Predictive modeling of atmospheric nuclear fallout microphysics
The capability to predict size, composition, and transport of nuclear fallout enables public officials to determine immediate and prolonged guidance in the event of a nuclear incident. Predictive computer models of fallout can also provide useful insight for nuclear forensic response when detailed r...
Saved in:
Published in | The Science of the total environment Vol. 951; p. 175536 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
15.11.2024
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The capability to predict size, composition, and transport of nuclear fallout enables public officials to determine immediate and prolonged guidance in the event of a nuclear incident. Predictive computer models of fallout can also provide useful insight for nuclear forensic response when detailed radiochemical processes can be reliably included. Current post-detonation nuclear fallout models prescribe particle size distributions empirically or semi-empirically, based on measurements across limited conditions pertaining to tests conducted primarily in Nevada and the Pacific. These empirical fallout relationships may be subject to large uncertainties in particle size and radionuclide activity distribution if used to extrapolate to other regions with different environmental conditions (e.g., urbanized areas). Replacing empirical relationships with physics-based microphysical process modeling can enable significant advances in the fidelity of predictive models simulating distributions of fallout across diverse environments. Particle microphysics describes the formation and evolution of fallout particles, as well as the interaction of radioactive material with entrained particles, which requires accounting for fundamental processes such as nucleation, condensation, and coagulation. The objective of this perspective article is to summarize computational techniques to simulate particle microphysical processes advancing the fidelity of predicting nuclear fallout. We review current empirical models for simulating post-detonation fallout and assess promising research directions moving towards physics-based predictive systems.
Schematic of future nuclear detonation model including particle microphysics coupled with feedback to processes such as cloud microphysics, momentum, entrainment, and meteorology. Future models will be better able to predict nuclear effects by including more realistic atmospheric dynamics and potentially untested environments. The background image was created with the assistance of DALL·E 2. [Display omitted]
•Current post-detonation nuclear fallout models prescribe particle characteristics.•Fallout microphysics models can predict effects across diverse conditions.•Recent advancements in cloud and aerosol microphysics models are applicable to fallout modeling.•Improved thermodynamics and chemistry knowledge is necessary at relevant conditions.•Coupling fallout and atmospheric models enhances the fidelity of large-scale impact prediction and interpretation. |
---|---|
AbstractList | The capability to predict size, composition, and transport of nuclear fallout enables public officials to determine immediate and prolonged guidance in the event of a nuclear incident. Predictive computer models of fallout can also provide useful insight for nuclear forensic response when detailed radiochemical processes can be reliably included. Current post-detonation nuclear fallout models prescribe particle size distributions empirically or semi-empirically, based on measurements across limited conditions pertaining to tests conducted primarily in Nevada and the Pacific. These empirical fallout relationships may be subject to large uncertainties in particle size and radionuclide activity distribution if used to extrapolate to other regions with different environmental conditions (e.g., urbanized areas). Replacing empirical relationships with physics-based microphysical process modeling can enable significant advances in the fidelity of predictive models simulating distributions of fallout across diverse environments. Particle microphysics describes the formation and evolution of fallout particles, as well as the interaction of radioactive material with entrained particles, which requires accounting for fundamental processes such as nucleation, condensation, and coagulation. The objective of this perspective article is to summarize computational techniques to simulate particle microphysical processes advancing the fidelity of predicting nuclear fallout. We review current empirical models for simulating post-detonation fallout and assess promising research directions moving towards physics-based predictive systems. The capability to predict size, composition, and transport of nuclear fallout enables public officials to determine immediate and prolonged guidance in the event of a nuclear incident. Predictive computer models of fallout can also provide useful insight for nuclear forensic response when detailed radiochemical processes can be reliably included. Current post-detonation nuclear fallout models prescribe particle size distributions empirically or semi-empirically, based on measurements across limited conditions pertaining to tests conducted primarily in Nevada and the Pacific. These empirical fallout relationships may be subject to large uncertainties in particle size and radionuclide activity distribution if used to extrapolate to other regions with different environmental conditions (e.g., urbanized areas). Replacing empirical relationships with physics-based microphysical process modeling can enable significant advances in the fidelity of predictive models simulating distributions of fallout across diverse environments. Particle microphysics describes the formation and evolution of fallout particles, as well as the interaction of radioactive material with entrained particles, which requires accounting for fundamental processes such as nucleation, condensation, and coagulation. The objective of this perspective article is to summarize computational techniques to simulate particle microphysical processes advancing the fidelity of predicting nuclear fallout. We review current empirical models for simulating post-detonation fallout and assess promising research directions moving towards physics-based predictive systems.The capability to predict size, composition, and transport of nuclear fallout enables public officials to determine immediate and prolonged guidance in the event of a nuclear incident. Predictive computer models of fallout can also provide useful insight for nuclear forensic response when detailed radiochemical processes can be reliably included. Current post-detonation nuclear fallout models prescribe particle size distributions empirically or semi-empirically, based on measurements across limited conditions pertaining to tests conducted primarily in Nevada and the Pacific. These empirical fallout relationships may be subject to large uncertainties in particle size and radionuclide activity distribution if used to extrapolate to other regions with different environmental conditions (e.g., urbanized areas). Replacing empirical relationships with physics-based microphysical process modeling can enable significant advances in the fidelity of predictive models simulating distributions of fallout across diverse environments. Particle microphysics describes the formation and evolution of fallout particles, as well as the interaction of radioactive material with entrained particles, which requires accounting for fundamental processes such as nucleation, condensation, and coagulation. The objective of this perspective article is to summarize computational techniques to simulate particle microphysical processes advancing the fidelity of predicting nuclear fallout. We review current empirical models for simulating post-detonation fallout and assess promising research directions moving towards physics-based predictive systems. The capability to predict size, composition, and transport of nuclear fallout enables public officials to determine immediate and prolonged guidance in the event of a nuclear incident. Predictive computer models