Effect of phase transition on the piezoelectric properties of scandium-alloyed gallium nitride

In this study, the piezoelectric properties of scandium-alloyed gallium nitride (ScGaN), which is expected to be applied to microelectromechanical systems devices, are evaluated by first-principles calculations. The piezoelectric constant (d33) of GaN is found to increase by up to approximately 30 t...

Full description

Saved in:
Bibliographic Details
Published inJournal of applied physics Vol. 135; no. 16
Main Authors Hirata, Kenji, Ikemoto, Yu, Uehara, Masato, Yamada, Hiroshi, Anggraini, Sri Ayu, Akiyama, Morito
Format Journal Article
LanguageEnglish
Published Melville American Institute of Physics 28.04.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this study, the piezoelectric properties of scandium-alloyed gallium nitride (ScGaN), which is expected to be applied to microelectromechanical systems devices, are evaluated by first-principles calculations. The piezoelectric constant (d33) of GaN is found to increase by up to approximately 30 times upon the addition of 62.5 mol. % of Sc. The piezoelectric stress constant (e33) increases and the elastic constant (C33) decreases with increasing Sc content of ScGaN, driving the rise of d33. The improved piezoelectric properties of ScGaN compared with those of GaN are largely attributed to elastic softening, which is thought to be related to the transition from a wurtzite to hexagonal boron nitride (h-BN) structure driven by the change in bonding states between atoms caused by the addition of Sc to GaN. The crystal orbital Hamilton population analysis suggests that addition of Sc to GaN results in the combination of weaker Sc–N and Ga–N bonding, which makes the crystal structure unstable. This weakened bonding is thought to be the main cause of the destabilization of the wurtzite structure and transition to the h-BN structure of ScGaN. The elastic softening associated with this structural transition leads to the dramatic improvement in piezoelectric properties.
AbstractList In this study, the piezoelectric properties of scandium-alloyed gallium nitride (ScGaN), which is expected to be applied to microelectromechanical systems devices, are evaluated by first-principles calculations. The piezoelectric constant (d33) of GaN is found to increase by up to approximately 30 times upon the addition of 62.5 mol. % of Sc. The piezoelectric stress constant (e33) increases and the elastic constant (C33) decreases with increasing Sc content of ScGaN, driving the rise of d33. The improved piezoelectric properties of ScGaN compared with those of GaN are largely attributed to elastic softening, which is thought to be related to the transition from a wurtzite to hexagonal boron nitride (h-BN) structure driven by the change in bonding states between atoms caused by the addition of Sc to GaN. The crystal orbital Hamilton population analysis suggests that addition of Sc to GaN results in the combination of weaker Sc–N and Ga–N bonding, which makes the crystal structure unstable. This weakened bonding is thought to be the main cause of the destabilization of the wurtzite structure and transition to the h-BN structure of ScGaN. The elastic softening associated with this structural transition leads to the dramatic improvement in piezoelectric properties.
Author Akiyama, Morito
Yamada, Hiroshi
Anggraini, Sri Ayu
Hirata, Kenji
Uehara, Masato
Ikemoto, Yu
