Delayed fracture of ceramics caused by stress-dependent surface reactions
Consider a ceramic in an environment, corroding gradually by a surface reaction. When in addition subject to a mechanical load, the ceramic loses mass preferentially at grain-boundary grooves where stress concentrates, so that atomistically sharp cracks may nucleate. Before becoming a crack, a groov...
Saved in:
Published in | Acta materialia Vol. 47; no. 1; pp. 77 - 88 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Oxford
Elsevier Ltd
11.12.1998
Elsevier Science |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Consider a ceramic in an environment, corroding gradually by a surface reaction. When in addition subject to a mechanical load, the ceramic loses mass preferentially at grain-boundary grooves where stress concentrates, so that atomistically sharp cracks may nucleate. Before becoming a crack, a groove maintains local equilibrium at its root; after, it loses local equilibrium. The crack further propagates by breaking atomic bonds, often assisted by environmental molecules. This paper models the groove-to-crack evolution. The groove changes shape to reduce the free energy due to the combined effects of surface tension, grain-boundary tension, elasticity, and chemical potential difference between the solid and the environment. At any point on the surface, the reaction rate is taken to be proportional to the free energy reduction per unit volume of mass loss. The ceramic body is modeled by a half plane bounded by a curve, whose shape is described by a conformal mapping of many terms, allowing the elastic field in the body to be solved analytically. A variational method leads to a set of ordinary differential equations to evolve the shape. The model predicts threshold loads, and the times required, for crack nucleation. |
---|---|
AbstractList | Consider a ceramic in an environment, corroding gradually by a surface reaction. When in addition subject to a mechanical load, the ceramic loses mass preferentially at grain-boundary grooves where stress concentrates, so that atomistically sharp cracks may nucleate. Before becoming a crack, a groove maintains local equilibrium at its root; afterward, it loses local equilibrium. The crack further propagtes by breaking atomic bonds, often assisted by environmental molecules. This paper models the groove-to-crack evolution. The groove changes shape to reduce the free energy due to the combined effects of surface tension, grain-boundary tension, elasticity, and chemical potential difference between the solid and the environment. At any point on the surface, the reaction rate is taken to be proportional to the free energy reduction per unit volume of mass loss. The ceramic body is modeled by a half plane bounded by a curve, whose shape is described by a conformal mapping of many terms, allowing the elastic field in the body to be solved analytically. A variational method leads to a set of ordinary differential equations to evolve the shape. The model predicts threshold loads, and the times required, for crack nucleation. Consider a ceramic in an environment, corroding gradually by a surface reaction. When in addition subject to a mechanical load, the ceramic loses mass preferentially at grain-boundary grooves where stress concentrates, so that atomistically sharp cracks may nucleate. Before becoming a crack, a groove maintains local equilibrium at its root; after, it