Enhancement of Intrinsic Temperature Reduction for Plasma Surface-Modified Nanoparticle-Doped Low-Density Polyethylene Films

The cooling performance of nanoparticle (NP)-doped radiative cooling materials depends on the dispersion of the NPs in the polymer matrix. However, it is a technical challenge to suppress agglomeration of NPs due to their high surface energy, resulting in poor dispersion of the NPs in the polymer ma...

Full description

Saved in:
Bibliographic Details
Published inCrystals (Basel) Vol. 13; no. 4; p. 707
Main Authors Qiu, Chenlei, Qiu, Yiping, Zhang, Yinjia, Cui, Lina
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.04.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The cooling performance of nanoparticle (NP)-doped radiative cooling materials depends on the dispersion of the NPs in the polymer matrix. However, it is a technical challenge to suppress agglomeration of NPs due to their high surface energy, resulting in poor dispersion of the NPs in the polymer matrix. In order to optimize the dispersion of zinc oxide (ZnO) NPs in low-density polyethylene (LDPE), NPs were treated with atmospheric pressure plasmas for 30, 60 and 90 s. The ZnO NPs were dispersed in LDPE using a xylene solution method. The dispersion of the NPs was progressively improved as the plasma-treatment time increased, likely due to the roughened and perhaps also activated NP surfaces by the plasma treatment. This made the transmittances of the films decrease in the solar-radiation band and absorptivity increased monotonically in the high-energy band as the plasma-treatment time increased, while in the mid-infrared band, the films maintained a similar high transmittance to the untreated sample. The differential scanning colorimetry analysis revealed that the crystallinities of the plasma-treated NP-doped samples were similar to those of the untreated sample. The cooling-performance tests showed that the maximum temperature reductions of the films with NP plasma-treated for 0 s, 30 s, 60 s and 90 s were 6.82, 7.90, 9.34 and 10.34 °C, respectively, corresponded to the intrinsic temperature reductions of 7.27, 8.23, 10.54, and 11.40 °C, respectively, when calculated using Cui’s Model. The results of the current study show that a simple one-step atmospheric pressure plasma treatment to the ZnO NPs can indeed improve dispersion of the NPs in LDPE and lead to the greatly improved passive-cooling performance of the film.
AbstractList The cooling performance of nanoparticle (NP)-doped radiative cooling materials depends on the dispersion of the NPs in the polymer matrix. However, it is a technical challenge to suppress agglomeration of NPs due to their high surface energy, resulting in poor dispersion of the NPs in the polymer matrix. In order to optimize the dispersion of zinc oxide (ZnO) NPs in low-density polyethylene (LDPE), NPs were treated with atmospheric pressure plasmas for 30, 60 and 90 s. The ZnO NPs were dispersed in LDPE using a xylene solution method. The dispersion of the NPs was progressively improved as the plasma-treatment time increased, likely due to the roughened and perhaps also activated NP surfaces by the plasma treatment. This made the transmittances of the films decrease in the solar-radiation band and absorptivity increased monotonically in the high-energy band as the plasma-treatment time increased, while in the mid-infrared band, the films maintained a similar high transmittance to the untreated sample. The differential scanning colorimetry analysis revealed that the crystallinities of the plasma-treated NP-doped samples were similar to those of the untreated sample. The cooling-performance tests showed that the maximum temperature reductions of the films with NP plasma-treated for 0 s, 30 s, 60 s and 90 s were 6.82, 7.90, 9.34 and 10.34 °C, respectively, corresponded to the intrinsic temperature reductions of 7.27, 8.23, 10.54, and 11.40 °C, respectively, when calculated using Cui’s Model. The results of the current study show that a simple one-step atmospheric pressure plasma treatment to the ZnO NPs can indeed improve dispersion of the NPs in LDPE and lead to the greatly improved passive-cooling performance of the film.
