Comparing carbon and nitrogen stocks in paddy and upland soils: Accumulation, stabilization mechanisms, and environmental drivers
[Display omitted] •Mechanisms of higher C and N stocks in paddies than upland soils are reviewed.•Climate effects on stocks are weakened by management (puddling and flooding).•Larger organic C input in paddies compared to most upland cereals was found.•Lower O2 availability leads to slow decompositi...
Saved in:
Published in | Geoderma Vol. 398; p. 115121 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
15.09.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•Mechanisms of higher C and N stocks in paddies than upland soils are reviewed.•Climate effects on stocks are weakened by management (puddling and flooding).•Larger organic C input in paddies compared to most upland cereals was found.•Lower O2 availability leads to slow decomposition of organic matter in paddies.•Fe and Mn oxidation–reduction dynamics stabilise C in paddy soils.
Paddy soils, a type of Hydragric Anthrosol, have much greater soil organic C (SOC) and total N (TN) contents than that in upland soils. However, this fact has never been generalized or mechanistically explained. We conducted a global meta-analysis on the organic C and total N contents and their stocks in continuous paddy soils (578 sites) and compared them with those in adjacent upland soils. Average C stocks up to depths of 35 cm in upland and paddy soils were 31 and 47 Mg C ha−1, respectively. The N stocks in upland and paddy soils were 2.2 and 3.2 Mg N ha−1, respectively. The combined effects of mean annual temperature and precipitation showed that C and N stocks in paddy and upland soils are generally the largest under cool and humid conditions and the smallest in warm and dry climates. Quantitative analysis of climatic, and soil physical and chemical factors showed that 1) climate effects are weakened by management such as puddling and flooding, thereby increasing the importance of soil physico-chemical properties, which control soil organic matter (SOM) stabilization, and 2) climate (e.g., mean annual precipitation) mainly affects C and N stocks in upland soils; the chemical properties (such as pH), on the other hand, primarily affect C and N stocks in paddy soils. Greater C and N stocks in paddy soils are the result of 1) a larger input of organic C by rice than by most upland cereals, 2) slower decomposition of plant residues and SOM under anoxic conditions, and 3) a greater importance of sesquioxides in the biochemical stabilization of SOM. We conclude that these man-made paddy soils store more organic C and N than their upland neighbors despite long-term and intensive management. |
---|---|
AbstractList | Paddy soils, a type of Hydragric Anthrosol, have much greater soil organic C (SOC) and total N (TN) contents than that in upland soils. However, this fact has never been generalized or mechanistically explained. We conducted a global meta-analysis on the organic C and total N contents and their stocks in continuous paddy soils (578 sites) and compared them with those in adjacent upland soils. Average C stocks up to depths of 35 cm in upland and paddy soils were 31 and 47 Mg C ha⁻¹, respectively. The N stocks in upland and paddy soils were 2.2 and 3.2 Mg N ha⁻¹, respectively. The combined effects of mean annual temperature and precipitation showed that C and N stocks in paddy and upland soils are generally the largest under cool and humid conditions and the smallest in warm and dry climates. Quantitative analysis of climatic, and soil physical and chemical factors