of fallout can also provide useful insight for nuclear forensic response when detailed radiochemical processes can be reliably included. Current post-detonation nuclear fallout models prescribe particle size distributions empirically or semi-empirically, based on measurements across limited conditions pertaining to tests conducted primarily in Nevada and the Pacific. These empirical fallout relationships may be subject to large uncertainties in particle size and radionuclide activity distribution if used to extrapolate to other regions with different environmental conditions (e.g., urbanized areas). Replacing empirical relationships with physics-based microphysical process modeling can enable significant advances in the fidelity of predictive models simulating distributions of fallout across diverse environments. Particle microphysics describes the formation and evolution of fallout particles, as well as the interaction of radioactive material with entrained particles, which requires accounting for fundamental processes such as nucleation, condensation, and coagulation. The objective of this perspective article is to summarize computational techniques to simulate particle microphysical processes advancing the fidelity of predicting nuclear fallout. We review current empirical models for simulating post-detonation fallout and assess promising research directions moving towards physics-based predictive systems. Schematic of future nuclear detonation model including particle microphysics coupled with feedback to processes such as cloud microphysics, momentum, entrainment, and meteorology. Future models will be better able to predict nuclear effects by including more realistic atmospheric dynamics and potentially untested environments. The background image was created with the assistance of DALL·E 2. [Display omitted] •Current post-detonation nuclear fallout models prescribe particle characteristics.•Fallout microphysics models can predict effects across diverse conditions.•Recent advancements in cloud and aerosol microphysics models are applicable to fallout modeling.•Improved thermodynamics and chemistry knowledge is necessary at relevant conditions.•Coupling fallout and atmospheric models enhances the fidelity of large-scale impact prediction and interpretation. |
ArticleNumber | 175536 |
Author | Knight, K.B. Balboni, E. McGuffin, D.L. Nasstrom, J.S. Lucas, D.D. Lundquist, K.A. |
Author_xml | – sequence: 1 givenname: D.L. surname: McGuffin fullname: McGuffin, D.L. email: mcguffin1@llnl.gov – sequence: 2 givenname: D.D. surname: Lucas fullname: Lucas, D.D. – sequence: 3 givenname: E. surname: Balboni fullname: Balboni, E. – sequence: 4 givenname: J.S. surname: Nasstrom fullname: Nasstrom, J.S. – sequence: 5 givenname: K.A. surname: Lundquist fullname: Lundquist, K.A. – sequence: 6 givenname: K.B. surname: Knight fullname: Knight, K.B. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39155003$$D View this record in MEDLINE/PubMed https://www.osti.gov/biblio/2434049$$D View this record in Osti.gov |
BookMark | eNqFkU9P5DAMxaMVq2WA_QpQceLSwWnSpjkhNOKfhMQelnPUpu5ORm0yJOlIfPtNVeCKL5asny2_907IkXUWCbmgsKZAq-vdOmgTXUR7WBdQ8DUVZcmqH2RFayFzCkV1RFYAvM5lJcUxOQlhB6lETX-RYyZpWQKwFbn547EzOpoDZqPrcDD2X-b6rImjC_steqMzO-kBG5_1zTC4KWaj0d7tt-_B6HBGfqZxwN8f_ZS83t_93Tzmzy8PT5vb51wzyWLeoCjaQoCGXhSMQVXpljdciqrXLbaC9dCxWgDr67aTNGGSay7qumBtzVrOTsnlcteFaNQsHvVWO2tRR1VwxoHLBF0t0N67twlDVKMJGoehseimoBhIzgWIEhJ6_oFO7Yid2nszNv5dfTqTALEASWsIHvsvhIKaM1A79ZWBmjNQSwZp83bZxOTHwaCfObQ6-eznbztnvr3xH_D5kuk |
Cites_doi | 10.1016/j.compfluid.2020.104651 10.1088/0022-3727/44/21/215201 10.5194/acp-13-3027-2013 10.1016/j.sab.2022.106610 10.5194/gmd-5-709-2012 10.1126/science.124.3220.474 10.1504/IJEM.2007.014301 10.1016/j.jaerosci.2022.106134 10.1016/j.sab.2021.106283 10.1088/1361-6463/aa92f5 10.1002/2017JD027331 10.1029/2002JD002691 10.1016/j.jenvrad.2014.05.006 10.5194/acp-7-2339-2007 10.1097/00004032-198208000-00002 10.1029/2020JD033056 10.1002/jgrd.50196 10.1063/1.481644 10.1038/s41598-018-28674-6 10.1029/2008JD011073 10.1016/j.atmosenv.2021.118363 10.5194/gmd-3-519-2010 10.1029/2000JD000198 10.1016/j.jenvrad.2015.04.006 10.1016/S1352-2310(98)00006-5 10.1038/nature10343 10.1007/s10967-022-08442-7 10.1002/qj.441 10.1080/02786829708965504 10.1016/j.jaerosci.2022.105959 10.1016/j.gca.2016.10.036 10.1088/0963-0252/3/3/023 10.1016/S1352-2310(99)00379-9 10.1175/1520-0469(1975)032<1977:AEMFNS>2.0.CO;2 10.1073/pnas.2014761117 10.1029/2007JD009445 10.1029/2019JD030509 10.1016/j.atmosenv.2021.118852 10.1029/2020JD034332 10.1002/2014MS000421 10.1098/rspa.1952.0099 10.1080/02786826.2020.1723787 10.5194/gmd-2-97-2009 10.1016/j.jenvrad.2004.01.023 10.1016/j.jenvrad.2021.106700 10.1126/science.133.3469.1991 10.1097/00004032-198205000-00003 10.1016/j.jenvrad.2023.107299 10.5194/acp-8-2469-2008 10.1097/HP.0b013e31824c7bc9 10.1016/j.jenvrad.2017.02.010 10.1029/2019MS001689 10.1016/S1352-2310(01)00540-4 10.5194/acp-18-17451-2018 10.1029/2001JD001549 10.1017/S0022377815000793 10.5194/acp-12-4449-2012 10.1016/j.mineng.2011.03.015 10.1080/027868299304039 10.1080/02786826.2020.1723788 10.1029/2022JD036599 10.1029/JC075i036p07559 10.5194/gmd-3-391-2010 10.1038/s41598-022-07834-9 |
ContentType | Journal Article |
Copyright | 2024 The Authors Copyright © 2024 The Authors. Published by Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2024 The Authors – notice: Copyright © 2024 The Authors. Published by Elsevier B.V. All rights reserved. |
CorporateAuthor | Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States) |
CorporateAuthor_xml | – sequence: 0 name: Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States) |
DBID | 6I. AAFTH AAYXX CITATION NPM 7X8 OTOTI |
DOI | 10.1016/j.scitotenv.2024.175536 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed MEDLINE - Academic OSTI.GOV |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Public Health Biology Environmental Sciences |
EISSN | 1879-1026 |
ExternalDocumentID | 2434049 39155003 10_1016_j_scitotenv_2024_175536 S0048969724056869 |
Genre | Journal Article Review |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5VS 6I. 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAFTH AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AAXKI AAXUO ABFNM ABFYP ABJNI ABLST ABMAC ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFJKZ AFKWA AFTJW AFXIZ AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJOXV AKIFW AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W K-O KCYFY KOM LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCU SDF SDG SDP SES SEW SPCBC SSJ SSZ T5K ~02 ~G- ~KM 53G AAQXK AATTM AAYJJ AAYWO AAYXX ABEFU ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO ADXHL AEGFY AEIPS AEUPX AFPUW AGCQF AGHFR AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HMC HVGLF HZ~ R2- RIG SEN SSH WUQ XPP ZXP ZY4 NPM 7X8 OTOTI |
ID | FETCH-LOGICAL-c393t-ae72b270c0f7233066cb4a4976fcbeb73f0d38703f8bd91c0f94c478823b83b43 |
IEDL.DBID | .~1 |
ISSN | 0048-9697 1879-1026 |
IngestDate | Mon Dec 16 02:26:14 EST 2024 Fri Jul 11 08:34:35 EDT 2025 Wed Feb 19 02:08:46 EST 2025 Tue Jul 01 03:16:32 EDT 2025 Sat Dec 28 15:51:28 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Nuclear detonation Microphysics Fallout Emergency response |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. Copyright © 2024 The Authors. Published by Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c393t-ae72b270c0f7233066cb4a4976fcbeb73f0d38703f8bd91c0f94c478823b83b43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 AC52-07NA27344 USDOE National Nuclear Security Administration (NNSA), Office of Defense Nuclear Nonproliferation LLNL-JRNL-864802 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0048969724056869 |
PMID | 39155003 |
PQID | 3094470750 |
PQPubID | 23479 |
ParticipantIDs | osti_scitechconnect_2434049 proquest_miscellaneous_3094470750 pubmed_primary_39155003 crossref_primary_10_1016_j_scitotenv_2024_175536 elsevier_sciencedirect_doi_10_1016_j_scitotenv_2024_175536 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-11-15 |
PublicationDateYYYYMMDD | 2024-11-15 |
PublicationDate_xml | – month: 11 year: 2024 text: 2024-11-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands – name: United States |