Audience Academic
Author Qiu, Chenlei
Qiu, Yiping
Zhang, Yinjia
Cui, Lina
Author_xml – sequence: 1
  givenname: Chenlei
  surname: Qiu
  fullname: Qiu, Chenlei
– sequence: 2
  givenname: Yiping
  surname: Qiu
  fullname: Qiu, Yiping
– sequence: 3
  givenname: Yinjia
  surname: Zhang
  fullname: Zhang, Yinjia
– sequence: 4
  givenname: Lina
  surname: Cui
  fullname: Cui, Lina
BookMark eNptkt1rFTEQxRepYK199H3B562zSXaz-1j6oReuWrQ-hyGZtLnsJmuSiyz4x5v2FrVg8pDhcObHGTKvqyMfPFXV2xbOOB_hvY5ryi0HARLki-qYgeSN4B07-qd-VZ2mtINyZA9StsfVryt_j17TTD7XwdYbn6Pzyen6luaFIuZ9pPormb3OLvjahljfTJhmrL_to0VNzadgnHVk6s_ow4IxOz1RcxmWIm3Dz-aSCi-v9U2YVsr360Se6ms3zelN9dLilOj06T2pvl9f3V58bLZfPmwuzreN5iPPDYrejhJa09u-7VpgMDIDo0RBhlkxiE7rjkAyi4gDI0aW-NALCyMVwsBPqs2BawLu1BLdjHFVAZ16FEK8U0-xlbYdR-gZGEOigxYZ73SnR2kMBytFYb07sJYYfuwpZbUL--hLfMUG6Ds2Sjn8dd1hgTpvQ46oZ5e0OpdCCsGZGIvr7D-ucg3NTpf_ta7ozxqaQ4OOIaVI9s8wLaiHNVDP1oD_Bjapp1M
Cites_doi 10.1002/adma.201802152
10.1126/science.abb0971
10.1126/science.aai7899
10.1038/nature13883
10.1016/j.mtphys.2019.100127
10.1016/j.combustflame.2019.04.042
10.4028/www.scientific.net/MSF.620-622.465
10.1016/j.physleta.2020.126485
10.1007/s12633-021-01477-7
10.1126/science.aat9513
10.1515/ntrev-2020-0099
10.1080/20550324.2019.1710974
10.1080/01411594.2022.2094796
10.1016/j.ijheatmasstransfer.2016.08.009
10.1038/ncomms4697
10.1016/j.polymertesting.2017.04.019
10.1364/OE.26.015995
10.1016/j.memsci.2021.119945
10.1038/s41467-022-32010-y
10.1038/srep15765
10.1021/acs.nanolett.7b00579
10.1021/acs.macromol.1c00184
10.1016/j.coco.2020.100611
10.1021/acs.macromol.6b02330
10.1016/j.surfcoat.2008.12.010
10.1109/TPS.2018.2823585
10.1016/j.cej.2019.121942
10.1016/j.msec.2012.04.065
10.1016/j.apsusc.2011.06.121
10.1016/j.jcis.2020.05.085
10.1021/acsami.1c14830
10.3390/ma14133610
10.1016/j.enbuild.2019.06.003
10.1007/s11090-017-9864-0
10.3390/ma15165536
10.1021/acsphotonics.5b00140
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SR
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
JG9
KB.
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOA
DOI 10.3390/cryst13040707
DatabaseName CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One
ProQuest Materials Science Collection
ProQuest Central Korea
SciTech Premium Collection
Materials Research Database
Materials Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
ProQuest Materials Science Collection
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
METADEX
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database


CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2073-4352
ExternalDocumentID oai_doaj_org_article_cf53a0620dde4501a235c5c97dd30f74
A747443249
10_3390_cryst13040707
GeographicLocations China
United States--US
GeographicLocations_xml – name: China
– name: United States--US
GroupedDBID .4S
5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ABJCF
ADBBV
ADMLS
AENEX
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARCSS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
D1I
EDO
GROUPED_DOAJ
HCIFZ
IAO
IGS
ITC
KB.
