Effect of phase transition on the piezoelectric properties of scandium-alloyed gallium nitride
In this study, the piezoelectric properties of scandium-alloyed gallium nitride (ScGaN), which is expected to be applied to microelectromechanical systems devices, are evaluated by first-principles calculations. The piezoelectric constant (d33) of GaN is found to increase by up to approximately 30 t...
Saved in:
Published in | Journal of applied physics Vol. 135; no. 16 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Melville
American Institute of Physics
28.04.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this study, the piezoelectric properties of scandium-alloyed gallium nitride (ScGaN), which is expected to be applied to microelectromechanical systems devices, are evaluated by first-principles calculations. The piezoelectric constant (d33) of GaN is found to increase by up to approximately 30 times upon the addition of 62.5 mol. % of Sc. The piezoelectric stress constant (e33) increases and the elastic constant (C33) decreases with increasing Sc content of ScGaN, driving the rise of d33. The improved piezoelectric properties of ScGaN compared with those of GaN are largely attributed to elastic softening, which is thought to be related to the transition from a wurtzite to hexagonal boron nitride (h-BN) structure driven by the change in bonding states between atoms caused by the addition of Sc to GaN. The crystal orbital Hamilton population analysis suggests that addition of Sc to GaN results in the combination of weaker Sc–N and Ga–N bonding, which makes the crystal structure unstable. This weakened bonding is thought to be the main cause of the destabilization of the wurtzite structure and transition to the h-BN structure of ScGaN. The elastic softening associated with this structural transition leads to the dramatic improvement in piezoelectric properties. |
---|---|
AbstractList | In this study, the piezoelectric properties of scandium-alloyed gallium nitride (ScGaN), which is expected to be applied to microelectromechanical systems devices, are evaluated by first-principles calculations. The piezoelectric constant (d33) of GaN is found to increase by up to approximately 30 times upon the addition of 62.5 mol. % of Sc. The piezoelectric stress constant (e33) increases and the elastic constant (C33) decreases with increasing Sc content of ScGaN, driving the rise of d33. The improved piezoelectric properties of ScGaN compared with those of GaN are largely attributed to elastic softening, which is thought to be related to the transition from a wurtzite to hexagonal boron nitride (h-BN) structure driven by the change in bonding states between atoms caused by the addition of Sc to GaN. The crystal orbital Hamilton population analysis suggests that addition of Sc to GaN results in the combination of weaker Sc–N and Ga–N bonding, which makes the crystal structure unstable. This weakened bonding is thought to be the main cause of the destabilization of the wurtzite structure and transition to the h-BN structure of ScGaN. The elastic softening associated with this structural transition leads to the dramatic improvement in piezoelectric properties. |
Author | Akiyama, Morito Yamada, Hiroshi Anggraini, Sri Ayu Hirata, Kenji Uehara, Masato Ikemoto, Yu |