PublicationTitle | The Science of the total environment |
PublicationTitleAlternate | Sci Total Environ |
PublicationYear | 2024 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – sequence: 0 name: Elsevier – name: Elsevier B.V |
References | AboEl-Fetouh, O'Neill, Kodros, Pierce, Lu, Ranjbar, Xian (bb0005) 2022; 271 Finko, Curreli, Weisz, Crowhurst, Rose, Koroglu, Radousky, Armstrong (bb0095) 2017; 50 Hicks (bb0150) 1982; 42 Shima, Kusano, Kawano, Sugiyama, Kawahara (bb0340) 2009; 135 Tompkins (bb0375) 1968 Liu (bb0220) 2000; 112 Goumans, Bromley (bb0135) 2012; 420 Miller (bb0265) 1960 Bridgman, Bigelow (bb0050) 1982; 43 Nasstrom, Sugiyama, Baskett, Larsen, Bradley (bb0290) 2007; 4 Rolph, Ngan, Draxler (bb0330) 2014; 136 Skaar (bb0350) 2005 Yu, Nadykto, Herb, Luo, Nazarenko, Uvarova (bb0425) 2018; 18 O’Day (bb0305) 2009 Ferlic (bb0090) 1983 Kanarska, Dunn, Glascoe, Lundquist, Noble (bb0160) 2020; 210 Kautz, Weerakkody, Finko, Curreli, Koroglu, Rose, Weisz, Crowhurst, Radousky, DeMagistris, Sinha, Levin, Dreizin, Phillips, Glumac, Harilal (bb0165) 2021; 185 Weisenstein, Penner, Herzog, Liu (bb0395) 2007; 7 Mann, Carslaw, Spracklen, Ridley, Manktelow, Chipperfield, Pickering, Johnson (bb0240) 2010; 3 Kokkola, Korhonen, Lehtinen, Makkonen, Asmi, Järvenoja, Anttila, Partanen, Kulmala, Järvinen, Laaksonen, Kerminen (bb0175) 2008; 8 Bellouin, Mann, Woodhouse, Johnson, Carslaw, Dalvi (bb0045) 2013; 13 Korts, Norman (bb0195) 1967 Mann, Carslaw, Ridley, Spracklen, Pringle, Merikanto, Korhonen, Schwarz, Lee, Manktelow, Woodhouse, Schmidt, Breider, Emmerson, Reddington, Chipperfield, Pickering (bb0245) 2012; 12 Reisner, D'Angelo, Koo, Even, Hecht, Hunke, Comeau, Bos, Cooley (bb0320) 2018; 123 Andrejczuk, Reisner, Henson, Dubey, Jeffery (bb0015) 2008; 113 U.S. Department of Energy (bb0380) 2015 Girshick (bb0125) 1994; 3 Coupe, Bardeen, Robock, Toon (bb0060) 2019; 124 Harvey, Serduke (bb0140) 1979 Lundquist, Arthur, Neuscamman, Morris, Scullard, Cook, Wimer, Goldstein, Spriggs, Glascoe, Nasstrom (bb0230) 2023; 270 McGuffin, Lucas, Morris, Spriggs, Knight (bb0255) 2022; 127 Weisz, Jacobsen, Marks, Knight, Isselhardt, Matzel, Weber, Prussin, Hutcheon (bb0400) 2017; 201 Wilson, Cuvelier, Raes (bb0410) 2001; 106 Zhang, Easter, Ghan, Abdul-Razzak (bb0435) 2002; 107 (bb0300) 1979 Easter (bb0065) 2004; 109 Koroglu, Finko, Saggese, Wagnon, Foster, McGuffin, Lucas, Rose, Crowhurst, Weisz, Radousky, Curreli, Knight (bb0190) 2022; 162 Larson, Nasstrom (bb0210) 2002; 36 Arthur, Lundquist, Mirocha, Neuscamman, Kanarska, Nasstrom (bb0020) 2021; 254 Lewis, Knight, Matzel, Prussin, Zimmer, Kinman, Ryerson, Hutcheon (bb0215) 2015; 148 Nathans, Thews, Holland, Benson (bb0295) 1970; 75 Emerson, Hodshire, DeBolt, Bilsback, Pierce, McMeeking, Farmer (bb0070) 2020; 117 Machta, List, Hubert (bb0235) 1956; 124 English, Toon, Mills (bb0075) 2013; 118 Glasstone, Dolan (bb0130) 1977 Zhang, Sharma, Dhawan, Dhanraj, Li, Biswas (bb0440) 2020; 54 Fuchs (bb0110) 1964 Molenkamp (bb0270) 1979 Kwapis, Villa-Aleman, Hartig (bb0205) 2023; 200 Balboni, Dai, Ferrier, Knight (bb0035) 2022 Koroglu, Wagnon, Dai, Crowhurst, Armstrong, Weisz, Mehl, Zaug, Radousky, Rose (bb0185) 2018; 8 Morrison, van Lier-Walqui, Fridlind, Grabowski, Harrington, Hoose, Korolev, Kumjian, Milbrandt, Pawlowska, Posselt, Prat, Reimel, Shima, van Diedenhoven, Xue (bb0285) 2020; 12 Wu, Chen, Chen, Li (bb0415) 2023; 169 Ermak, Nasstrom (bb0080) 2000; 34 Jacobson (bb0155) 2003; 108 Pringle, Tost, Message, Steil, Giannadaki, Nenes, Fountoukis, Stier, Vignati, Lelieveld (bb0310) 2010; 3 Sugiyama, Nasstrom, Pobanz, Foster, Simpson, Vogt, Aluzzi, Homann (bb0365) 2012; 102 Riemer, West, Zaveri, Easter (bb0325) 2009; 114 Redfern, Lundquist, Toon, Muñoz-Esparza, Bardeen, Kosović (bb0315) 2021; 126 Meyer, Deglon (bb0260) 2011; 24 Seinfeld, Pandis (bb0335) 2006 Zhang, Seigneur, Seinfeld, Jacobson, Binkowski (bb0430) 1999; 31 Kokkola, Hommel, Kazil, Niemeier, Partanen, Feichter, Timmreck (bb0180) 2009; 2 Liu, Easter, Ghan, Zaveri, Rasch, Shi, Lamarque, Gettelman, Morrison, Vitt, Conley, Park, Neale, Hannay, Ekman, Hess, Mahowald, Collins, Iacono, Bretherton, Flanner, Mitchell (bb0225) 2012; 5 Yu, Toon, Bardeen, Mills, Fan, English, Neely (bb0420) 2015; 7 Kuran (bb0200) 2006 Baker (bb0030) 1987 Sreekanth, Anand, Ikkurthi, Chaudhury, Sapra, Mayya, Chaturvedi (bb0360) 2020; 54 Wagman, Lundquist, Tang, Glascoe, Bader (bb0390) 2020; 125 Gillespie (bb0120) 1975; 32 Farley (bb0085) 1952; 212 Heft (bb0145) 1970 Vishnyakov, Kiro, Ennan (bb0385) 2011; 44 Spriggs, Neuscamman, Nasstrom, Knight (bb0355) 2020; 21 Whitby, McMurry (bb0405) 1997; 27 Genda, Knight, Dai, Balboni, Goldblum, Hosemann (bb0115) 2021; 237 Taccogna (bb0370) 2015; 81 Simon, Bouville, Beck (bb0345) 2004; 74 Ackermann, Hass, Memmesheimer, Ebel, Binkowski, Shankar (bb0010) 1998; 32 Morris, Shestakov, Nichols, Isaac, B. (bb0280) 2020; 21 Moresco (bb0275) 2021 Auxier, Auxier, Hall (bb0025) 2017; 171 Burton, Auner, Crowhurst, Boone, Finney, Weisz, Koroglu, Jovanovic, Radousky, Knight (bb0055) 2022; 12 Freiling (bb0100) 1961; 133 Bartnicki, Saltbones (bb0040) 2008; 43 Freiling (bb0105) 1963 Kirkby, Curtius, Almeida, Dunne, Duplissy, Ehrhart, Franchin, Gagné, Ickes, Kürten, Kupc, Metzger, Riccobono, Rondo, Schobesberger, Tsagkogeorgas, Wimmer, Amorim, Bianchi, Kulmala (bb0170) 2011; 476 Martin (bb0250) 1983 Girshick (10.1016/j.scitotenv.2024.175536_bb0125) 1994; 3 Hicks (10.1016/j.scitotenv.2024.175536_bb0150) 1982; 42 Lewis (10.1016/j.scitotenv.2024.175536_bb0215) 2015; 148 Gillespie (10.1016/j.scitotenv.2024.175536_bb0120) 1975; 32 Rolph (10.1016/j.scitotenv.2024.175536_bb0330) 2014; 136 Freiling (10.1016/j.scitotenv.2024.175536_bb0105) 1963 Zhang (10.1016/j.scitotenv.2024.175536_bb0440) 2020; 54 Redfern (10.1016/j.scitotenv.2024.175536_bb0315) 2021; 126 Mann (10.1016/j.scitotenv.2024.175536_bb0240) 2010; 3 Goumans (10.1016/j.scitotenv.2024.175536_bb0135) 2012; 420 English (10.1016/j.scitotenv.2024.175536_bb0075) 2013; 118 Baker (10.1016/j.scitotenv.2024.175536_bb0030) 1987 Kuran (10.1016/j.scitotenv.2024.175536_bb0200) 2006 Jacobson (10.1016/j.scitotenv.2024.175536_bb0155) 2003; 108 Miller (10.1016/j.scitotenv.2024.175536_bb0265) 1960 Larson (10.1016/j.scitotenv.2024.175536_bb0210) 2002; 36 O’Day (10.1016/j.scitotenv.2024.175536_bb0305) 2009 Skaar (10.1016/j.scitotenv.2024.175536_bb0350) 2005 Morrison (10.1016/j.scitotenv.2024.175536_bb0285) 2020; 12 Kirkby (10.1016/j.scitotenv.2024.175536_bb0170) 2011; 476 Machta (10.1016/j.scitotenv.2024.175536_bb0235) 1956; 124 Meyer (10.1016/j.scitotenv.2024.175536_bb0260) 2011; 24 Bridgman (10.1016/j.scitotenv.2024.175536_bb0050) 1982; 43 Shima (10.1016/j.scitotenv.2024.175536_bb0340) 2009; 135 Taccogna (10.1016/j.scitotenv.2024.175536_bb0370) 2015; 81 Ackermann (10.1016/j.scitotenv.2024.175536_bb0010) 1998; 32 Wagman (10.1016/j.scitotenv.2024.175536_bb0390) 2020; 125 Ermak (10.1016/j.scitotenv.2024.175536_bb0080) 2000; 34 McGuffin (10.1016/j.scitotenv.2024.175536_bb0255) 2022; 127 Zhang (10.1016/j.scitotenv.2024.175536_bb0435) 2002; 107 Koroglu (10.1016/j.scitotenv.2024.175536_bb0190) 2022; 162 Molenkamp (10.1016/j.scitotenv.2024.175536_bb0270) 1979 Seinfeld (10.1016/j.scitotenv.2024.175536_bb0335) 2006 Ferlic (10.1016/j.scitotenv.2024.175536_bb0090) 1983 Arthur (10.1016/j.scitotenv.2024.175536_bb0020) 2021; 254 U.S. Department of Energy (10.1016/j.scitotenv.2024.175536_bb0380) 2015 Harvey (10.1016/j.scitotenv.2024.175536_bb0140) 1979 Kwapis (10.1016/j.scitotenv.2024.175536_bb0205) 2023; 200 Heft (10.1016/j.scitotenv.2024.175536_bb0145) 1970 Emerson (10.1016/j.scitotenv.2024.175536_bb0070) 2020; 117 Yu (10.1016/j.scitotenv.2024.175536_bb0425) 2018; 18 Pringle (10.1016/j.scitotenv.2024.175536_bb0310) 2010; 3 Vishnyakov (10.1016/j.scitotenv.2024.175536_bb0385) 2011; 44 Freiling (10.1016/j.scitotenv.2024.175536_bb0100) 1961; 133 Koroglu (10.1016/j.scitotenv.2024.175536_bb0185) 2018; 8 Liu (10.1016/j.scitotenv.2024.175536_bb0220) 2000; 112 Wilson (10.1016/j.scitotenv.2024.175536_bb0410) 2001; 106 Burton (10.1016/j.scitotenv.2024.175536_bb0055) 2022; 12 Easter (10.1016/j.scitotenv.2024.175536_bb0065) 2004; 109 Sugiyama (10.1016/j.scitotenv.2024.175536_bb0365) 2012; 102 Mann (10.1016/j.scitotenv.2024.175536_bb0245) 2012; 12 Nasstrom (10.1016/j.scitotenv.2024.175536_bb0290) 2007; 4 Zhang (10.1016/j.scitotenv.2024.175536_bb0430) 1999; 31 Tompkins (10.1016/j.scitotenv.2024.175536_bb0375) 1968 Andrejczuk (10.1016/j.scitotenv.2024.175536_bb0015) 2008; 113 AboEl-Fetouh (10.1016/j.scitotenv.2024.175536_bb0005) 2022; 271 Bellouin (10.1016/j.scitotenv.2024.175536_bb0045) 2013; 13 Sreekanth (10.1016/j.scitotenv.2024.175536_bb0360) 2020; 54 Bartnicki (10.1016/j.scitotenv.2024.175536_bb0040) 2008; 43 (10.1016/j.scitotenv.2024.175536_bb0300) 1979 Genda (10.1016/j.scitotenv.2024.175536_bb0115) 2021; 237 Yu (10.1016/j.scitotenv.2024.175536_bb0420) 2015; 7 Fuchs (10.1016/j.scitotenv.2024.175536_bb0110) 1964 Nathans (10.1016/j.scitotenv.2024.175536_bb0295) 1970; 75 Kanarska (10.1016/j.scitotenv.2024.175536_bb0160) 2020; 210 Reisner (10.1016/j.scitotenv.2024.175536_bb0320) 2018; 123 Spriggs (10.1016/j.scitotenv.2024.175536_bb0355) 2020; 21 Finko (10.1016/j.scitotenv.2024.175536_bb0095) 2017; 50 Morris (10.1016/j.scitotenv.2024.175536_bb0280) 2020; 21 Riemer (10.1016/j.scitotenv.2024.175536_bb0325) 2009; 114 Liu (10.1016/j.scitotenv.2024.175536_bb0225) 2012; 5 Kautz (10.1016/j.scitotenv.2024.175536_bb0165) 2021; 185 Glasstone (10.1016/j.scitotenv.2024.175536_bb0130) 1977 Wu (10.1016/j.scitotenv.2024.175536_bb0415) 2023; 169 Weisz (10.1016/j.scitotenv.2024.175536_bb0400) 2017; 201 Korts (10.1016/j.scitotenv.2024.175536_bb0195) 1967 Auxier (10.1016/j.scitotenv.2024.175536_bb0025) 2017; 171 Kokkola (10.1016/j.scitotenv.2024.175536_bb0180) 2009; 2 Moresco (10.1016/j.scitotenv.2024.175536_bb0275) 2021 Simon (10.1016/j.scitotenv.2024.175536_bb0345) 2004; 74 Weisenstein (10.1016/j.scitotenv.2024.175536_bb0395) 2007; 7 Lundquist (10.1016/j.scitotenv.2024.175536_bb0230) 2023; 270 Whitby (10.1016/j.scitotenv.2024.175536_bb0405) 1997; 27 Balboni (10.1016/j.scitotenv.2024.175536_bb0035) 2022 Kokkola (10.1016/j.scitotenv.2024.175536_bb0175) 2008; 8 Coupe (10.1016/j.scitotenv.2024.175536_bb0060) 2019; 124 Farley (10.1016/j.scitotenv.2024.175536_bb0085) 1952; 212 Martin (10.1016/j.scitotenv.2024.175536_bb0250) 1983 |
References_xml | – volume: 185 year: 2021 ident: bb0165 article-title: Optical spectroscopy and modeling of uranium gasphase oxidation: Progress and perspectives publication-title: Spectrochim. Acta B At. Spectrosc. – volume: 4 start-page: 524 year: 2007 end-page: 550 ident: bb0290 article-title: The National Atmospheric Release Advisory Center (NARAC) modeling and decision support system for radiological and nuclear emergency preparedness and response publication-title: Int. J. Emerg. Manag. – volume: 54 start-page: 739 year: 2020 end-page: 760 ident: bb0440 article-title: Comparison of discrete, discrete-sectional, modal and moment models for aerosol dynamics simulations publication-title: Aerosol Science and Technology – year: 1964 ident: bb0110 article-title: The Mechanics of Aerosols – volume: 74 start-page: 91 year: 2004 end-page: 105 ident: bb0345 article-title: The geographic distribution of radionuclide deposition across the continental US from atmospheric nuclear testing publication-title: Journal of Environmental Radioactivity – volume: 169 year: 2023 ident: bb0415 article-title: Clustering and collision of brownian particles in homogeneous and isotropic turbulence publication-title: J. Aerosol Sci. – volume: 271 year: 2022 ident: bb0005 article-title: Seasonal comparisons of GEOS-Chem-TOMAS (GCT) simulations with AERONET-inversion retrievals over sites in the north american and european arctic publication-title: Atmos. Environ. – volume: 127 year: 2022 ident: bb0255 article-title: Super-droplet method to simulate lagrangian microphysics of nuclear fallout in a homogeneous cloud publication-title: J. Geophys. Res. Atmos. – volume: 7 start-page: 2339 year: 2007 end-page: 2355 ident: bb0395 article-title: Global 2-D intercomparison of sectional and modal aerosol modules publication-title: Atmospheric Chemistry and Physics – volume: 43 start-page: 111 year: 2008 end-page: 115 ident: bb0040 article-title: Modelling atmospheric dispersion of radioactive debris released in case of nuclear explosion using the Norwegian SNAP model publication-title: Croatian Meteorological Journal – volume: 123 start-page: 2752 year: 2018 end-page: 2772 ident: bb0320 article-title: Climate impact of a regional nuclear weapons exchange: an improved assessment based on detailed source calculations publication-title: J. Geophys. Res. Atmos. – volume: 420 start-page: 3344 year: 2012 end-page: 3349 ident: bb0135 article-title: Efficient nucleation of stardust silicates via heteromolecular homogeneous condensation publication-title: Mon. Not. R. Astron. Soc. – volume: 135 start-page: 1307 year: 2009 end-page: 1320 ident: bb0340 article-title: The super-droplet method for the numerical simulation of clouds and precipitation: a particle-based and probabilistic microphysics model coupled with a non-hydrostatic model publication-title: Q. J. Roy. Meteorol. Soc. – volume: 112 start-page: 9949 year: 2000 end-page: 9955 ident: bb0220 article-title: Heterogeneous nucleation or homogeneous nucleation? publication-title: J. Chem. Phys. – volume: 50 year: 2017 ident: bb0095 article-title: A model of early formation of uranium molecular oxides in laser-ablated plasmas publication-title: J. Phys. D Appl. Phys. – volume: 254 year: 2021 ident: bb0020 article-title: Simulating nuclear cloud rise within a realistic atmosphere using the weather research and forecasting model publication-title: Atmos. Environ. – volume: 3 start-page: 519 year: 2010 end-page: 551 ident: bb0240 article-title: Description and evaluation of GLOMAP-mode: a modal global aerosol microphysics model for the UKCA composition-climate model publication-title: Geosci. Model Dev. – year: 1979 ident: bb0270 article-title: Introduction to self-induced rainout publication-title: Technical Report – volume: 54 start-page: 656 year: 2020 end-page: 667 ident: bb0360 article-title: Evolution of particle metrics in a buoyant aerosol cloud from explosive releases publication-title: Aerosol Science and Technology – volume: 125 year: 2020 ident: bb0390 article-title: Examining the climate effects of a regional nuclear weapons exchange using a multiscale atmospheric modeling approach publication-title: J. Geophys. Res. Atmos. – volume: 113 year: 2008 ident: bb0015 article-title: The potential impacts of pollution on a nondrizzling stratus deck: does aerosol number matter more than type? publication-title: J. Geophys. Res. Atmos. – year: 1977 ident: bb0130 article-title: The Effects of Nuclear Weapons – year: 1968 ident: bb0375 article-title: Department of Defense land fallout prediction system. Volume 5. Particle activity publication-title: Technical Report – year: 2005 ident: bb0350 article-title: A Comparison of the Heft Subsurface and DELFIC Particle Size Distributions and Effects in HPAC – year: 2015 ident: bb0380 article-title: United States Nuclear Tests July 1945 through September 1992 publication-title: Technical Report – volume: 107 year: 2002 ident: bb0435 article-title: Impact of aerosol size representation on modeling aerosol-cloud interactions publication-title: J. Geophys. Res. Atmos. – volume: 12 start-page: 2045 year: 2022 end-page: 2322 ident: bb0055 article-title: The effect of oxygen concentration on the speciation of laser ablated uranium publication-title: Sci. Rep. – volume: 75 start-page: 7559 year: 1970 end-page: 7572 ident: bb0295 article-title: Particle size distribution in clouds from nuclear airbursts publication-title: Journal of Geophysical Research (1896-1977) – volume: 24 start-page: 719 year: 2011 end-page: 730 ident: bb0260 article-title: Particle collision modeling – a review publication-title: Miner. Eng. – volume: 114 year: 2009 ident: bb0325 article-title: Simulating the evolution of soot mixing state with a particle-resolved aerosol model publication-title: J. Geophys. Res. Atmos. – volume: 126 year: 2021 ident: bb0315 article-title: Upper troposphere smoke injection from large areal fires publication-title: J. Geophys. Res. Atmos. – volume: 201 start-page: 410 year: 2017 end-page: 426 ident: bb0400 article-title: Deposition of vaporized species