loses local equilibrium. The crack further propagates by breaking atomic bonds, often assisted by environmental molecules. This paper models the groove-to-crack evolution. The groove changes shape to reduce the free energy due to the combined effects of surface tension, grain-boundary tension, elasticity, and chemical potential difference between the solid and the environment. At any point on the surface, the reaction rate is taken to be proportional to the free energy reduction per unit volume of mass loss. The ceramic body is modeled by a half plane bounded by a curve, whose shape is described by a conformal mapping of many terms, allowing the elastic field in the body to be solved analytically. A variational method leads to a set of ordinary differential equations to evolve the shape. The model predicts threshold loads, and the times required, for crack nucleation. |
Author | Suo, Z. Yu, H.H. |
Author_xml | – sequence: 1 givenname: H.H. surname: Yu fullname: Yu, H.H. – sequence: 2 givenname: Z. surname: Suo fullname: Suo, Z. |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1650991$$DView record in Pascal Francis |
BookMark | eNqFkE1LxDAQQIMoqKs_QehBRA_VpEmzDR5E_FxY8KCewzSdQKTbrplW2H9v1lUEL54ykPcG5u2z7a7vkLEjwc8FF_riWcjS5FqV6tRUZ5xLpXKzxfZENZV5oUq5neYfZJftE71xLoqp4ntsdostrLDJfAQ3jBGz3mcOIyyCo8zBSOmvXmU0RCTKG1xi12A3ZDRGDw6ziMkLfUcHbMdDS3j4_U7Y6_3dy81jPn96mN1cz3MnjRxyaKSSGmrQEmtZK_SlhqJouMNGeF2XXDitoCn5tDAgq1prXflauBq1R4Nywk42e5exfx-RBrsI5LBtocN-JJvuqpSuVAKPv0EgB206sHOB7DKGBcSVFbrkxoiElRvMxZ4oov8luF33tV997TqeNZX96mtN8i7_eC4MsE4xRAjtv_bVxsaU6iNgtOQCdilCiOgG2_Thnw2fFzaXzw |
CitedBy_id | crossref_primary_10_1111_j_1151_2916_2001_tb01096_x crossref_primary_10_1016_j_corsci_2010_06_021 crossref_primary_10_1039_C4RA06725H crossref_primary_10_1557_mrs2002_19 crossref_primary_10_1016_S0167_577X_02_00948_5 crossref_primary_10_1016_S0955_2219_01_00461_7 crossref_primary_10_1002_jbm_a_30213 crossref_primary_10_1016_j_ijsolstr_2004_11_010 crossref_primary_10_1016_j_msea_2020_138932 crossref_primary_10_1016_j_tsf_2006_02_003 crossref_primary_10_1111_j_1551_2916_2005_00052_x crossref_primary_10_1016_S0020_7683_00_00353_X crossref_primary_10_1016_j_matlet_2003_11_011 crossref_primary_10_1007_BF02410527 crossref_primary_10_1016_S0020_7683_02_00610_8 crossref_primary_10_1016_S1359_6454_01_00004_0 |
Cites_doi | 10.1111/j.1151-2916.1982.tb10365.x 10.1016/0022-3093(75)90083-6 10.1007/BF02642562 10.1016/0001-6160(77)90125-0 10.1038/154341a0 10.1016/0001-6160(89)90246-0 10.1016/S0022-5096(96)00107-X 10.1063/1.357471 10.1063/1.465836 10.1016/S1359-6454(96)00369-2 10.1016/0022-5096(94)90066-3 10.1007/BF00035499 10.1093/qjmam/45.2.149 10.1016/0022-5096(93)90092-T 10.1111/j.1151-2916.1992.tb07839.x 10.1016/0001-6160(73)90105-3 10.1098/rspa.1995.0028 10.1016/S0022-5096(97)00013-6 10.1103/PhysRevLett.71.1744 10.1103/PhysRevLett.67.3696 10.1016/0025-5416(71)90076-0 10.1103/PhysRevLett.71.1593 10.1016/0025-5416(77)90157-4 10.1111/j.1151-2916.1993.tb03973.x |
ContentType | Journal Article |
Copyright | 1998 Acta Metallurgica Inc. 1999 INIST-CNRS |
Copyright_xml | – notice: 1998 Acta Metallurgica Inc. – notice: 1999 INIST-CNRS |
DBID | AAYXX CITATION IQODW 7SR 8FD JG9 |
DOI | 10.1016/S1359-6454(98)00344-9 |
DatabaseName | CrossRef Pascal-Francis Engineered Materials Abstracts Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database Engineered Materials Abstracts |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1873-2453 |
