Silicon-doped hafnium oxide anti-ferroelectric thin films for energy storage

Motivated by the development of ultracompact electronic devices as miniaturized energy autonomous systems, great research efforts have been expended in recent years to develop various types of nano-structural energy storage components. The electrostatic capacitors characterized by high power density...

Full description

Saved in:
Bibliographic Details
Published inJournal of applied physics Vol. 122; no. 14
Main Authors Ali, Faizan, Liu, Xiaohua, Zhou, Dayu, Yang, Xirui, Xu, Jin, Schenk, Tony, Müller, Johannes, Schroeder, Uwe, Cao, Fei, Dong, Xianlin
Format Journal Article
LanguageEnglish
Published Melville American Institute of Physics 14.10.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Motivated by the development of ultracompact electronic devices as miniaturized energy autonomous systems, great research efforts have been expended in recent years to develop various types of nano-structural energy storage components. The electrostatic capacitors characterized by high power density are competitive; however, their implementation in practical devices is limited by the low intrinsic energy storage density (ESD) of linear dielectrics like Al2O3. In this work, a detailed experimental investigation of energy storage properties is presented for 10 nm thick silicon-doped hafnium oxide anti-ferroelectric thin films. Owing to high field induced polarization and slim double hysteresis, an extremely large ESD value of 61.2 J/cm3 is achieved at 4.5 MV/cm with a high efficiency of ∼65%. In addition, the ESD and the efficiency exhibit robust thermal stability in 210–400 K temperature range and an excellent endurance up to 109 times of charge/discharge cycling at a very high electric field of 4.0 MV/cm. The superior energy storage performance together with mature technology of integration into 3-D arrays suggests great promise for this recently discovered anti-ferroelectric material to replace the currently adopted Al2O3 in fabrication of nano-structural supercapacitors.
AbstractList Motivated by the development of ultracompact electronic devices as miniaturized energy autonomous systems, great research efforts have been expended in recent years to develop various types of nano-structural energy storage components. The electrostatic capacitors characterized by high power density are competitive; however, their implementation in practical devices is limited by the low intrinsic energy storage density (ESD) of linear dielectrics like Al2O3. In this work, a detailed experimental investigation of energy storage properties is presented for 10 nm thick silicon-doped hafnium oxide anti-ferroelectric thin films. Owing to high field induced polarization and slim double hysteresis, an extremely large ESD value of 61.2 J/cm3 is achieved at 4.5 MV/cm with a high efficiency of ∼65%. In addition, the ESD and the efficiency exhibit robust thermal stability in 210–400 K temperature range and an excellent endurance up to 109 times of charge/discharge cycling at a very high electric field of 4.0 MV/cm. The superior energy storage performance together with mature technology of integration into 3-D arrays suggests great promise for this recently discovered anti-ferroelectric material to replace the currently adopted Al2O3 in fabrication of nano-structural supercapacitors.
Author Müller, Johannes
Dong, Xianlin
Zhou, Dayu
Schroeder, Uwe
Cao, Fei
Liu, Xiaohua
Xu, Jin
Yang, Xirui
Ali, Faizan
Schenk, Tony
Author_xml – sequence: 1
  givenname: Faizan
  surname: Ali
  fullname: Ali, Faizan
  organization: Key Laboratory of Materials Modification by Laser, Ion, and Electron Beams (Ministry of Education), School of Materials Science and Engineering, Dalian University of Technology
– sequence: 2
  givenname: Xiaohua
  surname: Liu
  fullname: Liu, Xiaohua
  organization: Key Laboratory of Materials Modification by Laser, Ion, and Electron Beams (Ministry of Education), School of Materials Science and Engineering, Dalian University of Technology
– sequence: 3
  givenname: Dayu
  surname: Zhou
  fullname: Zhou, Dayu
  email: zhoudayu@dlut.edu.cn