Author_xml | – sequence: 1 givenname: Kenji surname: Hirata fullname: Hirata, Kenji organization: National Institute of Advanced Industrial Science and Technology (AIST), Sensing System Research Center – sequence: 2 givenname: Yu surname: Ikemoto fullname: Ikemoto, Yu organization: Department of Molecular and Material Sciences, Interdisciplinary Graduate School of Engineering Sciences, Kyushu University – sequence: 3 givenname: Masato surname: Uehara fullname: Uehara, Masato organization: 2Department of Molecular and Material Sciences, Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1, Kasugakoen, Kasuga, Fukuoka 816-8580, Japan – sequence: 4 givenname: Hiroshi surname: Yamada fullname: Yamada, Hiroshi organization: 2Department of Molecular and Material Sciences, Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1, Kasugakoen, Kasuga, Fukuoka 816-8580, Japan – sequence: 5 givenname: Sri Ayu surname: Anggraini fullname: Anggraini, Sri Ayu organization: National Institute of Advanced Industrial Science and Technology (AIST), Sensing System Research Center – sequence: 6 givenname: Morito surname: Akiyama fullname: Akiyama, Morito organization: National Institute of Advanced Industrial Science and Technology (AIST), Sensing System Research Center |
BookMark | eNp9kE1LAzEQhoNUsK0e_AcBTwrbZjb7kRyl1A8oeNGrSzY7sSnb3TVJD_XXm9J6EREGZgaedz7eCRl1fYeEXAObASv4PJ8xkCCgOCNjYEImZZ6zERkzlkIiZCkvyMT7DWMAgssxeV8agzrQ3tBhrTzS4FTnbbB9R2OENdLB4lePbaSc1XRw_YAuWPQHjdeqa-xum6i27ffY0I9YxJ52NtINXpJzo1qPV6c8JW8Py9fFU7J6eXxe3K8SzSUPiSoLWRgNNWAqa8ExY0po3rAaMlGzRgGgKlKVAscyE_FRkeZlrUpTZJlShk_JzXFuPO9zhz5Um37nuriy4izjXMoyY5G6PVLa9d47NNXg7Fa5fQWsOthX5dXJvsjOf7HaBnXwJTpk2z8Vd0eF_yH_Gf8Nrp-BOQ |
CODEN | JAPIAU |
CitedBy_id | crossref_primary_10_1364_OL_541461 crossref_primary_10_1063_5_0239212 crossref_primary_10_1088_1402_4896_ad65c6 crossref_primary_10_1063_5_0236507 |
Cites_doi | 10.1021/jp202489s 10.1063/1.3251072 10.1039/C3TA14189F 10.1016/j.commatsci.2015.03.036 10.1103/PhysRevLett.104.137601 10.1063/1.4896262 10.1021/j100135a014 10.1002/jcc.24300 10.1103/PhysRevB.73.045112 10.1002/adma.200802611 10.1103/PhysRevMaterials.2.063802 10.1063/5.0086355 10.1088/0953-8984/21/8/084204 10.1103/PhysRevB.47.1651 10.1103/PhysRevB.48.4442 10.1063/1.4788728 10.1002/jcc.23424 10.1103/PhysRevB.55.10355 10.1002/aelm.202201187 10.1103/PhysRevApplied.9.034026 10.1103/PhysRevB.54.11169 10.1016/j.surfcoat.2016.11.083 10.1016/j.vacuum.2011.03.026 10.1016/j.calphad.2013.06.006 10.1103/PhysRevLett.77.3865 10.1088/0953-8984/27/24/245901 10.1103/PhysRevB.59.1758 10.1021/acs.chemmater.6b04408 10.1021/acsami.8b22602 10.1016/0927-0256(96)00008-0 10.1016/j.jcrysgro.2022.126889 10.1016/j.commatsci.2010.03.028 10.1103/RevModPhys.66.899 10.1103/PhysRevB.50.17953 10.1063/1.5066613 10.1103/PhysRevB.13.5188 10.1016/j.commatsci.2005.04.010 10.1063/1.3553716 10.1103/PhysRevB.87.094107 10.1021/acsomega.9b01912 10.1140/epjb/e2006-00438-8 10.1103/PhysRevLett.65.353 10.1002/jcc.20575 10.1021/acsami.0c19620 |
ContentType | Journal Article |
Copyright | Author(s) 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
Copyright_xml | – notice: Author(s) – notice: 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
DBID | AJDQP AAYXX CITATION 8FD H8D L7M |
DOI | 10.1063/5.0191816 |
DatabaseName | AIP Open Access Journals CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | CrossRef Technology Research Database |
Database_xml | – sequence: 1 dbid: AJDQP name: AIP Open Access Journals url: https://publishing.aip.org/librarians/open-access-policy sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1089-7550 |
ExternalDocumentID | 10_1063_5_0191816 jap |