EndPage | 88 |
ExternalDocumentID | 1650991 10_1016_S1359_6454_98_00344_9 S1359645498003449 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABMAC ABNEU ABTAH ABXDB ABXRA ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADIYS ADMUD AEBSH AEKER AENEX AEZYN AFFNX AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W KOM M41 MAGPM N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SPD SSM SSQ SSZ T5K T9H TN5 XPP ZMT ZY4 ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH EFKBS IQODW 7SR 8FD JG9 |
ID | FETCH-LOGICAL-c393t-ad3436aba63eb3b4ef56a22d0ced1f6b501c64ad50729a38b6668fb1cbe6fe9e3 |
IEDL.DBID | AIKHN |
ISSN | 1359-6454 |
IngestDate | Fri Jul 11 03:51:47 EDT 2025 Mon Jul 21 09:13:47 EDT 2025 Tue Jul 01 02:03:17 EDT 2025 Thu Apr 24 23:03:15 EDT 2025 Fri Feb 23 02:30:58 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Fracture mechanics Ruptures Delayed fracture Surface reactions Mechanical load Elasticity Theoretical study Mechanical properties Modelling Ceramics Stress corrosion cracking |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c393t-ad3436aba63eb3b4ef56a22d0ced1f6b501c64ad50729a38b6668fb1cbe6fe9e3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PQID | 27484684 |
PQPubID | 23500 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_27484684 pascalfrancis_primary_1650991 crossref_primary_10_1016_S1359_6454_98_00344_9 crossref_citationtrail_10_1016_S1359_6454_98_00344_9 elsevier_sciencedirect_doi_10_1016_S1359_6454_98_00344_9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 1900 |
PublicationDate | 1998-12-11 |
PublicationDateYYYYMMDD | 1998-12-11 |
PublicationDate_xml | – month: 12 year: 1998 text: 1998-12-11 day: 11 |
PublicationDecade | 1990 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Acta materialia |
PublicationYear | 1998 |
Publisher | Elsevier Ltd Elsevier Science |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier Science |
References | Wang, Suo (BIB14) 1997; 45 Hillig, W. B. and Charles, R. J., in P. Noordhoff Ltd., Groningen, The Netherlands, 1953 Xia, Bower, Suo, Shih (BIB15) 1997; 45 Suo (BIB28) 1997; 33 Yang, Srolovitz (BIB23) 1993; 71 Chuang (BIB26) 1982; 65 Asaro, Tiller (BIB17) 1972; 3 ed. V. F. Zackay. Wiley, New York, 1964, pp. 682–705 Grinfeld (BIB18) 1986; 31 Gao (BIB11) 1995; 448 Freund, Jonsdottir (BIB21) 1993; 41 McCartney (BIB6) 1977; 25 Chuang, Rice (BIB25) 1973; 21 Newcomb, Tressler (BIB16) 1993; 76 Suo, Yu (BIB27) 1997; 45 Spencer, Voorhees, Davis (BIB20) 1991; 67 Chuang, Fuller (BIB8) 1992; 75 Srolovitz (BIB19) 1989; 37 Orowan (BIB1) 1944; 154 Evans, Wiederhorn (BIB3) 1974; 10 Chiu, Gao (BIB22) 1993; 30 Sun, Suo, Evans (BIB13) 1994; 42 Stevens, Dutton (BIB5) 1971; 8 Heald, Speight (BIB7) 1977; 29 Suo, Wang (BIB12) 1994; 76 Muskhelishvili Yacobson (BIB9) 1993; 99 Wiederhorn (BIB2) 1975; 19 Gao (BIB10) 1992; 45 Jesson, Pennycook, Baribeau, Houghton (BIB24) 1993; 71 Yacobson (10.1016/S1359-6454(98)00344-9_BIB9) 1993; 99 Wang (10.1016/S1359-6454(98)00344-9_BIB14) 1997; 45 Jesson (10.1016/S1359-6454(98)00344-9_BIB24) 1993; 71 Suo (10.1016/S1359-6454(98)00344-9_BIB12) 1994; 76 Chuang (10.1016/S1359-6454(98)00344-9_BIB26) 1982; 65 Yang (10.1016/S1359-6454(98)00344-9_BIB23) 1993; 71 Wiederhorn (10.1016/S1359-6454(98)00344-9_BIB2) 1975; 19 Gao (10.1016/S1359-6454(98)00344-9_BIB11) 1995; 448 Chiu (10.1016/S1359-6454(98)00344-9_BIB22) 1993; 30 Chuang (10.1016/S1359-6454(98)00344-9_BIB8) 1992; 75 Newcomb (10.1016/S1359-6454(98)00344-9_BIB16) 1993; 76 Heald (10.1016/S1359-6454(98)00344-9_BIB7) 1977; 29 Srolovitz (10.1016/S1359-6454(98)00344-9_BIB19) 1989; 37 Freund (10.1016/S1359-6454(98)00344-9_BIB21) 1993; 41 Xia (10.1016/S1359-6454(98)00344-9_BIB15) 1997; 45 Spencer (10.1016/S1359-6454(98)00344-9_BIB20) 1991; 67 Gao (10.1016/S1359-6454(98)00344-9_BIB10) 1992; 45 Suo (10.1016/S1359-6454(98)00344-9_BIB28) 1997; 33 Evans (10.1016/S1359-6454(98)00344-9_BIB3) 1974; 10 McCartney (10.1016/S1359-6454(98)00344-9_BIB6) 1977; 25 Suo (10.1016/S1359-6454(98)00344-9_BIB27) 1997; 45 Sun (10.1016/S1359-6454(98)00344-9_BIB13) 1994; 42 Orowan (10.1016/S1359-6454(98)00344-9_BIB1) 1944; 154 10.1016/S1359-6454(98)00344-9_BIB4 Stevens (10.1016/S1359-6454(98)00344-9_BIB5) 1971; 8 Chuang (10.1016/S1359-6454(98)00344-9_BIB25) 1973; 21 Asaro (10.1016/S1359-6454(98)00344-9_BIB17) 1972; 3 Grinfeld (10.1016/S1359-6454(98)00344-9_BIB18) 1986; 31 10.1016/S1359-6454(98)00344-9_BIB29 |
References_xml | – volume: 19 start-page: 169 year: 1975 ident: BIB2 publication-title: J. Non-Cryst. Solids – volume: 154 start-page: 341 year: 1944 ident: BIB1 publication-title: Nature – volume: 21 start-page: 1625 year: 1973 ident: BIB25 publication-title: Acta metall. – volume: 45 start-page: 709 year: 1997 ident: BIB14 publication-title: J. Mech. Phys. Solids – volume: 76 start-page: 3410 year: 1994 ident: BIB12 publication-title: J. appl. Phys. – reference: , ed. V. F. Zackay. Wiley, New York, 1964, pp. 682–705 – volume: 75 start-page: 540 year: 1992 ident: BIB8 publication-title: J. Am. Ceram. Soc. – volume: 65 start-page: 93 year: 1982 ident: BIB26 publication-title: J. Am. Ceram. Soc. – volume: 99 start-page: 6923 year: 1993 ident: BIB9 publication-title: J. chem. Phys. – volume: 67 start-page: 3696 year: 1991 ident: BIB20 publication-title: Phys. Rev. Lett. – volume: 45 start-page: 2235 year: 1997 ident: BIB27 publication-title: Acta mater. – volume: 71 start-page: 1744 year: 1993 ident: BIB24 publication-title: Phys. Rev. Lett. – volume: 42 start-page: 1653 year: 1994 ident: BIB13 publication-title: J. Mech. Phys. Solids – volume: 31 start-page: 831 year: 1986 ident: BIB18 publication-title: Soviet Phys. Dokl. – volume: 76 start-page: 2505 year: 1993 ident: BIB16 publication-title: J. Am. Ceram. Soc. – reference: Hillig, W. B. and Charles, R. J., in – volume: 8 start-page: 220 year: 1971 ident: BIB5 publication-title: Mater. Sci. Engng – volume: 45 start-page: 149 year: 1992 ident: BIB10 publication-title: Q. J. Mech. appl. Math. – volume: 45 start-page: 1473 year: 1997 ident: BIB15 publication-title: J. Mech. Phys. Solids – volume: 29 start-page: 271 year: 1977 ident: BIB7 publication-title: Mater. Sci. Engng – volume: 10 start-page: 379 year: 1974 ident: BIB3 publication-title: Int. J. Fract. – volume: 448 start-page: 465 year: 1995 ident: BIB11 publication-title: Proc. R. Soc. A – volume: 71 start-page: 1593 year: 1993 ident: BIB23 publication-title: Phys. Rev. Lett. – reference: Muskhelishvili, – volume: 33 start-page: 194 year: 1997 ident: BIB28 publication-title: Adv. appl. Mech. – volume: 30 start-page: 2981 year: 1993 ident: BIB22 publication-title: Int. J. Solids Struct. – reference: . P. Noordhoff Ltd., Groningen, The Netherlands, 1953 – volume: 41 start-page: 1245 year: 1993 ident: BIB21 publication-title: J. Mech. Phys. Solids – volume: 37 start-page: 621 year: 1989 ident: BIB19 publication-title: Acta metall. – volume: 