  organization: Key Laboratory of Materials Modification by Laser, Ion, and Electron Beams (Ministry of Education), School of Materials Science and Engineering, Dalian University of Technology
– sequence: 4
  givenname: Xirui
  surname: Yang
  fullname: Yang, Xirui
  organization: Key Laboratory of Materials Modification by Laser, Ion, and Electron Beams (Ministry of Education), School of Materials Science and Engineering, Dalian University of Technology
– sequence: 5
  givenname: Jin
  surname: Xu
  fullname: Xu, Jin
  organization: Department of Electronic Engineering, Dalian Neusoft University of Information
– sequence: 6
  givenname: Tony
  surname: Schenk
  fullname: Schenk, Tony
  organization: NaMLab gGmbH/TU Dresden
– sequence: 7
  givenname: Johannes
  surname: Müller
  fullname: Müller, Johannes
  organization: Fraunhofer IPMS
– sequence: 8
  givenname: Uwe
  surname: Schroeder
  fullname: Schroeder, Uwe
  organization: NaMLab gGmbH/TU Dresden
– sequence: 9
  givenname: Fei
  surname: Cao
  fullname: Cao, Fei
  organization: Key Laboratory of Inorganic Functional Materials and Devices, Shanghai Institute of Ceramics, Chinese Academy of Sciences
– sequence: 10
  givenname: Xianlin
  surname: Dong
  fullname: Dong, Xianlin
  organization: Key Laboratory of Inorganic Functional Materials and Devices, Shanghai Institute of Ceramics, Chinese Academy of Sciences
BookMark eNp9kE1LAzEURYNUsK0u_AcBVwrTJjOTmWQpxS8ouFDXIZN5aVOmSU1Ssf_ekVYEUVdvc869vDtCA-cdIHROyYSSqpjSSSm4EIQfoSElXGQ1Y2SAhoTkNOOiFidoFOOKEEp5IYZo_mQ7q73LWr-BFi-VcXa7xv7dtoCVSzYzEIKHDnQKVuO0tA4b260jNj5gcBAWOxyTD2oBp-jYqC7C2eGO0cvtzfPsPps_3j3MrueZLkSRMiUYsEYDJ5pC2yjBCasINFqVRU1FY5hm_S-EcdWUnPKc1UUloCLGlLQSeTFGF_vcTfCvW4hJrvw2uL5S5pRWpCzz3h-jyz2lg48xgJGbYNcq7CQl8nMsSeVhrJ6d_mC1TSpZ71JQtvvVuNob8Yv8N_5P-M2Hb1BuWlN8AKNTiRE
CODEN JAPIAU
CitedBy_id crossref_primary_10_1002_smll_202305271
crossref_primary_10_1039_C7TA11109F
crossref_primary_10_1016_j_jeurceramsoc_2023_08_051
crossref_primary_10_1021_acsaem_0c00987
crossref_primary_10_1002_smll_202200133
crossref_primary_10_1021_acsaelm_1c00330
crossref_primary_10_1116_1_5060738
crossref_primary_10_3390_ma14247854
crossref_primary_10_1063_5_0004239
crossref_primary_10_1016_j_mtphys_2023_101054
crossref_primary_10_1021_acsenergylett_1c00313
crossref_primary_10_1109_LED_2021_3055140
crossref_primary_10_1126_science_adl2835
crossref_primary_10_1063_1_5050700
crossref_primary_10_1063_5_0083656
crossref_primary_10_1039_D0CP04196C
crossref_primary_10_1039_D0TA11991A
crossref_primary_10_1039_D4TA04610B
crossref_primary_10_1002_adem_202300443
crossref_primary_10_1002_est2_359
crossref_primary_10_1021_acsaelm_4c01706
crossref_primary_10_1002_adma_202105967
crossref_primary_10_1016_j_nanoen_2022_107342
crossref_primary_10_1002_adfm_202311160
crossref_primary_10_1002_pssa_202200403
crossref_primary_10_1016_j_compositesb_2022_109824
crossref_primary_10_1080_14686996_2022_2162324
crossref_primary_10_1038_s41563_023_01507_2
crossref_primary_10_1039_C9TC04036F
crossref_primary_10_1039_D2MA00381C
crossref_primary_10_1016_j_pmatsci_2023_101231
crossref_primary_10_1039_D0TC01695K
crossref_primary_10_1002_adfm_201803665
crossref_primary_10_1021_acsnano_0c00791
crossref_primary_10_1109_TED_2021_3119532
crossref_primary_10_1016_j_jeurceramsoc_2019_11_063
crossref_primary_10_1016_j_ceramint_2019_03_051
crossref_primary_10_1063_5_0018199
crossref_primary_10_1002_advs_202203926
crossref_primary_10_1016_j_jeurceramsoc_2023_02_026
crossref_primary_10_1038_s41586_024_08505_7
crossref_primary_10_1016_j_mtchem_2024_102459
crossref_primary_10_1039_D0TA08335F
crossref_primary_10_1063_5_0051068
crossref_primary_10_1021_acsami_0c15091
crossref_primary_10_1016_j_jpowsour_2020_229406
crossref_primary_10_1063_5_0107292
crossref_primary_10_1021_acsaelm_2c01615
crossref_primary_10_1002_aesr_202400412
crossref_primary_10_7567_JJAP_57_11UF03
crossref_primary_10_1021_acs_chemrev_0c01264
crossref_primary_10_1016_j_jmat_2024_100968
crossref_primary_10_1039_D2NA00427E
crossref_primary_10_1002_adfm_202311825
crossref_primary_10_1063_1_5117358
crossref_primary_10_1002_adfm_202201737
crossref_primary_10_1002_admt_202202044