onto glassy fallout from a nearsurface nuclear test publication-title: Geochim. Cosmochim. Acta – volume: 212 start-page: 530 year: 1952 end-page: 542 ident: bb0085 article-title: The theory of the condensation of supersaturated ionfree vapour publication-title: Proc. R. Soc. Lond. A – volume: 162 year: 2022 ident: bb0190 article-title: The influence of cooling rate on condensation of iron, aluminum, and uranium oxide nanoparticles publication-title: J. Aerosol Sci. – year: 2006 ident: bb0335 article-title: Atmospheric Chemistry and Physics From Air Pollution to Climate Change – year: 1987 ident: bb0030 article-title: Implications of Atmospheric Test Fallout Data for Nuclear Winter – volume: 171 year: 2017 ident: bb0025 article-title: Review of current nuclear fallout codes publication-title: J. Environ. Radioact. – volume: 34 start-page: 1059 year: 2000 end-page: 1068 ident: bb0080 article-title: A Lagrangian stochastic diffusion method for inhomogeneous turbulence publication-title: Atmos. Environ. – year: 2009 ident: bb0305 article-title: Estimation of Weapon Yield from Inversion of Dose Rate Contours – volume: 237 year: 2021 ident: bb0115 article-title: Iron-rich microstructure records of high temperature multi-component silicate melt behavior in nuclear fallout publication-title: J. Environ. Radioact. – year: 2021 ident: bb0275 article-title: Description of nucleation, growth and coagulation processes in the modeling of debris formation after a nuclear burst publication-title: Technical Report – volume: 8 start-page: 2045 year: 2018 end-page: 2322 ident: bb0185 article-title: Gas phase chemical evolution of uranium, aluminum, and iron oxides publication-title: Sci. Rep. – volume: 210 year: 2020 ident: bb0160 article-title: Semi-implicit method to solve compressible multiphase fluid flows without acoustic time step restrictions publication-title: Comput. Fluids – volume: 109 year: 2004 ident: bb0065 article-title: MIRAGE: model description and evaluation of aerosols and trace gases publication-title: J. Geophys. Res. – volume: 5 start-page: 709 year: 2012 end-page: 739 ident: bb0225 article-title: Toward a minimal representation of aerosols in climate models: description and evaluation in the community atmosphere model CAM5 publication-title: Geosci. Model Dev. – volume: 8 start-page: 2469 year: 2008 end-page: 2483 ident: bb0175 article-title: SALSA – a sectional aerosol module for large scale applications publication-title: Atmos. Chem. Phys. – volume: 43 start-page: 205 year: 1982 end-page: 218 ident: bb0050 article-title: A new fallout prediction model publication-title: Health Phys. – volume: 12 start-page: 4449 year: 2012 end-page: 4476 ident: bb0245 article-title: Intercomparison of modal and sectional aerosol microphysics representations within the same 3-D global chemical transport model publication-title: Atmospheric Chemistry and Physics – start-page: 5371 year: 2022 end-page: 5379 ident: bb0035 article-title: Chemical and structural characterization of particulate fallout isolated from air-filters publication-title: J. Radioanal. Nucl. Chem. – volume: 12 year: 2020 ident: bb0285 article-title: Confronting the challenge of modeling cloud and precipitation microphysics publication-title: Journal of Advances in Modeling Earth Systems – volume: 106 start-page: 34081 year: 2001 end-page: 34108 ident: bb0410 article-title: A modeling study of global mixed aerosol fields publication-title: J. Geophys. Res. Atmos. – volume: 18 start-page: 17451 year: 2018 end-page: 17474 ident: bb0425 article-title: H publication-title: Atmospheric Chemistry and Physics – year: 2006 ident: bb0200 article-title: How to Photograph an Atomic Bomb – volume: 27 start-page: 673 year: 1997 end-page: 688 ident: bb0405 article-title: Modal aerosol dynamics modeling publication-title: Aerosol Sci. Tech. – year: 1979 ident: bb0140 article-title: Fallout Model for System Studies – volume: 42 start-page: 585 year: 1982 end-page: 600 ident: bb0150 article-title: Calculation of the concentration of any radionuclide deposited on the ground by offsite fallout from a nuclear detonation publication-title: Health Phys. – volume: 108 year: 2003 ident: bb0155 article-title: Development of mixed-phase clouds from multiple aerosol size distributions and the effect of the clouds on aerosol removal publication-title: Journal of Geophysical Research: Atmospheres – volume: 136 start-page: 41 year: 2014 end-page: 55 ident: bb0330 article-title: Modeling the fallout from stabilized nuclear clouds using the HYSPLIT atmospheric dispersion model publication-title: J. Environ. Radioact. – volume: 21 start-page: 103 year: 2020 end-page: 113 ident: bb0355 article-title: Fallout cloud regimes publication-title: Countering Weapons of Mass Destruction – volume: 3 start-page: 388 year: 1994 ident: bb0125 article-title: Particle nucleation and growth in thermal plasmas publication-title: Plasma Sources Sci. Technol. – volume: 102 start-page: 493 year: 2012 end-page: 508 ident: bb0365 article-title: Atmospheric dispersion modeling: challenges of the Fukushima Daiichi response publication-title: Health Phys. – volume: 81 start-page: 495810509 year: 2015 ident: bb0370 article-title: Nucleation and growth of nanoparticles in a plasma by laser ablation in liquid publication-title: Journal of Plasma Physics – year: 1979 ident: bb0300 article-title: DELFIC: Department of Defense fallout prediction system. Volume I - fundamentals publication-title: Technical Report – volume: 124 start-page: 474 year: 1956 end-page: 477 ident: bb0235 article-title: World-wide travel of atomic debris publication-title: Science – volume: 148 start-page: 183 year: 2015 end-page: 195 ident: bb0215 article-title: Spatially-resolved analyses of aerodynamic fallout from a uranium-fueled nuclear test publication-title: J. Environ. Radioact. – volume: 3 start-page: 391 year: 2010 end-page: 412 ident: bb0310 article-title: Description and evaluation of GMXe: a new aerosol submodel for global simulations (v1) publication-title: Geosci. Model Dev. – volume: 200 year: 2023 ident: bb0205 article-title: Spectroscopic signatures and oxidation characteristics of nanosecond laser-induced cerium plasmas publication-title: Spectrochimica Acta Part B: Atomic Spectroscopy – volume: 124 start-page: 8522 year: 2019 end-page: 8543 ident: bb0060 article-title: Nuclear winter responses to nuclear war between the United States and Russia in the whole atmosphere community climate model version 4 and the Goddard Institute for Space Studies Modele publication-title: J. Geophys. Res. Atmos. – volume: 117 start-page: 26076 year: 2020 end-page: 26082 ident: bb0070 article-title: Revisiting particle dry deposition and its role in radiative effect estimates publication-title: Proceedings of the National Academy of Sciences – year: 1963 ident: bb0105 article-title: Fractionation. III. Estimation of degree of fractionation and radionuclide partition for nuclear debris publication-title: Technical Report – year: 1960 ident: bb0265 article-title: A theory of formation of fallout from land-surface nuclear detonations and decay of the fission products publication-title: Technical Report – year: 1967 ident: bb0195 article-title: A calculational model for condensed state diffusion controlled fission product absorption during fallout formation publication-title: Technical Report – volume: 44 start-page: 215201 year: 2011 ident: bb0385 article-title: Heterogeneous ion-induced nucleation in thermal dusty plasmas publication-title: J. Phys. D Appl. Phys. – volume: 270 year: 2023 ident: bb0230 article-title: Examining the effects of soil entrainment during nuclear cloud rise on fallout predictions using a multiscale atmospheric modeling framework publication-title: J. Environ. Radioact. – volume: 36 start-page: 1559 year: 2002 end-page: 1564 ident: bb0210 article-title: Shared- and distributed-memory parallelization of a lagrangian atmospheric dispersion model publication-title: Atmos. Environ. – year: 1983 ident: bb0090 article-title: Fallout: Its Characteristics and Management – volume: 133 start-page: 1991 year: 1961 end-page: 1998 ident: bb0100 article-title: Radionuclide fractionation in bomb debris