&rft.jtitle=Applied+energy&rft.au=Sahoo%2C+Somadutta&rft.au=Zuidema%2C+Christian&rft.au=van+Stralen%2C+Joost+N.P.&rft.au=Sijm%2C+Jos&rft.date=2022-07-15&rft.pub=Elsevier+Ltd&rft.issn=0306-2619&rft.eissn=1872-9118&rft.volume=318&rft_id=info:doi/10.1016%2Fj.apenergy.2022.119149&rft.externalDocID=S0306261922005244 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon |