Delayed fracture of ceramics caused by stress-dependent surface reactions

Consider a ceramic in an environment, corroding gradually by a surface reaction. When in addition subject to a mechanical load, the ceramic loses mass preferentially at grain-boundary grooves where stress concentrates, so that atomistically sharp cracks may nucleate. Before becoming a crack, a groov...

Full description

Saved in:
Bibliographic Details
Published inActa materialia Vol. 47; no. 1; pp. 77 - 88
Main Authors Yu, H.H., Suo, Z.
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 11.12.1998
Elsevier Science
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Consider a ceramic in an environment, corroding gradually by a surface reaction. When in addition subject to a mechanical load, the ceramic loses mass preferentially at grain-boundary grooves where stress concentrates, so that atomistically sharp cracks may nucleate. Before becoming a crack, a groove maintains local equilibrium at its root; after, it loses local equilibrium. The crack further propagates by breaking atomic bonds, often assisted by environmental molecules. This paper models the groove-to-crack evolution. The groove changes shape to reduce the free energy due to the combined effects of surface tension, grain-boundary tension, elasticity, and chemical potential difference between the solid and the environment. At any point on the surface, the reaction rate is taken to be proportional to the free energy reduction per unit volume of mass loss. The ceramic body is modeled by a half plane bounded by a curve, whose shape is described by a conformal mapping of many terms, allowing the elastic field in the body to be solved analytically. A variational method leads to a set of ordinary differential equations to evolve the shape. The model predicts threshold loads, and the times required, for crack nucleation.
AbstractList Consider a ceramic in an environment, corroding gradually by a surface reaction. When in addition subject to a mechanical load, the ceramic loses mass preferentially at grain-boundary grooves where stress concentrates, so that atomistically sharp cracks may nucleate. Before becoming a crack, a groove maintains local equilibrium at its root; afterward, it loses local equilibrium. The crack further propagtes by breaking atomic bonds, often assisted by environmental molecules. This paper models the groove-to-crack evolution. The groove changes shape to reduce the free energy due to the combined effects of surface tension, grain-boundary tension, elasticity, and chemical potential difference between the solid and the environment. At any point on the surface, the reaction rate is taken to be proportional to the free energy reduction per unit volume of mass loss. The ceramic body is modeled by a half plane bounded by a curve, whose shape is described by a conformal mapping of many terms, allowing the elastic field in the body to be solved analytically. A variational method leads to a set of ordinary differential equations to evolve the shape. The model predicts threshold loads, and the times required, for crack nucleation.
Consider a ceramic in an environment, corroding gradually by a surface reaction. When in addition subject to a mechanical load, the ceramic loses mass preferentially at grain-boundary grooves where stress concentrates, so that atomistically sharp cracks may nucleate. Before becoming a crack, a groove maintains local equilibrium at its root; after, it loses local equilibrium. The crack further propagates by breaking atomic bonds, often assisted by environmental molecules. This paper models the groove-to-crack evolution. The groove changes shape to reduce the free energy due to the combined effects of surface tension, grain-boundary tension, elasticity, and chemical potential difference between the solid and the environment. At any point on the surface, the reaction rate is taken to be proportional to the free energy reduction per unit volume of mass loss. The ceramic body is modeled by a half plane bounded by a curve, whose shape is described by a conformal mapping of many terms, allowing the elastic field in the body to be solved analytically. A variational method leads to a set of ordinary differential equations to evolve the shape. The model predicts threshold loads, and the times required, for crack nucleation.
Author Suo, Z.
Yu, H.H.
Author_xml – sequence: 1
  givenname: H.H.
  surname: Yu
  fullname: Yu, H.H.
– sequence: 2
  givenname: Z.
  surname: Suo
  fullname: Suo, Z.
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1650991$$DView record in Pascal Francis
BookMark eNqFkE1LxDAQQIMoqKs_QehBRA_VpEmzDR5E_FxY8KCewzSdQKTbrplW2H9v1lUEL54ykPcG5u2z7a7vkLEjwc8FF_riWcjS5FqV6tRUZ5xLpXKzxfZENZV5oUq5neYfZJftE71xLoqp4ntsdostrLDJfAQ3jBGz3mcOIyyCo8zBSOmvXmU0RCTKG1xi12A3ZDRGDw6ziMkLfUcHbMdDS3j4_U7Y6_3dy81jPn96mN1cz3MnjRxyaKSSGmrQEmtZK_SlhqJouMNGeF2XXDitoCn5tDAgq1prXflauBq1R4Nywk42e5exfx-RBrsI5LBtocN-JJvuqpSuVAKPv0EgB206sHOB7DKGBcSVFbrkxoiElRvMxZ4oov8luF33tV997TqeNZX96mtN8i7_eC4MsE4xRAjtv_bVxsaU6iNgtOQCdilCiOgG2_Thnw2fFzaXzw
CitedBy_id crossref_primary_10_1111_j_1151_2916_2001_tb01096_x
crossref_primary_10_1016_j_corsci_2010_06_021
crossref_primary_10_1039_C4RA06725H
crossref_primary_10_1557_mrs2002_19
crossref_primary_10_1016_S0167_577X_02_00948_5
crossref_primary_10_1016_S0955_2219_01_00461_7
crossref_primary_10_1002_jbm_a_30213
crossref_primary_10_1016_j_ijsolstr_2004_11_010
crossref_primary_10_1016_j_msea_2020_138932
crossref_primary_10_1016_j_tsf_2006_02_003
crossref_primary_10_1111_j_1551_2916_2005_00052_x
crossref_primary_10_1016_S0020_7683_00_00353_X
crossref_primary_10_1016_j_matlet_2003_11_011
crossref_primary_10_1007_BF02410527
crossref_primary_10_1016_S0020_7683_02_00610_8
crossref_primary_10_1016_S1359_6454_01_00004_0
Cites_doi 10.1111/j.1151-2916.1982.tb10365.x
10.1016/0022-3093(75)90083-6
10.1007/BF02642562
10.1016/0001-6160(77)90125-0
10.1038/154341a0
10.1016/0001-6160(89)90246-0
10.1016/S0022-5096(96)00107-X
10.1063/1.357471
10.1063/1.465836
10.1016/S1359-6454(96)00369-2
10.1016/0022-5096(94)90066-3
10.1007/BF00035499
10.1093/qjmam/45.2.149
10.1016/0022-5096(93)90092-T
10.1111/j.1151-2916.1992.tb07839.x
10.1016/0001-6160(73)90105-3
10.1098/rspa.1995.0028
10.1016/S0022-5096(97)00013-6
10.1103/PhysRevLett.71.1744
10.1103/PhysRevLett.67.3696
10.1016/0025-5416(71)90076-0
10.1103/PhysRevLett.71.1593
10.1016/0025-5416(77)90157-4
10.1111/j.1151-2916.1993.tb03973.x
ContentType Journal Article
Copyright 1998 Acta Metallurgica Inc.
1999 INIST-CNRS
Copyright_xml – notice: 1998 Acta Metallurgica Inc.
– notice: 1999 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7SR
8FD
JG9
DOI 10.1016/S1359-6454(98)00344-9
DatabaseName CrossRef
Pascal-Francis
Engineered Materials Abstracts
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Engineered Materials Abstracts
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1873-2453
EndPage 88
ExternalDocumentID 1650991
10_1016_S1359_6454_98_00344_9
S1359645498003449
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABMAC
ABNEU
ABTAH
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADIYS
ADMUD
AEBSH
AEKER
AENEX
AEZYN
AFFNX
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
KOM
M41
MAGPM
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SPD
SSM
SSQ
SSZ
T5K
T9H
TN5
XPP
ZMT
ZY4
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
EFKBS
IQODW
7SR
8FD
JG9
ID FETCH-LOGICAL-c393t-ad3436aba63eb3b4ef56a22d0ced1f6b501c64ad50729a38b6668fb1cbe6fe9e3
IEDL.DBID AIKHN
ISSN 1359-6454
IngestDate Fri Jul 11 03:51:47 EDT 2025
Mon Jul 21 09:13:47 EDT 2025
Tue Jul 01 02:03:17 EDT 2025
Thu Apr 24 23:03:15 EDT 2025
Fri Feb 23 02:30:58 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Fracture mechanics
Ruptures
Delayed fracture
Surface reactions
Mechanical load
Elasticity
Theoretical study
Mechanical properties
Modelling
Ceramics
Stress corrosion cracking
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c393t-ad3436aba63eb3b4ef56a22d0ced1f6b501c64ad50729a38b6668fb1cbe6fe9e3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 27484684
PQPubID 23500
PageCount 12
ParticipantIDs proquest_miscellaneous_27484684
pascalfrancis_primary_1650991
crossref_primary_10_1016_S1359_6454_98_00344_9
crossref_citationtrail_10_1016_S1359_6454_98_00344_9
elsevier_sciencedirect_doi_10_1016_S1359_6454_98_00344_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 1900
PublicationDate 1998-12-11
PublicationDateYYYYMMDD 1998-12-11
PublicationDate_xml – month: 12
  year: 1998
  text: 1998-12-11
  day: 11
PublicationDecade 1990
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Acta materialia
PublicationYear 1998
Publisher Elsevier Ltd
Elsevier Science
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Science
References Wang, Suo (BIB14) 1997; 45
Hillig, W. B. and Charles, R. J., in
P. Noordhoff Ltd., Groningen, The Netherlands, 1953
Xia, Bower, Suo, Shih (BIB15) 1997; 45
Suo (BIB28) 1997; 33
Yang, Srolovitz (BIB23) 1993; 71
Chuang (BIB26) 1982; 65
Asaro, Tiller (BIB17) 1972; 3
ed. V. F. Zackay. Wiley, New York, 1964, pp. 682–705
Grinfeld (BIB18) 1986; 31
Gao (BIB11) 1995; 448
Freund, Jonsdottir (BIB21) 1993; 41
McCartney (BIB6) 1977; 25
Chuang, Rice (BIB25) 1973; 21
Newcomb, Tressler (BIB16) 1993; 76
Suo, Yu (BIB27) 1997; 45
Spencer, Voorhees, Davis (BIB20) 1991; 67
Chuang, Fuller (BIB8) 1992; 75
Srolovitz (BIB19) 1989; 37
Orowan (BIB1) 1944; 154
Evans, Wiederhorn (BIB3) 1974; 10
Chiu, Gao (BIB22) 1993; 30
Sun, Suo, Evans (BIB13) 1994; 42
Stevens, Dutton (BIB5) 1971; 8
Heald, Speight (BIB7) 1977; 29
Suo, Wang (BIB12) 1994; 76
Muskhelishvili
Yacobson (BIB9) 1993; 99
Wiederhorn (BIB2) 1975; 19
Gao (BIB10) 1992; 45
Jesson, Pennycook, Baribeau, Houghton (BIB24) 1993; 71
Yacobson (10.1016/S1359-6454(98)00344-9_BIB9) 1993; 99
Wang (10.1016/S1359-6454(98)00344-9_BIB14) 1997; 45
Jesson (10.1016/S1359-6454(98)00344-9_BIB24) 1993; 71
Suo (10.1016/S1359-6454(98)00344-9_BIB12) 1994; 76
Chuang (10.1016/S1359-6454(98)00344-9_BIB26) 1982; 65
Yang (10.1016/S1359-6454(98)00344-9_BIB23) 1993; 71
Wiederhorn (10.1016/S1359-6454(98)00344-9_BIB2) 1975; 19
Gao (10.1016/S1359-6454(98)00344-9_BIB11) 1995; 448
Chiu (10.1016/S1359-6454(98)00344-9_BIB22) 1993; 30
Chuang (10.1016/S1359-6454(98)00344-9_BIB8) 1992; 75
Newcomb (10.1016/S1359-6454(98)00344-9_BIB16) 1993; 76
Heald (10.1016/S1359-6454(98)00344-9_BIB7) 1977; 29
Srolovitz (10.1016/S1359-6454(98)00344-9_BIB19) 1989; 37
Freund (10.1016/S1359-6454(98)00344-9_BIB21) 1993; 41
Xia (10.1016/S1359-6454(98)00344-9_BIB15) 1997; 45
Spencer (10.1016/S1359-6454(98)00344-9_BIB20) 1991; 67
Gao (10.1016/S1359-6454(98)00344-9_BIB10) 1992; 45
Suo (10.1016/S1359-6454(98)00344-9_BIB28) 1997; 33
Evans (10.1016/S1359-6454(98)00344-9_BIB3) 1974; 10
McCartney (10.1016/S1359-6454(98)00344-9_BIB6) 1977; 25
Suo (10.1016/S1359-6454(98)00344-9_BIB27) 1997; 45
Sun (10.1016/S1359-6454(98)00344-9_BIB13) 1994; 42
Orowan (10.1016/S1359-6454(98)00344-9_BIB1) 1944; 154
10.1016/S1359-6454(98)00344-9_BIB4
Stevens (10.1016/S1359-6454(98)00344-9_BIB5) 1971; 8
Chuang (10.1016/S1359-6454(98)00344-9_BIB25) 1973; 21
Asaro (10.1016/S1359-6454(98)00344-9_BIB17) 1972; 3
Grinfeld (10.1016/S1359-6454(98)00344-9_BIB18) 1986; 31
10.1016/S1359-6454(98)00344-9_BIB29
References_xml – volume: 19
  start-page: 169
  year: 1975
  ident: BIB2
  publication-title: J. Non-Cryst. Solids
– volume: 154
  start-page: 341
  year: 1944
  ident: BIB1
  publication-title: Nature
– volume: 21
  start-page: 1625
  year: 1973
  ident: BIB25
  publication-title: Acta metall.
– volume: 45
  start-page: 709
  year: 1997
  ident: BIB14
  publication-title: J. Mech. Phys. Solids
– volume: 76
  start-page: 3410
  year: 1994
  ident: BIB12
  publication-title: J. appl. Phys.
– reference: , ed. V. F. Zackay. Wiley, New York, 1964, pp. 682–705
– volume: 75
  start-page: 540
  year: 1992
  ident: BIB8
  publication-title: J. Am. Ceram. Soc.
– volume: 65
  start-page: 93
  year: 1982
  ident: BIB26
  publication-title: J. Am. Ceram. Soc.
– volume: 99
  start-page: 6923
  year: 1993
  ident: BIB9
  publication-title: J. chem. Phys.
– volume: 67
  start-page: 3696
  year: 1991
  ident: BIB20
  publication-title: Phys. Rev. Lett.
– volume: 45
  start-page: 2235
  year: 1997
  ident: BIB27
  publication-title: Acta mater.
– volume: 71
  start-page: 1744
  year: 1993
  ident: BIB24
  publication-title: Phys. Rev. Lett.
– volume: 42
  start-page: 1653
  year: 1994
  ident: BIB13
  publication-title: J. Mech. Phys. Solids
– volume: 31
  start-page: 831
  year: 1986
  ident: BIB18
  publication-title: Soviet Phys. Dokl.
– volume: 76
  start-page: 2505
  year: 1993
  ident: BIB16
  publication-title: J. Am. Ceram. Soc.
– reference: Hillig, W. B. and Charles, R. J., in
– volume: 8
  start-page: 220
  year: 1971
  ident: BIB5
  publication-title: Mater. Sci. Engng
– volume: 45
  start-page: 149
  year: 1992
  ident: BIB10
  publication-title: Q. J. Mech. appl. Math.
– volume: 45
  start-page: 1473
  year: 1997
  ident: BIB15
  publication-title: J. Mech. Phys. Solids
– volume: 29
  start-page: 271
  year: 1977
  ident: BIB7
  publication-title: Mater. Sci. Engng
– volume: 10
  start-page: 379
  year: 1974
  ident: BIB3
  publication-title: Int. J. Fract.
– volume: 448
  start-page: 465
  year: 1995
  ident: BIB11
  publication-title: Proc. R. Soc. A
– volume: 71
  start-page: 1593
  year: 1993
  ident: BIB23
  publication-title: Phys. Rev. Lett.
– reference: Muskhelishvili,
– volume: 33
  start-page: 194
  year: 1997
  ident: BIB28
  publication-title: Adv. appl. Mech.
– volume: 30
  start-page: 2981
  year: 1993
  ident: BIB22
  publication-title: Int. J. Solids Struct.
– reference: . P. Noordhoff Ltd., Groningen, The Netherlands, 1953
– volume: 41
  start-page: 1245
  year: 1993
  ident: BIB21
  publication-title: J. Mech. Phys. Solids
– volume: 37
  start-page: 621
  year: 1989
  ident: BIB19
  publication-title: Acta metall.
– volume: 25
  start-page: 221
  year: 1977
  ident: BIB6
  publication-title: Acta metall.
– volume: 3
  start-page: 1789
  year: 1972
  ident: BIB17
  publication-title: Metall. Trans.
– volume: 65
  start-page: 93
  year: 1982
  ident: 10.1016/S1359-6454(98)00344-9_BIB26
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/j.1151-2916.1982.tb10365.x
– ident: 10.1016/S1359-6454(98)00344-9_BIB4
– volume: 19
  start-page: 169
  year: 1975
  ident: 10.1016/S1359-6454(98)00344-9_BIB2
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/0022-3093(75)90083-6
– volume: 3
  start-page: 1789
  year: 1972
  ident: 10.1016/S1359-6454(98)00344-9_BIB17
  publication-title: Metall. Trans.
  doi: 10.1007/BF02642562
– volume: 25
  start-page: 221
  year: 1977
  ident: 10.1016/S1359-6454(98)00344-9_BIB6
  publication-title: Acta metall.
  doi: 10.1016/0001-6160(77)90125-0
– volume: 154
  start-page: 341
  year: 1944
  ident: 10.1016/S1359-6454(98)00344-9_BIB1
  publication-title: Nature
  doi: 10.1038/154341a0
– volume: 37
  start-page: 621
  year: 1989
  ident: 10.1016/S1359-6454(98)00344-9_BIB19
  publication-title: Acta metall.
  doi: 10.1016/0001-6160(89)90246-0
– volume: 45
  start-page: 709
  year: 1997
  ident: 10.1016/S1359-6454(98)00344-9_BIB14
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/S0022-5096(96)00107-X
– volume: 76
  start-page: 3410
  year: 1994
  ident: 10.1016/S1359-6454(98)00344-9_BIB12
  publication-title: J. appl. Phys.
  doi: 10.1063/1.357471
– volume: 99
  start-page: 6923
  year: 1993
  ident: 10.1016/S1359-6454(98)00344-9_BIB9
  publication-title: J. chem. Phys.
  doi: 10.1063/1.465836
– volume: 33
  start-page: 194
  year: 1997
  ident: 10.1016/S1359-6454(98)00344-9_BIB28
  publication-title: Adv. appl. Mech.
– volume: 45
  start-page: 2235
  year: 1997
  ident: 10.1016/S1359-6454(98)00344-9_BIB27
  publication-title: Acta mater.
  doi: 10.1016/S1359-6454(96)00369-2
– volume: 42
  start-page: 1653
  year: 1994
  ident: 10.1016/S1359-6454(98)00344-9_BIB13
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/0022-5096(94)90066-3
– volume: 30
  start-page: 2981
  year: 1993
  ident: 10.1016/S1359-6454(98)00344-9_BIB22
  publication-title: Int. J. Solids Struct.
– volume: 10
  start-page: 379
  year: 1974
  ident: 10.1016/S1359-6454(98)00344-9_BIB3
  publication-title: Int. J. Fract.
  doi: 10.1007/BF00035499
– volume: 45
  start-page: 149
  year: 1992
  ident: 10.1016/S1359-6454(98)00344-9_BIB10
  publication-title: Q. J. Mech. appl. Math.
  doi: 10.1093/qjmam/45.2.149
– volume: 41
  start-page: 1245
  year: 1993
  ident: 10.1016/S1359-6454(98)00344-9_BIB21
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/0022-5096(93)90092-T
– volume: 75
  start-page: 540
  year: 1992
  ident: 10.1016/S1359-6454(98)00344-9_BIB8
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/j.1151-2916.1992.tb07839.x
– volume: 31
  start-page: 831
  year: 1986
  ident: 10.1016/S1359-6454(98)00344-9_BIB18
  publication-title: Soviet Phys. Dokl.
– ident: 10.1016/S1359-6454(98)00344-9_BIB29
– volume: 21
  start-page: 1625
  year: 1973
  ident: 10.1016/S1359-6454(98)00344-9_BIB25
  publication-title: Acta metall.