KQ8
MODMG
M~E
OK1
PDBOC
PHGZM
PHGZT
PIMPY
PROAC
TUS
7SR
8BQ
8FD
ABUWG
AZQEC
DWQXO
JG9
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PUEGO
ID FETCH-LOGICAL-c393t-a46f9701d6f615102092d097a4ed2f4845cc5e072faaa82e2efe3864f09ec3983
IEDL.DBID BENPR
ISSN 2073-4352
IngestDate Wed Aug 27 01:30:35 EDT 2025
Fri Jul 25 11:59:52 EDT 2025
Thu Jul 03 03:20:41 EDT 2025
Tue Jul 01 05:45:16 EDT 2025
Tue Jul 01 00:24:58 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c393t-a46f9701d6f615102092d097a4ed2f4845cc5e072faaa82e2efe3864f09ec3983
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/2806529778?pq-origsite=%requestingapplication%
PQID 2806529778
PQPubID 2032412
ParticipantIDs doaj_primary_oai_doaj_org_article_cf53a0620dde4501a235c5c97dd30f74
proquest_journals_2806529778
gale_infotracmisc_A747443249
gale_infotracacademiconefile_A747443249
crossref_primary_10_3390_cryst13040707
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-04-01
PublicationDateYYYYMMDD 2023-04-01
PublicationDate_xml – month: 04
  year: 2023
  text: 2023-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Crystals (Basel)
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Li (ref_6) 2018; 26
Chen (ref_17) 2022; 13
Kumar (ref_24) 2017; 50
Jiang (ref_39) 2009; 203
Shojaeiarani (ref_26) 2020; 6
Yang (ref_4) 2017; 17
Hsieh (ref_14) 2020; 578
Chandran (ref_21) 2014; 5
Yin (ref_8) 2020; 370
Shen (ref_32) 2022; 641
Miller (ref_34) 2019; 206
Pereira (ref_7) 2019; 198
Raman (ref_9) 2014; 515
Ong (ref_16) 2011; 257
Avolio (ref_27) 2017; 60
ref_37
Mandal (ref_2) 2018; 362
Zhai (ref_11) 2017; 355
Cui (ref_5) 2021; 57
Aili (ref_12) 2019; 10
Yuan (ref_22) 2008; 22
Machrafi (ref_28) 2020; 384
Diao (ref_25) 2012; 32
Zak (ref_19) 2015; 78
Zhang (ref_30) 2022; 14
Tong (ref_3) 2015; 2
Cui (ref_38) 2021; 24
Mitra (ref_29) 2021; 54
(ref_36) 2018; 38
Liu (ref_35) 2015; 5
ref_20
ref_40
Wang (ref_15) 2019; 375
(ref_33) 2018; 46
Cui (ref_13) 2020; 9
Huang (ref_10) 2017; 104
Cai (ref_1) 2018; 30
Taya (ref_18) 2022; 95
Wang (ref_31) 2019; 47
LaNasa (ref_23) 2021; 13
References_xml – volume: 78
  start-page: 91
  year: 2015
  ident: ref_19
  article-title: Sol–gel grown Fe-doped ZnO nanoparticles: Antibacterial and structural behaviors
  publication-title: J. Sol.-Gel Sci. Technol.
– volume: 57
  start-page: 36
  year: 2021
  ident: ref_5
  article-title: Effect of Nanoparticle Concentration on Passive Cooling Performance of ZNO-Low Density Polyethylene Composite Films Under Solar Radiation
  publication-title: Sampe J.
– volume: 30
  start-page: 1802152
  year: 2018
  ident: ref_1
  article-title: Spectrally Selective Nanocomposite Textile for Outdoor Personal Cooling
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201802152
– volume: 370
  start-page: 786
  year: 2020
  ident: ref_8
  article-title: Terrestrial radiative cooling: Using the cold universe as a renewable and sustainable energy source
  publication-title: Science
  doi: 10.1126/science.abb0971
– volume: 355
  start-page: 1062
  year: 2017
  ident: ref_11
  article-title: Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling
  publication-title: Science
  doi: 10.1126/science.aai7899
– volume: 515
  start-page: 540
  year: 2014
  ident: ref_9
  article-title: Passive radiative cooling below ambient air temperature under direct sunlight
  publication-title: Nature
  doi: 10.1038/nature13883
– volume: 10
  start-page: 100127
  year: 2019
  ident: ref_12
  article-title: Selection of polymers with functional groups for daytime radiative cooling
  publication-title: Mater. Today Phys.