25 start-page: 221 year: 1977 ident: BIB6 publication-title: Acta metall. – volume: 3 start-page: 1789 year: 1972 ident: BIB17 publication-title: Metall. Trans. – volume: 65 start-page: 93 year: 1982 ident: 10.1016/S1359-6454(98)00344-9_BIB26 publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1151-2916.1982.tb10365.x – ident: 10.1016/S1359-6454(98)00344-9_BIB4 – volume: 19 start-page: 169 year: 1975 ident: 10.1016/S1359-6454(98)00344-9_BIB2 publication-title: J. Non-Cryst. Solids doi: 10.1016/0022-3093(75)90083-6 – volume: 3 start-page: 1789 year: 1972 ident: 10.1016/S1359-6454(98)00344-9_BIB17 publication-title: Metall. Trans. doi: 10.1007/BF02642562 – volume: 25 start-page: 221 year: 1977 ident: 10.1016/S1359-6454(98)00344-9_BIB6 publication-title: Acta metall. doi: 10.1016/0001-6160(77)90125-0 – volume: 154 start-page: 341 year: 1944 ident: 10.1016/S1359-6454(98)00344-9_BIB1 publication-title: Nature doi: 10.1038/154341a0 – volume: 37 start-page: 621 year: 1989 ident: 10.1016/S1359-6454(98)00344-9_BIB19 publication-title: Acta metall. doi: 10.1016/0001-6160(89)90246-0 – volume: 45 start-page: 709 year: 1997 ident: 10.1016/S1359-6454(98)00344-9_BIB14 publication-title: J. Mech. Phys. Solids doi: 10.1016/S0022-5096(96)00107-X – volume: 76 start-page: 3410 year: 1994 ident: 10.1016/S1359-6454(98)00344-9_BIB12 publication-title: J. appl. Phys. doi: 10.1063/1.357471 – volume: 99 start-page: 6923 year: 1993 ident: 10.1016/S1359-6454(98)00344-9_BIB9 publication-title: J. chem. Phys. doi: 10.1063/1.465836 – volume: 33 start-page: 194 year: 1997 ident: 10.1016/S1359-6454(98)00344-9_BIB28 publication-title: Adv. appl. Mech. – volume: 45 start-page: 2235 year: 1997 ident: 10.1016/S1359-6454(98)00344-9_BIB27 publication-title: Acta mater. doi: 10.1016/S1359-6454(96)00369-2 – volume: 42 start-page: 1653 year: 1994 ident: 10.1016/S1359-6454(98)00344-9_BIB13 publication-title: J. Mech. Phys. Solids doi: 10.1016/0022-5096(94)90066-3 – volume: 30 start-page: 2981 year: 1993 ident: 10.1016/S1359-6454(98)00344-9_BIB22 publication-title: Int. J. Solids Struct. – volume: 10 start-page: 379 year: 1974 ident: 10.1016/S1359-6454(98)00344-9_BIB3 publication-title: Int. J. Fract. doi: 10.1007/BF00035499 – volume: 45 start-page: 149 year: 1992 ident: 10.1016/S1359-6454(98)00344-9_BIB10 publication-title: Q. J. Mech. appl. Math. doi: 10.1093/qjmam/45.2.149 – volume: 41 start-page: 1245 year: 1993 ident: 10.1016/S1359-6454(98)00344-9_BIB21 publication-title: J. Mech. Phys. Solids doi: 10.1016/0022-5096(93)90092-T – volume: 75 start-page: 540 year: 1992 ident: 10.1016/S1359-6454(98)00344-9_BIB8 publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1151-2916.1992.tb07839.x – volume: 31 start-page: 831 year: 1986 ident: 10.1016/S1359-6454(98)00344-9_BIB18 publication-title: Soviet Phys. Dokl. – ident: 10.1016/S1359-6454(98)00344-9_BIB29 – volume: 21 start-page: 1625 year: 1973 ident: 10.1016/S1359-6454(98)00344-9_BIB25 publication-title: Acta metall. doi: 10.1016/0001-6160(73)90105-3 – volume: 448 start-page: 465 year: 1995 ident: 10.1016/S1359-6454(98)00344-9_BIB11 publication-title: Proc. R. Soc. A doi: 10.1098/rspa.1995.0028 – volume: 45 start-page: 1473 year: 1997 ident: 10.1016/S1359-6454(98)00344-9_BIB15 publication-title: J. Mech. Phys. Solids doi: 10.1016/S0022-5096(97)00013-6 – volume: 71 start-page: 1744 year: 1993 ident: 10.1016/S1359-6454(98)00344-9_BIB24 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.71.1744 – volume: 67 start-page: 3696 year: 1991 ident: 10.1016/S1359-6454(98)00344-9_BIB20 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.67.3696 – volume: 8 start-page: 220 year: 1971 ident: 10.1016/S1359-6454(98)00344-9_BIB5 publication-title: Mater. Sci. Engng doi: 10.1016/0025-5416(71)90076-0 – volume: 71 start-page: 1593 year: 1993 ident: 10.1016/S1359-6454(98)00344-9_BIB23 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.71.1593 – volume: 29 start-page: 271 year: 1977 ident: 10.1016/S1359-6454(98)00344-9_BIB7 publication-title: Mater. Sci. Engng doi: 10.1016/0025-5416(77)90157-4 – volume: 76 start-page: 2505 year: 1993 ident: 10.1016/S1359-6454(98)00344-9_BIB16 publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1151-2916.1993.tb03973.x |
SSID | ssj0012740 |
Score | 1.6888036 |
Snippet | Consider a ceramic in an environment, corroding gradually by a surface reaction. When in addition subject to a mechanical load, the ceramic loses mass... |
SourceID | proquest pascalfrancis crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 77 |
SubjectTerms | Condensed matter: structure, mechanical and thermal properties Exact sciences and technology Fatigue, brittleness, fracture, and cracks Mechanical and acoustical properties of condensed matter Mechanical properties of solids Physics |
Title | Delayed fracture of ceramics caused by stress-dependent surface reactions |
URI | https://dx.doi.org/10.1016/S1359-6454(98)00344-9 https://www.proquest.com/docview/27484684 |
Volume | 47 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB58XBQRn7g-c_Cgh7ibpg3NUXywKnpRwVtI0gQE2V2228Ne_O1O0nZVRASvKZOEb5LJTJP5BuA4sJJZkUlayNRjgOI1NegIU20KI6zwmY2_Lu4fRP85vX3JXubgos2FCc8qG9tf2_RorZuWboNmd_T62n1kPJOBj0rmkbdOzsNiwqXApb14fnPXf5hdJmDgVScL45SCwGciT91JbDyR-Wnsh8rfjqiVkS4ROF9XvPhhvOOJdL0Gq40rSc7r2a7DnBtswPIXgsFNuLl0b3rqCuJDMlQ1dmToiXXjUIS-JFZXJX4zU1JnjNC2Iu6ElNXYa-sIupQx8aHcgufrq6eLPm2KJ1DLJZ9QXfCUC2204Bgvm9T5TOgkKXoILPPCZD1mRaqLLFCHa54bjGNyb5g1TngnHd-GhcFw4HaAGC-4MRJ9Cy9TtEo56xmfSNQk-prCFB1IW7yUbZjFQ4GLNzV7QhZgVgFmJXMVYVayA2czsVFNrfGXQN4qQ31bIwrN_1-iB9-U9zlgYBCUrANHrTIV7q9waaIHbliVKglkqyJPd_8_-B4sxUxGllDG9mFhMq7cAboyE3MI82fv7LBZsB8Gae5C |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7B9gBVVZWXum0pPnCAg9l17FjxsaJdLeVxASRulu3Y0kpod7XZHLjw2xk7yVKEEFKvTsa2vrHHM4nnG4DDyErmZK5oqUTAACUYatERpsaWVjoZcpc-XVxeyfGt-HuX363BaZcLE69Vtra_senJWrctgxbNwXwyGVwznqvIR6WKxFun1uGDwO0bd-fJ4-qeB8Owq0kVxgnF15_TeJouUuORKo5TL1S9dUB9mpsKYQtNvYtXpjudR6Mv8Ll1JMmvZq5bsOan2_DxH3rBHTj77e_Ngy9JiKlQ9cKTWSDOL2IJ-oo4U1f4zD6QJl-EdvVwl6SqF8E4T9ChTGkP1S7cjv7cnI5pWzqBOq74kpqSCy6NNZJjtGyFD7k0WVYOEVYWpM2HzElhyjwShxteWIxiimCZs14Grzzfg950NvVfgdggubUKPYugBNqkgg1tyBTqET1Nacs-iA4v7Vpe8Vje4l6vLpBFmHWEWatCJ5i16sPJSmzeEGu8J1B0ytAvVohG4_-e6P4L5T0PGPkDFevDQadMjbsr_jIxUz-rK51FqlVZiG__P_gBbIxvLi_0xdnV-XfYTDmNLKOM_YDeclH7fXRqlvZnWrRP7OHvBg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Delayed+fracture+of+ceramics+caused+by+stress-dependent+surface+reactions&rft.jtitle=Acta+materialia&rft.au=Yu%2C+H.H.&rft.au=Suo%2C+Z.&rft.date=1998-12-11&rft.issn=1359-6454&rft.volume=47&rft.issue=1&rft.spage=77&rft.epage=88&rft_id=info:doi/10.1016%2FS1359-6454%2898%2900344-9&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_S1359_6454_98_00344_9 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-6454&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-6454&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-6454&client=summon |