publication-title: Science – volume: 118 start-page: 1880 year: 2013 end-page: 1895 ident: bb0075 article-title: Microphysical simulations of large volcanic eruptions: Pinatubo and Toba publication-title: J. Geophys. Res. Atmos. – volume: 32 start-page: 1977 year: 1975 end-page: 1989 ident: bb0120 article-title: An exact method for numerically simulating the stochastic coalescence process in a cloud publication-title: J. Atmos. Sci. – year: 1983 ident: bb0250 article-title: Fallout Fractionation in Silicate Soils – volume: 476 start-page: 429 year: 2011 end-page: 433 ident: bb0170 article-title: Role of sulphuric acid, ammonia and galactic cosmic rays in atmospheric aerosol nucleation publication-title: Nature – volume: 32 start-page: 2981 year: 1998 end-page: 2999 ident: bb0010 article-title: Modal aerosol dynamics model for Europedevelopment and first applications publication-title: Atmos. Environ. – start-page: 254 year: 1970 end-page: 281 ident: bb0145 article-title: The Characterization of Radioactive Particles From Nuclear Weapons Tests – volume: 21 start-page: 128 year: 2020 end-page: 144 ident: bb0280 article-title: Challenges in simulating ground interacting nuclear explosions publication-title: Countering Weapons of Mass Destruction – volume: 13 start-page: 3027 year: 2013 end-page: 3044 ident: bb0045 article-title: Impact of the modal aerosol scheme GLOMAP-mode on aerosol forcing in the Hadley Centre Global Environmental Model publication-title: Atmospheric Chemistry and Physics – volume: 2 start-page: 97 year: 2009 end-page: 112 ident: bb0180 article-title: Aerosol microphysics modules in the framework of the ECHAM5 climate model – intercomparison under stratospheric conditions publication-title: Geosci. Model Dev. – volume: 7 start-page: 865 year: 2015 end-page: 914 ident: bb0420 article-title: Evaluations of tropospheric aerosol properties simulated by the community earth system model with a sectional aerosol microphysics scheme publication-title: Journal of Advances in Modeling Earth Systems – volume: 31 start-page: 487 year: 1999 end-page: 514 ident: bb0430 article-title: Simulation of aerosol dynamics: a comparative review of algorithms used in air quality models publication-title: Aerosol Sci. Tech. – volume: 210 year: 2020 ident: 10.1016/j.scitotenv.2024.175536_bb0160 article-title: Semi-implicit method to solve compressible multiphase fluid flows without acoustic time step restrictions publication-title: Comput. Fluids doi: 10.1016/j.compfluid.2020.104651 – year: 2009 ident: 10.1016/j.scitotenv.2024.175536_bb0305 – volume: 44 start-page: 215201 year: 2011 ident: 10.1016/j.scitotenv.2024.175536_bb0385 article-title: Heterogeneous ion-induced nucleation in thermal dusty plasmas publication-title: J. Phys. D Appl. Phys. doi: 10.1088/0022-3727/44/21/215201 – volume: 13 start-page: 3027 year: 2013 ident: 10.1016/j.scitotenv.2024.175536_bb0045 article-title: Impact of the modal aerosol scheme GLOMAP-mode on aerosol forcing in the Hadley Centre Global Environmental Model publication-title: Atmospheric Chemistry and Physics doi: 10.5194/acp-13-3027-2013 – year: 1977 ident: 10.1016/j.scitotenv.2024.175536_bb0130 – volume: 200 year: 2023 ident: 10.1016/j.scitotenv.2024.175536_bb0205 article-title: Spectroscopic signatures and oxidation characteristics of nanosecond laser-induced cerium plasmas publication-title: Spectrochimica Acta Part B: Atomic Spectroscopy doi: 10.1016/j.sab.2022.106610 – volume: 5 start-page: 709 year: 2012 ident: 10.1016/j.scitotenv.2024.175536_bb0225 article-title: Toward a minimal representation of aerosols in climate models: description and evaluation in the community atmosphere model CAM5 publication-title: Geosci. Model Dev. doi: 10.5194/gmd-5-709-2012 – volume: 124 start-page: 474 year: 1956 ident: 10.1016/j.scitotenv.2024.175536_bb0235 article-title: World-wide travel of atomic debris publication-title: Science doi: 10.1126/science.124.3220.474 – volume: 4 start-page: 524 year: 2007 ident: 10.1016/j.scitotenv.2024.175536_bb0290 article-title: The National Atmospheric Release Advisory Center (NARAC) modeling and decision support system for radiological and nuclear emergency preparedness and response publication-title: Int. J. Emerg. Manag. doi: 10.1504/IJEM.2007.014301 – volume: 169 year: 2023 ident: 10.1016/j.scitotenv.2024.175536_bb0415 article-title: Clustering and collision of brownian particles in homogeneous and isotropic turbulence publication-title: J. Aerosol Sci. doi: 10.1016/j.jaerosci.2022.106134 – volume: 185 year: 2021 ident: 10.1016/j.scitotenv.2024.175536_bb0165 article-title: Optical spectroscopy and modeling of uranium gasphase oxidation: Progress and perspectives publication-title: Spectrochim. Acta B At. Spectrosc. doi: 10.1016/j.sab.2021.106283 – volume: 50 year: 2017 ident: 10.1016/j.scitotenv.2024.175536_bb0095 article-title: A model of early formation of uranium molecular oxides in laser-ablated plasmas publication-title: J. Phys. D Appl. Phys. doi: 10.1088/1361-6463/aa92f5 – volume: 123 start-page: 2752 year: 2018 ident: 10.1016/j.scitotenv.2024.175536_bb0320 article-title: Climate impact of a regional nuclear weapons exchange: an improved assessment based on detailed source calculations publication-title: J. Geophys. Res. Atmos. doi: 10.1002/2017JD027331 – volume: 108 year: 2003 ident: 10.1016/j.scitotenv.2024.175536_bb0155 article-title: Development of mixed-phase clouds from multiple aerosol size distributions and the effect of the clouds on aerosol removal publication-title: Journal of Geophysical Research: Atmospheres doi: 10.1029/2002JD002691 – volume: 136 start-page: 41 year: 2014 ident: 10.1016/j.scitotenv.2024.175536_bb0330 article-title: Modeling the fallout from stabilized nuclear clouds using the HYSPLIT atmospheric dispersion model publication-title: J. Environ. Radioact. doi: 10.1016/j.jenvrad.2014.05.006 – volume: 7 start-page: 2339 year: 2007 ident: 10.1016/j.scitotenv.2024.175536_bb0395 article-title: Global 2-D intercomparison of sectional and modal aerosol modules publication-title: Atmospheric Chemistry and Physics doi: 10.5194/acp-7-2339-2007 – volume: 43 start-page: 205 year: 1982 ident: 10.1016/j.scitotenv.2024.175536_bb0050 article-title: A new fallout prediction model publication-title: Health Phys. doi: 10.1097/00004032-198208000-00002 – volume: 125 year: 2020 ident: 10.1016/j.scitotenv.2024.175536_bb0390 article-title: Examining the climate effects of a regional nuclear weapons exchange using a multiscale atmospheric modeling approach publication-title: J. Geophys. Res. Atmos. doi: 10.1029/2020JD033056 – volume: 118 start-page: 1880 year: 2013 ident: 10.1016/j.scitotenv.2024.175536_bb0075 article-title: Microphysical simulations of large volcanic eruptions: Pinatubo and Toba publication-title: J. Geophys. Res. Atmos. doi: 10.1002/jgrd.50196 – volume: 112 start-page: 9949 year: 2000 ident: 10.1016/j.scitotenv.2024.175536_bb0220 article-title: Heterogeneous nucleation or homogeneous nucleation? publication-title: J. Chem. Phys. doi: 10.1063/1.481644 – volume: 8 start-page: 2045 year: 2018 ident: 10.1016/j.scitotenv.2024.175536_bb0185 article-title: Gas phase chemical evolution of uranium, aluminum, and iron oxides publication-title: Sci. Rep. doi: 10.1038/s41598-018-28674-6 – volume: 114 year: 2009 ident: 10.1016/j.scitotenv.2024.175536_bb0325 article-title: Simulating the evolution of soot mixing state with a particle-resolved aerosol model publication-title: J. Geophys. Res. Atmos. doi: 10.1029/2008JD011073 – volume: 254 year: 2021 ident: 10.1016/j.scitotenv.2024.175536_bb0020 article-title: Simulating nuclear cloud rise within a realistic atmosphere using the weather research and forecasting model publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2021.118363 – volume: 21 start-page: 128 year: 2020 ident: 10.1016/j.scitotenv.2024.175536_bb0280 article-title: Challenges in simulating ground interacting nuclear explosions publication-title: Countering Weapons of Mass Destruction – volume: 3 start-page: 519 year: 2010 ident: 10.1016/j.scitotenv.2024.175536_bb0240 article-title: Description and evaluation of GLOMAP-mode: a modal global aerosol microphysics model for the UKCA composition-climate model publication-title: Geosci. Model Dev. doi: 10.5194/gmd-3-519-2010 – year: 1960 ident: 10.1016/j.scitotenv.2024.175536_bb0265 article-title: A theory of formation of fallout from land-surface nuclear detonations and decay of the fission products – volume: 106 start-page: 34081 year: 2001 ident: 10.1016/j.scitotenv.2024.175536_bb0410 article-title: A modeling study of global mixed aerosol fields publication-title: J. Geophys. Res. Atmos. doi: 10.1029/2000JD000198 – volume: 148 start-page: 183 year: 2015 ident: 10.1016/j.scitotenv.2024.175536_bb0215 article-title: Spatially-resolved analyses of aerodynamic fallout from a uranium-fueled nuclear test publication-title: J. Environ. Radioact. doi: 10.1016/j.jenvrad.2015.04.006 – volume: 32 start-page: 2981 year: 1998 ident: 10.1016/j.scitotenv.2024.175536_bb0010 article-title: Modal aerosol dynamics model for Europedevelopment and first applications publication-title: Atmos. Environ. doi: 10.1016/S1352-2310(98)00006-5 – volume: 476 start-page: 429 year: 2011 ident: 10.1016/j.scitotenv.2024.175536_bb0170 article-title: Role of sulphuric acid, ammonia and galactic cosmic rays in atmospheric aerosol nucleation publication-title: Nature doi: 10.1038/nature10343 – start-page: 5371 year: 2022 ident: 10.1016/j.scitotenv.2024.175536_bb0035 article-title: Chemical and structural characterization of particulate fallout isolated from air-filters publication-title: J. Radioanal. Nucl. Chem. doi: 10.1007/s10967-022-08442-7 – year: 1987 ident: 10.1016/j.scitotenv.2024.175536_bb0030 – year: 1983 ident: 10.1016/j.scitotenv.2024.175536_bb0090 – volume: 135 start-page: 1307 year: 2009 ident: 10.1016/j.scitotenv.2024.175536_bb0340 article-title: The super-droplet method for the numerical simulation of clouds and precipitation: a particle-based and probabilistic microphysics model coupled with a non-hydrostatic model publication-title: Q. J. Roy. Meteorol. Soc. doi: 10.1002/qj.441 – year: 1979 ident: 10.1016/j.scitotenv.2024.175536_bb0300 article-title: DELFIC: Department of Defense fallout prediction system. Volume I - fundamentals – volume: 27 start-page: 673 year: 1997 ident: 10.1016/j.scitotenv.2024.175536_bb0405 article-title: Modal aerosol dynamics modeling publication-title: Aerosol Sci. Tech. doi: 10.1080/02786829708965504 – year: 1964 ident: 10.1016/j.scitotenv.2024.175536_bb0110 – volume: 162 year: 2022 ident: 10.1016/j.scitotenv.2024.175536_bb0190 article-title: The influence of cooling rate on condensation of iron, aluminum, and uranium oxide nanoparticles publication-title: J. Aerosol Sci. doi: 10.1016/j.jaerosci.2022.105959 – year: 2021 ident: 10.1016/j.scitotenv.2024.175536_bb0275 article-title: Description of nucleation, growth and coagulation processes in the modeling of debris formation after a nuclear burst – volume: 201 start-page: 410 year: 2017 ident: 10.1016/j.scitotenv.2024.175536_bb0400 article-title: Deposition of vaporized species onto glassy fallout from a nearsurface nuclear test publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2016.10.036 – volume: 3 start-page: 388 year: 1994 ident: 10.1016/j.scitotenv.2024.175536_bb0125 article-title: Particle nucleation and growth in thermal plasmas publication-title: Plasma Sources Sci. Technol. doi: 10.1088/0963-0252/3/3/023 – volume: 34 start-page: 1059 year: 2000 ident: 10.1016/j.scitotenv.2024.175536_bb0080 article-title: A Lagrangian stochastic diffusion method for inhomogeneous turbulence publication-title: Atmos. Environ. doi: 10.1016/S1352-2310(99)00379-9 – volume: 32 start-page: 1977 year: 1975 ident: 10.1016/j.scitotenv.2024.175536_bb0120 article-title: An exact method for numerically simulating the stochastic coalescence process in a cloud publication-title: J. Atmos. Sci. doi: 10.1175/1520-0469(1975)032<1977:AEMFNS>2.0.CO;2 – volume: 21 start-page: 103 year: 2020 ident: 10.1016/j.scitotenv.2024.175536_bb0355 article-title: Fallout cloud regimes – volume: 117 start-page: 26076 year: 2020 ident: 10.1016/j.scitotenv.2024.175536_bb0070 article-title: Revisiting particle dry deposition and its role in radiative effect estimates publication-title: Proceedings of the National Academy of Sciences doi: 10.1073/pnas.2014761117 – year: 1963 ident: 10.1016/j.scitotenv.2024.175536_bb0105 article-title: Fractionation. III. Estimation of degree of fractionation and radionuclide partition for nuclear debris – year: 1979 ident: 10.1016/j.scitotenv.2024.175536_bb0270 article-title: Introduction to self-induced rainout – volume: 113 year: 2008 ident: 10.1016/j.scitotenv.2024.175536_bb0015 article-title: The potential impacts of pollution on a nondrizzling stratus deck: does aerosol number matter more than type? publication-title: J. Geophys. Res. Atmos. doi: 10.1029/2007JD009445 – volume: 124 start-page: 8522 year: 2019 ident: 10.1016/j.scitotenv.2024.175536_bb0060 article-title: Nuclear winter responses to nuclear war between the United States and Russia in the whole atmosphere community climate model version 4 and the Goddard Institute for Space Studies Modele publication-title: J. Geophys. Res. Atmos. doi: 10.1029/2019JD030509 – volume: 271 year: 2022 ident: 10.1016/j.scitotenv.2024.175536_bb0005 article-title: Seasonal comparisons of GEOS-Chem-TOMAS (GCT) simulations with AERONET-inversion retrievals over sites in the north american and european arctic publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2021.118852 – year: 1983 ident: 10.1016/j.scitotenv.2024.175536_bb0250 – volume: 126 year: 2021 ident: 10.1016/j.scitotenv.2024.175536_bb0315 article-title: Upper troposphere smoke injection from large areal fires publication-title: J. Geophys. Res. Atmos. doi: 10.1029/2020JD034332 – year: 1968 ident: 10.1016/j.scitotenv.2024.175536_bb0375 article-title: Department of Defense land fallout prediction system. Volume 5. Particle activity – volume: 43 start-page: 111 year: 2008 ident: 10.1016/j.scitotenv.2024.175536_bb0040 article-title: Modelling atmospheric dispersion of radioactive debris released in case of nuclear explosion using the Norwegian SNAP model publication-title: Croatian Meteorological Journal – start-page: 254 year: 1970 ident: 10.1016/j.scitotenv.2024.175536_bb0145 – volume: 7 start-page: 865 year: 2015 ident: 10.1016/j.scitotenv.2024.175536_bb0420 article-title: Evaluations of tropospheric aerosol properties simulated by the community earth system model with a sectional aerosol microphysics scheme publication-title: Journal of Advances in Modeling Earth Systems doi: 10.1002/2014MS000421 – volume: 212 start-page: 530 year: 1952 ident: 10.1016/j.scitotenv.2024.175536_bb0085 article-title: The theory of the condensation of supersaturated ionfree vapour publication-title: Proc. R. Soc. Lond. A doi: 10.1098/rspa.1952.0099 – volume: 54 start-page: 739 year: 2020 ident: 10.1016/j.scitotenv.2024.175536_bb0440 article-title: Comparison of discrete, discrete-sectional, modal and moment models for aerosol dynamics simulations publication-title: Aerosol Science and Technology doi: 10.1080/02786826.2020.1723787 – volume: 2 start-page: 97 year: 2009 ident: 10.1016/j.scitotenv.2024.175536_bb0180 article-title: Aerosol microphysics modules in the framework of the ECHAM5 climate model – intercomparison under stratospheric conditions publication-title: Geosci. Model Dev. doi: 10.5194/gmd-2-97-2009 – year: 1979 ident: 10.1016/j.scitotenv.2024.175536_bb0140 – volume: 74 start-page: 91 year: 2004 ident: 10.1016/j.scitotenv.2024.175536_bb0345 article-title: The geographic distribution of radionuclide deposition across the continental US from atmospheric nuclear testing publication-title: Journal of Environmental Radioactivity doi: 10.1016/j.jenvrad.2004.01.023 – volume: 237 year: 2021 ident: 10.1016/j.scitotenv.2024.175536_bb0115 article-title: Iron-rich microstructure records of high temperature multi-component silicate melt behavior in nuclear fallout publication-title: J. Environ. Radioact. doi: 10.1016/j.jenvrad.2021.106700 – volume: 133 start-page: 1991 year: 1961 ident: 10.1016/j.scitotenv.2024.175536_bb0100 article-title: Radionuclide fractionation in bomb debris publication-title: Science doi: 10.1126/science.133.3469.1991 – volume: 42 start-page: 585 year: 1982 ident: 10.1016/j.scitotenv.2024.175536_bb0150 