crossref_primary_10_1088_1361_6463_ac29e5
crossref_primary_10_1103_PhysRevLett_127_087602
crossref_primary_10_1021_acsaelm_0c00304
crossref_primary_10_1063_5_0029706
crossref_primary_10_1016_j_ensm_2023_102931
crossref_primary_10_1016_j_jeurceramsoc_2024_02_016
crossref_primary_10_1021_acsaelm_3c00892
crossref_primary_10_1088_1361_6633_ab49d6
crossref_primary_10_1002_pssa_202300404
crossref_primary_10_1002_aelm_202000264
crossref_primary_10_1109_LED_2021_3121677
crossref_primary_10_1063_1_5045288
crossref_primary_10_1002_aenm_201901154
crossref_primary_10_2109_jcersj2_18104
crossref_primary_10_3389_fmats_2022_969188
crossref_primary_10_1088_2043_6262_abe93e
crossref_primary_10_3390_molecules26206148
crossref_primary_10_1016_j_surfin_2023_103499
crossref_primary_10_3390_molecules24122263
crossref_primary_10_1021_acs_nanolett_3c02929
crossref_primary_10_1016_j_actamat_2018_05_033
crossref_primary_10_7567_1347_4065_ab073b
crossref_primary_10_1016_j_actamat_2019_09_003
crossref_primary_10_1016_j_nanoen_2018_08_013
crossref_primary_10_1063_5_0076929
crossref_primary_10_3390_nano13111765
crossref_primary_10_1002_adfm_202305733
crossref_primary_10_1063_5_0051329
crossref_primary_10_20517_jmi_2024_97
crossref_primary_10_1088_1402_4896_ad3f8a
crossref_primary_10_1002_est2_225
crossref_primary_10_1103_PhysRevMaterials_2_124405
crossref_primary_10_1103_PhysRevMaterials_9_024411
crossref_primary_10_1016_j_physb_2023_415626
crossref_primary_10_1038_s41598_024_66258_9
crossref_primary_10_1063_5_0035730
crossref_primary_10_1109_LED_2022_3218253
Cites_doi 10.1063/1.4916707
10.1063/1.3082375
10.1016/j.rser.2015.10.046
10.1039/C6TC04807B
10.1038/nnano.2009.37
10.1016/j.mser.2010.12.001
10.1002/adfm.201103119
10.1002/smll.201503527
10.1002/app.39461
10.1002/adma.201102958
10.1016/j.mejo.2010.01.009
10.1063/1.4829064
10.1002/aelm.201700131
10.1002/aenm.201301631
10.1063/1.4802794
10.1002/adma.201504299
10.1002/adma.201403115
10.1126/science.1127798
10.1002/adfm.201603182
10.1021/am504837r
10.1002/advs.201600049
10.1063/1.356637
10.1021/nn300553r
10.1021/nl302049k
10.1016/S0013-4686(00)00354-6
10.1002/adfm.201600590
10.1063/1.4985297
10.1186/1475-925X-13-79
10.1002/adma.201301752
10.1039/C6TC02003H
10.1109/TDMR.2012.2216269
10.1016/j.nanoen.2014.09.025
10.1002/anie.201201656
10.1016/j.bios.2015.09.013
10.1063/1.1331659
10.1063/1.1565180
10.1063/1.4902396
10.1016/j.rser.2015.11.010
10.1002/aenm.201400610
10.1063/1.120817
10.1109/TUFFC.2011.2039
10.7567/JJAP.53.08LE02
10.7567/JJAP.53.09PA04
10.1016/j.jpowsour.2016.04.131
10.1016/j.nanoen.2015.10.005
10.1021/acsami.5b05773
10.1016/j.actamat.2015.07.035
10.1039/c2jm35532a
10.1039/C5RA13456K
10.4028/www.scientific.net/AMM.341-342.1299
10.1063/1.4919135
10.1063/1.4887066
10.1002/aelm.201600173
10.1109/MPRV.2005.9
10.1063/1.3634052
10.1063/1.4922272
10.1063/1.122294
10.4028/www.scientific.net/AST.95.136
10.1063/1.4927805
10.1039/c1cp22659b
ContentType Journal Article
Copyright Author(s)
2017 Author(s). Published by AIP Publishing.
Copyright_xml – notice: Author(s)
– notice: 2017 Author(s). Published by AIP Publishing.
DBID AAYXX
CITATION
8FD
H8D
L7M
DOI 10.1063/1.4989908
DatabaseName CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitleList CrossRef
Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1089-7550
ExternalDocumentID 10_1063_1_4989908
jap
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 51272034; 51672032
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: Funding of free state of Saxony
GroupedDBID -DZ
-~X
.DC
1UP
2-P
29J
4.4
53G
5GY
5VS
85S
AAAAW
AABDS
AAEUA
AAIKC
AAMNW
AAPUP
AAYIH
ABFTF
ABJNI
ABRJW
ABZEH
ACBEA
ACBRY
ACGFO
ACGFS
ACLYJ
ACNCT
ACZLF
ADCTM
AEGXH
AEJMO
AENEX
AFATG
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AIAGR
AIDUJ
AJJCW
AJQPL
ALEPV
ALMA_UNASSIGNED_HOLDINGS
AQWKA
ATXIE
AWQPM
BPZLN
CS3
D0L
DU5
EBS
EJD
ESX
F5P
FDOHQ
FFFMQ
HAM
M6X
M71
M73
N9A
NPSNA
O-B
P2P
RIP
RNS
RQS
RXW
SC5
TAE
TN5
TWZ
UCJ
UHB
UPT
WH7
XSW
YQT
YZZ
ZCA
~02
AAGWI
AAYXX
ABJGX
ADMLS
BDMKI
CITATION
8FD
H8D
L7M
ID FETCH-LOGICAL-c393t-a95e5bce80c1edba980560ebca43719bf5c5063058ab4818257369e60ff416923
ISSN 0021-8979
IngestDate Wed Aug 13 07:22:01 EDT 2025
Tue Jul 01 02:00:57 EDT 2025