showed that 1) climate effects are weakened by management such as puddling and flooding, thereby increasing the importance of soil physico-chemical properties, which control soil organic matter (SOM) stabilization, and 2) climate (e.g., mean annual precipitation) mainly affects C and N stocks in upland soils; the chemical properties (such as pH), on the other hand, primarily affect C and N stocks in paddy soils. Greater C and N stocks in paddy soils are the result of 1) a larger input of organic C by rice than by most upland cereals, 2) slower decomposition of plant residues and SOM under anoxic conditions, and 3) a greater importance of sesquioxides in the biochemical stabilization of SOM. We conclude that these man-made paddy soils store more organic C and N than their upland neighbors despite long-term and intensive management. [Display omitted] •Mechanisms of higher C and N stocks in paddies than upland soils are reviewed.•Climate effects on stocks are weakened by management (puddling and flooding).•Larger organic C input in paddies compared to most upland cereals was found.•Lower O2 availability leads to slow decomposition of organic matter in paddies.•Fe and Mn oxidation–reduction dynamics stabilise C in paddy soils. Paddy soils, a type of Hydragric Anthrosol, have much greater soil organic C (SOC) and total N (TN) contents than that in upland soils. However, this fact has never been generalized or mechanistically explained. We conducted a global meta-analysis on the organic C and total N contents and their stocks in continuous paddy soils (578 sites) and compared them with those in adjacent upland soils. Average C stocks up to depths of 35 cm in upland and paddy soils were 31 and 47 Mg C ha−1, respectively. The N stocks in upland and paddy soils were 2.2 and 3.2 Mg N ha−1, respectively. The combined effects of mean annual temperature and precipitation showed that C and N stocks in paddy and upland soils are generally the largest under cool and humid conditions and the smallest in warm and dry climates. Quantitative analysis of climatic, and soil physical and chemical factors showed that 1) climate effects are weakened by management such as puddling and flooding, thereby increasing the importance of soil physico-chemical properties, which control soil organic matter (SOM) stabilization, and 2) climate (e.g., mean annual precipitation) mainly affects C and N stocks in upland soils; the chemical properties (such as pH), on the other hand, primarily affect C and N stocks in paddy soils. Greater C and N stocks in paddy soils are the result of 1) a larger input of organic C by rice than by most upland cereals, 2) slower decomposition of plant residues and SOM under anoxic conditions, and 3) a greater importance of sesquioxides in the biochemical stabilization of SOM. We conclude that these man-made paddy soils store more organic C and N than their upland neighbors despite long-term and intensive management. |
ArticleNumber | 115121 |
Author | Wei, Liang Yang, Yuanhe Kuzyakov, Yakov Xiao, Mouliang Li, Yuhong Wu, Jinshui Zhu, Zhenke Luo, Yu Yan, Zhifeng Ge, Tida |
