Predictive modeling of atmospheric nuclear fallout microphysics

The capability to predict size, composition, and transport of nuclear fallout enables public officials to determine immediate and prolonged guidance in the event of a nuclear incident. Predictive computer models of fallout can also provide useful insight for nuclear forensic response when detailed r...

Full description

Saved in:
Bibliographic Details
Published inThe Science of the total environment Vol. 951; p. 175536
Main Authors McGuffin, D.L., Lucas, D.D., Balboni, E., Nasstrom, J.S., Lundquist, K.A., Knight, K.B.
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 15.11.2024
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The capability to predict size, composition, and transport of nuclear fallout enables public officials to determine immediate and prolonged guidance in the event of a nuclear incident. Predictive computer models of fallout can also provide useful insight for nuclear forensic response when detailed radiochemical processes can be reliably included. Current post-detonation nuclear fallout models prescribe particle size distributions empirically or semi-empirically, based on measurements across limited conditions pertaining to tests conducted primarily in Nevada and the Pacific. These empirical fallout relationships may be subject to large uncertainties in particle size and radionuclide activity distribution if used to extrapolate to other regions with different environmental conditions (e.g., urbanized areas). Replacing empirical relationships with physics-based microphysical process modeling can enable significant advances in the fidelity of predictive models simulating distributions of fallout across diverse environments. Particle microphysics describes the formation and evolution of fallout particles, as well as the interaction of radioactive material with entrained particles, which requires accounting for fundamental processes such as nucleation, condensation, and coagulation. The objective of this perspective article is to summarize computational techniques to simulate particle microphysical processes advancing the fidelity of predicting nuclear fallout. We review current empirical models for simulating post-detonation fallout and assess promising research directions moving towards physics-based predictive systems. Schematic of future nuclear detonation model including particle microphysics coupled with feedback to processes such as cloud microphysics, momentum, entrainment, and meteorology. Future models will be better able to predict nuclear effects by including more realistic atmospheric dynamics and potentially untested environments. The background image was created with the assistance of DALL·E 2. [Display omitted] •Current post-detonation nuclear fallout models prescribe particle characteristics.•Fallout microphysics models can predict effects across diverse conditions.•Recent advancements in cloud and aerosol microphysics models are applicable to fallout modeling.•Improved thermodynamics and chemistry knowledge is necessary at relevant conditions.•Coupling fallout and atmospheric models enhances the fidelity of large-scale impact prediction and interpretation.
AbstractList The capability to predict size, composition, and transport of nuclear fallout enables public officials to determine immediate and prolonged guidance in the event of a nuclear incident. Predictive computer models of fallout can also provide useful insight for nuclear forensic response when detailed radiochemical processes can be reliably included. Current post-detonation nuclear fallout models prescribe particle size distributions empirically or semi-empirically, based on measurements across limited conditions pertaining to tests conducted primarily in Nevada and the Pacific. These empirical fallout relationships may be subject to large uncertainties in particle size and radionuclide activity distribution if used to extrapolate to other regions with different environmental conditions (e.g., urbanized areas). Replacing empirical relationships with physics-based microphysical process modeling can enable significant advances in the fidelity of predictive models simulating distributions of fallout across diverse environments. Particle microphysics describes the formation and evolution of fallout particles, as well as the interaction of radioactive material with entrained particles, which requires accounting for fundamental processes such as nucleation, condensation, and coagulation. The objective of this perspective article is to summarize computational techniques to simulate particle microphysical processes advancing the fidelity of predicting nuclear fallout. We review current empirical models for simulating post-detonation fallout and assess promising research directions moving towards physics-based predictive systems.
The capability to predict size, composition, and transport of nuclear fallout enables public officials to determine immediate and prolonged guidance in the event of a nuclear incident. Predictive computer models of fallout can also provide useful insight for nuclear forensic response when detailed radiochemical processes can be reliably included. Current post-detonation nuclear fallout models prescribe particle size distributions empirically or semi-empirically, based on measurements across limited conditions pertaining to tests conducted primarily in Nevada and the Pacific. These empirical fallout relationships may be subject to large uncertainties in particle size and radionuclide activity distribution if used to extrapolate to other regions with different environmental conditions (e.g., urbanized areas). Replacing empirical relationships with physics-based microphysical process modeling can enable significant advances in the fidelity of predictive models simulating distributions of fallout across diverse environments. Particle microphysics describes the formation and evolution of fallout particles, as well as the interaction of radioactive material with entrained particles, which requires accounting for fundamental processes such as nucleation, condensation, and coagulation. The objective of this perspective article is to summarize computational techniques to simulate particle microphysical processes advancing the fidelity of predicting nuclear fallout. We review current empirical models for simulating post-detonation fallout and assess promising research directions moving towards physics-based predictive systems.The capability to predict size, composition, and transport of nuclear fallout enables public officials to determine immediate and prolonged guidance in the event of a nuclear incident. Predictive computer models of fallout can also provide useful insight for nuclear forensic response when detailed radiochemical processes can be reliably included. Current post-detonation nuclear fallout models prescribe particle size distributions empirically or semi-empirically, based on measurements across limited conditions pertaining to tests conducted primarily in Nevada and the Pacific. These empirical fallout relationships may be subject to large uncertainties in particle size and radionuclide activity distribution if used to extrapolate to other regions with different environmental conditions (e.g., urbanized areas). Replacing empirical relationships with physics-based microphysical process modeling can enable significant advances in the fidelity of predictive models simulating distributions of fallout across diverse environments. Particle microphysics describes the formation and evolution of fallout particles, as well as the interaction of radioactive material with entrained particles, which requires accounting for fundamental processes such as nucleation, condensation, and coagulation. The objective of this perspective article is to summarize computational techniques to simulate particle microphysical processes advancing the fidelity of predicting nuclear fallout. We review current empirical models for simulating post-detonation fallout and assess promising research directions moving towards physics-based predictive systems.
The capability to predict size, composition, and transport of nuclear fallout enables public officials to determine immediate and prolonged guidance in the event of a nuclear incident. Predictive computer models of fallout can also provide useful insight for nuclear forensic response when detailed radiochemical processes can be reliably included. Current post-detonation nuclear fallout models prescribe particle size distributions empirically or semi-empirically, based on measurements across limited conditions pertaining to tests conducted primarily in Nevada and the Pacific. These empirical fallout relationships may be subject to large uncertainties in particle size and radionuclide activity distribution if used to extrapolate to other regions with different environmental conditions (e.g., urbanized areas). Replacing empirical relationships with physics-based microphysical process modeling can enable significant advances in the fidelity of predictive models simulating distributions of fallout across diverse environments. Particle microphysics describes the formation and evolution of fallout particles, as well as the interaction of radioactive material with entrained particles, which requires accounting for fundamental processes such as nucleation, condensation, and coagulation. The objective of this perspective article is to summarize computational techniques to simulate particle microphysical processes advancing the fidelity of predicting nuclear fallout. We review current empirical models for simulating post-detonation fallout and assess promising research directions moving towards physics-based predictive systems. Schematic of future nuclear detonation model including particle microphysics coupled with feedback to processes such as cloud microphysics, momentum, entrainment, and meteorology. Future models will be better able to predict nuclear effects by including more realistic atmospheric dynamics and potentially untested environments. The background image was created with the assistance of DALL·E 2. [Display omitted] •Current post-detonation nuclear fallout models prescribe particle characteristics.•Fallout microphysics models can predict effects across diverse conditions.•Recent advancements in cloud and aerosol microphysics models are applicable to fallout modeling.•Improved thermodynamics and chemistry knowledge is necessary at relevant conditions.•Coupling fallout and atmospheric models enhances the fidelity of large-scale impact prediction and interpretation.
ArticleNumber 175536
Author Knight, K.B.
Balboni, E.
McGuffin, D.L.
Nasstrom, J.S.
Lucas, D.D.
Lundquist, K.A.
Author_xml – sequence: 1
  givenname: D.L.
  surname: McGuffin
  fullname: McGuffin, D.L.
  email: mcguffin1@llnl.gov
– sequence: 2
  givenname: D.D.
  surname: Lucas
  fullname: Lucas, D.D.
– sequence: 3
  givenname: E.
  surname: Balboni
  fullname: Balboni, E.
– sequence: 4
  givenname: J.S.
  surname: Nasstrom
  fullname: Nasstrom, J.S.
– sequence: 5
  givenname: K.A.
  surname: Lundquist
  fullname: Lundquist, K.A.
– sequence: 6
  givenname: K.B.
  surname: Knight
  fullname: Knight, K.B.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39155003$$D View this record in MEDLINE/PubMed
https://www.osti.gov/biblio/2434049$$D View this record in Osti.gov
BookMark eNqFkU9P5DAMxaMVq2WA_QpQceLSwWnSpjkhNOKfhMQelnPUpu5ORm0yJOlIfPtNVeCKL5asny2_907IkXUWCbmgsKZAq-vdOmgTXUR7WBdQ8DUVZcmqH2RFayFzCkV1RFYAvM5lJcUxOQlhB6lETX-RYyZpWQKwFbn547EzOpoDZqPrcDD2X-b6rImjC_steqMzO-kBG5_1zTC4KWaj0d7tt-_B6HBGfqZxwN8f_ZS83t_93Tzmzy8PT5vb51wzyWLeoCjaQoCGXhSMQVXpljdciqrXLbaC9dCxWgDr67aTNGGSay7qumBtzVrOTsnlcteFaNQsHvVWO2tRR1VwxoHLBF0t0N67twlDVKMJGoehseimoBhIzgWIEhJ6_oFO7Yid2nszNv5dfTqTALEASWsIHvsvhIKaM1A79ZWBmjNQSwZp83bZxOTHwaCfObQ6-eznbztnvr3xH_D5kuk
Cites_doi 10.1016/j.compfluid.2020.104651
10.1088/0022-3727/44/21/215201
10.5194/acp-13-3027-2013
10.1016/j.sab.2022.106610
10.5194/gmd-5-709-2012
10.1126/science.124.3220.474
10.1504/IJEM.2007.014301
10.1016/j.jaerosci.2022.106134
10.1016/j.sab.2021.106283
10.1088/1361-6463/aa92f5
10.1002/2017JD027331
10.1029/2002JD002691
10.1016/j.jenvrad.2014.05.006
10.5194/acp-7-2339-2007
10.1097/00004032-198208000-00002
10.1029/2020JD033056
10.1002/jgrd.50196
10.1063/1.481644
10.1038/s41598-018-28674-6
10.1029/2008JD011073
10.1016/j.atmosenv.2021.118363
10.5194/gmd-3-519-2010
10.1029/2000JD000198
10.1016/j.jenvrad.2015.04.006
10.1016/S1352-2310(98)00006-5
10.1038/nature10343
10.1007/s10967-022-08442-7
10.1002/qj.441
10.1080/02786829708965504
10.1016/j.jaerosci.2022.105959
10.1016/j.gca.2016.10.036
10.1088/0963-0252/3/3/023
10.1016/S1352-2310(99)00379-9
10.1175/1520-0469(1975)032<1977:AEMFNS>2.0.CO;2
10.1073/pnas.2014761117
10.1029/2007JD009445
10.1029/2019JD030509
10.1016/j.atmosenv.2021.118852
10.1029/2020JD034332
10.1002/2014MS000421
10.1098/rspa.1952.0099
10.1080/02786826.2020.1723787
10.5194/gmd-2-97-2009
10.1016/j.jenvrad.2004.01.023
10.1016/j.jenvrad.2021.106700
10.1126/science.133.3469.1991
10.1097/00004032-198205000-00003
10.1016/j.jenvrad.2023.107299
10.5194/acp-8-2469-2008
10.1097/HP.0b013e31824c7bc9
10.1016/j.jenvrad.2017.02.010
10.1029/2019MS001689
10.1016/S1352-2310(01)00540-4
10.5194/acp-18-17451-2018
10.1029/2001JD001549
10.1017/S0022377815000793
10.5194/acp-12-4449-2012
10.1016/j.mineng.2011.03.015
10.1080/027868299304039
10.1080/02786826.2020.1723788
10.1029/2022JD036599
10.1029/JC075i036p07559
10.5194/gmd-3-391-2010
10.1038/s41598-022-07834-9
ContentType Journal Article
Copyright 2024 The Authors
Copyright © 2024 The Authors. Published by Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2024 The Authors
– notice: Copyright © 2024 The Authors. Published by Elsevier B.V. All rights reserved.
CorporateAuthor Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)
CorporateAuthor_xml – sequence: 0
  name: Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7X8
OTOTI
DOI 10.1016/j.scitotenv.2024.175536
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
MEDLINE - Academic
OSTI.GOV
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Public Health
Biology
Environmental Sciences
EISSN 1879-1026
ExternalDocumentID 2434049
39155003
10_1016_j_scitotenv_2024_175536
S0048969724056869
Genre Journal Article
Review
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
6I.
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXKI
AAXUO
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFJKZ
AFKWA
AFTJW
AFXIZ
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
K-O
KCYFY
KOM
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCU
SDF
SDG
SDP
SES
SEW
SPCBC
SSJ
SSZ
T5K
~02
~G-
~KM
53G
AAQXK
AATTM
AAYJJ
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADXHL
AEGFY
AEIPS
AEUPX
AFPUW
AGCQF
AGHFR
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HMC
HVGLF
HZ~
R2-
RIG
SEN
SSH
WUQ
XPP
ZXP
ZY4
NPM
7X8
OTOTI
ID FETCH-LOGICAL-c393t-ae72b270c0f7233066cb4a4976fcbeb73f0d38703f8bd91c0f94c478823b83b43
IEDL.DBID .~1
ISSN 0048-9697
1879-1026
IngestDate Mon Dec 16 02:26:14 EST 2024
Fri Jul 11 08:34:35 EDT 2025
Wed Feb 19 02:08:46 EST 2025
Tue Jul 01 03:16:32 EDT 2025
Sat Dec 28 15:51:28 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Nuclear detonation
Microphysics
Fallout
Emergency response
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2024 The Authors. Published by Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c393t-ae72b270c0f7233066cb4a4976fcbeb73f0d38703f8bd91c0f94c478823b83b43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
AC52-07NA27344
USDOE National Nuclear Security Administration (NNSA), Office of Defense Nuclear Nonproliferation
LLNL-JRNL-864802
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0048969724056869
PMID 39155003
PQID 3094470750
PQPubID 23479
ParticipantIDs osti_scitechconnect_2434049
proquest_miscellaneous_3094470750
pubmed_primary_39155003
crossref_primary_10_1016_j_scitotenv_2024_175536
elsevier_sciencedirect_doi_10_1016_j_scitotenv_2024_175536
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-11-15
PublicationDateYYYYMMDD 2024-11-15
PublicationDate_xml – month: 11
  year: 2024
  text: 2024-11-15
  day: 15
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
– name: United States
PublicationTitle The Science of the total environment
PublicationTitleAlternate Sci Total Environ
PublicationYear 2024
Publisher Elsevier B.V
Elsevier
Publisher_xml – sequence: 0
  name: Elsevier
– name: Elsevier B.V
References AboEl-Fetouh, O'Neill, Kodros, Pierce, Lu, Ranjbar, Xian (bb0005) 2022; 271
Finko, Curreli, Weisz, Crowhurst, Rose, Koroglu, Radousky, Armstrong (bb0095) 2017; 50
Hicks (bb0150) 1982; 42
Shima, Kusano, Kawano, Sugiyama, Kawahara (bb0340) 2009; 135
Tompkins (bb0375) 1968
Liu (bb0220) 2000; 112
Goumans, Bromley (bb0135) 2012; 420
Miller (bb0265) 1960
Bridgman, Bigelow (bb0050) 1982; 43
Nasstrom, Sugiyama, Baskett, Larsen, Bradley (bb0290) 2007; 4
Rolph, Ngan, Draxler (bb0330) 2014; 136
Skaar (bb0350) 2005
Yu, Nadykto, Herb, Luo, Nazarenko, Uvarova (bb0425) 2018; 18
O’Day (bb0305) 2009
Ferlic (bb0090) 1983
Kanarska, Dunn, Glascoe, Lundquist, Noble (bb0160) 2020; 210
Kautz, Weerakkody, Finko, Curreli, Koroglu, Rose, Weisz, Crowhurst, Radousky, DeMagistris, Sinha, Levin, Dreizin, Phillips, Glumac, Harilal (bb0165) 2021; 185
Weisenstein, Penner, Herzog, Liu (bb0395) 2007; 7
Mann, Carslaw, Spracklen, Ridley, Manktelow, Chipperfield, Pickering, Johnson (bb0240) 2010; 3
Kokkola, Korhonen, Lehtinen, Makkonen, Asmi, Järvenoja, Anttila, Partanen, Kulmala, Järvinen, Laaksonen, Kerminen (bb0175) 2008; 8
Bellouin, Mann, Woodhouse, Johnson, Carslaw, Dalvi (bb0045) 2013; 13
Korts, Norman (bb0195) 1967
Mann, Carslaw, Ridley, Spracklen, Pringle, Merikanto, Korhonen, Schwarz, Lee, Manktelow, Woodhouse, Schmidt, Breider, Emmerson, Reddington, Chipperfield, Pickering (bb0245) 2012; 12
Reisner, D'Angelo, Koo, Even, Hecht, Hunke, Comeau, Bos, Cooley (bb0320) 2018; 123
Andrejczuk, Reisner, Henson, Dubey, Jeffery (bb0015) 2008; 113
U.S. Department of Energy (bb0380) 2015
Girshick (bb0125) 1994; 3
Coupe, Bardeen, Robock, Toon (bb0060) 2019; 124
Harvey, Serduke (bb0140) 1979
Lundquist, Arthur, Neuscamman, Morris, Scullard, Cook, Wimer, Goldstein, Spriggs, Glascoe, Nasstrom (bb0230) 2023; 270
McGuffin, Lucas, Morris, Spriggs, Knight (bb0255) 2022; 127
Weisz, Jacobsen, Marks, Knight, Isselhardt, Matzel, Weber, Prussin, Hutcheon (bb0400) 2017; 201
Wilson, Cuvelier, Raes (bb0410) 2001; 106
Zhang, Easter, Ghan, Abdul-Razzak (bb0435) 2002; 107
(bb0300) 1979
Easter (bb0065) 2004; 109
Koroglu, Finko, Saggese, Wagnon, Foster, McGuffin, Lucas, Rose, Crowhurst, Weisz, Radousky, Curreli, Knight (bb0190) 2022; 162
Larson, Nasstrom (bb0210) 2002; 36
Arthur, Lundquist, Mirocha, Neuscamman, Kanarska, Nasstrom (bb0020) 2021; 254
Lewis, Knight, Matzel, Prussin, Zimmer, Kinman, Ryerson, Hutcheon (bb0215) 2015; 148
Nathans, Thews, Holland, Benson (bb0295) 1970; 75
Emerson, Hodshire, DeBolt, Bilsback, Pierce, McMeeking, Farmer (bb0070) 2020; 117
