Enhancement of Intrinsic Temperature Reduction for Plasma Surface-Modified Nanoparticle-Doped Low-Density Polyethylene Films
The cooling performance of nanoparticle (NP)-doped radiative cooling materials depends on the dispersion of the NPs in the polymer matrix. However, it is a technical challenge to suppress agglomeration of NPs due to their high surface energy, resulting in poor dispersion of the NPs in the polymer ma...
Saved in:
Published in | Crystals (Basel) Vol. 13; no. 4; p. 707 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.04.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The cooling performance of nanoparticle (NP)-doped radiative cooling materials depends on the dispersion of the NPs in the polymer matrix. However, it is a technical challenge to suppress agglomeration of NPs due to their high surface energy, resulting in poor dispersion of the NPs in the polymer matrix. In order to optimize the dispersion of zinc oxide (ZnO) NPs in low-density polyethylene (LDPE), NPs were treated with atmospheric pressure plasmas for 30, 60 and 90 s. The ZnO NPs were dispersed in LDPE using a xylene solution method. The dispersion of the NPs was progressively improved as the plasma-treatment time increased, likely due to the roughened and perhaps also activated NP surfaces by the plasma treatment. This made the transmittances of the films decrease in the solar-radiation band and absorptivity increased monotonically in the high-energy band as the plasma-treatment time increased, while in the mid-infrared band, the films maintained a similar high transmittance to the untreated sample. The differential scanning colorimetry analysis revealed that the crystallinities of the plasma-treated NP-doped samples were similar to those of the untreated sample. The cooling-performance tests showed that the maximum temperature reductions of the films with NP plasma-treated for 0 s, 30 s, 60 s and 90 s were 6.82, 7.90, 9.34 and 10.34 °C, respectively, corresponded to the intrinsic temperature reductions of 7.27, 8.23, 10.54, and 11.40 °C, respectively, when calculated using Cui’s Model. The results of the current study show that a simple one-step atmospheric pressure plasma treatment to the ZnO NPs can indeed improve dispersion of the NPs in LDPE and lead to the greatly improved passive-cooling performance of the film. |
---|---|
AbstractList | The cooling performance of nanoparticle (NP)-doped radiative cooling materials depends on the dispersion of the NPs in the polymer matrix. However, it is a technical challenge to suppress agglomeration of NPs due to their high surface energy, resulting in poor dispersion of the NPs in the polymer matrix. In order to optimize the dispersion of zinc oxide (ZnO) NPs in low-density polyethylene (LDPE), NPs were treated with atmospheric pressure plasmas for 30, 60 and 90 s. The ZnO NPs were dispersed in LDPE using a xylene solution method. The dispersion of the NPs was progressively improved as the plasma-treatment time increased, likely due to the roughened and perhaps also activated NP surfaces by the plasma treatment. This made the transmittances of the films decrease in the solar-radiation band and absorptivity increased monotonically in the high-energy band as the plasma-treatment time increased, while in the mid-infrared band, the films maintained a similar high transmittance to the untreated sample. The differential scanning colorimetry analysis revealed that the crystallinities of the plasma-treated NP-doped samples were similar to those of the untreated sample. The cooling-performance tests showed that the maximum temperature reductions of the films with NP plasma-treated for 0 s, 30 s, 60 s and 90 s were 6.82, 7.90, 9.34 and 10.34 °C, respectively, corresponded to the intrinsic temperature reductions of 7.27, 8.23, 10.54, and 11.40 °C, respectively, when calculated using Cui’s Model. The results of the current study show that a simple one-step atmospheric pressure plasma treatment to the ZnO NPs can indeed improve dispersion of the NPs in LDPE and lead to the greatly improved passive-cooling performance of the film. |
Audience | Academic |
Author | Qiu, Chenlei Qiu, Yiping Zhang, Yinjia Cui, Lina |
Author_xml | – sequence: 1 givenname: Chenlei surname: Qiu fullname: Qiu, Chenlei – sequence: 2 givenname: Yiping surname: Qiu fullname: Qiu, Yiping – sequence: 3 givenname: Yinjia surname: Zhang fullname: Zhang, Yinjia – sequence: 4 givenname: Lina surname: Cui fullname: Cui, Lina |
BookMark | eNptkt1rFTEQxRepYK199H3B562zSXaz-1j6oReuWrQ-hyGZtLnsJmuSiyz4x5v2FrVg8pDhcObHGTKvqyMfPFXV2xbOOB_hvY5ryi0HARLki-qYgeSN4B07-qd-VZ2mtINyZA9StsfVryt_j17TTD7XwdYbn6Pzyen6luaFIuZ9pPormb3OLvjahljfTJhmrL_to0VNzadgnHVk6s_ow4IxOz1RcxmWIm3Dz-aSCi-v9U2YVsr360Se6ms3zelN9dLilOj06T2pvl9f3V58bLZfPmwuzreN5iPPDYrejhJa09u-7VpgMDIDo0RBhlkxiE7rjkAyi4gDI0aW-NALCyMVwsBPqs2BawLu1BLdjHFVAZ16FEK8U0-xlbYdR-gZGEOigxYZ73SnR2kMBytFYb07sJYYfuwpZbUL--hLfMUG6Ds2Sjn8dd1hgTpvQ46oZ5e0OpdCCsGZGIvr7D-ucg3NTpf_ta7ozxqaQ4OOIaVI9s8wLaiHNVDP1oD_Bjapp1M |
Cites_doi | 10.1002/adma.201802152 10.1126/science.abb0971 10.1126/science.aai7899 10.1038/nature13883 10.1016/j.mtphys.2019.100127 10.1016/j.combustflame.2019.04.042 10.4028/www.scientific.net/MSF.620-622.465 10.1016/j.physleta.2020.126485 10.1007/s12633-021-01477-7 10.1126/science.aat9513 10.1515/ntrev-2020-0099 10.1080/20550324.2019.1710974 10.1080/01411594.2022.2094796 10.1016/j.ijheatmasstransfer.2016.08.009 10.1038/ncomms4697 10.1016/j.polymertesting.2017.04.019 10.1364/OE.26.015995 10.1016/j.memsci.2021.119945 10.1038/s41467-022-32010-y 10.1038/srep15765 10.1021/acs.nanolett.7b00579 10.1021/acs.macromol.1c00184 10.1016/j.coco.2020.100611 10.1021/acs.macromol.6b02330 10.1016/j.surfcoat.2008.12.010 10.1109/TPS.2018.2823585 10.1016/j.cej.2019.121942 10.1016/j.msec.2012.04.065 10.1016/j.apsusc.2011.06.121 10.1016/j.jcis.2020.05.085 10.1021/acsami.1c14830 10.3390/ma14133610 10.1016/j.enbuild.2019.06.003 10.1007/s11090-017-9864-0 10.3390/ma15165536 10.1021/acsphotonics.5b00140 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7SR 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU D1I DWQXO HCIFZ JG9 KB. PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI DOA |
DOI | 10.3390/cryst13040707 |
DatabaseName | CrossRef Engineered Materials Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest Technology Collection ProQuest One ProQuest Materials Science Collection ProQuest Central Korea SciTech Premium Collection Materials Research Database Materials Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central ProQuest One Applied & Life Sciences Engineered Materials Abstracts ProQuest Central Korea Materials Science Database ProQuest Central (New) ProQuest Materials Science Collection ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection METADEX ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2073-4352 |