Author_xml | – sequence: 1 givenname: Liang surname: Wei fullname: Wei, Liang organization: Key Laboratory of Agro-ecological Processes in Subtropical Region & Changsha Research Station for Agricultural and Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan 410125, China – sequence: 2 givenname: Tida surname: Ge fullname: Ge, Tida email: gtd@isa.ac.cn organization: Key Laboratory of Agro-ecological Processes in Subtropical Region & Changsha Research Station for Agricultural and Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan 410125, China – sequence: 3 givenname: Zhenke surname: Zhu fullname: Zhu, Zhenke organization: Key Laboratory of Agro-ecological Processes in Subtropical Region & Changsha Research Station for Agricultural and Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan 410125, China – sequence: 4 givenname: Yu surname: Luo fullname: Luo, Yu organization: Institute of Soil and Water Resources and Environmental Science, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China – sequence: 5 givenname: Yuanhe surname: Yang fullname: Yang, Yuanhe organization: State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China – sequence: 6 givenname: Mouliang surname: Xiao fullname: Xiao, Mouliang organization: Key Laboratory of Agro-ecological Processes in Subtropical Region & Changsha Research Station for Agricultural and Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan 410125, China – sequence: 7 givenname: Zhifeng surname: Yan fullname: Yan, Zhifeng organization: Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University – sequence: 8 givenname: Yuhong orcidid: 0000-0001-5688-9740 surname: Li fullname: Li, Yuhong organization: Key Laboratory of Agro-ecological Processes in Subtropical Region & Changsha Research Station for Agricultural and Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan 410125, China – sequence: 9 givenname: Jinshui surname: Wu fullname: Wu, Jinshui organization: Key Laboratory of Agro-ecological Processes in Subtropical Region & Changsha Research Station for Agricultural and Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan 410125, China – sequence: 10 givenname: Yakov orcidid: 0000-0002-9863-8461 surname: Kuzyakov fullname: Kuzyakov, Yakov organization: Key Laboratory of Agro-ecological Processes in Subtropical Region & Changsha Research Station for Agricultural and Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan 410125, China |
BookMark | eNqFkMtu2zAQRYkiAeo8fqHgMgvLJfUiVXTRwEgfgIFukjVBkSN3XIlUScpAssufR7abTTZZDQZzzwD3XJAz5x0Q8omzFWe8_rxbbcFbCINe5SznK84rnvMPZMGlyLM6r5ozsmBzMhOs5h_JRYy7eRUsZwvyvPbDqAO6LTU6tN5R7Sx1mILfgqMxefM3UnR01NY-Ho_T2B9G9NjHL_TWmGmYep3Qu-Wc1y32-HRc6QDmj3YYh7g8kuD2GLwbwCXdUxtwDyFekfNO9xGu_89L8vD97n79M9v8_vFrfbvJTNEUKdOFlEZAaaysRdO0gnWirpkpbSVZqTlUui3LwrSFLiVY0XUdAytlx7piriqLS3Jz-jsG_2-CmNSA0UA_lwE_RZVXFW8KKWQ9R7-eoib4GAN0ymA6VkpBY684UwfzaqdezauDeXUyP-P1G3wMOOjw-D747QTC7GGPEFQ0CM6AxQAmKevxvRcvoE-m6w |
CitedBy_id | crossref_primary_10_1016_j_scitotenv_2024_171048 crossref_primary_10_3389_fenvs_2023_1152439 crossref_primary_10_1016_j_scitotenv_2024_178234 crossref_primary_10_1007_s11104_023_06032_4 crossref_primary_10_1016_j_agee_2024_109353 crossref_primary_10_1002_ldr_5235 crossref_primary_10_1007_s11104_024_06792_7 crossref_primary_10_3390_agronomy13041133 crossref_primary_10_1016_j_catena_2025_108869 crossref_primary_10_1016_j_catena_2024_108582 crossref_primary_10_1016_j_envres_2024_120397 crossref_primary_10_1007_s44246_024_00181_6 crossref_primary_10_1016_j_catena_2025_108862 crossref_primary_10_3390_land13081296 crossref_primary_10_3390_agriculture11060561 crossref_primary_10_1002_ldr_4141 crossref_primary_10_1016_j_pedsph_2023_05_011 crossref_primary_10_1016_j_geoderma_2023_116342 crossref_primary_10_1007_s00374_022_01681_6 crossref_primary_10_1111_gcb_15968 crossref_primary_10_1007_s10661_023_11673_0 crossref_primary_10_1016_j_jenvman_2024_123788 crossref_primary_10_1002_saj2_20431 crossref_primary_10_1016_j_catena_2023_106968 crossref_primary_10_1016_j_apsoil_2024_105531 crossref_primary_10_3390_f14081678 