  doi: 10.1016/j.mtphys.2019.100127
– volume: 206
  start-page: 211
  year: 2019
  ident: ref_34
  article-title: Plasma surface treatment of aluminum nanoparticles for energetic material applications
  publication-title: Combust. Flame
  doi: 10.1016/j.combustflame.2019.04.042
– ident: ref_40
  doi: 10.4028/www.scientific.net/MSF.620-622.465
– volume: 384
  start-page: 126485
  year: 2020
  ident: ref_28
  article-title: On the chemical potential of nanoparticle dispersion
  publication-title: Phys. Lett. A
  doi: 10.1016/j.physleta.2020.126485
– volume: 14
  start-page: 6535
  year: 2022
  ident: ref_30
  article-title: Chemical Functionalities of 3-aminopropyltriethoxy-silane for Surface Modification of Metal Oxide Nanoparticles
  publication-title: Silicon
  doi: 10.1007/s12633-021-01477-7
– volume: 362
  start-page: 315
  year: 2018
  ident: ref_2
  article-title: Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling
  publication-title: Science
  doi: 10.1126/science.aat9513
– volume: 9
  start-page: 1368
  year: 2020
  ident: ref_13
  article-title: Transparent ultraviolet-shielding composite films made from dispersing pristine zinc oxide nanoparticles in low-density polyethylene
  publication-title: Nanotechnol. Rev.
  doi: 10.1515/ntrev-2020-0099
– volume: 6
  start-page: 41
  year: 2020
  ident: ref_26
  article-title: Sonication amplitude and processing time influence the cellulose nanocrystals morphology and dispersion
  publication-title: Nanocomposites
  doi: 10.1080/20550324.2019.1710974
– volume: 95
  start-page: 581
  year: 2022
  ident: ref_18
  article-title: Optical and electrical properties of GaZnO films deposited by co-sputtering method on two types of substrates
  publication-title: Phase Transit.
  doi: 10.1080/01411594.2022.2094796
– volume: 104
  start-page: 890
  year: 2017
  ident: ref_10
  article-title: Nanoparticle embedded double-layer coating for daytime radiative cooling
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2016.08.009
– volume: 5
  start-page: 3697
  year: 2014
  ident: ref_21
  article-title: Confinement enhances dispersion in nanoparticle-polymer blend films
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms4697
– volume: 60
  start-page: 388
  year: 2017
  ident: ref_27
  article-title: Role of silica nanoparticles on network formation and properties in thermoset polycarbonate based nanocomposites
  publication-title: Polym. Test.
  doi: 10.1016/j.polymertesting.2017.04.019
– volume: 26
  start-page: 15995
  year: 2018
  ident: ref_6
  article-title: Nanophotonic control of thermal radiation for energy applications [Invited]
  publication-title: Opt. Express
  doi: 10.1364/OE.26.015995
– volume: 22
  start-page: 59
  year: 2008
  ident: ref_22
  article-title: Reasons for Agglomeration of Nanoparticle and Solutions
  publication-title: Mater. Rep.
– volume: 47
  start-page: 42
  year: 2019
  ident: ref_31
  article-title: Research progress on surface grafting modification of inorganic nanoparticles based on atom transfer radical polymerization
  publication-title: New Chem. Mater.
– volume: 641
  start-page: 119945
  year: 2022
  ident: ref_32
  article-title: Designed water channels and sieving effect for heavy metal removal by a novel silica-poly(ionic liquid) nanoparticles TFN membrane
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2021.119945
– volume: 13
  start-page: 4387
  year: 2022
  ident: ref_17
  article-title: A Transparent Electrode Based on Solution-Processed ZnO for Organic Optoelectronic Devices
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-32010-y
– volume: 5
  start-page: 15765
  year: 2015
  ident: ref_35
  article-title: Enhanced Dispersion of TiO2 Nanoparticles in a TiO2/PEDOT:PSS Hybrid Nanocomposite via Plasma-Liquid Interactions
  publication-title: Sci. Rep.