ExternalDocumentID | oai_doaj_org_article_cf53a0620dde4501a235c5c97dd30f74 A747443249 10_3390_cryst13040707 |
GeographicLocations | China United States--US |
GeographicLocations_xml | – name: China – name: United States--US |
GroupedDBID | .4S 5VS 8FE 8FG AADQD AAFWJ AAYXX ABJCF ADBBV ADMLS AENEX AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS ARCSS BCNDV BENPR BGLVJ CCPQU CITATION D1I EDO GROUPED_DOAJ HCIFZ IAO IGS ITC KB. KQ8 MODMG M~E OK1 PDBOC PHGZM PHGZT PIMPY PROAC TUS 7SR 8BQ 8FD ABUWG AZQEC DWQXO JG9 PKEHL PQEST PQGLB PQQKQ PQUKI PUEGO |
ID | FETCH-LOGICAL-c393t-a46f9701d6f615102092d097a4ed2f4845cc5e072faaa82e2efe3864f09ec3983 |
IEDL.DBID | BENPR |
ISSN | 2073-4352 |
IngestDate | Wed Aug 27 01:30:35 EDT 2025 Fri Jul 25 11:59:52 EDT 2025 Thu Jul 03 03:20:41 EDT 2025 Tue Jul 01 05:45:16 EDT 2025 Tue Jul 01 00:24:58 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c393t-a46f9701d6f615102092d097a4ed2f4845cc5e072faaa82e2efe3864f09ec3983 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://www.proquest.com/docview/2806529778?pq-origsite=%requestingapplication% |
PQID | 2806529778 |
PQPubID | 2032412 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_cf53a0620dde4501a235c5c97dd30f74 proquest_journals_2806529778 gale_infotracmisc_A747443249 gale_infotracacademiconefile_A747443249 crossref_primary_10_3390_cryst13040707 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-04-01 |
PublicationDateYYYYMMDD | 2023-04-01 |
PublicationDate_xml | – month: 04 year: 2023 text: 2023-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Crystals (Basel) |
PublicationYear | 2023 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Li (ref_6) 2018; 26 Chen (ref_17) 2022; 13 Kumar (ref_24) 2017; 50 Jiang (ref_39) 2009; 203 Shojaeiarani (ref_26) 2020; 6 Yang (ref_4) 2017; 17 Hsieh (ref_14) 2020; 578 Chandran (ref_21) 2014; 5 Yin (ref_8) 2020; 370 Shen (ref_32) 2022; 641 Miller (ref_34) 2019; 206 Pereira (ref_7) 2019; 198 Raman (ref_9) 2014; 515 Ong (ref_16) 2011; 257 Avolio (ref_27) 2017; 60 ref_37 Mandal (ref_2) 2018; 362 Zhai (ref_11) 2017; 355 Cui (ref_5) 2021; 57 Aili (ref_12) 2019; 10 Yuan (ref_22) 2008; 22 Machrafi (ref_28) 2020; 384 Diao (ref_25) 2012; 32 Zak (ref_19) 2015; 78 Zhang (ref_30) 2022; 14 Tong (ref_3) 2015; 2 Cui (ref_38) 2021; 24 Mitra (ref_29) 2021; 54 (ref_36) 2018; 38 Liu (ref_35) 2015; 5 ref_20 ref_40 Wang (ref_15) 2019; 375 (ref_33) 2018; 46 Cui (ref_13) 2020; 9 Huang (ref_10) 2017; 104 Cai (ref_1) 2018; 30 Taya (ref_18) 2022; 95 Wang (ref_31) 2019; 47 LaNasa (ref_23) 2021; 13 |