GrantInformation_xml | – fundername: Japan Society for the Promotion of Science London grantid: 21K14503 funderid: 10.13039/501100000646 – fundername: Japan Society for the Promotion of Science London grantid: 22H01784 funderid: 10.13039/501100000646 |
GroupedDBID | -DZ -~X .DC 2-P 29J 4.4 5GY 5VS 85S AAAAW AABDS AAEUA AAIKC AAMNW AAPUP AAYIH ABFTF ABJNI ABZEH ACBEA ACBRY ACGFO ACGFS ACLYJ ACNCT ACZLF ADCTM AEGXH AEJMO AENEX AFATG AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AIAGR AIDUJ AJDQP AJJCW AJQPL ALEPV ALMA_UNASSIGNED_HOLDINGS AQWKA ATXIE AWQPM BPZLN CS3 D0L DU5 EBS ESX F5P FDOHQ FFFMQ HAM M6X M71 M73 N9A NPSNA O-B P2P RIP RNS RQS RXW SC5 TAE TN5 TWZ UCJ UHB UPT WH7 XSW YQT YZZ ZCA ~02 1UP 53G AAGWI AAYXX ABJGX ADMLS BDMKI CITATION 8FD H8D L7M |
ID | FETCH-LOGICAL-c393t-a7696fc1b1e29b83e40a8c3d0b148b0da11ea62a213e7480638257ba7f644aaf3 |
IEDL.DBID | AJDQP |
ISSN | 0021-8979 |
IngestDate | Mon Jun 30 07:10:52 EDT 2025 Thu Apr 24 23:11:55 EDT 2025 Sun Jul 06 05:06:59 EDT 2025 Fri Jun 21 00:17:10 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 16 |
Language | English |
License | All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c393t-a7696fc1b1e29b83e40a8c3d0b148b0da11ea62a213e7480638257ba7f644aaf3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-8510-4738 0000-0001-5614-647X 0000-0002-2638-0975 0000-0001-7024-7429 0009-0002-1677-4206 0000-0002-7393-6796 |
OpenAccessLink | http://dx.doi.org/10.1063/5.0191816 |
PQID | 3043399740 |
PQPubID | 2050677 |
PageCount | 10 |
ParticipantIDs | crossref_citationtrail_10_1063_5_0191816 scitation_primary_10_1063_5_0191816 crossref_primary_10_1063_5_0191816 proquest_journals_3043399740 |
PublicationCentury | 2000 |
PublicationDate | 2024-04-28 |
PublicationDateYYYYMMDD | 2024-04-28 |
PublicationDate_xml | – month: 04 year: 2024 text: 2024-04-28 day: 28 |
PublicationDecade | 2020 |
PublicationPlace | Melville |
PublicationPlace_xml | – name: Melville |
PublicationTitle | Journal of applied physics |
PublicationYear | 2024 |
Publisher | American Institute of Physics |
Publisher_xml | – name: American Institute of Physics |
References | Resta (c29) 1994 Kresse, Furthmuller (c21) 1996 Moram, Zhang (c18) 2014 Noor-A-Alam, Olszewski, Campanella, Nolan (c12) 2021 Perdew, Burke, Ernzerhof (c23) 1996 Tehrani, Brgoch (c44) 2017 Caro, Zhang, Ylilammi, Riekkinen, Moram, Lopez-Acevedo, Molarius, Laurila (c30) 2015 Maintz, Deringer, Tchougreeff, Dronskowski (c40) 2013 Yanagitani, Suzuki (c3) 2014 Uehara, Mizuno, Aida, Yamada, Umeda, Akiyama (c16) 2019 Sanville, Kenny, Smith, Henkelman (c35) 2007 Touzani, Rehorn, Fokwa (c43) 2015 Blochl (c25) 1994 Zunger, Wei, Ferreira, Bernard (c19) 1990 Moreira, Bjurstrom, Katardjev, Yantchev (c4) 2011 Deringer, Tchougreeff, Dronskowski (c38) 2011 Gonze, Lee (c31) 1997 Alsaad, Ahmad (c17) 2006 Kingsmith, Vanderbilt (c27) 1993 Zywitzki, Modes, Barth, Bartzsch, Frach (c6) 2017 Tasnadi, Alling, Hoglund, Wingqvist, Birch, Hultman, Abrikosov (c7) 2010 Manna, Talley, Gorai, Mangum, Zakutayev, Brennecka, Stevanovic, Ciobanu (c33) 2018 Talley, Millican, Mangum, Siol, Musgrave, Gorman, Holder, Zakutayev, Brennecka (c10) 2018 Startt, Quazi, Sharma, Vazquez, Poudyal, Jackson, Dingreville (c15) 2023 Akiyama, Umeda, Honda, Nagase (c5) 2013 Yu, Trinkle (c37) 2011 Kresse, Joubert (c24) 1999 Van de Walle, Tiwary, de Jong, Olmsted, Asta, Dick, Shin, Wang, Chen, Liu (c20) 2013 Tholander, Abrikosov, Hultman, Tasnadi (c8) 2013 Hirata, Yamada, Uehara, Anggraini, Akiyama (c9) 2019 Vanderbilt, Kingsmith (c28) 1993 Maintz, Deringer, Tchougreeff, Dronskowski (c41) 2016 Kresse, Furthmuller (c22) 1996 Monkhorst, Pack (c26) 1976 Xiao, Jiang, Duan, Gao, Zu, Weber (c42) 2010 Gajdoš, Hummer, Kresse, Furthmüller, Bechstedt (c32) 2006 Akiyama, Kano, Teshigahara (c2) 2009 Tao, Hu, Xie, Sun, Tang, Liu, Jia, Guo, Wang, Wu (c13) 2022 Tang, Sanville, Henkelman (c36) 2009 Noor-A-Alam, Olszewski, Nolan (c11) 2019 Liao, Cheng, Ma, Wan, Duan, Cheng, Wang (c14) 2022 Henkelman, Arnaldsson, Jonsson (c34) 2006 Dronskowski, Blochl (c39) 1993 Akiyama, Kamohara, Kano, Teshigahara, Takeuchi, Kawahara (c1) 2009 (2024042209453524600_c30) 2015; 27 (2024042209453524600_c10) 2018; 2 (2024042209453524600_c26) 1976; 13 (2024042209453524600_c33) 2018; 9 (2024042209453524600_c44) 2017; 29 (2024042209453524600_c25) 1994; 50 (2024042209453524600_c38) 2011; 115 (2024042209453524600_c9) 2019; 4 (2024042209453524600_c15) 2023; 9 (2024042209453524600_c39) 1993; 97 (2024042209453524600_c23) 1996; 77 (2024042209453524600_c14) 2022; 599 (2024042209453524600_c16) 2019; 114 (2024042209453524600_c27) 1993; 47 (2024042209453524600_c37) 2011; 134 (2024042209453524600_c32) 2006; 73 (2024042209453524600_c11) 2019; 11 (2024042209453524600_c19) 1990; 65 (2024042209453524600_c7) 2010; 104 (2024042209453524600_c24) 1999; 59 (2024042209453524600_c6) 2017; 309 (2024042209453524600_c12) 2021; 13 (2024042209453524600_c31) 1997; 55 (2024042209453524600_c3) 2014; 105 (2024042209453524600_c22) 1996; 54 (2024042209453524600_c41) 2016; 37 (2024042209453524600_c43) 2015; 104 (2024042209453524600_c13) 2022; 131 (2024042209453524600_c34) 2006; 36 (2024042209453524600_c20) 2013; 42 (2024042209453524600_c40) 2013; 34 (2024042209453524600_c29) 1994; 66 (2024042209453524600_c18) 2014; 2 (2024042209453524600_c42) 2010; 48 (2024042209453524600_c5) 2013; 102 (2024042209453524600_c17) 2006; 54 (2024042209453524600_c4) 2011; 86 (2024042209453524600_c35) 2007; 28 (2024042209453524600_c8) 2013; 87 (2024042209453524600_c36) 2009; 21 (2024042209453524600_c1) 2009; 21 (2024042209453524600_c2) 2009; 95 (2024042209453524600_c21) 1996; 6 (2024042209453524600_c28) 1993; 48 |
References_xml | – start-page: 151 year: 2006 ident: c17 publication-title: Eur. Phys. J. B – start-page: 15081 year: 2019 ident: c9 publication-title: ACS Omega – start-page: 137601 year: 2010 ident: c7 publication-title: Phys. Rev. Lett. – start-page: 20482 year: 2019 ident: c11 publication-title: ACS Appl. Mater. Interfaces – start-page: 1651 year: 1993 ident: c27 publication-title: Phys. Rev. B – start-page: 23 year: 2011 ident: c4 publication-title: Vacuum – start-page: 012902 year: 2019 ident: c16 publication-title: Appl. Phys. Lett. – start-page: 11169 year: 1996 ident: c22 publication-title: Phys. Rev. B – start-page: 034026 year: 2018 ident: c33 publication-title: Phys. Rev. Appl. – start-page: 17953 year: 1994 ident: c25 publication-title: Phys. Rev. B – start-page: 064111 year: 2011 ident: c37 publication-title: J. Chem. Phys. – start-page: 5461 year: 2011 ident: c38 publication-title: J. Phys. Chem. – start-page: 353 year: 1990 ident: c19 publication-title: Phys. Rev. Lett. – start-page: 2557 year: 2013 ident: c40 publication-title: J. Comput. Chem. – start-page: 4442 year: 1993 ident: c28 publication-title: Phys. Rev. B – start-page: 2542 year: 2017 ident: c44 publication-title: Chem. Mater. – start-page: 15 year: 1996 ident: c21 publication-title: Comput. Mater. Sci. – start-page: 6042 year: 2014 ident: c18 publication-title: J. Mater. Chem. A – start-page: 593 year: 2009 ident: c1 publication-title: Adv. Mater. – start-page: 1030 year: 2016 