Machta, List, Hubert (bb0235) 1956; 124
English, Toon, Mills (bb0075) 2013; 118
Glasstone, Dolan (bb0130) 1977
Zhang, Sharma, Dhawan, Dhanraj, Li, Biswas (bb0440) 2020; 54
Fuchs (bb0110) 1964
Molenkamp (bb0270) 1979
Kwapis, Villa-Aleman, Hartig (bb0205) 2023; 200
Balboni, Dai, Ferrier, Knight (bb0035) 2022
Koroglu, Wagnon, Dai, Crowhurst, Armstrong, Weisz, Mehl, Zaug, Radousky, Rose (bb0185) 2018; 8
Morrison, van Lier-Walqui, Fridlind, Grabowski, Harrington, Hoose, Korolev, Kumjian, Milbrandt, Pawlowska, Posselt, Prat, Reimel, Shima, van Diedenhoven, Xue (bb0285) 2020; 12
Wu, Chen, Chen, Li (bb0415) 2023; 169
Ermak, Nasstrom (bb0080) 2000; 34
Jacobson (bb0155) 2003; 108
Pringle, Tost, Message, Steil, Giannadaki, Nenes, Fountoukis, Stier, Vignati, Lelieveld (bb0310) 2010; 3
Sugiyama, Nasstrom, Pobanz, Foster, Simpson, Vogt, Aluzzi, Homann (bb0365) 2012; 102
Riemer, West, Zaveri, Easter (bb0325) 2009; 114
Redfern, Lundquist, Toon, Muñoz-Esparza, Bardeen, Kosović (bb0315) 2021; 126
Meyer, Deglon (bb0260) 2011; 24
Seinfeld, Pandis (bb0335) 2006
Zhang, Seigneur, Seinfeld, Jacobson, Binkowski (bb0430) 1999; 31
Kokkola, Hommel, Kazil, Niemeier, Partanen, Feichter, Timmreck (bb0180) 2009; 2
Liu, Easter, Ghan, Zaveri, Rasch, Shi, Lamarque, Gettelman, Morrison, Vitt, Conley, Park, Neale, Hannay, Ekman, Hess, Mahowald, Collins, Iacono, Bretherton, Flanner, Mitchell (bb0225) 2012; 5
Yu, Toon, Bardeen, Mills, Fan, English, Neely (bb0420) 2015; 7
Kuran (bb0200) 2006
Baker (bb0030) 1987
Sreekanth, Anand, Ikkurthi, Chaudhury, Sapra, Mayya, Chaturvedi (bb0360) 2020; 54
Wagman, Lundquist, Tang, Glascoe, Bader (bb0390) 2020; 125
Gillespie (bb0120) 1975; 32
Farley (bb0085) 1952; 212
Heft (bb0145) 1970
Vishnyakov, Kiro, Ennan (bb0385) 2011; 44
Spriggs, Neuscamman, Nasstrom, Knight (bb0355) 2020; 21
Whitby, McMurry (bb0405) 1997; 27
Genda, Knight, Dai, Balboni, Goldblum, Hosemann (bb0115) 2021; 237
Taccogna (bb0370) 2015; 81
Simon, Bouville, Beck (bb0345) 2004; 74
Ackermann, Hass, Memmesheimer, Ebel, Binkowski, Shankar (bb0010) 1998; 32
Morris, Shestakov, Nichols, Isaac, B. (bb0280) 2020; 21
Moresco (bb0275) 2021
Auxier, Auxier, Hall (bb0025) 2017; 171
Burton, Auner, Crowhurst, Boone, Finney, Weisz, Koroglu, Jovanovic, Radousky, Knight (bb0055) 2022; 12
Freiling (bb0100) 1961; 133
Bartnicki, Saltbones (bb0040) 2008; 43
Freiling (bb0105) 1963
Kirkby, Curtius, Almeida, Dunne, Duplissy, Ehrhart, Franchin, Gagné, Ickes, Kürten, Kupc, Metzger, Riccobono, Rondo, Schobesberger, Tsagkogeorgas, Wimmer, Amorim, Bianchi, Kulmala (bb0170) 2011; 476
Martin (bb0250) 1983
Girshick (10.1016/j.scitotenv.2024.175536_bb0125) 1994; 3
Hicks (10.1016/j.scitotenv.2024.175536_bb0150) 1982; 42
Lewis (10.1016/j.scitotenv.2024.175536_bb0215) 2015; 148
Gillespie (10.1016/j.scitotenv.2024.175536_bb0120) 1975; 32
Rolph (10.1016/j.scitotenv.2024.175536_bb0330) 2014; 136
Freiling (10.1016/j.scitotenv.2024.175536_bb0105) 1963
Zhang (10.1016/j.scitotenv.2024.175536_bb0440) 2020; 54
Redfern (10.1016/j.scitotenv.2024.175536_bb0315) 2021; 126
Mann (10.1016/j.scitotenv.2024.175536_bb0240) 2010; 3
Goumans (10.1016/j.scitotenv.2024.175536_bb0135) 2012; 420
English (10.1016/j.scitotenv.2024.175536_bb0075) 2013; 118
Baker (10.1016/j.scitotenv.2024.175536_bb0030) 1987
Kuran (10.1016/j.scitotenv.2024.175536_bb0200) 2006
Jacobson (10.1016/j.scitotenv.2024.175536_bb0155) 2003; 108
Miller (10.1016/j.scitotenv.2024.175536_bb0265) 1960
Larson (10.1016/j.scitotenv.2024.175536_bb0210) 2002; 36
O’Day (10.1016/j.scitotenv.2024.175536_bb0305) 2009
Skaar (10.1016/j.scitotenv.2024.175536_bb0350) 2005
Morrison (10.1016/j.scitotenv.2024.175536_bb0285) 2020; 12
Kirkby (10.1016/j.scitotenv.2024.175536_bb0170) 2011; 476
Machta (10.1016/j.scitotenv.2024.175536_bb0235) 1956; 124
Meyer (10.1016/j.scitotenv.2024.175536_bb0260) 2011; 24
Bridgman (10.1016/j.scitotenv.2024.175536_bb0050) 1982; 43
Shima (10.1016/j.scitotenv.2024.175536_bb0340) 2009; 135
Taccogna (10.1016/j.scitotenv.2024.175536_bb0370) 2015; 81
Ackermann (10.1016/j.scitotenv.2024.175536_bb0010) 1998; 32
Wagman (10.1016/j.scitotenv.2024.175536_bb0390) 2020; 125
Ermak (10.1016/j.scitotenv.2024.175536_bb0080) 2000; 34
McGuffin (10.1016/j.scitotenv.2024.175536_bb0255) 2022; 127
Zhang (10.1016/j.scitotenv.2024.175536_bb0435) 2002; 107
Koroglu (10.1016/j.scitotenv.2024.175536_bb0190) 2022; 162
Molenkamp (10.1016/j.scitotenv.2024.175536_bb0270) 1979
Seinfeld (10.1016/j.scitotenv.2024.175536_bb0335) 2006
Ferlic (10.1016/j.scitotenv.2024.175536_bb0090) 1983
Arthur (10.1016/j.scitotenv.2024.175536_bb0020) 2021; 254
U.S. Department of Energy (10.1016/j.scitotenv.2024.175536_bb0380) 2015
Harvey (10.1016/j.scitotenv.2024.175536_bb0140) 1979
Kwapis (10.1016/j.scitotenv.2024.175536_bb0205) 2023; 200
Heft (10.1016/j.scitotenv.2024.175536_bb0145) 1970
Emerson (10.1016/j.scitotenv.2024.175536_bb0070) 2020; 117
Yu (10.1016/j.scitotenv.2024.175536_bb0425) 2018; 18
Pringle (10.1016/j.scitotenv.2024.175536_bb0310) 2010; 3
Vishnyakov (10.1016/j.scitotenv.2024.175536_bb0385) 2011; 44
Freiling (10.1016/j.scitotenv.2024.175536_bb0100) 1961; 133
Koroglu (10.1016/j.scitotenv.2024.175536_bb0185) 2018; 8
Liu (10.1016/j.scitotenv.2024.175536_bb0220) 2000; 112
Wilson (10.1016/j.scitotenv.2024.175536_bb0410) 2001; 106
Burton (10.1016/j.scitotenv.2024.175536_bb0055) 2022; 12
Easter (10.1016/j.scitotenv.2024.175536_bb0065) 2004; 109
Sugiyama (10.1016/j.scitotenv.2024.175536_bb0365) 2012; 102
Mann (10.1016/j.scitotenv.2024.175536_bb0245) 2012; 12
Nasstrom (10.1016/j.scitotenv.2024.175536_bb0290) 2007; 4
Zhang (10.1016/j.scitotenv.2024.175536_bb0430) 1999; 31
Tompkins (10.1016/j.scitotenv.2024.175536_bb0375) 1968
Andrejczuk (10.1016/j.scitotenv.2024.175536_bb0015) 2008; 113
AboEl-Fetouh (10.1016/j.scitotenv.2024.175536_bb0005) 2022; 271
Bellouin (10.1016/j.scitotenv.2024.175536_bb0045) 2013; 13
Sreekanth (10.1016/j.scitotenv.2024.175536_bb0360) 2020; 54
Bartnicki (10.1016/j.scitotenv.2024.175536_bb0040) 2008; 43
(10.1016/j.scitotenv.2024.175536_bb0300) 1979
Genda (10.1016/j.scitotenv.2024.175536_bb0115) 2021; 237
Yu (10.1016/j.scitotenv.2024.175536_bb0420) 2015; 7
Fuchs (10.1016/j.scitotenv.2024.175536_bb0110) 1964
Nathans (10.1016/j.scitotenv.2024.175536_bb0295) 1970; 75
Kanarska (10.1016/j.scitotenv.2024.175536_bb0160) 2020; 210
Reisner (10.1016/j.scitotenv.2024.175536_bb0320) 2018; 123
Spriggs (10.1016/j.scitotenv.2024.175536_bb0355) 2020; 21
Finko (10.1016/j.scitotenv.2024.175536_bb0095) 2017; 50
Morris (10.1016/j.scitotenv.2024.175536_bb0280) 2020; 21
Riemer (10.1016/j.scitotenv.2024.175536_bb0325) 2009; 114
Liu (10.1016/j.scitotenv.2024.175536_bb0225) 2012; 5
Kautz (10.1016/j.scitotenv.2024.175536_bb0165) 2021; 185
Glasstone (10.1016/j.scitotenv.2024.175536_bb0130) 1977
Wu (10.1016/j.scitotenv.2024.175536_bb0415) 2023; 169
Weisz (10.1016/j.scitotenv.2024.175536_bb0400) 2017; 201
Korts (10.1016/j.scitotenv.2024.175536_bb0195) 1967
Auxier (10.1016/j.scitotenv.2024.175536_bb0025) 2017; 171
Kokkola (10.1016/j.scitotenv.2024.175536_bb0180) 2009; 2
Moresco (10.1016/j.scitotenv.2024.175536_bb0275) 2021
Simon (10.1016/j.scitotenv.2024.175536_bb0345) 2004; 74
Weisenstein (10.1016/j.scitotenv.2024.175536_bb0395) 2007; 7
Lundquist (10.1016/j.scitotenv.2024.175536_bb0230) 2023; 270
Whitby (10.1016/j.scitotenv.2024.175536_bb0405) 1997; 27
Balboni (10.1016/j.scitotenv.2024.175536_bb0035) 2022
Kokkola (10.1016/j.scitotenv.2024.175536_bb0175) 2008; 8
Coupe (10.1016/j.scitotenv.2024.175536_bb0060) 2019; 124
Farley (10.1016/j.scitotenv.2024.175536_bb0085) 1952; 212
Martin (10.1016/j.scitotenv.2024.175536_bb0250) 1983
References_xml – volume: 185
  year: 2021
  ident: bb0165
  article-title: Optical spectroscopy and modeling of uranium gasphase oxidation: Progress and perspectives
  publication-title: Spectrochim. Acta B At. Spectrosc.