References_xml | – volume: 78 start-page: 91 year: 2015 ident: ref_19 article-title: Sol–gel grown Fe-doped ZnO nanoparticles: Antibacterial and structural behaviors publication-title: J. Sol.-Gel Sci. Technol. – volume: 57 start-page: 36 year: 2021 ident: ref_5 article-title: Effect of Nanoparticle Concentration on Passive Cooling Performance of ZNO-Low Density Polyethylene Composite Films Under Solar Radiation publication-title: Sampe J. – volume: 30 start-page: 1802152 year: 2018 ident: ref_1 article-title: Spectrally Selective Nanocomposite Textile for Outdoor Personal Cooling publication-title: Adv. Mater. doi: 10.1002/adma.201802152 – volume: 370 start-page: 786 year: 2020 ident: ref_8 article-title: Terrestrial radiative cooling: Using the cold universe as a renewable and sustainable energy source publication-title: Science doi: 10.1126/science.abb0971 – volume: 355 start-page: 1062 year: 2017 ident: ref_11 article-title: Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling publication-title: Science doi: 10.1126/science.aai7899 – volume: 515 start-page: 540 year: 2014 ident: ref_9 article-title: Passive radiative cooling below ambient air temperature under direct sunlight publication-title: Nature doi: 10.1038/nature13883 – volume: 10 start-page: 100127 year: 2019 ident: ref_12 article-title: Selection of polymers with functional groups for daytime radiative cooling publication-title: Mater. Today Phys. doi: 10.1016/j.mtphys.2019.100127 – volume: 206 start-page: 211 year: 2019 ident: ref_34 article-title: Plasma surface treatment of aluminum nanoparticles for energetic material applications publication-title: Combust. Flame doi: 10.1016/j.combustflame.2019.04.042 – ident: ref_40 doi: 10.4028/www.scientific.net/MSF.620-622.465 – volume: 384 start-page: 126485 year: 2020 ident: ref_28 article-title: On the chemical potential of nanoparticle dispersion publication-title: Phys. Lett. A doi: 10.1016/j.physleta.2020.126485 – volume: 14 start-page: 6535 year: 2022 ident: ref_30 article-title: Chemical Functionalities of 3-aminopropyltriethoxy-silane for Surface Modification of Metal Oxide Nanoparticles publication-title: Silicon doi: 10.1007/s12633-021-01477-7 – volume: 362 start-page: 315 year: 2018 ident: ref_2 article-title: Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling publication-title: Science doi: 10.1126/science.aat9513 – volume: 9 start-page: 1368 year: 2020 ident: ref_13 article-title: Transparent ultraviolet-shielding composite films made from dispersing pristine zinc oxide nanoparticles in low-density polyethylene publication-title: Nanotechnol. Rev. doi: 10.1515/ntrev-2020-0099 – volume: 6 start-page: 41 year: 2020 ident: ref_26 article-title: Sonication amplitude and processing time influence the cellulose nanocrystals morphology and dispersion publication-title: Nanocomposites doi: 10.1080/20550324.2019.1710974 – volume: 95 start-page: 581 year: 2022 ident: ref_18 article-title: Optical and electrical properties of GaZnO films deposited by co-sputtering method on two types of substrates publication-title: Phase Transit. doi: 10.1080/01411594.2022.2094796 – volume: 104 start-page: 890 year: 2017 ident: ref_10 article-title: Nanoparticle embedded double-layer coating for daytime radiative cooling publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2016.08.009 – volume: 5 start-page: 3697 year: 2014 ident: ref_21 article-title: Confinement enhances dispersion in nanoparticle-polymer blend films publication-title: Nat. Commun. doi: 10.1038/ncomms4697 – volume: 60 start-page: 388 year: 2017 ident: ref_27 article-title: Role of silica nanoparticles on network formation and properties in thermoset polycarbonate