Thu Apr 24 23:10:03 EDT 2025
Fri Jun 21 00:14:29 EDT 2024
Sun Jul 14 10:11:51 EDT 2019
IsPeerReviewed true
IsScholarly true
Issue 14
Language English
License 0021-8979/2017/122(14)/144105/7/$30.00
Published by AIP Publishing.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c393t-a95e5bce80c1edba980560ebca43719bf5c5063058ab4818257369e60ff416923
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2933-1076
0000-0002-6824-2386
PQID 2116044206
PQPubID 2050677
PageCount 7
ParticipantIDs scitation_primary_10_1063_1_4989908
crossref_citationtrail_10_1063_1_4989908
proquest_journals_2116044206
crossref_primary_10_1063_1_4989908
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-10-14
PublicationDateYYYYMMDD 2017-10-14
PublicationDate_xml – month: 10
  year: 2017
  text: 2017-10-14
  day: 14
PublicationDecade 2010
PublicationPlace Melville
PublicationPlace_xml – name: Melville
PublicationTitle Journal of applied physics
PublicationYear 2017
Publisher American Institute of Physics
Publisher_xml – name: American Institute of Physics
References Materlik, Künneth, Kersch (c41) 2015
Soavi, Bettini, Piseri, Milani, Santoro, Atanassov, Arbizzani (c5) 2016
Bin, Ming, Zhe, He, Zhongdong (c59) 2013
Banerjee, Perez, Lecorier, Lee, Rubloff (c17) 2009
Hu, Pei, Fan, Ye (c6) 2016
Park, Kim, Kim, Moon, Kim, Hwang (c28) 2014
Wang (c7) 2012
Richter, Schenk, Park, Tscharntke, Grimley, LeBeau, Zhou, Fancher, Jones, Mikolajick, Schroeder (c53) 2017
Schenk, Yurchuk, Mueller, Schroeder, Starschich, Böttger, Mikolajick (c43) 2014
Grimley, Schenk, Sang, Pešić, Schroeder, Mikolajick, LeBeau (c47) 2016
Hu, Ma, Koritala, Balachandran (c22) 2014
Dang, Yuan, Yao, Liao (c24) 2013
Lomenzo, Chung, Zhou, Jones, Nishida (c34) 2017
Pang, Lee, Suh (c3) 2013
Hannan, Mutashar, Samad, Hussain (c10) 2014
Hao, Wang, Zhang, An (c21) 2013
Lou (c45) 2009
Mikolajick, Müller, Schenk, Yurchuk, Slesazeck, Schröder, Flachowsky, Bentum, Kolodinski, Polakowski, Müller (c27) 2014
Pešić, Hoffmann, Richter, Mikolajick, Schroeder (c40) 2016
Schenk, Schroeder, Pesic, Popovici, Pershin, Mikolajick (c49) 2014
Martin, Muller, Schenk, Arruda, Kumar, Strelcov, Yurchuk, Muller, Pohl, Schroder, Kalinin, Mikolajick (c51) 2014
Zhou, Guan, Vopson, Xu, Liang, Cao, Dong, Mueller, Schenk, Schroeder (c52) 2015
Jiang, Subbarao, Cross (c55) 1994
McPherson, Kim, Shanware, Mogul (c19) 2003
Xu, Moses, Pai, Cross (c58) 1998
Kotz, Carlen (c60) 2000
Böscke, Müller, Bräuhaus, Schröder, Böttger (c38) 2011
Haspert, Lee, Rubloff (c18) 2012
Paradiso, Starner (c9) 2005
Li, Tan, Ding, Li, Yang, Zhang (c25) 2012
Shimizu, Yokouchi, Shiraishi, Oikawa, Krishnan, Funakubo (c61) 2014
Fan, Tang, Wang (c4) 2016
Sherrill, Banerjee, Rubloff, Lee (c16) 2011
Sharma, Bufon, Grimm, Sommer, Wollatz, Schadewald, Thurmer, Siles, Bauer, Schmidt (c13) 2014
Jang, Yoon, Shin (c56) 1998
Chu, Zhou, Ren, Neese, Lin, Wang, Bauer, Zhang (c20) 2006
Zhou, Xu, Li, Guan, Cao, Dong, Müller, Schenk, Schröder (c44) 2013
Hoffmann, Schroeder, Künneth, Kersch, Starschich, Böttger, Mikolajick (c29) 2015
Wang, Wu (c2) 2012
Kim, Park, Kim, Kim, Moon, Lee, Hyun, Gwon, Hwang (c36) 2016
Starschich, Boettger (c31) 2017
Mueller, Mueller, Singh, Riedel, Sundqvist, Schröder, Mikolajick (c39) 2012
Park, Kim, Kim, Moon, Kim, Hwang (c33) 2015
Yao, Chen, Rahimabady, Mirshekarloo, Yu, Tay, Sritharan, Lu (c14) 2011
Schenk, Hoffmann, Ocker, Pesic, Mikolajick, Schroeder (c50) 2015
Hickey, Reid, Milton, Minteer (c1) 2016
Belleville, Fanet, Fiorini, Nicole, Pelgrom, Piguet, Hahn, Hoof, Vullers, Tartagni, Cantatore (c12) 2010
Choi, Mao, Chang (c26) 2011
Pešić, Fengler, Larcher, Padovani, Schenk, Grimley, Sang, LeBeau, Slesazeck, Schroeder, Mikolajick (c46) 2016
Mueller, Müller, Schroeder, Mikolajick (c54) 2013
Shaikh, Zeadally (c8) 2016
Bharadwaja, Krupanidhi (c57) 2001
Polakowski, Müller (c35) 2015
Selvan, Ali (c11) 2016
Müller, Böscke, Schröder, Mueller, Bräuhaus, Böttger, Frey, Mikolajick (c32) 2012
Zhang, Qi (c15) 2016
Wang, Li, Deng (c23) 2015
Schroeder, Yurchuk, Muller, Martin, Schenk, Polakowski, Adelmann, Popovici, Kalinin, Mikolajick (c30) 2014
Sang, Grimley, Schenk, Schröder, LeBeau (c37) 2015