ident: c41 publication-title: J. Comput. Chem. – start-page: 094107 year: 2013 ident: c8 publication-title: Phys. Rev. B – start-page: 768 year: 2010 ident: c42 publication-title: Comput. Mater. Sci. – start-page: 021915 year: 2013 ident: c5 publication-title: Appl. Phys. Lett. – start-page: 1758 year: 1999 ident: c24 publication-title: Phys. Rev. B – start-page: 122907 year: 2014 ident: c3 publication-title: Appl. Phys. Lett. – start-page: 52 year: 2015 ident: c43 publication-title: Comput. Mater. Sci. – start-page: 899 year: 1994 ident: c29 publication-title: Rev. Mod. Phys. – start-page: 063802 year: 2018 ident: c10 publication-title: Phys. Rev. Mater. – start-page: 944 year: 2021 ident: c12 publication-title: ACS Appl. Mater. Interfaces – start-page: 354 year: 2006 ident: c34 publication-title: Comput. Mater. Sci. – start-page: 417 year: 2017 ident: c6 publication-title: Surf. Coat. Technol. – start-page: 899 year: 2007 ident: c35 publication-title: J. Comput. Chem. – start-page: 126889 year: 2022 ident: c14 publication-title: J. Cryst. Growth – start-page: 10355 year: 1997 ident: c31 publication-title: Phys. Rev. B – start-page: 045112 year: 2006 ident: c32 publication-title: Phys. Rev. B – start-page: 13 year: 2013 ident: c20 publication-title: Calphad – start-page: 5188 year: 1976 ident: c26 publication-title: Phys. Rev. B – start-page: 8617 year: 1993 ident: c39 publication-title: J. Phys. Chem. – start-page: 245901 year: 2015 ident: c30 publication-title: J. Phys.: Condens. Matter – start-page: 084204 year: 2009 ident: c36 publication-title: J. Phys.: Condens. Matter – start-page: 2201187 year: 2023 ident: c15 publication-title: Adv. Electron. Mater. – start-page: 162107 year: 2009 ident: c2 publication-title: Appl. Phys. Lett. – start-page: 134101 year: 2022 ident: c13 publication-title: J. Appl. Phys. – start-page: 3865 year: 1996 ident: c23 publication-title: Phys. Rev. Lett. – volume: 115 start-page: 5461 year: 2011 ident: 2024042209453524600_c38 publication-title: J. Phys. Chem. doi: 10.1021/jp202489s – volume: 95 start-page: 162107 year: 2009 ident: 2024042209453524600_c2 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3251072 – volume: 2 start-page: 6042 year: 2014 ident: 2024042209453524600_c18 publication-title: J. Mater. Chem. A doi: 10.1039/C3TA14189F – volume: 104 start-page: 52 year: 2015 ident: 2024042209453524600_c43 publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2015.03.036 – volume: 104 start-page: 137601 year: 2010 ident: 2024042209453524600_c7 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.104.137601 – volume: 105 start-page: 122907 year: 2014 ident: 2024042209453524600_c3 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4896262 – volume: 97 start-page: 8617 year: 1993 ident: 2024042209453524600_c39 publication-title: J. Phys. Chem. doi: 10.1021/j100135a014 – volume: 37 start-page: 1030 year: 2016 ident: 2024042209453524600_c41 publication-title: J. Comput. Chem. doi: 10.1002/jcc.24300 – volume: 73 start-page: 045112 year: 2006 ident: 2024042209453524600_c32 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.73.045112 – volume: 21 start-page: 593 year: 2009 ident: 2024042209453524600_c1 publication-title: Adv. Mater. doi: 10.1002/adma.200802611 – volume: 2 start-page: 063802 year: 2018 ident: 2024042209453524600_c10 publication-title: Phys. Rev. Mater. doi: 10.1103/PhysRevMaterials.2.063802 – volume: 131 start-page: 134101 year: 2022 ident: 2024042209453524600_c13 publication-title: J. Appl. Phys. doi: 