Author_xml – sequence: 1
  givenname: Kenji
  surname: Hirata
  fullname: Hirata, Kenji
  organization: National Institute of Advanced Industrial Science and Technology (AIST), Sensing System Research Center
– sequence: 2
  givenname: Yu
  surname: Ikemoto
  fullname: Ikemoto, Yu
  organization: Department of Molecular and Material Sciences, Interdisciplinary Graduate School of Engineering Sciences, Kyushu University
– sequence: 3
  givenname: Masato
  surname: Uehara
  fullname: Uehara, Masato
  organization: 2Department of Molecular and Material Sciences, Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1, Kasugakoen, Kasuga, Fukuoka 816-8580, Japan
– sequence: 4
  givenname: Hiroshi
  surname: Yamada
  fullname: Yamada, Hiroshi
  organization: 2Department of Molecular and Material Sciences, Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1, Kasugakoen, Kasuga, Fukuoka 816-8580, Japan
– sequence: 5
  givenname: Sri Ayu
  surname: Anggraini
  fullname: Anggraini, Sri Ayu
  organization: National Institute of Advanced Industrial Science and Technology (AIST), Sensing System Research Center
– sequence: 6
  givenname: Morito
  surname: Akiyama
  fullname: Akiyama, Morito
  organization: National Institute of Advanced Industrial Science and Technology (AIST), Sensing System Research Center
BookMark eNp9kE1LAzEQhoNUsK0e_AcBTwrbZjb7kRyl1A8oeNGrSzY7sSnb3TVJD_XXm9J6EREGZgaedz7eCRl1fYeEXAObASv4PJ8xkCCgOCNjYEImZZ6zERkzlkIiZCkvyMT7DWMAgssxeV8agzrQ3tBhrTzS4FTnbbB9R2OENdLB4lePbaSc1XRw_YAuWPQHjdeqa-xum6i27ffY0I9YxJ52NtINXpJzo1qPV6c8JW8Py9fFU7J6eXxe3K8SzSUPiSoLWRgNNWAqa8ExY0po3rAaMlGzRgGgKlKVAscyE_FRkeZlrUpTZJlShk_JzXFuPO9zhz5Um37nuriy4izjXMoyY5G6PVLa9d47NNXg7Fa5fQWsOthX5dXJvsjOf7HaBnXwJTpk2z8Vd0eF_yH_Gf8Nrp-BOQ
CODEN JAPIAU
CitedBy_id crossref_primary_10_1364_OL_541461
crossref_primary_10_1063_5_0239212
crossref_primary_10_1088_1402_4896_ad65c6
crossref_primary_10_1063_5_0236507
Cites_doi 10.1021/jp202489s
10.1063/1.3251072
10.1039/C3TA14189F
10.1016/j.commatsci.2015.03.036
10.1103/PhysRevLett.104.137601
10.1063/1.4896262
10.1021/j100135a014
10.1002/jcc.24300
10.1103/PhysRevB.73.045112
10.1002/adma.200802611
10.1103/PhysRevMaterials.2.063802
10.1063/5.0086355
10.1088/0953-8984/21/8/084204
10.1103/PhysRevB.47.1651
10.1103/PhysRevB.48.4442
10.1063/1.4788728
10.1002/jcc.23424
10.1103/PhysRevB.55.10355
10.1002/aelm.202201187
10.1103/PhysRevApplied.9.034026
10.1103/PhysRevB.54.11169
10.1016/j.surfcoat.2016.11.083
10.1016/j.vacuum.2011.03.026
10.1016/j.calphad.2013.06.006
10.1103/PhysRevLett.77.3865
10.1088/0953-8984/27/24/245901
10.1103/PhysRevB.59.1758
10.1021/acs.chemmater.6b04408
10.1021/acsami.8b22602
10.1016/0927-0256(96)00008-0
10.1016/j.jcrysgro.2022.126889
10.1016/j.commatsci.2010.03.028
10.1103/RevModPhys.66.899
10.1103/PhysRevB.50.17953
10.1063/1.5066613
10.1103/PhysRevB.13.5188
10.1016/j.commatsci.2005.04.010
10.1063/1.3553716
10.1103/PhysRevB.87.094107
10.1021/acsomega.9b01912
10.1140/epjb/e2006-00438-8
10.1103/PhysRevLett.65.353
10.1002/jcc.20575
10.1021/acsami.0c19620
ContentType Journal Article
Copyright Author(s)
2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Copyright_xml – notice: Author(s)
– notice: 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
DBID AJDQP
AAYXX
CITATION
8FD
H8D
L7M
DOI 10.1063/5.0191816
DatabaseName AIP Open Access Journals
CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitleList
CrossRef
Technology Research Database