article-title: Calculation of the concentration of any radionuclide deposited on the ground by offsite fallout from a nuclear detonation publication-title: Health Phys. doi: 10.1097/00004032-198205000-00003 – volume: 270 year: 2023 ident: 10.1016/j.scitotenv.2024.175536_bb0230 article-title: Examining the effects of soil entrainment during nuclear cloud rise on fallout predictions using a multiscale atmospheric modeling framework publication-title: J. Environ. Radioact. doi: 10.1016/j.jenvrad.2023.107299 – volume: 8 start-page: 2469 year: 2008 ident: 10.1016/j.scitotenv.2024.175536_bb0175 article-title: SALSA – a sectional aerosol module for large scale applications publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-8-2469-2008 – volume: 102 start-page: 493 year: 2012 ident: 10.1016/j.scitotenv.2024.175536_bb0365 article-title: Atmospheric dispersion modeling: challenges of the Fukushima Daiichi response publication-title: Health Phys. doi: 10.1097/HP.0b013e31824c7bc9 – volume: 171 year: 2017 ident: 10.1016/j.scitotenv.2024.175536_bb0025 article-title: Review of current nuclear fallout codes publication-title: J. Environ. Radioact. doi: 10.1016/j.jenvrad.2017.02.010 – volume: 12 year: 2020 ident: 10.1016/j.scitotenv.2024.175536_bb0285 article-title: Confronting the challenge of modeling cloud and precipitation microphysics publication-title: Journal of Advances in Modeling Earth Systems doi: 10.1029/2019MS001689 – volume: 420 start-page: 3344 year: 2012 ident: 10.1016/j.scitotenv.2024.175536_bb0135 article-title: Efficient nucleation of stardust silicates via heteromolecular homogeneous condensation publication-title: Mon. Not. R. Astron. Soc. – volume: 36 start-page: 1559 year: 2002 ident: 10.1016/j.scitotenv.2024.175536_bb0210 article-title: Shared- and distributed-memory parallelization of a lagrangian atmospheric dispersion model publication-title: Atmos. Environ. doi: 10.1016/S1352-2310(01)00540-4 – year: 2005 ident: 10.1016/j.scitotenv.2024.175536_bb0350 – year: 2006 ident: 10.1016/j.scitotenv.2024.175536_bb0335 – volume: 18 start-page: 17451 year: 2018 ident: 10.1016/j.scitotenv.2024.175536_bb0425 article-title: H2SO4 – H2O – NH3 ternary ion-mediated nucleation (TIMN): kinetic-based model and comparison with CLOUD measurements publication-title: Atmospheric Chemistry and Physics doi: 10.5194/acp-18-17451-2018 – volume: 107 year: 2002 ident: 10.1016/j.scitotenv.2024.175536_bb0435 article-title: Impact of aerosol size representation on modeling aerosol-cloud interactions publication-title: J. Geophys. Res. Atmos. doi: 10.1029/2001JD001549 – volume: 81 start-page: 495810509 year: 2015 ident: 10.1016/j.scitotenv.2024.175536_bb0370 article-title: Nucleation and growth of nanoparticles in a plasma by laser ablation in liquid publication-title: Journal of Plasma Physics doi: 10.1017/S0022377815000793 – volume: 12 start-page: 4449 year: 2012 ident: 10.1016/j.scitotenv.2024.175536_bb0245 article-title: Intercomparison of modal and sectional aerosol microphysics representations within the same 3-D global chemical transport model publication-title: Atmospheric Chemistry and Physics doi: 10.5194/acp-12-4449-2012 – year: 1967 ident: 10.1016/j.scitotenv.2024.175536_bb0195 article-title: A calculational model for condensed state diffusion controlled fission product absorption during fallout formation – volume: 24 start-page: 719 year: 2011 ident: 10.1016/j.scitotenv.2024.175536_bb0260 article-title: Particle collision modeling – a review publication-title: Miner. Eng. doi: 10.1016/j.mineng.2011.03.015 – volume: 31 start-page: 487 year: 1999 ident: 10.1016/j.scitotenv.2024.175536_bb0430 article-title: Simulation of aerosol dynamics: a comparative review of algorithms used in air quality models publication-title: Aerosol Sci. Tech. doi: 10.1080/027868299304039 – year: 2015 ident: 10.1016/j.scitotenv.2024.175536_bb0380 article-title: United States Nuclear Tests July 1945 through September 1992 – year: 2006 ident: 10.1016/j.scitotenv.2024.175536_bb0200 – volume: 54 start-page: 656 year: 2020 ident: 10.1016/j.scitotenv.2024.175536_bb0360 article-title: Evolution of particle metrics in a buoyant aerosol cloud from explosive releases publication-title: Aerosol Science and Technology doi: 10.1080/02786826.2020.1723788 – volume: 109 year: 2004 ident: 10.1016/j.scitotenv.2024.175536_bb0065 article-title: MIRAGE: model description and evaluation of aerosols and trace gases publication-title: J. Geophys. Res. – volume: 127 year: 2022 ident: 10.1016/j.scitotenv.2024.175536_bb0255 article-title: Super-droplet method to simulate lagrangian microphysics of nuclear fallout in a homogeneous cloud publication-title: J. Geophys. Res. Atmos. doi: 10.1029/2022JD036599 – volume: 75 start-page: 7559 year: 1970 ident: 10.1016/j.scitotenv.2024.175536_bb0295 article-title: Particle size distribution in clouds from nuclear airbursts publication-title: Journal of Geophysical Research (1896-1977) doi: 10.1029/JC075i036p07559 – volume: 3 start-page: 391 year: 2010 ident: 10.1016/j.scitotenv.2024.175536_bb0310 article-title: Description and evaluation of GMXe: a new aerosol submodel for global simulations (v1) publication-title: Geosci. Model Dev. doi: 10.5194/gmd-3-391-2010 – volume: 12 start-page: 2045 year: 2022 ident: 10.1016/j.scitotenv.2024.175536_bb0055 article-title: The effect of oxygen concentration on the speciation of laser ablated uranium publication-title: Sci. Rep. doi: 10.1038/s41598-022-07834-9 |
SSID | ssj0000781 |
Score | 2.4642563 |
SecondaryResourceType | review_article |
Snippet | The capability to predict size, composition, and transport of nuclear fallout enables public officials to determine immediate and prolonged guidance in the... |
SourceID | osti proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 175536 |
SubjectTerms | Emergency response ENVIRONMENTAL SCIENCES Fallout Microphysics Nuclear detonation |
Title | Predictive modeling of atmospheric nuclear fallout microphysics |
URI | https://dx.doi.org/10.1016/j.scitotenv.2024.175536 https://www.ncbi.nlm.nih.gov/pubmed/39155003 https://www.proquest.com/docview/3094470750 https://www.osti.gov/biblio/2434049 |
Volume | 951 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR1dS8Mw8JCJIIjo_JpfVPC1ujVp0voiYyjToYgo-haaNkEFW9k6wRd_u3dNqwiKDz6VttcS7nJfuS-A_YRalMSy56PxYNBB0ZGvQ5n5zMpMx0IaU01vuLgUw1t-fh_ez8CgqYWhtMpa9juZXknr-slhjc3Dl8dHqvHlUSxiiTopFJGgIj7OJe3yg_evNA9qZuOizMjYCP0txwv_WxZom76ioxjwA1SlYdWr-UcN1SqQ6X43RCuFdLoEi7Ul6fXdYpdhxuRtmHOzJd_asHbyVcKGYDUPT9qw4E7qPFeAtALHV2MK1pDY86q5OKjMvMJ6SflcTKjpAMLm1PU4GXuWwvTT0numND53KDJZhdvTk5vB0K_HKvgpi1npJ0YGOpDdtGtlwNBlEKnmCRJM2FQbLZntZgzZmNlIZ3EPwWKeUpf9gOmIac7WoJUXudkArxcmQhDTh6jlTGATybMsyrLYBppHLO1At0GlenHdM1STVvakPrGvCPvKYb8DRw3K1beNoFDG__3xFhGpemnSh5RyhfDLgDOOnlAH9hraKWQiiowkuSmmE8XQyeWSrKcOrDuifq636qCPsm_zPwvbgnm6oyLGXrgNrXI8NTtozZR6t9quuzDbPxsNL-k6ur4bfQC1bPV7 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS-QwEB_WlUNBxFtvdc_zrsK99txt0qS5FxFRdk9dfFDwLTRtggrbym5X8L93pmkV4eQe7rVJSpjJfCUzvwH4mRJEiZKjEJ0HiwGKSUITyzxkTuZGCWlt3b3hcirGN_zPbXzbgZO2FobSKhvd73V6ra2bL4cNNQ8f7--pxpcnSiiJNikWiVArsEroVHEXVo8n5-Ppm0KWiW-cx1G2ccG7NC_8dVWie_qEsWLEf6E1jWu45r8aqW6JcvexL1rbpLMt2GycyeDY7_czdGzRg0--veRzD_qnb1VsOK0R40UPNvxlXeBrkLbh6GpO7zWk-YK6NQ7as6B0QVrNygXhDuDcgoCP03ng6KV-WQUzyuTz9yKLL3Bzdnp9Mg6bzgphxhSrwtTKyERymA2djBhGDSIzPEWeCZcZayRzw5yhJDOXmFyNcJriGQHtR8wkzHDWh25RFnYXglGcCkFyH6Ohs5FLJc_zJM-ViwxPWDaAYUtK_egBNHSbWfagX6mvifraU38Av1uS63dnQaOa__fiPWJSPWizu4zShXBlxBnHYGgABy3vNMoRPY6khS2XC80wzuWSHKgB7Himvu63BtFH9ff1fzb2A9bG15cX-mIyPd-DdRqhmsZR_A261Xxp99G5qcz35vC-AGxt9ok |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predictive+modeling+of+atmospheric+nuclear+fallout+microphysics&rft.jtitle=The+Science+of+the+total+environment&rft.au=McGuffin%2C+D.L.&rft.au=Lucas%2C+D.D.&rft.au=Balboni%2C+E.&rft.au=Nasstrom%2C+J.S.&rft.date=2024-11-15&rft.issn=0048-9697&rft.volume=951&rft.spage=175536&rft_id=info:doi/10.1016%2Fj.scitotenv.2024.175536&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_scitotenv_2024_175536 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0048-9697&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0048-9697&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0048-9697&client=summon |