crossref_primary_10_1007_s11368_023_03664_y crossref_primary_10_1007_s11104_023_06461_1 crossref_primary_10_1016_j_geoderma_2023_116580 crossref_primary_10_1016_j_chemosphere_2023_138927 crossref_primary_10_1016_j_catena_2021_105483 crossref_primary_10_1007_s00374_022_01618_z crossref_primary_10_1088_1755_1315_1116_1_012079 crossref_primary_10_1016_j_jhazmat_2021_126221 crossref_primary_10_1016_j_gecco_2024_e03317 crossref_primary_10_1111_gcb_16372 crossref_primary_10_1016_j_agee_2023_108562 crossref_primary_10_1016_j_agee_2025_109577 crossref_primary_10_3390_agronomy14051014 crossref_primary_10_1016_j_geodrs_2023_e00668 crossref_primary_10_1007_s11368_024_03782_1 crossref_primary_10_1111_gcb_17536 crossref_primary_10_1016_j_apsoil_2023_104931 crossref_primary_10_1016_j_scitotenv_2022_160602 crossref_primary_10_1002_jeq2_20496 crossref_primary_10_1016_j_scitotenv_2024_173160 crossref_primary_10_1016_j_scitotenv_2023_164974 crossref_primary_10_1016_j_foreco_2024_121933 crossref_primary_10_1016_j_soilbio_2021_108312 crossref_primary_10_1016_j_xplc_2024_101224 crossref_primary_10_1111_sum_13139 crossref_primary_10_1016_j_still_2024_106152 crossref_primary_10_1002_fes3_70009 crossref_primary_10_1007_s00374_023_01769_7 crossref_primary_10_1016_j_geodrs_2023_e00656 crossref_primary_10_1007_s11104_021_05168_5 crossref_primary_10_1016_j_earscirev_2022_104214 crossref_primary_10_1016_j_jag_2023_103250 crossref_primary_10_1007_s00374_022_01643_y crossref_primary_10_1021_acsearthspacechem_4c00122 crossref_primary_10_1016_j_funbio_2023_04_005 crossref_primary_10_3390_agronomy12092064 crossref_primary_10_1016_j_scitotenv_2022_156242 crossref_primary_10_1016_j_agee_2021_107798 crossref_primary_10_1007_s00253_023_12701_2 crossref_primary_10_1111_ejss_13539 crossref_primary_10_3389_fsufs_2023_1296922 crossref_primary_10_1016_j_envpol_2024_124572 crossref_primary_10_1016_j_apsoil_2022_104593 crossref_primary_10_1007_s44246_022_00008_2 crossref_primary_10_1016_j_scitotenv_2022_154460 crossref_primary_10_3390_agronomy12102562 crossref_primary_10_1016_j_scitotenv_2021_149717 crossref_primary_10_1038_s43017_023_00482_1 crossref_primary_10_1016_j_soilbio_2023_108972 crossref_primary_10_1016_j_soilbio_2024_109425 crossref_primary_10_1007_s11104_023_06396_7 crossref_primary_10_1016_j_catena_2022_106484 crossref_primary_10_1002_ldr_5278 crossref_primary_10_3390_agronomy14061312 crossref_primary_10_1016_j_jhazmat_2021_126391 crossref_primary_10_1111_1462_2920_15655 crossref_primary_10_1016_j_apsoil_2023_104980 crossref_primary_10_1038_s43705_023_00300_1 crossref_primary_10_1016_j_soilbio_2022_108568 crossref_primary_10_1016_j_fcr_2024_109614 crossref_primary_10_1016_j_soilad_2024_100014 crossref_primary_10_1016_j_soilbio_2022_108684 crossref_primary_10_3390_agronomy14061140 crossref_primary_10_1016_j_fcr_2024_109732 crossref_primary_10_1016_j_soilbio_2021_108345 crossref_primary_10_3390_pr10112425 crossref_primary_10_1016_j_pedsph_2023_07_004 crossref_primary_10_1007_s11368_022_03270_4 crossref_primary_10_18393_ejss_1564167 crossref_primary_10_1016_j_jenvman_2024_121239 crossref_primary_10_1111_geb_13616 crossref_primary_10_1016_j_scitotenv_2022_155810 crossref_primary_10_1016_j_apsoil_2022_104650 crossref_primary_10_3389_fpls_2024_1362149 crossref_primary_10_1016_j_envpol_2024_124510 crossref_primary_10_1016_j_apsoil_2025_105902 crossref_primary_10_1016_j_catena_2025_108968 crossref_primary_10_1111_gcb_17213 crossref_primary_10_1007_s11356_023_27617_7 crossref_primary_10_1007_s42729_023_01209_3 crossref_primary_10_1007_s42832_024_0254_2 crossref_primary_10_1007_s00374_023_01706_8 