Database_xml – sequence: 1
  dbid: AJDQP
  name: AIP Open Access Journals
  url: https://publishing.aip.org/librarians/open-access-policy
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1089-7550
ExternalDocumentID 10_1063_5_0191816
jap
GrantInformation_xml – fundername: Japan Society for the Promotion of Science London
  grantid: 21K14503
  funderid: 10.13039/501100000646
– fundername: Japan Society for the Promotion of Science London
  grantid: 22H01784
  funderid: 10.13039/501100000646
GroupedDBID -DZ
-~X
.DC
2-P
29J
4.4
5GY
5VS
85S
AAAAW
AABDS
AAEUA
AAIKC
AAMNW
AAPUP
AAYIH
ABFTF
ABJNI
ABZEH
ACBEA
ACBRY
ACGFO
ACGFS
ACLYJ
ACNCT
ACZLF
ADCTM
AEGXH
AEJMO
AENEX
AFATG
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AIAGR
AIDUJ
AJDQP
AJJCW
AJQPL
ALEPV
ALMA_UNASSIGNED_HOLDINGS
AQWKA
ATXIE
AWQPM
BPZLN
CS3
D0L
DU5
EBS
ESX
F5P
FDOHQ
FFFMQ
HAM
M6X
M71
M73
N9A
NPSNA
O-B
P2P
RIP
RNS
RQS
RXW
SC5
TAE
TN5
TWZ
UCJ
UHB
UPT
WH7
XSW
YQT
YZZ
ZCA
~02
1UP
53G
AAGWI
AAYXX
ABJGX
ADMLS
BDMKI
CITATION
8FD
H8D
L7M
ID FETCH-LOGICAL-c393t-a7696fc1b1e29b83e40a8c3d0b148b0da11ea62a213e7480638257ba7f644aaf3
IEDL.DBID AJDQP
ISSN 0021-8979
IngestDate Mon Jun 30 07:10:52 EDT 2025
Thu Apr 24 23:11:55 EDT 2025
Sun Jul 06 05:06:59 EDT 2025
Fri Jun 21 00:17:10 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 16
Language English
License All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c393t-a7696fc1b1e29b83e40a8c3d0b148b0da11ea62a213e7480638257ba7f644aaf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8510-4738
0000-0001-5614-647X
0000-0002-2638-0975
0000-0001-7024-7429
0009-0002-1677-4206
0000-0002-7393-6796
OpenAccessLink http://dx.doi.org/10.1063/5.0191816
PQID 3043399740
PQPubID 2050677
PageCount 10
ParticipantIDs crossref_citationtrail_10_1063_5_0191816
scitation_primary_10_1063_5_0191816
crossref_primary_10_1063_5_0191816
proquest_journals_3043399740
PublicationCentury 2000
PublicationDate 2024-04-28
PublicationDateYYYYMMDD 2024-04-28
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-28
  day: 28
PublicationDecade 2020
PublicationPlace Melville
PublicationPlace_xml – name: Melville
PublicationTitle Journal of applied physics
PublicationYear 2024
Publisher American Institute of Physics
Publisher_xml – name: American Institute of Physics
References Resta (c29) 1994
Kresse, Furthmuller (c21) 1996
Moram, Zhang (c18) 2014
Noor-A-Alam, Olszewski, Campanella, Nolan (c12) 2021
Perdew, Burke, Ernzerhof (c23) 1996
Tehrani, Brgoch (c44) 2017
Caro, Zhang, Ylilammi, Riekkinen, Moram, Lopez-Acevedo, Molarius, Laurila (c30) 2015
Maintz, Deringer, Tchougreeff, Dronskowski (c40) 2013
Yanagitani, Suzuki (c3) 2014
Uehara, Mizuno, Aida, Yamada, Umeda, Akiyama (c16) 2019
Sanville, Kenny, Smith, Henkelman (c35) 2007
Touzani, Rehorn, Fokwa (c43) 2015
Blochl (c25) 1994
Zunger, Wei, Ferreira, Bernard (c19) 1990
Moreira, Bjurstrom, Katardjev, Yantchev (c4) 2011
Deringer, Tchougreeff, Dronskowski (c38) 2011
Gonze, Lee (c31) 1997
Alsaad, Ahmad (c17) 2006
Kingsmith, Vanderbilt (c27) 1993
Zywitzki, Modes, Barth, Bartzsch, Frach (c6) 2017
Tasnadi, Alling, Hoglund, Wingqvist, Birch, Hultman, Abrikosov (c7) 2010
Manna, Talley, Gorai, Mangum, Zakutayev, Brennecka, Stevanovic, Ciobanu (c33) 2018
Talley, Millican, Mangum, Siol, Musgrave, Gorman, Holder, Zakutayev, Brennecka (c10) 2018
Startt, Quazi, Sharma, Vazquez, Poudyal, Jackson, Dingreville (c15) 2023
Akiyama, Umeda, Honda, Nagase (c5) 2013
Yu, Trinkle (c37) 2011