Hoffmann, Schroeder, Schenk, Shimizu, Funakubo, Sakata, Pohl, Drescher, Adelmann, Materlik, Kersch, Mikolajick (c48) 2015
(2023062410003973700_c3) 2013; 130
(2023062410003973700_c10) 2014; 13
(2023062410003973700_c36) 2016; 4
(2023062410003973700_c5) 2016; 326
(2023062410003973700_c59) 2013; 341–342
(2023062410003973700_c18) 2012; 6
(2023062410003973700_c15) 2016; 3
(2023062410003973700_c6) 2016; 12
(2023062410003973700_c37) 2015; 106
(2023062410003973700_c41) 2015; 117
(2023062410003973700_c9) 2005; 4
(2023062410003973700_c4) 2016; 28
(2023062410003973700_c52) 2015; 99
(2023062410003973700_c33) 2015; 12
(2023062410003973700_c50) 2015; 7
(2023062410003973700_c58) 1998; 72
(2023062410003973700_c20) 2006; 313
(2023062410003973700_c22) 2014; 104
(2023062410003973700_c8) 2016; 55
(2023062410003973700_c38) 2011; 99
(2023062410003973700_c30) 2014; 53
(2023062410003973700_c21) 2013; 102
(2023062410003973700_c24) 2013; 25
(2023062410003973700_c60) 2000; 45
(2023062410003973700_c28) 2014; 4
(2023062410003973700_c42) 2012
(2023062410003973700_c16) 2011; 13
(2023062410003973700_c57) 2001; 89
(2023062410003973700_c53) 2017; 3
(2023062410003973700_c35) 2015; 106
(2023062410003973700_c48) 2015; 118
(2023062410003973700_c11) 2016; 54
(2023062410003973700_c46) 2016; 26
(2023062410003973700_c61) 2014; 53
(2023062410003973700_c26) 2011; 72
(2023062410003973700_c55) 1994; 75
(2023062410003973700_c23) 2015; 5
(2023062410003973700_c47) 2016; 2
(2023062410003973700_c27) 2014; 95
(2023062410003973700_c19) 2003; 82
(2023062410003973700_c31) 2017; 5
(2023062410003973700_c51) 2014; 26
(2023062410003973700_c54) 2013; 13
(2023062410003973700_c25) 2012; 22
(2023062410003973700_c32) 2012; 12
(2023062410003973700_c43) 2014; 4
(2023062410003973700_c29) 2015; 18
(2023062410003973700_c1) 2016; 77
(2023062410003973700_c56) 1998; 73
(2023062410003973700_c7) 2012; 24
(2023062410003973700_c45) 2009; 94
(2023062410003973700_c34) 2017; 110
(2023062410003973700_c49) 2014; 6
(2023062410003973700_c40) 2016; 26
(2023062410003973700_c2) 2012; 51
(2023062410003973700_c13) 2014; 4
(2023062410003973700_c39) 2012; 22
(2023062410003973700_c44) 2013; 103
(2023062410003973700_c12) 2010; 41
(2023062410003973700_c17) 2009; 4
(2023062410003973700_c14) 2011; 58
References_xml – start-page: 154
  year: 2015
  ident: c29
  publication-title: Nano Energy
– start-page: 26
  year: 2016
  ident: c1
  publication-title: Biosens. Bioelectron.
– start-page: 334
  year: 2006
  ident: c20
  publication-title: Science
– start-page: 4283
  year: 2016
  ident: c4
  publication-title: Adv. Mater.
– start-page: 232905
  year: 2015
  ident: c35
  publication-title: Appl. Phys. Lett.
– start-page: 19744
  year: 2014
  ident: c49
  publication-title: ACS Appl. Mater. Inter.
– start-page: 131
  year: 2015
  ident: c33
  publication-title: Nano Energy.
– start-page: 1700131
  year: 2017
  ident: c53
  publication-title: Adv. Electron. Mater.
– start-page: 102903
  year: 2011
  ident: c38
  publication-title: Appl. Phys. Lett.
– start-page: 072006
  year: 2015
  ident: c48
  publication-title: J. Appl. Phys.
– start-page: 4541
  year: 2001
  ident: c57
  publication-title: J. Appl. Phys.
– start-page: 162905
  year: 2015
  ident: c37
  publication-title: Appl. Phys. Lett.
– start-page: 717
  year: 2016
  ident: c5
  publication-title: J. Power Sources
– start-page: 23468
  year: 2012
  ident: c25
  publication-title: J. Mater. Chem.
– start-page: 1968
  year: 2011
  ident: c14
  publication-title: IEEE Trans. Ultrason. Ferroelectr.
– start-page: 7486
  year: 2016
  ident: c40
  publication-title: Adv. Funct. Mater.
– start-page: 2483
  year: 2000
  ident: c60
  publication-title: Electrochim. Acta.
– start-page: 134109
  year: 2015
  ident: c41
  publication-title: J. Appl. Phys.
– start-page: 85884
  year: 2015
  ident: c23
  publication-title: RSC Adv.
– start-page: 1429
  year: 2013
  ident: c3
  publication-title: J. Appl. Polym. Sci.
– start-page: 263902
  year: 2014
  ident: c22
  publication-title: Appl. Phys. Lett.
– start-page: 6864
  year: 2016
  ident: c36
  publication-title: J. Mater. Chem. C
– start-page: 1600049
  year: 2016
  ident: c15
  publication-title: Adv. Sci.