– volume: 4
  start-page: 524
  year: 2007
  end-page: 550
  ident: bb0290
  article-title: The National Atmospheric Release Advisory Center (NARAC) modeling and decision support system for radiological and nuclear emergency preparedness and response
  publication-title: Int. J. Emerg. Manag.
– volume: 54
  start-page: 739
  year: 2020
  end-page: 760
  ident: bb0440
  article-title: Comparison of discrete, discrete-sectional, modal and moment models for aerosol dynamics simulations
  publication-title: Aerosol Science and Technology
– year: 1964
  ident: bb0110
  article-title: The Mechanics of Aerosols
– volume: 74
  start-page: 91
  year: 2004
  end-page: 105
  ident: bb0345
  article-title: The geographic distribution of radionuclide deposition across the continental US from atmospheric nuclear testing
  publication-title: Journal of Environmental Radioactivity
– volume: 169
  year: 2023
  ident: bb0415
  article-title: Clustering and collision of brownian particles in homogeneous and isotropic turbulence
  publication-title: J. Aerosol Sci.
– volume: 271
  year: 2022
  ident: bb0005
  article-title: Seasonal comparisons of GEOS-Chem-TOMAS (GCT) simulations with AERONET-inversion retrievals over sites in the north american and european arctic
  publication-title: Atmos. Environ.
– volume: 127
  year: 2022
  ident: bb0255
  article-title: Super-droplet method to simulate lagrangian microphysics of nuclear fallout in a homogeneous cloud
  publication-title: J. Geophys. Res. Atmos.
– volume: 7
  start-page: 2339
  year: 2007
  end-page: 2355
  ident: bb0395
  article-title: Global 2-D intercomparison of sectional and modal aerosol modules
  publication-title: Atmospheric Chemistry and Physics
– volume: 43
  start-page: 111
  year: 2008
  end-page: 115
  ident: bb0040
  article-title: Modelling atmospheric dispersion of radioactive debris released in case of nuclear explosion using the Norwegian SNAP model
  publication-title: Croatian Meteorological Journal
– volume: 123
  start-page: 2752
  year: 2018
  end-page: 2772
  ident: bb0320
  article-title: Climate impact of a regional nuclear weapons exchange: an improved assessment based on detailed source calculations
  publication-title: J. Geophys. Res. Atmos.
– volume: 420
  start-page: 3344
  year: 2012
  end-page: 3349
  ident: bb0135
  article-title: Efficient nucleation of stardust silicates via heteromolecular homogeneous condensation
  publication-title: Mon. Not. R. Astron. Soc.
– volume: 135
  start-page: 1307
  year: 2009
  end-page: 1320
  ident: bb0340
  article-title: The super-droplet method for the numerical simulation of clouds and precipitation: a particle-based and probabilistic microphysics model coupled with a non-hydrostatic model
  publication-title: Q. J. Roy. Meteorol. Soc.
– volume: 112
  start-page: 9949
  year: 2000
  end-page: 9955
  ident: bb0220
  article-title: Heterogeneous nucleation or homogeneous nucleation?
  publication-title: J. Chem. Phys.
– volume: 50
  year: 2017
  ident: bb0095
  article-title: A model of early formation of uranium molecular oxides in laser-ablated plasmas
  publication-title: J. Phys. D Appl. Phys.
– volume: 254
  year: 2021
  ident: bb0020
  article-title: Simulating nuclear cloud rise within a realistic atmosphere using the weather research and forecasting model
  publication-title: Atmos. Environ.
– volume: 3
  start-page: 519
  year: 2010
  end-page: 551
  ident: bb0240
  article-title: Description and evaluation of GLOMAP-mode: a modal global aerosol microphysics model for the UKCA composition-climate model
  publication-title: Geosci. Model Dev.
– year: 1979
  ident: bb0270
  article-title: Introduction to self-induced rainout
  publication-title: Technical Report
– volume: 54
  start-page: 656
  year: 2020
  end-page: 667
  ident: bb0360
  article-title: Evolution of particle metrics in a buoyant aerosol cloud from explosive releases
  publication-title: Aerosol Science and Technology
– volume: 125
  year: 2020
  ident: bb0390
  article-title: Examining the climate effects of a regional nuclear weapons exchange using a multiscale atmospheric modeling approach
  publication-title: J. Geophys. Res. Atmos.
– volume: 113
  year: 2008
  ident: bb0015
  article-title: The potential impacts of pollution on a nondrizzling stratus deck: does aerosol number matter more than type?
  publication-title: J. Geophys. Res. Atmos.
– year: 1977
  ident: bb0130
  article-title: The Effects of Nuclear Weapons
– year: 1968
  ident: bb0375
  article-title: Department of Defense land fallout prediction system. Volume 5. Particle activity
  publication-title: Technical Report
– year: 2005
  ident: bb0350
  article-title: A Comparison of the Heft Subsurface and DELFIC Particle Size Distributions and Effects in HPAC
– year: 2015
  ident: bb0380
  article-title: United States Nuclear Tests July 1945 through September 1992
  publication-title: Technical Report
– volume: 107
  year: 2002
  ident: bb0435
  article-title: Impact of aerosol size representation on modeling aerosol-cloud interactions
  publication-title: J. Geophys. Res. Atmos.
– volume: 12
  start-page: 2045
  year: 2022
  end-page: 2322
  ident: bb0055
  article-title: The effect of oxygen concentration on the speciation of laser ablated uranium
  publication-title: Sci. Rep.
– volume: 75
  start-page: 7559
  year: 1970
  end-page: 7572
  ident: bb0295
  article-title: Particle size distribution in clouds from nuclear airbursts
  publication-title: Journal of Geophysical Research (1896-1977)
– volume: 24
  start-page: 719
  year: 2011
  end-page: 730
  ident: bb0260
  article-title: Particle collision modeling – a review
  publication-title: Miner. Eng.
– volume: 114
  year: 2009
  ident: bb0325
  article-title: Simulating the evolution of soot mixing state with a particle-resolved aerosol model
  publication-title: J. Geophys. Res. Atmos.
– volume: 126
  year: 2021
  ident: bb0315
  article-title: Upper troposphere smoke injection from large areal fires
  publication-title: J. Geophys. Res. Atmos.
– volume: 201
  start-page: 410
  year: 2017
  end-page: 426
  ident: bb0400
  article-title: Deposition of vaporized species onto glassy fallout from a nearsurface nuclear test
  publication-title: Geochim. Cosmochim. Acta
– volume: 212
  start-page: 530
  year: 1952
  end-page: 542
  ident: bb0085
  article-title: The theory of the condensation of supersaturated ionfree vapour
  publication-title: Proc. R. Soc. Lond. A
– volume: 162
  year: 2022
  ident: bb0190
  article-title: The influence of cooling rate on condensation of iron, aluminum, and uranium oxide nanoparticles
  publication-title: J. Aerosol Sci.