Kresse, Joubert (c24) 1999
Van de Walle, Tiwary, de Jong, Olmsted, Asta, Dick, Shin, Wang, Chen, Liu (c20) 2013
Tholander, Abrikosov, Hultman, Tasnadi (c8) 2013
Hirata, Yamada, Uehara, Anggraini, Akiyama (c9) 2019
Vanderbilt, Kingsmith (c28) 1993
Maintz, Deringer, Tchougreeff, Dronskowski (c41) 2016
Kresse, Furthmuller (c22) 1996
Monkhorst, Pack (c26) 1976
Xiao, Jiang, Duan, Gao, Zu, Weber (c42) 2010
Gajdoš, Hummer, Kresse, Furthmüller, Bechstedt (c32) 2006
Akiyama, Kano, Teshigahara (c2) 2009
Tao, Hu, Xie, Sun, Tang, Liu, Jia, Guo, Wang, Wu (c13) 2022
Tang, Sanville, Henkelman (c36) 2009
Noor-A-Alam, Olszewski, Nolan (c11) 2019
Liao, Cheng, Ma, Wan, Duan, Cheng, Wang (c14) 2022
Henkelman, Arnaldsson, Jonsson (c34) 2006
Dronskowski, Blochl (c39) 1993
Akiyama, Kamohara, Kano, Teshigahara, Takeuchi, Kawahara (c1) 2009
(2024042209453524600_c30) 2015; 27
(2024042209453524600_c10) 2018; 2
(2024042209453524600_c26) 1976; 13
(2024042209453524600_c33) 2018; 9
(2024042209453524600_c44) 2017; 29
(2024042209453524600_c25) 1994; 50
(2024042209453524600_c38) 2011; 115
(2024042209453524600_c9) 2019; 4
(2024042209453524600_c15) 2023; 9
(2024042209453524600_c39) 1993; 97
(2024042209453524600_c23) 1996; 77
(2024042209453524600_c14) 2022; 599
(2024042209453524600_c16) 2019; 114
(2024042209453524600_c27) 1993; 47
(2024042209453524600_c37) 2011; 134
(2024042209453524600_c32) 2006; 73
(2024042209453524600_c11) 2019; 11
(2024042209453524600_c19) 1990; 65
(2024042209453524600_c7) 2010; 104
(2024042209453524600_c24) 1999; 59
(2024042209453524600_c6) 2017; 309
(2024042209453524600_c12) 2021; 13
(2024042209453524600_c31) 1997; 55
(2024042209453524600_c3) 2014; 105
(2024042209453524600_c22) 1996; 54
(2024042209453524600_c41) 2016; 37
(2024042209453524600_c43) 2015; 104
(2024042209453524600_c13) 2022; 131
(2024042209453524600_c34) 2006; 36
(2024042209453524600_c20) 2013; 42
(2024042209453524600_c40) 2013; 34
(2024042209453524600_c29) 1994; 66
(2024042209453524600_c18) 2014; 2
(2024042209453524600_c42) 2010; 48
(2024042209453524600_c5) 2013; 102
(2024042209453524600_c17) 2006; 54
(2024042209453524600_c4) 2011; 86
(2024042209453524600_c35) 2007; 28
(2024042209453524600_c8) 2013; 87
(2024042209453524600_c36) 2009; 21
(2024042209453524600_c1) 2009; 21
(2024042209453524600_c2) 2009; 95
(2024042209453524600_c21) 1996; 6
(2024042209453524600_c28) 1993; 48
References_xml – start-page: 151
  year: 2006
  ident: c17
  publication-title: Eur. Phys. J. B
– start-page: 15081
  year: 2019
  ident: c9
  publication-title: ACS Omega
– start-page: 137601
  year: 2010
  ident: c7
  publication-title: Phys. Rev. Lett.
– start-page: 20482
  year: 2019
  ident: c11
  publication-title: ACS Appl. Mater. Interfaces
– start-page: 1651
  year: 1993
  ident: c27
  publication-title: Phys. Rev. B
– start-page: 23
  year: 2011
  ident: c4
  publication-title: Vacuum
– start-page: 012902
  year: 2019
  ident: c16
  publication-title: Appl. Phys. Lett.
– start-page: 11169
  year: 1996
  ident: c22
  publication-title: Phys. Rev. B
– start-page: 034026
  year: 2018
  ident: c33
  publication-title: Phys. Rev. Appl.
– start-page: 17953
  year: 1994
  ident: c25
  publication-title: Phys. Rev. B
– start-page: 064111
  year: 2011
  ident: c37
  publication-title: J. Chem. Phys.
– start-page: 5461
  year: 2011
  ident: c38
  publication-title: J. Phys. Chem.
– start-page: 353
  year: 1990
  ident: c19
  publication-title: Phys. Rev. Lett.