crossref_primary_10_1016_j_agee_2024_108953 crossref_primary_10_1016_j_apsoil_2024_105399 crossref_primary_10_1016_j_soilbio_2022_108669 crossref_primary_10_1016_j_scitotenv_2023_168602 crossref_primary_10_1080_20964129_2021_1941271 crossref_primary_10_1007_s42773_024_00312_7 crossref_primary_10_1016_j_jhazmat_2024_133540 crossref_primary_10_1016_j_soilbio_2022_108785 crossref_primary_10_1016_j_jenvman_2024_122286 crossref_primary_10_1016_j_scitotenv_2024_171227 crossref_primary_10_1038_s43247_021_00229_0 crossref_primary_10_1016_j_fcr_2024_109510 |
Cites_doi | 10.1016/j.soilbio.2015.12.004 10.1007/s11368-013-0789-9 10.1002/ldr.3477 10.1081/CSS-120029721 10.1038/38260 10.1016/j.geoderma.2003.11.003 10.1016/j.geoderma.2018.03.031 10.1016/j.soilbio.2006.12.024 10.1002/jpln.201600542 10.1016/j.soilbio.2016.04.010 10.1016/S1465-9972(01)00019-8 10.1111/j.1365-2486.2005.01065.x 10.5194/bg-13-4481-2016 10.1016/j.agee.2020.106816 10.1097/00010694-200101000-00007 10.1007/s11104-012-1363-8 10.1016/S0146-6380(00)00046-2 10.1016/j.still.2018.05.009 10.1016/j.scitotenv.2014.04.071 10.1111/gcb.13850 10.1007/s10533-017-0410-1 10.1016/j.apsoil.2019.01.013 10.1007/s11104-015-2611-5 10.1007/s11104-018-03905-x 10.1111/j.1475-2743.2009.00251.x 10.2136/sssaj2000.6431042x 10.1016/j.soilbio.2006.04.009 10.1016/j.geoderma.2020.114512 10.1016/S1002-0160(15)30034-5 10.1071/SR12358 10.1111/j.1365-2486.2012.02681.x 10.1016/j.soilbio.2018.03.003 10.1038/nature04514 10.1021/es1023898 10.1111/j.1365-2389.2011.01418.x 10.1021/la102535n 10.1016/j.soilbio.2018.03.024 10.1111/j.1365-2389.2004.00600.x 10.1371/journal.pone.0088900 10.1016/j.agee.2016.03.004 10.4141/cjss2011-014 10.1023/A:1026594118145 10.1016/j.geoderma.2008.05.004 10.1016/j.soilbio.2019.04.011 10.1016/S0167-1987(00)00135-5 10.1016/S0038-0717(02)00251-1 10.1007/s003740000248 10.1080/00380768.2015.1089787 10.1007/s10533-004-3258-0 10.1016/j.agee.2013.05.012 10.5194/bg-13-6565-2016 10.1002/2014MS000358 10.1016/S1002-0160(10)60056-2 10.1007/s11104-017-3210-4 10.1016/j.ejsobi.2017.12.003 10.1134/S1064229318110091 10.1073/pnas.1700292114 10.1038/s41586-018-0358-x 10.1007/s11104-015-2380-1 10.1111/gcb.14859 10.1016/j.gca.2013.03.020 10.1016/j.geoderma.2009.07.018 10.1007/s10661-005-9021-8 10.1038/s41586-019-1048-z 10.1021/es501127k 10.1111/gcb.14779 10.1016/j.earscirev.2016.03.003 10.1007/s11104-011-0995-4 10.1007/s00374-009-0413-8 10.1111/j.1365-2486.2003.00717.x 10.1104/pp.62.4.665 10.1080/02757540.2016.1268131 10.1016/j.geoderma.2018.11.040 10.1023/B:FRES.0000017470.14789.2a 10.1111/gcb.14148 10.1038/s41561-018-0258-6 10.1016/j.soilbio.2019.05.011 10.1016/S0167-1987(98)00092-0 10.1016/j.soilbio.2015.12.008 10.1016/j.soilbio.2013.03.019 10.1016/j.soilbio.2003.12.015 10.1016/j.soilbio.2019.04.016 10.1016/S1465-9972(00)00034-9 10.1016/j.geoderma.2010.03.009 10.1016/j.geoderma.2016.02.019 10.1016/j.soilbio.2019.02.019 10.1038/ngeo2516 10.5194/bg-8-2895-2011 10.1016/0016-7061(89)90016-5 10.1007/s10584-006-9178-3 10.1088/1748-9326/ab2c11 10.1007/s00374-017-1194-0 10.1016/j.soilbio.2014.01.011 10.1111/gcb.15101 10.1111/j.1747-0765.2010.00510.x 10.1016/j.rhisph.2019.100145 10.1016/j.still.2008.07.007 10.1007/s10705-009-9279-2 10.1016/bs.agron.2016.04.002 10.1038/s41467-020-16071-5 10.1016/j.soilbio.2017.06.005 10.1038/nclimate2580 10.1111/j.1365-2389.2006.00809.x 10.1016/j.agee.2013.03.010 10.1007/s00248-002-1007-2 10.1016/j.soilbio.2012.01.009 10.1023/A:1016125726789 |
ContentType | Journal Article |
Copyright | 2021 Elsevier B.V. |