– year: 2006
  ident: bb0335
  article-title: Atmospheric Chemistry and Physics From Air Pollution to Climate Change
– year: 1987
  ident: bb0030
  article-title: Implications of Atmospheric Test Fallout Data for Nuclear Winter
– volume: 171
  year: 2017
  ident: bb0025
  article-title: Review of current nuclear fallout codes
  publication-title: J. Environ. Radioact.
– volume: 34
  start-page: 1059
  year: 2000
  end-page: 1068
  ident: bb0080
  article-title: A Lagrangian stochastic diffusion method for inhomogeneous turbulence
  publication-title: Atmos. Environ.
– year: 2009
  ident: bb0305
  article-title: Estimation of Weapon Yield from Inversion of Dose Rate Contours
– volume: 237
  year: 2021
  ident: bb0115
  article-title: Iron-rich microstructure records of high temperature multi-component silicate melt behavior in nuclear fallout
  publication-title: J. Environ. Radioact.
– year: 2021
  ident: bb0275
  article-title: Description of nucleation, growth and coagulation processes in the modeling of debris formation after a nuclear burst
  publication-title: Technical Report
– volume: 8
  start-page: 2045
  year: 2018
  end-page: 2322
  ident: bb0185
  article-title: Gas phase chemical evolution of uranium, aluminum, and iron oxides
  publication-title: Sci. Rep.
– volume: 210
  year: 2020
  ident: bb0160
  article-title: Semi-implicit method to solve compressible multiphase fluid flows without acoustic time step restrictions
  publication-title: Comput. Fluids
– volume: 109
  year: 2004
  ident: bb0065
  article-title: MIRAGE: model description and evaluation of aerosols and trace gases
  publication-title: J. Geophys. Res.
– volume: 5
  start-page: 709
  year: 2012
  end-page: 739
  ident: bb0225
  article-title: Toward a minimal representation of aerosols in climate models: description and evaluation in the community atmosphere model CAM5
  publication-title: Geosci. Model Dev.
– volume: 8
  start-page: 2469
  year: 2008
  end-page: 2483
  ident: bb0175
  article-title: SALSA – a sectional aerosol module for large scale applications
  publication-title: Atmos. Chem. Phys.
– volume: 43
  start-page: 205
  year: 1982
  end-page: 218
  ident: bb0050
  article-title: A new fallout prediction model
  publication-title: Health Phys.
– volume: 12
  start-page: 4449
  year: 2012
  end-page: 4476
  ident: bb0245
  article-title: Intercomparison of modal and sectional aerosol microphysics representations within the same 3-D global chemical transport model
  publication-title: Atmospheric Chemistry and Physics
– start-page: 5371
  year: 2022
  end-page: 5379
  ident: bb0035
  article-title: Chemical and structural characterization of particulate fallout isolated from air-filters
  publication-title: J. Radioanal. Nucl. Chem.
– volume: 12
  year: 2020
  ident: bb0285
  article-title: Confronting the challenge of modeling cloud and precipitation microphysics
  publication-title: Journal of Advances in Modeling Earth Systems
– volume: 106
  start-page: 34081
  year: 2001
  end-page: 34108
  ident: bb0410
  article-title: A modeling study of global mixed aerosol fields
  publication-title: J. Geophys. Res. Atmos.
– volume: 18
  start-page: 17451
  year: 2018
  end-page: 17474
  ident: bb0425
  article-title: H
  publication-title: Atmospheric Chemistry and Physics
– year: 2006
  ident: bb0200
  article-title: How to Photograph an Atomic Bomb
– volume: 27
  start-page: 673
  year: 1997
  end-page: 688
  ident: bb0405
  article-title: Modal aerosol dynamics modeling
  publication-title: Aerosol Sci. Tech.
– year: 1979
  ident: bb0140
  article-title: Fallout Model for System Studies
– volume: 42
  start-page: 585
  year: 1982
  end-page: 600
  ident: bb0150
  article-title: Calculation of the concentration of any radionuclide deposited on the ground by offsite fallout from a nuclear detonation
  publication-title: Health Phys.
– volume: 108
  year: 2003
  ident: bb0155
  article-title: Development of mixed-phase clouds from multiple aerosol size distributions and the effect of the clouds on aerosol removal
  publication-title: Journal of Geophysical Research: Atmospheres
– volume: 136
  start-page: 41
  year: 2014
  end-page: 55
  ident: bb0330
  article-title: Modeling the fallout from stabilized nuclear clouds using the HYSPLIT atmospheric dispersion model
  publication-title: J. Environ. Radioact.
– volume: 21
  start-page: 103
  year: 2020
  end-page: 113
  ident: bb0355
  article-title: Fallout cloud regimes
  publication-title: Countering Weapons of Mass Destruction
– volume: 3
  start-page: 388
  year: 1994
  ident: bb0125
  article-title: Particle nucleation and growth in thermal plasmas
  publication-title: Plasma Sources Sci. Technol.
– volume: 102
  start-page: 493
  year: 2012
  end-page: 508
  ident: bb0365
  article-title: Atmospheric dispersion modeling: challenges of the Fukushima Daiichi response
  publication-title: Health Phys.
– volume: 81
  start-page: 495810509
  year: 2015
  ident: bb0370
  article-title: Nucleation and growth of nanoparticles in a plasma by laser ablation in liquid
  publication-title: Journal of Plasma Physics
– year: 1979
  ident: bb0300
  article-title: DELFIC: Department of Defense fallout prediction system. Volume I - fundamentals
  publication-title: Technical Report
– volume: 124
  start-page: 474
  year: 1956
  end-page: 477
  ident: bb0235
  article-title: World-wide travel of atomic debris
  publication-title: Science
– volume: 148
  start-page: 183
  year: 2015
  end-page: 195
  ident: bb0215
  article-title: Spatially-resolved analyses of aerodynamic fallout from a uranium-fueled nuclear test
  publication-title: J. Environ. Radioact.
– volume: 3
  start-page: 391
  year: 2010
  end-page: 412
  ident: bb0310
  article-title: Description and evaluation of GMXe: a new aerosol submodel for global simulations (v1)
  publication-title: Geosci. Model Dev.
– volume: 200
  year: 2023
  ident: bb0205
  article-title: Spectroscopic signatures and oxidation characteristics of nanosecond laser-induced cerium plasmas
  publication-title: Spectrochimica Acta Part B: Atomic Spectroscopy
– volume: 124
  start-page: 8522
  year: 2019
  end-page: 8543
  ident: bb0060
  article-title: Nuclear winter responses to nuclear war between the United States and Russia in the whole atmosphere community climate model version 4 and the Goddard Institute for Space Studies Modele
  publication-title: J. Geophys. Res. Atmos.
– volume: 117
  start-page: 26076
  year: 2020
  end-page: 26082
  ident: bb0070
  article-title: Revisiting particle dry deposition and its role in radiative effect estimates
  publication-title: Proceedings of the National Academy of Sciences
– year: 1963
  ident: bb0105
  article-title: Fractionation. III. Estimation of degree of fractionation and radionuclide partition for nuclear debris
  publication-title: Technical Report
– year: 1960
  ident: bb0265
  article-title: A theory of formation of fallout from land-surface nuclear detonations and decay of the fission products
  publication-title: Technical Report
– year: 1967
  ident: bb0195
  article-title: A calculational model for condensed state diffusion controlled fission product absorption during fallout formation
  publication-title: Technical Report
– volume: 44
  start-page: 215201
  year: 2011
  ident: bb0385
  article-title: Heterogeneous ion-induced nucleation in thermal dusty plasmas
  publication-title: J. Phys. D Appl. Phys.
– volume: 270
  year: 2023
  ident: bb0230
  article-title: Examining the effects of soil entrainment during nuclear cloud rise on fallout predictions using a multiscale atmospheric modeling framework
  publication-title: J. Environ. Radioact.
– volume: 36
  start-page: 1559
  year: 2002
  end-page: 1564
  ident: bb0210
  article-title: Shared- and distributed-memory parallelization of a lagrangian atmospheric dispersion model
  publication-title: Atmos. Environ.
– year: 1983
  ident: bb0090
  article-title: Fallout: Its Characteristics and Management
– volume: 133
  start-page: 1991
  year: 1961
  end-page: 1998
  ident: bb0100
  article-title: Radionuclide fractionation in bomb debris
  publication-title: Science
– volume: 118
  start-page: 1880
  year: 2013
  end-page: 1895
  ident: bb0075
  article-title: Microphysical simulations of large volcanic eruptions: Pinatubo and Toba
  publication-title: J. Geophys. Res. Atmos.
– volume: 32
  start-page: 1977
  year: 1975
  end-page: 1989
  ident: bb0120
  article-title: An exact method for numerically simulating the stochastic coalescence process in a cloud
  publication-title: J. Atmos. Sci.
– year: 1983
  ident: bb0250
  article-title: Fallout Fractionation in Silicate Soils
– volume: 476
  start-page: 429
  year: 2011
  end-page: 433
  ident: bb0170
  article-title: Role of sulphuric acid, ammonia and galactic cosmic rays in atmospheric aerosol nucleation
  publication-title: Nature
– volume: 32
  start-page: 2981
  year: 1998
  end-page: 2999
  ident: bb0010
  article-title: Modal aerosol dynamics model for Europedevelopment and first applications
  publication-title: Atmos. Environ.