– start-page: 2557
  year: 2013
  ident: c40
  publication-title: J. Comput. Chem.
– start-page: 4442
  year: 1993
  ident: c28
  publication-title: Phys. Rev. B
– start-page: 2542
  year: 2017
  ident: c44
  publication-title: Chem. Mater.
– start-page: 15
  year: 1996
  ident: c21
  publication-title: Comput. Mater. Sci.
– start-page: 6042
  year: 2014
  ident: c18
  publication-title: J. Mater. Chem. A
– start-page: 593
  year: 2009
  ident: c1
  publication-title: Adv. Mater.
– start-page: 1030
  year: 2016
  ident: c41
  publication-title: J. Comput. Chem.
– start-page: 094107
  year: 2013
  ident: c8
  publication-title: Phys. Rev. B
– start-page: 768
  year: 2010
  ident: c42
  publication-title: Comput. Mater. Sci.
– start-page: 021915
  year: 2013
  ident: c5
  publication-title: Appl. Phys. Lett.
– start-page: 1758
  year: 1999
  ident: c24
  publication-title: Phys. Rev. B
– start-page: 122907
  year: 2014
  ident: c3
  publication-title: Appl. Phys. Lett.
– start-page: 52
  year: 2015
  ident: c43
  publication-title: Comput. Mater. Sci.
– start-page: 899
  year: 1994
  ident: c29
  publication-title: Rev. Mod. Phys.
– start-page: 063802
  year: 2018
  ident: c10
  publication-title: Phys. Rev. Mater.
– start-page: 944
  year: 2021
  ident: c12
  publication-title: ACS Appl. Mater. Interfaces
– start-page: 354
  year: 2006
  ident: c34
  publication-title: Comput. Mater. Sci.
– start-page: 417
  year: 2017
  ident: c6
  publication-title: Surf. Coat. Technol.
– start-page: 899
  year: 2007
  ident: c35
  publication-title: J. Comput. Chem.
– start-page: 126889
  year: 2022
  ident: c14
  publication-title: J. Cryst. Growth
– start-page: 10355
  year: 1997
  ident: c31
  publication-title: Phys. Rev. B
– start-page: 045112
  year: 2006
  ident: c32
  publication-title: Phys. Rev. B
– start-page: 13
  year: 2013
  ident: c20
  publication-title: Calphad
– start-page: 5188
  year: 1976
  ident: c26
  publication-title: Phys. Rev. B
– start-page: 8617
  year: 1993
  ident: c39
  publication-title: J. Phys. Chem.
– start-page: 245901
  year: 2015
  ident: c30
  publication-title: J. Phys.: Condens. Matter
– start-page: 084204
  year: 2009
  ident: c36
  publication-title: J. Phys.: Condens. Matter
– start-page: 2201187
  year: 2023
  ident: c15
  publication-title: Adv. Electron. Mater.
– start-page: 162107
  year: 2009
  ident: c2
  publication-title: Appl. Phys. Lett.
– start-page: 134101
  year: 2022
  ident: c13
  publication-title: J. Appl. Phys.
– start-page: 3865
  year: 1996
  ident: c23
  publication-title: Phys. Rev. Lett.
– volume: 115
  start-page: 5461
  year: 2011
  ident: 2024042209453524600_c38
  publication-title: J. Phys. Chem.
  doi: 10.1021/jp202489s
– volume: 95
  start-page: 162107
  year: 2009
  ident: 2024042209453524600_c2
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3251072
– volume: 2
  start-page: 6042
  year: 2014
  ident: 2024042209453524600_c18
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C3TA14189F
– volume: 104
  start-page: 52
  year: 2015
  ident: 2024042209453524600_c43
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2015.03.036
– volume: 104
  start-page: 137601
  year: 2010
  ident: 2024042209453524600_c7
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.104.137601
– volume: 105
  start-page: 122907
  year: 2014
  ident: 2024042209453524600_c3
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4896262
– volume: 97
  start-page: 8617
  year: 1993
  ident: 2024042209453524600_c39
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100135a014
– volume: 37
  start-page: 1030
  year: 2016
  ident: 2024042209453524600_c41
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.24300
– volume: 73
  start-page: 045112
  year: 2006
  ident: 2024042209453524600_c32
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.73.045112
– volume: 21
  start-page: 593
  year: 2009
  ident: 2024042209453524600_c1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200802611
– volume: 2
  start-page: 063802
  year: 2018
  ident: 2024042209453524600_c10
  publication-title: Phys. Rev. Mater.