  doi: 10.1016/0001-6160(73)90105-3
– volume: 448
  start-page: 465
  year: 1995
  ident: 10.1016/S1359-6454(98)00344-9_BIB11
  publication-title: Proc. R. Soc. A
  doi: 10.1098/rspa.1995.0028
– volume: 45
  start-page: 1473
  year: 1997
  ident: 10.1016/S1359-6454(98)00344-9_BIB15
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/S0022-5096(97)00013-6
– volume: 71
  start-page: 1744
  year: 1993
  ident: 10.1016/S1359-6454(98)00344-9_BIB24
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.71.1744
– volume: 67
  start-page: 3696
  year: 1991
  ident: 10.1016/S1359-6454(98)00344-9_BIB20
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.67.3696
– volume: 8
  start-page: 220
  year: 1971
  ident: 10.1016/S1359-6454(98)00344-9_BIB5
  publication-title: Mater. Sci. Engng
  doi: 10.1016/0025-5416(71)90076-0
– volume: 71
  start-page: 1593
  year: 1993
  ident: 10.1016/S1359-6454(98)00344-9_BIB23
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.71.1593
– volume: 29
  start-page: 271
  year: 1977
  ident: 10.1016/S1359-6454(98)00344-9_BIB7
  publication-title: Mater. Sci. Engng
  doi: 10.1016/0025-5416(77)90157-4
– volume: 76
  start-page: 2505
  year: 1993
  ident: 10.1016/S1359-6454(98)00344-9_BIB16
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/j.1151-2916.1993.tb03973.x
SSID ssj0012740
Score 1.6888036
Snippet Consider a ceramic in an environment, corroding gradually by a surface reaction. When in addition subject to a mechanical load, the ceramic loses mass...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 77
SubjectTerms Condensed matter: structure, mechanical and thermal properties
Exact sciences and technology
Fatigue, brittleness, fracture, and cracks
Mechanical and acoustical properties of condensed matter
Mechanical properties of solids
Physics
Title Delayed fracture of ceramics caused by stress-dependent surface reactions
URI https://dx.doi.org/10.1016/S1359-6454(98)00344-9
https://www.proquest.com/docview/27484684
Volume 47
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB58XBQRn7g-c_Cgh7ibpg3NUXywKnpRwVtI0gQE2V2228Ne_O1O0nZVRASvKZOEb5LJTJP5BuA4sJJZkUlayNRjgOI1NegIU20KI6zwmY2_Lu4fRP85vX3JXubgos2FCc8qG9tf2_RorZuWboNmd_T62n1kPJOBj0rmkbdOzsNiwqXApb14fnPXf5hdJmDgVScL45SCwGciT91JbDyR-Wnsh8rfjqiVkS4ROF9XvPhhvOOJdL0Gq40rSc7r2a7DnBtswPIXgsFNuLl0b3rqCuJDMlQ1dmToiXXjUIS-JFZXJX4zU1JnjNC2Iu6ElNXYa-sIupQx8aHcgufrq6eLPm2KJ1DLJZ9QXfCUC2204Bgvm9T5TOgkKXoILPPCZD1mRaqLLFCHa54bjGNyb5g1TngnHd-GhcFw4HaAGC-4MRJ9Cy9TtEo56xmfSNQk-prCFB1IW7yUbZjFQ4GLNzV7QhZgVgFmJXMVYVayA2czsVFNrfGXQN4qQ31bIwrN_1-iB9-U9zlgYBCUrANHrTIV7q9waaIHbliVKglkqyJPd_8_-B4sxUxGllDG9mFhMq7cAboyE3MI82fv7LBZsB8Gae5C
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7B9gBVVZWXum0pPnCAg9l17FjxsaJdLeVxASRulu3Y0kpod7XZHLjw2xk7yVKEEFKvTsa2vrHHM4nnG4DDyErmZK5oqUTAACUYatERpsaWVjoZcpc-XVxeyfGt-HuX363BaZcLE69Vtra_senJWrctgxbNwXwyGVwznqvIR6WKxFun1uGDwO0bd-fJ4-qeB8Owq0kVxgnF15_TeJouUuORKo5TL1S9dUB9mpsKYQtNvYtXpjudR6Mv8Ll1JMmvZq5bsOan2_DxH3rBHTj77e_Ngy9JiKlQ9cKTWSDOL2IJ-oo4U1f4zD6QJl-EdvVwl6SqF8E4T9ChTGkP1S7cjv7cnI5pWzqBOq74kpqSCy6NNZJjtGyFD7k0WVYOEVYWpM2HzElhyjwShxteWIxiimCZs14Grzzfg950NvVfgdggubUKPYugBNqkgg1tyBTqET1Nacs-iA4v7Vpe8Vje4l6vLpBFmHWEWatCJ5i16sPJSmzeEGu8J1B0ytAvVohG4_-e6P4L5T0PGPkDFevDQadMjbsr_jIxUz-rK51FqlVZiG__P_gBbIxvLi_0xdnV-XfYTDmNLKOM_YDeclH7fXRqlvZnWrRP7OHvBg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Delayed+fracture+of+ceramics+caused+by+stress-dependent+surface+reactions&rft.jtitle=Acta+materialia&rft.au=Yu%2C+H.H.&rft.au=Suo%2C+Z.&rft.date=1998-12-11&rft.issn=1359-6454&rft.volume=47&rft.issue=1&rft.spage=77&rft.epage=88&rft_id=info:doi/10.1016%2FS1359-6454%2898%2900344-9&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_S1359_6454_98_00344_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-6454&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-6454&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-6454&client=summon