  doi: 10.1038/srep15765
– volume: 17
  start-page: 3506
  year: 2017
  ident: ref_4
  article-title: Thermal management in nanofiber-based face mask
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.7b00579
– volume: 54
  start-page: 3962
  year: 2021
  ident: ref_29
  article-title: Surface Functionalization-Induced Effects on Nanoparticle Dispersion and Associated Changes in the Thermophysical Properties of Polymer Nanocomposites
  publication-title: Macromolecules
  doi: 10.1021/acs.macromol.1c00184
– volume: 24
  start-page: 100611
  year: 2021
  ident: ref_38
  article-title: Transparent passive-cooling composite films for indoor and outdoor spaces
  publication-title: Compos. Commun.
  doi: 10.1016/j.coco.2020.100611
– volume: 50
  start-page: 714
  year: 2017
  ident: ref_24
  article-title: 50th Anniversary Perspective: Are Polymer Nanocomposites Practical for Applications?
  publication-title: Macromolecules
  doi: 10.1021/acs.macromol.6b02330
– volume: 203
  start-page: 1604
  year: 2009
  ident: ref_39
  article-title: Influence of ethanol pretreatment on effectiveness of atmospheric pressure plasma treatment of polyethylene fibers
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2008.12.010
– volume: 46
  start-page: 2402
  year: 2018
  ident: ref_33
  article-title: Surface Modification of Graphene Nanoparticles With Ethylene Plasma in Rotary Plasma Reactor for the Preparation of GnP/HDPE Nanocomposites
  publication-title: IEEE Trans. Plasma Sci.
  doi: 10.1109/TPS.2018.2823585
– volume: 375
  start-page: 121942
  year: 2019
  ident: ref_15
  article-title: Facile design of 3D hierarchical NiFe2O4/N-GN/ZnO composite as a high performance electromagnetic wave absorber
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.121942
– volume: 32
  start-page: 1796
  year: 2012
  ident: ref_25
  article-title: Surface modified nano-hydroxyapatite/poly(lactide acid) composite and its osteocyte compatibility
  publication-title: Mater. Sci. Eng. C
  doi: 10.1016/j.msec.2012.04.065
– volume: 257
  start-page: 9986
  year: 2011
  ident: ref_16
  article-title: Plasma-aided hydrogenation and Al-doping: Increasing the conductivity and optical transparency of ZnO transparent conducting oxide
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2011.06.121
– volume: 578
  start-page: 471
  year: 2020
  ident: ref_14
  article-title: Rayleigh and Rayleigh-Debye-Gans light scattering intensities and spetroturbidimetry of dispersions of unilamellar vesicles and multilamellar liposomes
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2020.05.085
– volume: 13
  start-page: 42104
  year: 2021
  ident: ref_23
  article-title: Investigating Nanoparticle Organization in Polymer Matrices during Reaction-Induced Phase Transitions and Material Processing
  publication-title: Acs Appl. Mater. Interfaces
  doi: 10.1021/acsami.1c14830
– ident: ref_37
  doi: 10.3390/ma14133610
– volume: 198
  start-page: 431
  year: 2019
  ident: ref_7
  article-title: Thermal, luminous and energy performance of solar control films in single-glazed windows: Use of energy performance criteria to support decision making
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2019.06.003
– volume: 38
  start-page: 429
  year: 2018
  ident: ref_36
  article-title: Thermal Conductivity of Nanocomposites Based in High Density Polyethylene and Surface Modified Hexagonal Boron Nitride via Cold Ethylene Plasma
  publication-title: Plasma Chem. Plasma Process.