– start-page: 254
  year: 1970
  end-page: 281
  ident: bb0145
  article-title: The Characterization of Radioactive Particles From Nuclear Weapons Tests
– volume: 21
  start-page: 128
  year: 2020
  end-page: 144
  ident: bb0280
  article-title: Challenges in simulating ground interacting nuclear explosions
  publication-title: Countering Weapons of Mass Destruction
– volume: 13
  start-page: 3027
  year: 2013
  end-page: 3044
  ident: bb0045
  article-title: Impact of the modal aerosol scheme GLOMAP-mode on aerosol forcing in the Hadley Centre Global Environmental Model
  publication-title: Atmospheric Chemistry and Physics
– volume: 2
  start-page: 97
  year: 2009
  end-page: 112
  ident: bb0180
  article-title: Aerosol microphysics modules in the framework of the ECHAM5 climate model – intercomparison under stratospheric conditions
  publication-title: Geosci. Model Dev.
– volume: 7
  start-page: 865
  year: 2015
  end-page: 914
  ident: bb0420
  article-title: Evaluations of tropospheric aerosol properties simulated by the community earth system model with a sectional aerosol microphysics scheme
  publication-title: Journal of Advances in Modeling Earth Systems
– volume: 31
  start-page: 487
  year: 1999
  end-page: 514
  ident: bb0430
  article-title: Simulation of aerosol dynamics: a comparative review of algorithms used in air quality models
  publication-title: Aerosol Sci. Tech.
– volume: 210
  year: 2020
  ident: 10.1016/j.scitotenv.2024.175536_bb0160
  article-title: Semi-implicit method to solve compressible multiphase fluid flows without acoustic time step restrictions
  publication-title: Comput. Fluids
  doi: 10.1016/j.compfluid.2020.104651
– year: 2009
  ident: 10.1016/j.scitotenv.2024.175536_bb0305
– volume: 44
  start-page: 215201
  year: 2011
  ident: 10.1016/j.scitotenv.2024.175536_bb0385
  article-title: Heterogeneous ion-induced nucleation in thermal dusty plasmas
  publication-title: J. Phys. D Appl. Phys.
  doi: 10.1088/0022-3727/44/21/215201
– volume: 13
  start-page: 3027
  year: 2013
  ident: 10.1016/j.scitotenv.2024.175536_bb0045
  article-title: Impact of the modal aerosol scheme GLOMAP-mode on aerosol forcing in the Hadley Centre Global Environmental Model
  publication-title: Atmospheric Chemistry and Physics
  doi: 10.5194/acp-13-3027-2013
– year: 1977
  ident: 10.1016/j.scitotenv.2024.175536_bb0130
– volume: 200
  year: 2023
  ident: 10.1016/j.scitotenv.2024.175536_bb0205
  article-title: Spectroscopic signatures and oxidation characteristics of nanosecond laser-induced cerium plasmas
  publication-title: Spectrochimica Acta Part B: Atomic Spectroscopy
  doi: 10.1016/j.sab.2022.106610
– volume: 5
  start-page: 709
  year: 2012
  ident: 10.1016/j.scitotenv.2024.175536_bb0225
  article-title: Toward a minimal representation of aerosols in climate models: description and evaluation in the community atmosphere model CAM5
  publication-title: Geosci. Model Dev.
  doi: 10.5194/gmd-5-709-2012
– volume: 124
  start-page: 474
  year: 1956
  ident: 10.1016/j.scitotenv.2024.175536_bb0235
  article-title: World-wide travel of atomic debris
  publication-title: Science
  doi: 10.1126/science.124.3220.474
– volume: 4
  start-page: 524
  year: 2007
  ident: 10.1016/j.scitotenv.2024.175536_bb0290
  article-title: The National Atmospheric Release Advisory Center (NARAC) modeling and decision support system for radiological and nuclear emergency preparedness and response
  publication-title: Int. J. Emerg. Manag.
  doi: 10.1504/IJEM.2007.014301
– volume: 169
  year: 2023
  ident: 10.1016/j.scitotenv.2024.175536_bb0415
  article-title: Clustering and collision of brownian particles in homogeneous and isotropic turbulence
  publication-title: J. Aerosol Sci.
  doi: 10.1016/j.jaerosci.2022.106134
– volume: 185
  year: 2021
  ident: 10.1016/j.scitotenv.2024.175536_bb0165
  article-title: Optical spectroscopy and modeling of uranium gasphase oxidation: Progress and perspectives
  publication-title: Spectrochim. Acta B At. Spectrosc.
  doi: 10.1016/j.sab.2021.106283
– volume: 50
  year: 2017
  ident: 10.1016/j.scitotenv.2024.175536_bb0095
  article-title: A model of early formation of uranium molecular oxides in laser-ablated plasmas
  publication-title: J. Phys. D Appl. Phys.
  doi: 10.1088/1361-6463/aa92f5
– volume: 123
  start-page: 2752
  year: 2018
  ident: 10.1016/j.scitotenv.2024.175536_bb0320
  article-title: Climate impact of a regional nuclear weapons exchange: an improved assessment based on detailed source calculations
  publication-title: J. Geophys. Res. Atmos.
  doi: 10.1002/2017JD027331
– volume: 108
  year: 2003
  ident: 10.1016/j.scitotenv.2024.175536_bb0155
  article-title: Development of mixed-phase clouds from multiple aerosol size distributions and the effect of the clouds on aerosol removal
  publication-title: Journal of Geophysical Research: Atmospheres
  doi: 10.1029/2002JD002691
– volume: 136
  start-page: 41
  year: 2014
  ident: 10.1016/j.scitotenv.2024.175536_bb0330
  article-title: Modeling the fallout from stabilized nuclear clouds using the HYSPLIT atmospheric dispersion model
  publication-title: J. Environ. Radioact.
  doi: 10.1016/j.jenvrad.2014.05.006
– volume: 7
  start-page: 2339
  year: 2007
  ident: 10.1016/j.scitotenv.2024.175536_bb0395
  article-title: Global 2-D intercomparison of sectional and modal aerosol modules
  publication-title: Atmospheric Chemistry and Physics
  doi: 10.5194/acp-7-2339-2007
– volume: 43
  start-page: 205
  year: 1982
  ident: 10.1016/j.scitotenv.2024.175536_bb0050
  article-title: A new fallout prediction model
  publication-title: Health Phys.
  doi: 10.1097/00004032-198208000-00002
– volume: 125
  year: 2020
  ident: 10.1016/j.scitotenv.2024.175536_bb0390
  article-title: Examining the climate effects of a regional nuclear weapons exchange using a multiscale atmospheric modeling approach
  publication-title: J. Geophys. Res. Atmos.
  doi: 10.1029/2020JD033056
– volume: 118
  start-page: 1880
  year: 2013
  ident: 10.1016/j.scitotenv.2024.175536_bb0075
  article-title: Microphysical simulations of large volcanic eruptions: Pinatubo and Toba
  publication-title: J. Geophys. Res. Atmos.
  doi: 10.1002/jgrd.50196
– volume: 112
  start-page: 9949
  year: 2000
  ident: 10.1016/j.scitotenv.2024.175536_bb0220
  article-title: Heterogeneous nucleation or homogeneous nucleation?
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.481644
– volume: 8
  start-page: 2045
  year: 2018
  ident: 10.1016/j.scitotenv.2024.175536_bb0185
  article-title: Gas phase chemical evolution of uranium, aluminum, and iron oxides
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-28674-6
– volume: 114
  year: 2009
  ident: 10.1016/j.scitotenv.2024.175536_bb0325
  article-title: Simulating the evolution of soot mixing state with a particle-resolved aerosol model
  publication-title: J. Geophys. Res. Atmos.
  doi: 10.1029/2008JD011073
– volume: 254
  year: 2021
  ident: 10.1016/j.scitotenv.2024.175536_bb0020
  article-title: Simulating nuclear cloud rise within a realistic atmosphere using the weather research and forecasting model
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2021.118363
– volume: 21
  start-page: 128
  year: 2020
  ident: 10.1016/j.scitotenv.2024.175536_bb0280
  article-title: Challenges in simulating ground interacting nuclear explosions
  publication-title: Countering Weapons of Mass Destruction
– volume: 3
  start-page: 519
  year: 2010
  ident: 10.1016/j.scitotenv.2024.175536_bb0240
  article-title: Description and evaluation of GLOMAP-mode: a modal global aerosol microphysics model for the UKCA composition-climate model
  publication-title: Geosci. Model Dev.
  doi: 10.5194/gmd-3-519-2010
– year: 1960
  ident: 10.1016/j.scitotenv.2024.175536_bb0265
  article-title: A theory of formation of fallout from land-surface nuclear detonations and decay of the fission products
– volume: 106
  start-page: 34081
  year: 2001
  ident: 10.1016/j.scitotenv.2024.175536_bb0410
  article-title: A modeling study of global mixed aerosol fields
  publication-title: J. Geophys. Res. Atmos.
  doi: 10.1029/2000JD000198
– volume: 148
  start-page: 183
  year: 2015
  ident: 10.1016/j.scitotenv.2024.175536_bb0215
  article-title: Spatially-resolved analyses of aerodynamic fallout from a uranium-fueled nuclear test
  publication-title: J. Environ. Radioact.
  doi: 10.1016/j.jenvrad.2015.04.006
– volume: 32
  start-page: 2981
  year: 1998
  ident: 10.1016/j.scitotenv.2024.175536_bb0010
  article-title: Modal aerosol dynamics model for Europedevelopment and first applications
  publication-title: Atmos. Environ.