based nanocomposites publication-title: Polym. Test. doi: 10.1016/j.polymertesting.2017.04.019 – volume: 26 start-page: 15995 year: 2018 ident: ref_6 article-title: Nanophotonic control of thermal radiation for energy applications [Invited] publication-title: Opt. Express doi: 10.1364/OE.26.015995 – volume: 22 start-page: 59 year: 2008 ident: ref_22 article-title: Reasons for Agglomeration of Nanoparticle and Solutions publication-title: Mater. Rep. – volume: 47 start-page: 42 year: 2019 ident: ref_31 article-title: Research progress on surface grafting modification of inorganic nanoparticles based on atom transfer radical polymerization publication-title: New Chem. Mater. – volume: 641 start-page: 119945 year: 2022 ident: ref_32 article-title: Designed water channels and sieving effect for heavy metal removal by a novel silica-poly(ionic liquid) nanoparticles TFN membrane publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2021.119945 – volume: 13 start-page: 4387 year: 2022 ident: ref_17 article-title: A Transparent Electrode Based on Solution-Processed ZnO for Organic Optoelectronic Devices publication-title: Nat. Commun. doi: 10.1038/s41467-022-32010-y – volume: 5 start-page: 15765 year: 2015 ident: ref_35 article-title: Enhanced Dispersion of TiO2 Nanoparticles in a TiO2/PEDOT:PSS Hybrid Nanocomposite via Plasma-Liquid Interactions publication-title: Sci. Rep. doi: 10.1038/srep15765 – volume: 17 start-page: 3506 year: 2017 ident: ref_4 article-title: Thermal management in nanofiber-based face mask publication-title: Nano Lett. doi: 10.1021/acs.nanolett.7b00579 – volume: 54 start-page: 3962 year: 2021 ident: ref_29 article-title: Surface Functionalization-Induced Effects on Nanoparticle Dispersion and Associated Changes in the Thermophysical Properties of Polymer Nanocomposites publication-title: Macromolecules doi: 10.1021/acs.macromol.1c00184 – volume: 24 start-page: 100611 year: 2021 ident: ref_38 article-title: Transparent passive-cooling composite films for indoor and outdoor spaces publication-title: Compos. Commun. doi: 10.1016/j.coco.2020.100611 – volume: 50 start-page: 714 year: 2017 ident: ref_24 article-title: 50th Anniversary Perspective: Are Polymer Nanocomposites Practical for Applications? publication-title: Macromolecules doi: 10.1021/acs.macromol.6b02330 – volume: 203 start-page: 1604 year: 2009 ident: ref_39 article-title: Influence of ethanol pretreatment on effectiveness of atmospheric pressure plasma treatment of polyethylene fibers publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2008.12.010 – volume: 46 start-page: 2402 year: 2018 ident: ref_33 article-title: Surface Modification of Graphene Nanoparticles With Ethylene Plasma in Rotary Plasma Reactor for the Preparation of GnP/HDPE Nanocomposites publication-title: IEEE Trans. Plasma Sci. doi: 10.1109/TPS.2018.2823585 – volume: 375 start-page: 121942 year: 2019 ident: ref_15 article-title: Facile design of 3D hierarchical NiFe2O4/N-GN/ZnO composite as a high performance electromagnetic wave absorber publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.121942 – volume: 32 start-page: 1796 year: 2012 ident: ref_25 article-title: Surface modified nano-hydroxyapatite/poly(lactide acid) composite and its osteocyte compatibility publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2012.04.065 – volume: 257 start-page: 9986 year: 2011 ident: ref_16 article-title: Plasma-aided hydrogenation and Al-doping: Increasing the conductivity and optical transparency of ZnO transparent conducting oxide publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2011.06.121 – volume: 578 start-page: 471 year: 2020 ident: ref_14 article-title: Rayleigh and Rayleigh-Debye-Gans light scattering intensities and spetroturbidimetry of dispersions of unilamellar vesicles and multilamellar liposomes publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2020.05.085 – volume: 13 start-page: 42104 year: 2021 ident: ref_23 article-title: Investigating Nanoparticle Organization in Polymer Matrices during Reaction-Induced Phase Transitions and Material Processing publication-title: Acs Appl. Mater. Interfaces doi: 10.1021/acsami.1c14830 – ident: ref_37 doi: 10.3390/ma14133610 – volume: 198 start-page: 431 year: 2019 ident: ref_7 article-title: Thermal, luminous and energy performance of solar control films in single-glazed windows: Use of energy performance criteria to support decision making publication-title: Energy Build. doi: 10.1016/j.enbuild.2019.06.003 – volume: 38 start-page: 429 year: 2018 ident: ref_36 article-title: Thermal Conductivity of Nanocomposites Based in High Density Polyethylene and Surface Modified Hexagonal Boron Nitride via Cold Ethylene Plasma publication-title: Plasma Chem. Plasma Process. doi: 10.1007/s11090-017-9864-0 – ident: ref_20 doi: 10.3390/ma15165536 – volume: 2 start-page: 769 year: 2015 ident: ref_3 article-title: Infrared-transparent visible-opaque fabrics for wearable personal thermal management publication-title: Acs Photonics doi: 10.1021/acsphotonics.5b00140 |
SSID | ssj0000760771 |
Score | 2.2490869 |
Snippet | The cooling performance of nanoparticle (NP)-doped radiative cooling materials depends on the dispersion of the NPs in the polymer matrix. However, it is a... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database Index Database |
StartPage | 707 |
SubjectTerms | Absorptivity Atmospheric pressure Chemical elements Colorimetry Cooling Density Dielectric films Dielectric properties Dispersion Energy Energy bands Force and energy Laboratories Low density polyethylenes Morphology Nanoparticles Optical properties Performance tests Plasma Plasma physics plasma treatment Plastics Polyethylene Polyethylene films Polymers Radiation radiative cooling solar radiation Surface energy Textiles Thin films Xylene Zinc oxide Zinc oxides |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Na9VAEF-kJz2IVsWntexB9BS62Y9s9tjaPqpYKdpCb2H2CwttUt5LKQ_6x3cmSeW9g3jxurskk5nMzG-S3d8w9tF7JcHIUKgIsdAh-sJrh8HQE5iVpfZAh5NPflTH5_rbhblYa_VFe8JGeuBRcXshGwWikgL9UBtRglQmmOBsjEpkOzCBYs5bK6aGGGwrYW05kmoqrOv3wmK17DFga-K32UhCA1f_3yLykGbmL9jzCR_y_VGul-xJarfZszXWwFfs_qj9Tbai73q8y_xr2-MEapufJQTBI0ky_0mcrKR1jrCUnyJIvgb-63aRIaTipIuXGcEnx-CKVfN4s-Kwu8Gh791dcUjb2vsVP-2uVglNiakp8fnl1fXyNTufH519OS6mJgpFUE71BegqOyvKWGUCL4gOnYzCWdApyqxrbUIwSViZAaCWSaacVF3pLFzCK9TqDdtquza9ZRyoL71TFTgJWgftoPKgrfGi9MblPGOfHrXa3IxcGQ3WGKT-ZkP9M3ZAOv-ziCiuhwE0fDM9c_Mvw8_YZ7JYQ47YLyDAdJ4AZSVKq2YfCyVNfINuxnY2VqIDhc3pR5s3kwMvm-GHs0RwXL_7H8K-Z0-pT_245WeHbfWL2_QB0Uzvd4cX9wEH7fPz priority: 102 providerName: Directory of Open Access Journals |