  doi: 10.1103/PhysRevMaterials.2.063802
– volume: 131
  start-page: 134101
  year: 2022
  ident: 2024042209453524600_c13
  publication-title: J. Appl. Phys.
  doi: 10.1063/5.0086355
– volume: 21
  start-page: 084204
  year: 2009
  ident: 2024042209453524600_c36
  publication-title: J. Phys.: Condens. Matter
  doi: 10.1088/0953-8984/21/8/084204
– volume: 47
  start-page: 1651
  year: 1993
  ident: 2024042209453524600_c27
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.47.1651
– volume: 48
  start-page: 4442
  year: 1993
  ident: 2024042209453524600_c28
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.48.4442
– volume: 102
  start-page: 021915
  year: 2013
  ident: 2024042209453524600_c5
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4788728
– volume: 34
  start-page: 2557
  year: 2013
  ident: 2024042209453524600_c40
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.23424
– volume: 55
  start-page: 10355
  year: 1997
  ident: 2024042209453524600_c31
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.55.10355
– volume: 9
  start-page: 2201187
  year: 2023
  ident: 2024042209453524600_c15
  publication-title: Adv. Electron. Mater.
  doi: 10.1002/aelm.202201187
– volume: 9
  start-page: 034026
  year: 2018
  ident: 2024042209453524600_c33
  publication-title: Phys. Rev. Appl.
  doi: 10.1103/PhysRevApplied.9.034026
– volume: 54
  start-page: 11169
  year: 1996
  ident: 2024042209453524600_c22
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.54.11169
– volume: 309
  start-page: 417
  year: 2017
  ident: 2024042209453524600_c6
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2016.11.083
– volume: 86
  start-page: 23
  year: 2011
  ident: 2024042209453524600_c4
  publication-title: Vacuum
  doi: 10.1016/j.vacuum.2011.03.026
– volume: 42
  start-page: 13
  year: 2013
  ident: 2024042209453524600_c20
  publication-title: Calphad
  doi: 10.1016/j.calphad.2013.06.006
– volume: 77
  start-page: 3865
  year: 1996
  ident: 2024042209453524600_c23
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– volume: 27
  start-page: 245901
  year: 2015
  ident: 2024042209453524600_c30
  publication-title: J. Phys.: Condens. Matter
  doi: 10.1088/0953-8984/27/24/245901
– volume: 59
  start-page: 1758
  year: 1999
  ident: 2024042209453524600_c24
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.59.1758
– volume: 29
  start-page: 2542
  year: 2017
  ident: 2024042209453524600_c44
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.6b04408
– volume: 11
  start-page: 20482
  year: 2019
  ident: 2024042209453524600_c11
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b22602
– volume: 6
  start-page: 15
  year: 1996
  ident: 2024042209453524600_c21
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/0927-0256(96)00008-0
– volume: 599
  start-page: 126889
  year: 2022
  ident: 2024042209453524600_c14
  publication-title: J. Cryst. Growth
  doi: 10.1016/j.jcrysgro.2022.126889
– volume: 48
  start-page: 768
  year: 2010
  ident: 2024042209453524600_c42
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2010.03.028
– volume: 66
  start-page: 899
  year: 1994
  ident: 2024042209453524600_c29
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.66.899
– volume: 50
  start-page: 17953
  year: 1994
  ident: 2024042209453524600_c25
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.50.17953
– volume: 114
  start-page: 012902
  year: 2019
  ident: 2024042209453524600_c16
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.5066613
– volume: 13
  start-page: 5188
  year: 1976
  ident: 2024042209453524600_c26
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.13.5188
– volume: 36
  start-page: 354
  year: 2006
  ident: 2024042209453524600_c34
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2005.04.010
– volume: 134
  start-page: 064111
  year: 2011
  ident: 2024042209453524600_c37
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3553716
– volume: 87
  start-page: 094107
  year: 2013
  ident: 2024042209453524600_c8
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.87.094107
– volume: 4
  start-page: 15081
  year: 2019
  ident: 2024042209453524600_c9
  publication-title: ACS Omega
  doi: 10.1021/acsomega.9b01912
– volume: 54
  start-page: 151
  year: 2006
  ident: 2024042209453524600_c17
  publication-title: Eur. Phys. J. B
  doi: 10.1140/epjb/e2006-00438-8
– volume: 65
  start-page: 353
  year: 1990
  ident: 2024042209453524600_c19
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.65.353
– volume: 28
  start-page: 899
  year: 2007
  ident: 2024042209453524600_c35
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.20575
– volume: 13
  start-page: 944
  year: 2021
  ident: 2024042209453524600_c12
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c19620
SSID ssj0011839
Score 2.4843085
Snippet In this study, the piezoelectric properties of scandium-alloyed gallium nitride (ScGaN), which is expected to be applied to microelectromechanical systems...