  doi: 10.1016/S1352-2310(98)00006-5
– volume: 476
  start-page: 429
  year: 2011
  ident: 10.1016/j.scitotenv.2024.175536_bb0170
  article-title: Role of sulphuric acid, ammonia and galactic cosmic rays in atmospheric aerosol nucleation
  publication-title: Nature
  doi: 10.1038/nature10343
– start-page: 5371
  year: 2022
  ident: 10.1016/j.scitotenv.2024.175536_bb0035
  article-title: Chemical and structural characterization of particulate fallout isolated from air-filters
  publication-title: J. Radioanal. Nucl. Chem.
  doi: 10.1007/s10967-022-08442-7
– year: 1987
  ident: 10.1016/j.scitotenv.2024.175536_bb0030
– year: 1983
  ident: 10.1016/j.scitotenv.2024.175536_bb0090
– volume: 135
  start-page: 1307
  year: 2009
  ident: 10.1016/j.scitotenv.2024.175536_bb0340
  article-title: The super-droplet method for the numerical simulation of clouds and precipitation: a particle-based and probabilistic microphysics model coupled with a non-hydrostatic model
  publication-title: Q. J. Roy. Meteorol. Soc.
  doi: 10.1002/qj.441
– year: 1979
  ident: 10.1016/j.scitotenv.2024.175536_bb0300
  article-title: DELFIC: Department of Defense fallout prediction system. Volume I - fundamentals
– volume: 27
  start-page: 673
  year: 1997
  ident: 10.1016/j.scitotenv.2024.175536_bb0405
  article-title: Modal aerosol dynamics modeling
  publication-title: Aerosol Sci. Tech.
  doi: 10.1080/02786829708965504
– year: 1964
  ident: 10.1016/j.scitotenv.2024.175536_bb0110
– volume: 162
  year: 2022
  ident: 10.1016/j.scitotenv.2024.175536_bb0190
  article-title: The influence of cooling rate on condensation of iron, aluminum, and uranium oxide nanoparticles
  publication-title: J. Aerosol Sci.
  doi: 10.1016/j.jaerosci.2022.105959
– year: 2021
  ident: 10.1016/j.scitotenv.2024.175536_bb0275
  article-title: Description of nucleation, growth and coagulation processes in the modeling of debris formation after a nuclear burst
– volume: 201
  start-page: 410
  year: 2017
  ident: 10.1016/j.scitotenv.2024.175536_bb0400
  article-title: Deposition of vaporized species onto glassy fallout from a nearsurface nuclear test
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/j.gca.2016.10.036
– volume: 3
  start-page: 388
  year: 1994
  ident: 10.1016/j.scitotenv.2024.175536_bb0125
  article-title: Particle nucleation and growth in thermal plasmas
  publication-title: Plasma Sources Sci. Technol.
  doi: 10.1088/0963-0252/3/3/023
– volume: 34
  start-page: 1059
  year: 2000
  ident: 10.1016/j.scitotenv.2024.175536_bb0080
  article-title: A Lagrangian stochastic diffusion method for inhomogeneous turbulence
  publication-title: Atmos. Environ.
  doi: 10.1016/S1352-2310(99)00379-9
– volume: 32
  start-page: 1977
  year: 1975
  ident: 10.1016/j.scitotenv.2024.175536_bb0120
  article-title: An exact method for numerically simulating the stochastic coalescence process in a cloud
  publication-title: J. Atmos. Sci.
  doi: 10.1175/1520-0469(1975)032<1977:AEMFNS>2.0.CO;2
– volume: 21
  start-page: 103
  year: 2020
  ident: 10.1016/j.scitotenv.2024.175536_bb0355
  article-title: Fallout cloud regimes
– volume: 117
  start-page: 26076
  year: 2020
  ident: 10.1016/j.scitotenv.2024.175536_bb0070
  article-title: Revisiting particle dry deposition and its role in radiative effect estimates
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.2014761117
– year: 1963
  ident: 10.1016/j.scitotenv.2024.175536_bb0105
  article-title: Fractionation. III. Estimation of degree of fractionation and radionuclide partition for nuclear debris
– year: 1979
  ident: 10.1016/j.scitotenv.2024.175536_bb0270
  article-title: Introduction to self-induced rainout
– volume: 113
  year: 2008
  ident: 10.1016/j.scitotenv.2024.175536_bb0015
  article-title: The potential impacts of pollution on a nondrizzling stratus deck: does aerosol number matter more than type?
  publication-title: J. Geophys. Res. Atmos.
  doi: 10.1029/2007JD009445
– volume: 124
  start-page: 8522
  year: 2019
  ident: 10.1016/j.scitotenv.2024.175536_bb0060
  article-title: Nuclear winter responses to nuclear war between the United States and Russia in the whole atmosphere community climate model version 4 and the Goddard Institute for Space Studies Modele
  publication-title: J. Geophys. Res. Atmos.
  doi: 10.1029/2019JD030509
– volume: 271
  year: 2022
  ident: 10.1016/j.scitotenv.2024.175536_bb0005
  article-title: Seasonal comparisons of GEOS-Chem-TOMAS (GCT) simulations with AERONET-inversion retrievals over sites in the north american and european arctic
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2021.118852
– year: 1983
  ident: 10.1016/j.scitotenv.2024.175536_bb0250
– volume: 126
  year: 2021
  ident: 10.1016/j.scitotenv.2024.175536_bb0315
  article-title: Upper troposphere smoke injection from large areal fires
  publication-title: J. Geophys. Res. Atmos.
  doi: 10.1029/2020JD034332
– year: 1968
  ident: 10.1016/j.scitotenv.2024.175536_bb0375
  article-title: Department of Defense land fallout prediction system. Volume 5. Particle activity
– volume: 43
  start-page: 111
  year: 2008
  ident: 10.1016/j.scitotenv.2024.175536_bb0040
  article-title: Modelling atmospheric dispersion of radioactive debris released in case of nuclear explosion using the Norwegian SNAP model
  publication-title: Croatian Meteorological Journal
– start-page: 254
  year: 1970
  ident: 10.1016/j.scitotenv.2024.175536_bb0145
– volume: 7
  start-page: 865
  year: 2015
  ident: 10.1016/j.scitotenv.2024.175536_bb0420
  article-title: Evaluations of tropospheric aerosol properties simulated by the community earth system model with a sectional aerosol microphysics scheme
  publication-title: Journal of Advances in Modeling Earth Systems
  doi: 10.1002/2014MS000421
– volume: 212
  start-page: 530
  year: 1952
  ident: 10.1016/j.scitotenv.2024.175536_bb0085
  article-title: The theory of the condensation of supersaturated ionfree vapour
  publication-title: Proc. R. Soc. Lond. A
  doi: 10.1098/rspa.1952.0099
– volume: 54
  start-page: 739
  year: 2020
  ident: 10.1016/j.scitotenv.2024.175536_bb0440
  article-title: Comparison of discrete, discrete-sectional, modal and moment models for aerosol dynamics simulations
  publication-title: Aerosol Science and Technology
  doi: 10.1080/02786826.2020.1723787
– volume: 2
  start-page: 97
  year: 2009
  ident: 10.1016/j.scitotenv.2024.175536_bb0180
  article-title: Aerosol microphysics modules in the framework of the ECHAM5 climate model – intercomparison under stratospheric conditions
  publication-title: Geosci. Model Dev.
  doi: 10.5194/gmd-2-97-2009
– year: 1979
  ident: 10.1016/j.scitotenv.2024.175536_bb0140
– volume: 74
  start-page: 91
  year: 2004
  ident: 10.1016/j.scitotenv.2024.175536_bb0345
  article-title: The geographic distribution of radionuclide deposition across the continental US from atmospheric nuclear testing
  publication-title: Journal of Environmental Radioactivity
  doi: 10.1016/j.jenvrad.2004.01.023
– volume: 237
  year: 2021
  ident: 10.1016/j.scitotenv.2024.175536_bb0115
  article-title: Iron-rich microstructure records of high temperature multi-component silicate melt behavior in nuclear fallout
  publication-title: J. Environ. Radioact.
  doi: 10.1016/j.jenvrad.2021.106700
– volume: 133
  start-page: 1991
  year: 1961
  ident: 10.1016/j.scitotenv.2024.175536_bb0100
  article-title: Radionuclide fractionation in bomb debris
  publication-title: Science
  doi: 10.1126/science.133.3469.1991
– volume: 42
  start-page: 585
  year: 1982
  ident: 10.1016/j.scitotenv.2024.175536_bb0150
  article-title: Calculation of the concentration of any radionuclide deposited on the ground by offsite fallout from a nuclear detonation
  publication-title: Health Phys.
  doi: 10.1097/00004032-198205000-00003
– volume: 270
  year: 2023
  ident: 10.1016/j.scitotenv.2024.175536_bb0230
  article-title: Examining the effects of soil entrainment during nuclear cloud rise on fallout predictions using a multiscale atmospheric modeling framework
  publication-title: J. Environ. Radioact.
  doi: 10.1016/j.jenvrad.2023.107299
– volume: 8
  start-page: 2469
  year: 2008
  ident: 10.1016/j.scitotenv.2024.175536_bb0175
  article-title: SALSA – a sectional aerosol module for large scale applications
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-8-2469-2008
– volume: 102
  start-page: 493
  year: 2012
  ident: 10.1016/j.scitotenv.2024.175536_bb0365
  article-title: Atmospheric dispersion modeling: challenges of the Fukushima Daiichi response
  publication-title: Health Phys.
  doi: 10.1097/HP.0b013e31824c7bc9
– volume: 171
  year: 2017
  ident: 10.1016/j.scitotenv.2024.175536_bb0025
  article-title: Review of current nuclear fallout codes
  publication-title: J. Environ. Radioact.
  doi: 10.1016/j.jenvrad.2017.02.010
– volume: 12
  year: 2020
  ident: 10.1016/j.scitotenv.2024.175536_bb0285
  article-title: Confronting the challenge of modeling cloud and precipitation microphysics
  publication-title: Journal of Advances in Modeling Earth Systems
  doi: 10.1029/2019MS001689
– volume: 420
  start-page: 3344
  year: 2012
  ident: 10.1016/j.scitotenv.2024.175536_bb0135
  article-title: Efficient nucleation of stardust silicates via heteromolecular homogeneous condensation
  publication-title: Mon. Not. R. Astron. Soc.