– start-page: 232904
  year: 2017
  ident: c34
  publication-title: Appl. Phys. Lett.
– start-page: 333
  year: 2017
  ident: c31
  publication-title: J. Mater. Chem. C.
– start-page: 20224
  year: 2015
  ident: c50
  publication-title: ACS Appl. Mater. Inter.
– start-page: 1823
  year: 1998
  ident: c56
  publication-title: Appl. Phys. Lett.
– start-page: 6334
  year: 2013
  ident: c24
  publication-title: Adv. Mater.
– start-page: 2412
  year: 2012
  ident: c39
  publication-title: Adv. Funct. Mater.
– start-page: 192904
  year: 2013
  ident: c44
  publication-title: Appl. Phys. Lett.
– start-page: 08LE02
  year: 2014
  ident: c30
  publication-title: Jpn. J. Appl. Phys., Part 2
– start-page: 240
  year: 2015
  ident: c52
  publication-title: Acta Mater.
– start-page: 3059
  year: 2016
  ident: c6
  publication-title: Small
– start-page: 79
  year: 2014
  ident: c10
  publication-title: Biomed. Eng. Online
– start-page: 740
  year: 2010
  ident: c12
  publication-title: Microelectron. J.
– start-page: 1400610
  year: 2014
  ident: c28
  publication-title: Adv. Energy Mater.
– start-page: 5931
  year: 1998
  ident: c58
  publication-title: Appl. Phys. Lett.
– start-page: 97
  year: 2011
  ident: c26
  publication-title: Mater. Sci. Eng. R
– start-page: 292
  year: 2009
  ident: c17
  publication-title: Nat. Nanotechnol.
– start-page: 041103
  year: 2014
  ident: c43
  publication-title: Appl. Phys. Rev.
– start-page: 7433
  year: 1994
  ident: c55
  publication-title: J. Appl. Phys.
– start-page: 072901
  year: 2009
  ident: c45
  publication-title: Appl. Phys. Lett.
– start-page: 20714
  year: 2011
  ident: c16
  publication-title: Phys. Chem. Chem Phys.
– start-page: 1299
  year: 2013
  ident: c59
  publication-title: Appl. Mech. Mater.
– start-page: 280
  year: 2012
  ident: c7
  publication-title: Adv. Mater.
– start-page: 2121
  year: 2003
  ident: c19
  publication-title: Appl. Phys. Lett.
– start-page: 4318
  year: 2012
  ident: c32
  publication-title: Nano Lett.
– start-page: 1035
  year: 2016
  ident: c11
  publication-title: Renewable Sustainable Energy Rev.
– start-page: 1301631
  year: 2014
  ident: c13
  publication-title: Adv. Energy Mater.
– start-page: 8198
  year: 2014
  ident: c51
  publication-title: Adv. Mater.
– start-page: 136
  year: 2014
  ident: c27
  publication-title: Adv. Sci. Technol.
– start-page: 93
  year: 2013
  ident: c54
  publication-title: IEEE Trans. Device Mater. Reliab.
– start-page: 1041
  year: 2016
  ident: c8
  publication-title: Renewable Sustainable Energy Rev.
– start-page: 18
  year: 2005
  ident: c9
  publication-title: IEEE Pervasive Comput.
– start-page: 09PA04
  year: 2014
  ident: c61
  publication-title: Jpn. J. Appl. Phys., Part 1
– start-page: 3528
  year: 2012
  ident: c18
  publication-title: ACS Nano.
– start-page: 1600173
  year: 2016
  ident: c47
  publication-title: Adv. Electron. Mater.
– start-page: 11700
  year: 2012
  ident: c2
  publication-title: Angew. Chem. Int. Ed.
– start-page: 4601
  year: 2016
  ident: c46
  publication-title: Adv. Funct. Mater.
– start-page: 163903
  year: 2013
  ident: c21
  publication-title: Appl. Phys. Lett.
– volume: 117
  start-page: 134109
  year: 2015
  ident: 2023062410003973700_c41
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4916707
– volume: 94
  start-page: 072901
  year: 2009
  ident: 2023062410003973700_c45
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3082375
– volume: 54
  start-page: 1035
  year: 2016
  ident: 2023062410003973700_c11
  publication-title: Renewable Sustainable Energy Rev.
  doi: 10.1016/j.rser.2015.10.046
– volume: 5
  start-page: 333
  year: 2017
  ident: 2023062410003973700_c31
  publication-title: J. Mater. Chem. C.
  doi: 10.1039/C6TC04807B
– volume: 4
  start-page: 292
  year: 2009
  ident: 2023062410003973700_c17
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2009.37
– volume: 72
  start-page: 97
  year: 2011
  ident: 2023062410003973700_c26
  publication-title: Mater. Sci. Eng. R
  doi: 10.1016/j.mser.2010.12.001
– volume: 22
  start-page: 2412
  year: 2012
  ident: 2023062410003973700_c39
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201103119
– volume: 12
  start-page: 3059
  year: 2016
  ident: 2023062410003973700_c6
  publication-title: Small
  doi: 10.1002/smll.201503527
– volume: 130
  start-page: 1429
  year: 2013
  ident: 2023062410003973700_c3
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.39461
– volume: 24
  start-page: 280
  year: 2012
  ident: 2023062410003973700_c7
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201102958
– start-page: 25
  year: 2012
  ident: 2023062410003973700_c42
  article-title: Ferroelectricity in HfO2 enables nonvolatile data storage in 28 nm HKMG
– volume: 41
  start-page: 740
  year: 2010
  ident: 2023062410003973700_c12
  publication-title: Microelectron. J.