10.1063/5.0086355 – volume: 21 start-page: 084204 year: 2009 ident: 2024042209453524600_c36 publication-title: J. Phys.: Condens. Matter doi: 10.1088/0953-8984/21/8/084204 – volume: 47 start-page: 1651 year: 1993 ident: 2024042209453524600_c27 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.47.1651 – volume: 48 start-page: 4442 year: 1993 ident: 2024042209453524600_c28 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.48.4442 – volume: 102 start-page: 021915 year: 2013 ident: 2024042209453524600_c5 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4788728 – volume: 34 start-page: 2557 year: 2013 ident: 2024042209453524600_c40 publication-title: J. Comput. Chem. doi: 10.1002/jcc.23424 – volume: 55 start-page: 10355 year: 1997 ident: 2024042209453524600_c31 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.55.10355 – volume: 9 start-page: 2201187 year: 2023 ident: 2024042209453524600_c15 publication-title: Adv. Electron. Mater. doi: 10.1002/aelm.202201187 – volume: 9 start-page: 034026 year: 2018 ident: 2024042209453524600_c33 publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.9.034026 – volume: 54 start-page: 11169 year: 1996 ident: 2024042209453524600_c22 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.54.11169 – volume: 309 start-page: 417 year: 2017 ident: 2024042209453524600_c6 publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2016.11.083 – volume: 86 start-page: 23 year: 2011 ident: 2024042209453524600_c4 publication-title: Vacuum doi: 10.1016/j.vacuum.2011.03.026 – volume: 42 start-page: 13 year: 2013 ident: 2024042209453524600_c20 publication-title: Calphad doi: 10.1016/j.calphad.2013.06.006 – volume: 77 start-page: 3865 year: 1996 ident: 2024042209453524600_c23 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 27 start-page: 245901 year: 2015 ident: 2024042209453524600_c30 publication-title: J. Phys.: Condens. Matter doi: 10.1088/0953-8984/27/24/245901 – volume: 59 start-page: 1758 year: 1999 ident: 2024042209453524600_c24 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.59.1758 – volume: 29 start-page: 2542 year: 2017 ident: 2024042209453524600_c44 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.6b04408 – volume: 11 start-page: 20482 year: 2019 ident: 2024042209453524600_c11 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b22602 – volume: 6 start-page: 15 year: 1996 ident: 2024042209453524600_c21 publication-title: Comput. Mater. Sci. doi: 10.1016/0927-0256(96)00008-0 – volume: 599 start-page: 126889 year: 2022 ident: 2024042209453524600_c14 publication-title: J. Cryst. Growth doi: 10.1016/j.jcrysgro.2022.126889 – volume: 48 start-page: 768 year: 2010 ident: 2024042209453524600_c42 publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2010.03.028 – volume: 66 start-page: 899 year: 1994 ident: 2024042209453524600_c29 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.66.899 – volume: 50 start-page: 17953 year: 1994 ident: 2024042209453524600_c25 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.50.17953 – volume: 114 start-page: 012902 year: 2019 ident: 2024042209453524600_c16 publication-title: Appl. Phys. Lett. doi: 10.1063/1.5066613 – volume: 13 start-page: 5188 year: 1976 ident: 2024042209453524600_c26 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.13.5188 – volume: 36 start-page: 354 year: 2006 ident: 2024042209453524600_c34 publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2005.04.010 – volume: 134 start-page: 064111 year: 2011 ident: 2024042209453524600_c37 publication-title: J. Chem. Phys. doi: 10.1063/1.3553716 – volume: 87 start-page: 094107 year: 2013 ident: 2024042209453524600_c8 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.87.094107 – volume: 4 start-page: 15081 year: 2019 ident: 2024042209453524600_c9 publication-title: ACS Omega doi: 10.1021/acsomega.9b01912 – volume: 54 start-page: 151 year: 2006 ident: 2024042209453524600_c17 publication-title: Eur. Phys. J. B doi: 10.1140/epjb/e2006-00438-8 – volume: 65 start-page: 353 year: 1990 ident: 2024042209453524600_c19 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.65.353 – volume: 28 start-page: 899 year: 2007 ident: 2024042209453524600_c35 publication-title: J. Comput. Chem. doi: 10.1002/jcc.20575 – volume: 13 start-page: 944 year: 2021 ident: 2024042209453524600_c12 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c19620 |
SSID | ssj0011839 |
Score | 2.4843085 |
Snippet | In this study, the piezoelectric properties of scandium-alloyed gallium nitride (ScGaN), which is expected to be applied to microelectromechanical systems... |
SourceID | proquest crossref scitation |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Bonding strength Boron nitride Charged particles Chemical bonds Crystal structure Destabilization Elastic properties First principles Gallium nitrides Microelectromechanical systems Phase transitions Piezoelectricity Scandium Softening Wurtzite |
Title | Effect of phase transition on the piezoelectric properties of scandium-alloyed gallium nitride |
URI | http://dx.doi.org/10.1063/5.0191816 https://www.proquest.com/docview/3043399740 |
Volume | 135 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NSwMxEB20RdSD-InVWoJ68BLc3WzzcRQ_KMWKooInl0k2wYK2pa0H_fUm3W2toCDsZSHZwyTDe5OXfQNwLJWJNDeMOmdTGgy9qU5R0iY6EaVCRBrDgX7nhrce0_ZT82kBjv5Q8Dk7DbaayuMQX4Rq4smxrED1rH1xdzsTCwLIFzc5YiqVUFMDofnJP2Hnm0sue6ApNO85WLlah7WSD5KzYgE3YMH2NmF1ziVwE5YmtzTNaAueC69h0ndk8OLhh4wD0kwuXRH_eC5HBl372S9623QNGYSj9mHwTA1zRib8w_L-RoPY_mFzElR3_058Wg-7ud2Gx6vLh_MWLRskUMMUG1MUXHFnYh3bRGnJbBqhNCyPtC9ydJRjHFvkCSYxsyKVgZ34DNUonGdBiI7tQKXX79ldIIipFrl1eYR5ap1GFFIn1viKBXmudA1OpvHLphELTSxes4mKzVnWzMpQ1-BwNnRQWGb8Nqg-XYSszJpRxoKbmvIVTlSDo9nC_P2RvX-N2oeVxDORIAElsg6V8fDdHngmMdYNv5MuOtf3jXJHfQFhBsW2 |
linkProvider | American Institute of Physics |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NbxMxEB1BoqrlUEEBNdCCRXvgYrq73vjjWLVUIaQVlVKpJ1Zjry1StckqHwf49YyzmzRIICHtZSV7ZY3Xem_8xs8Ax9q4xEoneAg-59HQm9scNe9iUEmuVGIxbuhfXsneTd6_7d42tTnxLAwNYvYJR9VSxL_D6qQJIL8nzrmoHg0HpDiJhpuGEEo-hTZl41K3oH3aP7_-tpYRIvzXNR4p10aZlbXQZuc_AemRZW4TBNVq-AbgXDyH3YYpstN6ZC_giR_vwbMN_8A92FrWb7rZS_heuxCzSWDVDwImNo8YtCzHYvQQy2PVyP-a1LfejByr4ib8NLqpxj4zF0-3LB54lOF_-pJFPZ7eGS346aj0r-Dm4vPwrMebqxO4E0bMOSppZHCpTX1mrBY-T1A7USaW0h-blJimHmWGWSq8ynXkLbR2LapA_AgxiNfQGk_Gfh8YYm5V6UOZYJn7YBGVtpl3lMugLI3twMdV_IpVxOL1FvfFUt-WougWTag78GHdtKrNNP7W6GA1CUWznmaFiD5rhnKfpANH64n590fe_Fer97DdG14OisGXq69vYScjvhKFokwfQGs-XfhD4htz-675q34D5CTRIQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+phase+transition+on+the+piezoelectric+properties+of+scandium-alloyed+gallium+nitride&rft.jtitle=Journal+of+applied+physics&rft.au=Hirata%2C+Kenji&rft.au=Ikemoto%2C+Yu&rft.au=Uehara%2C+Masato&rft.au=Yamada%2C+Hiroshi&rft.date=2024-04-28&rft.issn=0021-8979&rft.eissn=1089-7550&rft.volume=135&rft.issue=16&rft_id=info:doi/10.1063%2F5.0191816&rft.externalDocID=jap |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-8979&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-8979&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-8979&client=summon |