– volume: 36
  start-page: 1559
  year: 2002
  ident: 10.1016/j.scitotenv.2024.175536_bb0210
  article-title: Shared- and distributed-memory parallelization of a lagrangian atmospheric dispersion model
  publication-title: Atmos. Environ.
  doi: 10.1016/S1352-2310(01)00540-4
– year: 2005
  ident: 10.1016/j.scitotenv.2024.175536_bb0350
– year: 2006
  ident: 10.1016/j.scitotenv.2024.175536_bb0335
– volume: 18
  start-page: 17451
  year: 2018
  ident: 10.1016/j.scitotenv.2024.175536_bb0425
  article-title: H2SO4 – H2O – NH3 ternary ion-mediated nucleation (TIMN): kinetic-based model and comparison with CLOUD measurements
  publication-title: Atmospheric Chemistry and Physics
  doi: 10.5194/acp-18-17451-2018
– volume: 107
  year: 2002
  ident: 10.1016/j.scitotenv.2024.175536_bb0435
  article-title: Impact of aerosol size representation on modeling aerosol-cloud interactions
  publication-title: J. Geophys. Res. Atmos.
  doi: 10.1029/2001JD001549
– volume: 81
  start-page: 495810509
  year: 2015
  ident: 10.1016/j.scitotenv.2024.175536_bb0370
  article-title: Nucleation and growth of nanoparticles in a plasma by laser ablation in liquid
  publication-title: Journal of Plasma Physics
  doi: 10.1017/S0022377815000793
– volume: 12
  start-page: 4449
  year: 2012
  ident: 10.1016/j.scitotenv.2024.175536_bb0245
  article-title: Intercomparison of modal and sectional aerosol microphysics representations within the same 3-D global chemical transport model
  publication-title: Atmospheric Chemistry and Physics
  doi: 10.5194/acp-12-4449-2012
– year: 1967
  ident: 10.1016/j.scitotenv.2024.175536_bb0195
  article-title: A calculational model for condensed state diffusion controlled fission product absorption during fallout formation
– volume: 24
  start-page: 719
  year: 2011
  ident: 10.1016/j.scitotenv.2024.175536_bb0260
  article-title: Particle collision modeling – a review
  publication-title: Miner. Eng.
  doi: 10.1016/j.mineng.2011.03.015
– volume: 31
  start-page: 487
  year: 1999
  ident: 10.1016/j.scitotenv.2024.175536_bb0430
  article-title: Simulation of aerosol dynamics: a comparative review of algorithms used in air quality models
  publication-title: Aerosol Sci. Tech.
  doi: 10.1080/027868299304039
– year: 2015
  ident: 10.1016/j.scitotenv.2024.175536_bb0380
  article-title: United States Nuclear Tests July 1945 through September 1992
– year: 2006
  ident: 10.1016/j.scitotenv.2024.175536_bb0200
– volume: 54
  start-page: 656
  year: 2020
  ident: 10.1016/j.scitotenv.2024.175536_bb0360
  article-title: Evolution of particle metrics in a buoyant aerosol cloud from explosive releases
  publication-title: Aerosol Science and Technology
  doi: 10.1080/02786826.2020.1723788
– volume: 109
  year: 2004
  ident: 10.1016/j.scitotenv.2024.175536_bb0065
  article-title: MIRAGE: model description and evaluation of aerosols and trace gases
  publication-title: J. Geophys. Res.
– volume: 127
  year: 2022
  ident: 10.1016/j.scitotenv.2024.175536_bb0255
  article-title: Super-droplet method to simulate lagrangian microphysics of nuclear fallout in a homogeneous cloud
  publication-title: J. Geophys. Res. Atmos.
  doi: 10.1029/2022JD036599
– volume: 75
  start-page: 7559
  year: 1970
  ident: 10.1016/j.scitotenv.2024.175536_bb0295
  article-title: Particle size distribution in clouds from nuclear airbursts
  publication-title: Journal of Geophysical Research (1896-1977)
  doi: 10.1029/JC075i036p07559
– volume: 3
  start-page: 391
  year: 2010
  ident: 10.1016/j.scitotenv.2024.175536_bb0310
  article-title: Description and evaluation of GMXe: a new aerosol submodel for global simulations (v1)
  publication-title: Geosci. Model Dev.
  doi: 10.5194/gmd-3-391-2010
– volume: 12
  start-page: 2045
  year: 2022
  ident: 10.1016/j.scitotenv.2024.175536_bb0055
  article-title: The effect of oxygen concentration on the speciation of laser ablated uranium
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-022-07834-9
SSID ssj0000781
Score 2.4642563
SecondaryResourceType review_article
Snippet The capability to predict size, composition, and transport of nuclear fallout enables public officials to determine immediate and prolonged guidance in the...
SourceID osti
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 175536
SubjectTerms Emergency response
ENVIRONMENTAL SCIENCES
Fallout
Microphysics
Nuclear detonation
Title Predictive modeling of atmospheric nuclear fallout microphysics
URI https://dx.doi.org/10.1016/j.scitotenv.2024.175536
https://www.ncbi.nlm.nih.gov/pubmed/39155003
https://www.proquest.com/docview/3094470750
https://www.osti.gov/biblio/2434049
Volume 951
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR1dS8Mw8JCJIIjo_JpfVPC1ujVp0voiYyjToYgo-haaNkEFW9k6wRd_u3dNqwiKDz6VttcS7nJfuS-A_YRalMSy56PxYNBB0ZGvQ5n5zMpMx0IaU01vuLgUw1t-fh_ez8CgqYWhtMpa9juZXknr-slhjc3Dl8dHqvHlUSxiiTopFJGgIj7OJe3yg_evNA9qZuOizMjYCP0txwv_WxZom76ioxjwA1SlYdWr-UcN1SqQ6X43RCuFdLoEi7Ul6fXdYpdhxuRtmHOzJd_asHbyVcKGYDUPT9qw4E7qPFeAtALHV2MK1pDY86q5OKjMvMJ6SflcTKjpAMLm1PU4GXuWwvTT0numND53KDJZhdvTk5vB0K_HKvgpi1npJ0YGOpDdtGtlwNBlEKnmCRJM2FQbLZntZgzZmNlIZ3EPwWKeUpf9gOmIac7WoJUXudkArxcmQhDTh6jlTGATybMsyrLYBppHLO1At0GlenHdM1STVvakPrGvCPvKYb8DRw3K1beNoFDG__3xFhGpemnSh5RyhfDLgDOOnlAH9hraKWQiiowkuSmmE8XQyeWSrKcOrDuifq636qCPsm_zPwvbgnm6oyLGXrgNrXI8NTtozZR6t9quuzDbPxsNL-k6ur4bfQC1bPV7
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS-QwEB_WlUNBxFtvdc_zrsK99txt0qS5FxFRdk9dfFDwLTRtggrbym5X8L93pmkV4eQe7rVJSpjJfCUzvwH4mRJEiZKjEJ0HiwGKSUITyzxkTuZGCWlt3b3hcirGN_zPbXzbgZO2FobSKhvd73V6ra2bL4cNNQ8f7--pxpcnSiiJNikWiVArsEroVHEXVo8n5-Ppm0KWiW-cx1G2ccG7NC_8dVWie_qEsWLEf6E1jWu45r8aqW6JcvexL1rbpLMt2GycyeDY7_czdGzRg0--veRzD_qnb1VsOK0R40UPNvxlXeBrkLbh6GpO7zWk-YK6NQ7as6B0QVrNygXhDuDcgoCP03ng6KV-WQUzyuTz9yKLL3Bzdnp9Mg6bzgphxhSrwtTKyERymA2djBhGDSIzPEWeCZcZayRzw5yhJDOXmFyNcJriGQHtR8wkzHDWh25RFnYXglGcCkFyH6Ohs5FLJc_zJM-ViwxPWDaAYUtK_egBNHSbWfagX6mvifraU38Av1uS63dnQaOa__fiPWJSPWizu4zShXBlxBnHYGgABy3vNMoRPY6khS2XC80wzuWSHKgB7Himvu63BtFH9ff1fzb2A9bG15cX-mIyPd-DdRqhmsZR_A261Xxp99G5qcz35vC-AGxt9ok
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predictive+modeling+of+atmospheric+nuclear+fallout+microphysics&rft.jtitle=The+Science+of+the+total+environment&rft.au=McGuffin%2C+D.L.&rft.au=Lucas%2C+D.D.&rft.au=Balboni%2C+E.&rft.au=Nasstrom%2C+J.S.&rft.date=2024-11-15&rft.issn=0048-9697&rft.volume=951&rft.spage=175536&rft_id=info:doi/10.1016%2Fj.scitotenv.2024.175536&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_scitotenv_2024_175536
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0048-9697&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0048-9697&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0048-9697&client=summon