  doi: 10.1016/j.mejo.2010.01.009
– volume: 103
  start-page: 192904
  year: 2013
  ident: 2023062410003973700_c44
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4829064
– volume: 3
  start-page: 1700131
  year: 2017
  ident: 2023062410003973700_c53
  publication-title: Adv. Electron. Mater.
  doi: 10.1002/aelm.201700131
– volume: 4
  start-page: 1301631
  year: 2014
  ident: 2023062410003973700_c13
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201301631
– volume: 102
  start-page: 163903
  year: 2013
  ident: 2023062410003973700_c21
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4802794
– volume: 28
  start-page: 4283
  year: 2016
  ident: 2023062410003973700_c4
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201504299
– volume: 26
  start-page: 8198
  year: 2014
  ident: 2023062410003973700_c51
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201403115
– volume: 313
  start-page: 334
  year: 2006
  ident: 2023062410003973700_c20
  publication-title: Science
  doi: 10.1126/science.1127798
– volume: 26
  start-page: 7486
  year: 2016
  ident: 2023062410003973700_c40
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201603182
– volume: 6
  start-page: 19744
  year: 2014
  ident: 2023062410003973700_c49
  publication-title: ACS Appl. Mater. Inter.
  doi: 10.1021/am504837r
– volume: 3
  start-page: 1600049
  year: 2016
  ident: 2023062410003973700_c15
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201600049
– volume: 75
  start-page: 7433
  year: 1994
  ident: 2023062410003973700_c55
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.356637
– volume: 6
  start-page: 3528
  year: 2012
  ident: 2023062410003973700_c18
  publication-title: ACS Nano.
  doi: 10.1021/nn300553r
– volume: 12
  start-page: 4318
  year: 2012
  ident: 2023062410003973700_c32
  publication-title: Nano Lett.
  doi: 10.1021/nl302049k
– volume: 45
  start-page: 2483
  year: 2000
  ident: 2023062410003973700_c60
  publication-title: Electrochim. Acta.
  doi: 10.1016/S0013-4686(00)00354-6
– volume: 26
  start-page: 4601
  year: 2016
  ident: 2023062410003973700_c46
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201600590
– volume: 110
  start-page: 232904
  year: 2017
  ident: 2023062410003973700_c34
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4985297
– volume: 13
  start-page: 79
  issue: 1
  year: 2014
  ident: 2023062410003973700_c10
  publication-title: Biomed. Eng. Online
  doi: 10.1186/1475-925X-13-79
– volume: 25
  start-page: 6334
  year: 2013
  ident: 2023062410003973700_c24
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201301752
– volume: 4
  start-page: 6864
  year: 2016
  ident: 2023062410003973700_c36
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C6TC02003H
– volume: 13
  start-page: 93
  year: 2013
  ident: 2023062410003973700_c54
  publication-title: IEEE Trans. Device Mater. Reliab.
  doi: 10.1109/TDMR.2012.2216269
– volume: 12
  start-page: 131
  year: 2015
  ident: 2023062410003973700_c33
  publication-title: Nano Energy.
  doi: 10.1016/j.nanoen.2014.09.025
– volume: 51
  start-page: 11700
  year: 2012
  ident: 2023062410003973700_c2
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201201656
– volume: 77
  start-page: 26
  year: 2016
  ident: 2023062410003973700_c1
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2015.09.013
– volume: 89
  start-page: 4541
  year: 2001
  ident: 2023062410003973700_c57
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1331659
– volume: 82
  start-page: 2121
  year: 2003
  ident: 2023062410003973700_c19
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1565180
– volume: 4
  start-page: 041103
  year: 2014
  ident: 2023062410003973700_c43
  publication-title: Appl. Phys. Rev.
  doi: 10.1063/1.4902396
– volume: 55
  start-page: 1041
  year: 2016
  ident: 2023062410003973700_c8
  publication-title: Renewable Sustainable Energy Rev.
  doi: 10.1016/j.rser.2015.11.010
– volume: 4
  start-page: 1400610
  year: 2014
  ident: 2023062410003973700_c28
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201400610
– volume: 72
  start-page: 5931
  year: 1998
  ident: 2023062410003973700_c58
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.120817
– volume: 58
  start-page: 1968
  year: 2011
  ident: 2023062410003973700_c14
  publication-title: IEEE Trans. Ultrason. Ferroelectr.
  doi: 10.1109/TUFFC.2011.2039
– volume: 53
  start-page: 08LE02
  year: 2014
  ident: 2023062410003973700_c30
  publication-title: Jpn. J. Appl. Phys., Part 2
  doi: 10.7567/JJAP.53.08LE02
– volume: 53
  start-page: 09PA04
  year: 2014
  ident: 2023062410003973700_c61
  publication-title: Jpn. J. Appl. Phys., Part 1
  doi: 10.7567/JJAP.53.09PA04
– volume: 326
  start-page: 717
  year: 2016
  ident: 2023062410003973700_c5
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2016.04.131
– volume: 18
  start-page: 154
  year: 2015
  ident: 2023062410003973700_c29
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2015.10.005
– volume: 7
  start-page: 20224
  year: 2015
  ident: 2023062410003973700_c50
  publication-title: ACS Appl. Mater. Inter.