  doi: 10.1007/s11090-017-9864-0
– ident: ref_20
  doi: 10.3390/ma15165536
– volume: 2
  start-page: 769
  year: 2015
  ident: ref_3
  article-title: Infrared-transparent visible-opaque fabrics for wearable personal thermal management
  publication-title: Acs Photonics
  doi: 10.1021/acsphotonics.5b00140
SSID ssj0000760771
Score 2.2490869
Snippet The cooling performance of nanoparticle (NP)-doped radiative cooling materials depends on the dispersion of the NPs in the polymer matrix. However, it is a...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Index Database
StartPage 707
SubjectTerms Absorptivity
Atmospheric pressure
Chemical elements
Colorimetry
Cooling
Density
Dielectric films
Dielectric properties
Dispersion
Energy
Energy bands
Force and energy
Laboratories
Low density polyethylenes
Morphology
Nanoparticles
Optical properties
Performance tests
Plasma
Plasma physics
plasma treatment
Plastics
Polyethylene
Polyethylene films
Polymers
Radiation
radiative cooling
solar radiation
Surface energy
Textiles
Thin films
Xylene
Zinc oxide
Zinc oxides
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Na9VAEF-kJz2IVsWntexB9BS62Y9s9tjaPqpYKdpCb2H2CwttUt5LKQ_6x3cmSeW9g3jxurskk5nMzG-S3d8w9tF7JcHIUKgIsdAh-sJrh8HQE5iVpfZAh5NPflTH5_rbhblYa_VFe8JGeuBRcXshGwWikgL9UBtRglQmmOBsjEpkOzCBYs5bK6aGGGwrYW05kmoqrOv3wmK17DFga-K32UhCA1f_3yLykGbmL9jzCR_y_VGul-xJarfZszXWwFfs_qj9Tbai73q8y_xr2-MEapufJQTBI0ky_0mcrKR1jrCUnyJIvgb-63aRIaTipIuXGcEnx-CKVfN4s-Kwu8Gh791dcUjb2vsVP-2uVglNiakp8fnl1fXyNTufH519OS6mJgpFUE71BegqOyvKWGUCL4gOnYzCWdApyqxrbUIwSViZAaCWSaacVF3pLFzCK9TqDdtquza9ZRyoL71TFTgJWgftoPKgrfGi9MblPGOfHrXa3IxcGQ3WGKT-ZkP9M3ZAOv-ziCiuhwE0fDM9c_Mvw8_YZ7JYQ47YLyDAdJ4AZSVKq2YfCyVNfINuxnY2VqIDhc3pR5s3kwMvm-GHs0RwXL_7H8K-Z0-pT_245WeHbfWL2_QB0Uzvd4cX9wEH7fPz
  priority: 102
  providerName: Directory of Open Access Journals
Title Enhancement of Intrinsic Temperature Reduction for Plasma Surface-Modified Nanoparticle-Doped Low-Density Polyethylene Films
URI https://www.proquest.com/docview/2806529778
https://doaj.org/article/cf53a0620dde4501a235c5c97dd30f74
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Jb9NAFB7R5gIHxCoCJZoDgtOoziy254RSklBQU0VdpN6sWaFSawfHFYrEj-c92ynkANeZkZf3Zr753izfI-SdtYIbxR0T3ngmnbfMSg1gaJHM8rG0Bi8nL07T40v59Upd9Qtu6_5Y5RYTW6D2lcM18sN2B5ADW8k_rn4wzBqFu6t9Co09MgAIziH4GhzNTpdn96ssuO-UZeNOXFNAfH_o6s26AeCWqHOzMxm1mv3_QuZ2upk_IY97nkgnnWOfkgehfEYe_aUe-Jz8mpXf0We4vkerSL-UDVSA1elFADLciSXTM9RmRetToKd0CWT51tDzuzoaF9ii8tcRSCgFkIXouXsZm1YrKDqpfrIpHm9vNnRZ3WwCuBSmqEDn1ze36xfkcj67-HTM-mQKzAktGmZkGnWWjH0akcQAS9TcJzozMngeZS6VcyokGY_GmJwHHmIQeSpjogM8IRcvyX5ZleEVoQbz02uRGs2NlE5qk1ojM2WTsVU6xiF5v7Vqseo0MwqINdD8xY75h-QIbX7fCKWu24Kq_lb0_1y4qIRJUp4AEEuVjA0XyimnM-9FEjM5JB_QYwUOyKY2zvT3CuBbUdqqmEDAJFF3UA_JwU5LGEhut3rr86IfyOviT7d7_f_qN-QhZqLvDvUckP2mvgtvga80dkT28vnnERlMpouT81HfRUdt9P8bhQLwZQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFLZKOQAHxCqmFPCB5RTV8ZLEB4QK02GGzlQVTKXeUsexoVKbTDOpqpH4TfxG3stSmAPcerUjJ3nr5-17hLzOMsGN4jYQuckDafMsyKSGYJghmOWhzAxeTp4dROMj-eVYHW-QX_1dGDxW2cfEJlDnpcU18p1mB5ADWkk-LC4CrBqFu6t9CY3WLPbd6gqmbMv3kyHo9w3no735p3HQVRUIrNCiDoyMvI5ZmEcesznAJc1zpmMjXc69TKSyVjkWc2-MSbjjzjuRRNIz7WCERMC4t8htKYRGj0pGn6_XdHCXK47DlsoT-tmOrVbLGtKERFadtdTXVAj4Vx5oktvoAbnfoVK625rRQ7Lhikfk3l9chY_Jz73iB1oIribS0tNJUUMH6JjOHUDvlpqZfkUmWNQ1BTBMDwGanxv67bLyxrpgVuanHiAvhZAOc_X2ZcGwXEDTtLwKhniYvl7Rw_Js5cCAICE6Ojo9O18-IUc3IuSnZLMoC_eMUAMRCFBmZDQ3UlqpTZQZGauMhZnS3g_I216q6aJl6EhhZoPiT9fEPyAfUebXDyGxdtNQVt_T7p9T65UwLOIMwr5ULDRcKKusjvNcMB_LAXmHGkvR_evKWNPdYoBvRSKtdBemZxJZDvWAbK89CW5r17t7nadd2Fimf4x86__dr8id8Xw2TaeTg_3n5C4H5NUeJ9omm3V16V4AUqqzl415UnJy0_7wG7YUKAM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKKiE4IJ5qaAEfeJxW8drehw8ItSRRQ9soKq3U2-L1Ayq1u2myVRWJX8avY2YfhRzg1uva8u7OjGe-8eMbQt7mueA64iYQVttAGpsHuVTgDHMEszyUucbLyUfTeP9UfjmLzjbIr-4uDB6r7Hxi7ahtaXCNfFDvAHJAK-nAt8ciZsPxp_lVgBWkcKe1K6fRmMiBW91A-rb8OBmCrt9xPh6dfN4P2goDgRFKVIGWsVcJC23sMbIDdFLcMpVo6Sz3MpWRMZFjCfda65Q77rwTaSw9Uw5GSAWMe49sJpAVsR7Z3BtNZ8e3Kzy455UkYUPsKYRiA7NYLSsIGtg9WQuEdb2Af0WFOtSNH5NHLUalu41RPSEbrnhKHv7FXPiM_BwVP9BecG2Rlp5OigoaQOP0xAEQb4ia6THywqLmKUBjOgOgfqnp1-uF18YFR6U99wCAKTh4yNyblwXDcg6PDsubYIhH66sVnZUXKwfmBOHR0fH5xeXyOTm9EzG_IL2iLNwWoRr8EWDOWCuupTRS6TjXMolyFuaR8r5P3ndSzeYNX0cGeQ6KP1sTf5_socxvOyHNdv2gXHzP2n_OjI-EZjFnEARkxELNRWQioxJrBfOJ7JMPqLEMnUG10Ea3dxrgW5FWK9uFZE0i56Hqk521njCJzXpzp_OsdSLL7I_Jv_x_8xtyH-ZCdjiZHmyTBxxgWHO2aIf0qsW1ewWwqcpft_ZJybe7nhK_ATzOLZU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancement+of+Intrinsic+Temperature+Reduction+for+Plasma+Surface-Modified+Nanoparticle-Doped+Low-Density+Polyethylene+Films&rft.jtitle=Crystals+%28Basel%29&rft.au=Qiu%2C+Chenlei&rft.au=Qiu%2C+Yiping&rft.au=Zhang%2C+Yinjia&rft.au=Cui%2C+Lina&rft.date=2023-04-01&rft.issn=2073-4352&rft.eissn=2073-4352&rft.volume=13&rft.issue=4&rft.spage=707&rft_id=info:doi/10.3390%2Fcryst13040707&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_cryst13040707
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-4352&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-4352&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-4352&client=summon