Title | Enhancement of Intrinsic Temperature Reduction for Plasma Surface-Modified Nanoparticle-Doped Low-Density Polyethylene Films |
URI | https://www.proquest.com/docview/2806529778 https://doaj.org/article/cf53a0620dde4501a235c5c97dd30f74 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Jb9NAFB7R5gIHxCoCJZoDgtOoziy254RSklBQU0VdpN6sWaFSawfHFYrEj-c92ynkANeZkZf3Zr753izfI-SdtYIbxR0T3ngmnbfMSg1gaJHM8rG0Bi8nL07T40v59Upd9Qtu6_5Y5RYTW6D2lcM18sN2B5ADW8k_rn4wzBqFu6t9Co09MgAIziH4GhzNTpdn96ssuO-UZeNOXFNAfH_o6s26AeCWqHOzMxm1mv3_QuZ2upk_IY97nkgnnWOfkgehfEYe_aUe-Jz8mpXf0We4vkerSL-UDVSA1elFADLciSXTM9RmRetToKd0CWT51tDzuzoaF9ii8tcRSCgFkIXouXsZm1YrKDqpfrIpHm9vNnRZ3WwCuBSmqEDn1ze36xfkcj67-HTM-mQKzAktGmZkGnWWjH0akcQAS9TcJzozMngeZS6VcyokGY_GmJwHHmIQeSpjogM8IRcvyX5ZleEVoQbz02uRGs2NlE5qk1ojM2WTsVU6xiF5v7Vqseo0MwqINdD8xY75h-QIbX7fCKWu24Kq_lb0_1y4qIRJUp4AEEuVjA0XyimnM-9FEjM5JB_QYwUOyKY2zvT3CuBbUdqqmEDAJFF3UA_JwU5LGEhut3rr86IfyOviT7d7_f_qN-QhZqLvDvUckP2mvgtvga80dkT28vnnERlMpouT81HfRUdt9P8bhQLwZQ |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFLZKOQAHxCqmFPCB5RTV8ZLEB4QK02GGzlQVTKXeUsexoVKbTDOpqpH4TfxG3stSmAPcerUjJ3nr5-17hLzOMsGN4jYQuckDafMsyKSGYJghmOWhzAxeTp4dROMj-eVYHW-QX_1dGDxW2cfEJlDnpcU18p1mB5ADWkk-LC4CrBqFu6t9CY3WLPbd6gqmbMv3kyHo9w3no735p3HQVRUIrNCiDoyMvI5ZmEcesznAJc1zpmMjXc69TKSyVjkWc2-MSbjjzjuRRNIz7WCERMC4t8htKYRGj0pGn6_XdHCXK47DlsoT-tmOrVbLGtKERFadtdTXVAj4Vx5oktvoAbnfoVK625rRQ7Lhikfk3l9chY_Jz73iB1oIribS0tNJUUMH6JjOHUDvlpqZfkUmWNQ1BTBMDwGanxv67bLyxrpgVuanHiAvhZAOc_X2ZcGwXEDTtLwKhniYvl7Rw_Js5cCAICE6Ojo9O18-IUc3IuSnZLMoC_eMUAMRCFBmZDQ3UlqpTZQZGauMhZnS3g_I216q6aJl6EhhZoPiT9fEPyAfUebXDyGxdtNQVt_T7p9T65UwLOIMwr5ULDRcKKusjvNcMB_LAXmHGkvR_evKWNPdYoBvRSKtdBemZxJZDvWAbK89CW5r17t7nadd2Fimf4x86__dr8id8Xw2TaeTg_3n5C4H5NUeJ9omm3V16V4AUqqzl415UnJy0_7wG7YUKAM |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKKiE4IJ5qaAEfeJxW8drehw8ItSRRQ9soKq3U2-L1Ayq1u2myVRWJX8avY2YfhRzg1uva8u7OjGe-8eMbQt7mueA64iYQVttAGpsHuVTgDHMEszyUucbLyUfTeP9UfjmLzjbIr-4uDB6r7Hxi7ahtaXCNfFDvAHJAK-nAt8ciZsPxp_lVgBWkcKe1K6fRmMiBW91A-rb8OBmCrt9xPh6dfN4P2goDgRFKVIGWsVcJC23sMbIDdFLcMpVo6Sz3MpWRMZFjCfda65Q77rwTaSw9Uw5GSAWMe49sJpAVsR7Z3BtNZ8e3Kzy455UkYUPsKYRiA7NYLSsIGtg9WQuEdb2Af0WFOtSNH5NHLUalu41RPSEbrnhKHv7FXPiM_BwVP9BecG2Rlp5OigoaQOP0xAEQb4ia6THywqLmKUBjOgOgfqnp1-uF18YFR6U99wCAKTh4yNyblwXDcg6PDsubYIhH66sVnZUXKwfmBOHR0fH5xeXyOTm9EzG_IL2iLNwWoRr8EWDOWCuupTRS6TjXMolyFuaR8r5P3ndSzeYNX0cGeQ6KP1sTf5_socxvOyHNdv2gXHzP2n_OjI-EZjFnEARkxELNRWQioxJrBfOJ7JMPqLEMnUG10Ea3dxrgW5FWK9uFZE0i56Hqk521njCJzXpzp_OsdSLL7I_Jv_x_8xtyH-ZCdjiZHmyTBxxgWHO2aIf0qsW1ewWwqcpft_ZJybe7nhK_ATzOLZU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancement+of+Intrinsic+Temperature+Reduction+for+Plasma+Surface-Modified+Nanoparticle-Doped+Low-Density+Polyethylene+Films&rft.jtitle=Crystals+%28Basel%29&rft.au=Qiu%2C+Chenlei&rft.au=Qiu%2C+Yiping&rft.au=Zhang%2C+Yinjia&rft.au=Cui%2C+Lina&rft.date=2023-04-01&rft.issn=2073-4352&rft.eissn=2073-4352&rft.volume=13&rft.issue=4&rft.spage=707&rft_id=info:doi/10.3390%2Fcryst13040707&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_cryst13040707 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-4352&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-4352&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-4352&client=summon |