  doi: 10.1021/acsami.5b05773
– volume: 99
  start-page: 240
  year: 2015
  ident: 2023062410003973700_c52
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2015.07.035
– volume: 22
  start-page: 23468
  year: 2012
  ident: 2023062410003973700_c25
  publication-title: J. Mater. Chem.
  doi: 10.1039/c2jm35532a
– volume: 5
  start-page: 85884
  year: 2015
  ident: 2023062410003973700_c23
  publication-title: RSC Adv.
  doi: 10.1039/C5RA13456K
– volume: 341–342
  start-page: 1299
  year: 2013
  ident: 2023062410003973700_c59
  publication-title: Appl. Mech. Mater.
  doi: 10.4028/www.scientific.net/AMM.341-342.1299
– volume: 106
  start-page: 162905
  year: 2015
  ident: 2023062410003973700_c37
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4919135
– volume: 104
  start-page: 263902
  year: 2014
  ident: 2023062410003973700_c22
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4887066
– volume: 2
  start-page: 1600173
  year: 2016
  ident: 2023062410003973700_c47
  publication-title: Adv. Electron. Mater.
  doi: 10.1002/aelm.201600173
– volume: 4
  start-page: 18
  year: 2005
  ident: 2023062410003973700_c9
  publication-title: IEEE Pervasive Comput.
  doi: 10.1109/MPRV.2005.9
– volume: 99
  start-page: 102903
  year: 2011
  ident: 2023062410003973700_c38
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3634052
– volume: 106
  start-page: 232905
  year: 2015
  ident: 2023062410003973700_c35
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4922272
– volume: 73
  start-page: 1823
  year: 1998
  ident: 2023062410003973700_c56
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.122294
– volume: 95
  start-page: 136
  year: 2014
  ident: 2023062410003973700_c27
  publication-title: Adv. Sci. Technol.
  doi: 10.4028/www.scientific.net/AST.95.136
– volume: 118
  start-page: 072006
  year: 2015
  ident: 2023062410003973700_c48
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4927805
– volume: 13
  start-page: 20714
  year: 2011
  ident: 2023062410003973700_c16
  publication-title: Phys. Chem. Chem Phys.
  doi: 10.1039/c1cp22659b
SSID ssj0011839
Score 2.5497115
Snippet Motivated by the development of ultracompact electronic devices as miniaturized energy autonomous systems, great research efforts have been expended in recent...
SourceID proquest
crossref
scitation
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Aluminum oxide
Antiferroelectricity
Applied physics
Electronic devices
Electrostatic discharges
Endurance
Energy
Energy storage
Ferroelectric materials
Hafnium oxide
Induced polarization
Silicon
Thermal stability
Thin films
Title Silicon-doped hafnium oxide anti-ferroelectric thin films for energy storage
URI http://dx.doi.org/10.1063/1.4989908
https://www.proquest.com/docview/2116044206
Volume 122
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Ri9QwEA66h6gPoqfi6ilFfRCO7KVt2m0eF_U45E6Eu4PFl5KmCRs526W2ovfrnWzStKeLnL6UJQxhmS-dfEm_mUHotVQSVk5KcckFHFBKRjAXRGHFWVrA9gcUwSQnn3xMj87ph2Wy7HuVu-yStpiJy615Jf-DKowBriZL9h-Q9ZPCAPwGfOEJCMPzWhif6gsAssJlvQbeuOKq0t3X_fqHLs1HgVZjJZumtp1utACOqStTiMnWYNiXNu3PyCP5b4qggaVyx1LtDYgn4AubVX3I9eVI1KM7M7jUvF51Ptx_XtWdVc__7HyMcbfUS910enzxAJuZ0XHQcTCNQpwx2wtmJm38JBnD88TWkvUBNorGK4lujdxAlcwlwowyOAGSbNievGjwC1_fRDsRHAeiCdpZvDs5PvXfiwzPs2Ie-5f6GlJpfOCnvMo8huPEbeAaVvYwYhZn99E95-xgYfF9gG7IahfdHRWK3EW3Pln3P0THVzAPHObBBvPgT8wDg3mwwTwAzAOLeeAwf4TOD9-fvT3CriMGFjGLW8xZIpNCyIyIUJYFZxnwV2L0bDSeh6xQiUhMEbUk4wUFKgbxOE6ZTIlSQLyByz9Gk6qu5BMUiIKHcyFpmElBJY3gVZ1HYMdIAicIoqboTe-tvPeP6VpykW9kC2mch7lz7BS99KZrWyNlm9Fe7_LcvULf8igMU0JpRNIpeuVh-NskW6y-181gka9L9fRacz1Dd4ZVvYcmbdPJ50Aw2-KFW12_ABIbfFo
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Silicon-doped+hafnium+oxide+anti-ferroelectric+thin+films+for+energy+storage&rft.jtitle=Journal+of+applied+physics&rft.au=Ali%2C+Faizan&rft.au=Liu%2C+Xiaohua&rft.au=Zhou%2C+Dayu&rft.au=Yang%2C+Xirui&rft.date=2017-10-14&rft.issn=0021-8979&rft.eissn=1089-7550&rft.volume=122&rft.issue=14&rft_id=info:doi/10.1063%2F1.4989908&rft.externalDocID=jap
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-8979&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-8979&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-8979&client=summon