SourceID proquest
crossref
scitation
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Bonding strength
Boron nitride
Charged particles
Chemical bonds
Crystal structure
Destabilization
Elastic properties
First principles
Gallium nitrides
Microelectromechanical systems
Phase transitions
Piezoelectricity
Scandium
Softening
Wurtzite
Title Effect of phase transition on the piezoelectric properties of scandium-alloyed gallium nitride
URI http://dx.doi.org/10.1063/5.0191816
https://www.proquest.com/docview/3043399740
Volume 135
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NSwMxEB20RdSD-InVWoJ68BLc3WzzcRQ_KMWKooInl0k2wYK2pa0H_fUm3W2toCDsZSHZwyTDe5OXfQNwLJWJNDeMOmdTGgy9qU5R0iY6EaVCRBrDgX7nhrce0_ZT82kBjv5Q8Dk7DbaayuMQX4Rq4smxrED1rH1xdzsTCwLIFzc5YiqVUFMDofnJP2Hnm0sue6ApNO85WLlah7WSD5KzYgE3YMH2NmF1ziVwE5YmtzTNaAueC69h0ndk8OLhh4wD0kwuXRH_eC5HBl372S9623QNGYSj9mHwTA1zRib8w_L-RoPY_mFzElR3_058Wg-7ud2Gx6vLh_MWLRskUMMUG1MUXHFnYh3bRGnJbBqhNCyPtC9ydJRjHFvkCSYxsyKVgZ34DNUonGdBiI7tQKXX79ldIIipFrl1eYR5ap1GFFIn1viKBXmudA1OpvHLphELTSxes4mKzVnWzMpQ1-BwNnRQWGb8Nqg-XYSszJpRxoKbmvIVTlSDo9nC_P2RvX-N2oeVxDORIAElsg6V8fDdHngmMdYNv5MuOtf3jXJHfQFhBsW2
linkProvider American Institute of Physics
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NbxMxEB1BoqrlUEEBNdCCRXvgYrq73vjjWLVUIaQVlVKpJ1Zjry1StckqHwf49YyzmzRIICHtZSV7ZY3Xem_8xs8Ax9q4xEoneAg-59HQm9scNe9iUEmuVGIxbuhfXsneTd6_7d42tTnxLAwNYvYJR9VSxL_D6qQJIL8nzrmoHg0HpDiJhpuGEEo-hTZl41K3oH3aP7_-tpYRIvzXNR4p10aZlbXQZuc_AemRZW4TBNVq-AbgXDyH3YYpstN6ZC_giR_vwbMN_8A92FrWb7rZS_heuxCzSWDVDwImNo8YtCzHYvQQy2PVyP-a1LfejByr4ib8NLqpxj4zF0-3LB54lOF_-pJFPZ7eGS346aj0r-Dm4vPwrMebqxO4E0bMOSppZHCpTX1mrBY-T1A7USaW0h-blJimHmWGWSq8ynXkLbR2LapA_AgxiNfQGk_Gfh8YYm5V6UOZYJn7YBGVtpl3lMugLI3twMdV_IpVxOL1FvfFUt-WougWTag78GHdtKrNNP7W6GA1CUWznmaFiD5rhnKfpANH64n590fe_Fer97DdG14OisGXq69vYScjvhKFokwfQGs-XfhD4htz-675q34D5CTRIQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+phase+transition+on+the+piezoelectric+properties+of+scandium-alloyed+gallium+nitride&rft.jtitle=Journal+of+applied+physics&rft.au=Hirata%2C+Kenji&rft.au=Ikemoto%2C+Yu&rft.au=Uehara%2C+Masato&rft.au=Yamada%2C+Hiroshi&rft.date=2024-04-28&rft.issn=0021-8979&rft.eissn=1089-7550&rft.volume=135&rft.issue=16&rft_id=info:doi/10.1063%2F5.0191816&rft.externalDocID=jap
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-8979&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-8979&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-8979&client=summon