Copyright_xml | – notice: 2021 Elsevier B.V. |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.geoderma.2021.115121 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 1872-6259 |
ExternalDocumentID | 10_1016_j_geoderma_2021_115121 S0016706121002019 |
GroupedDBID | --K --M -DZ -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AATLK AAXUO ABFRF ABGRD ABJNI ABMAC ABQEM ABQYD ABYKQ ACDAQ ACGFO ACGFS ACIUM ACLVX ACRLP ACSBN ADBBV ADEZE ADQTV AEBSH AEFWE AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BKOJK BLXMC CBWCG CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IMUCA J1W KOM LW9 LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SAB SDF SDG SES SPC SPCBC SSA SSE SSZ T5K ~02 ~G- 29H AAHBH AALCJ AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABFNM ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEGFY AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 GROUPED_DOAJ HLV HMA HMC HVGLF HZ~ H~9 K-O OHT R2- RIG SEN SEP SEW SSH VH1 WUQ XPP Y6R ZMT 7S9 L.6 |
ID | FETCH-LOGICAL-c393t-a388c7e4cd86799b70f7660c4d5804a1e5ab443cb3a48ed7fff0ed88f0f370283 |
IEDL.DBID | .~1 |
ISSN | 0016-7061 |
IngestDate | Fri Jul 11 10:28:44 EDT 2025 Tue Jul 01 04:04:55 EDT 2025 Thu Apr 24 23:01:13 EDT 2025 Fri Feb 23 02:43:32 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Upland soils C and N stocks Microbial turnover Carbon sequestration Paddy soils Land-use change |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c393t-a388c7e4cd86799b70f7660c4d5804a1e5ab443cb3a48ed7fff0ed88f0f370283 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-5688-9740 0000-0002-9863-8461 |
OpenAccessLink | https://doi.org/10.1016/j.geoderma.2021.115121 |
PQID | 2551938786 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_2551938786 crossref_citationtrail_10_1016_j_geoderma_2021_115121 crossref_primary_10_1016_j_geoderma_2021_115121 elsevier_sciencedirect_doi_10_1016_j_geoderma_2021_115121 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-09-15 |
PublicationDateYYYYMMDD | 2021-09-15 |
PublicationDate_xml | – month: 09 year: 2021 text: 2021-09-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Geoderma |
PublicationYear | 2021 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Pausch, Kuzyakov (b0355) 2018; 24 Zamanian, Pustovoytov, Kuzyakov (b0520) 2016; 157 Courtier-Murias, Simpson, Marzadori, Baldoni, Ciavatta, Fernández, López-de-Sá, Plaza (b0080) 2013; 171 Fierer, Schimel, Holden (b0125) 2003; 35 Kusunoki, Nanzyo, Kanno, Takahashi (b0255) 2015; 61 Liu, Wang, Ding, Lu, Li, Cheng, Zheng, Filley, Zhang, Zheng, Pan (b0315) 2016; 13 Bierke, Kaiser, Guggenberger (b0050) 2008; 146 von Lützow, Kögel-Knabner (b0455) 2009; 46 Wang, Chen (b0460) 2004; 68 Sasakawa, Yamamoto (b0400) 1978; 62 Kuzyakov, Razavi (b0265) 2019; 135 Eusterhues, Rennert, Knicker, Kögel-Knabner, Totsche, Schwertmann (b0115) 2001; 45 Olk, Cassman, Schmidt-Rohr, Anders, Mao, Deenik (b0345) 2006; 38 Sokol, Bradford (b0430) 2018; 12 Six, Conant, Paul, Paustian (b0415) 2002; 241 Sanaullah, Rumpel, Charrier, Chabbi (b0390) 2011; 352 Zhao, Wang, Hu, Zhang, Ouyang, Zhang, Huang, Zhao, Wu, Xie, Zhu, Yu, Pan, Xu, Shi (b0535) 2018; 115 Fierer, Schimel, Holden (b0120) 2003; 45 Liu, Ge, Ye, Liu, Shibistova, Wang, Wang, Li, Guggenberger, Kuzyakov, Wu (b0305) 2019; 338 Wiesmeier, Steffens, Mueller, Kölbl, Reszkowska, Peth, Horn, Kögel-Knabner (b0490) 2012; 63 Chen, Wang, Li, Hu, Zheng, He, Ge, Wu, Kuzyakov, Su (b0065) 2014; 488-489 Li, Rui, Zhang, Feng, Lu, Shen, Zheng, Li, Song, Pan (b0285) 2019; 138 Pan, Li, Wu, Zhang (b0350) 2003; 10 Keiluweit, Bougoure, Nico, Pett-Ridge, Weber, Kleber (b0225) 2015; 5 Lutzow, Kogel-Knabner, Ekschmitt, Matzner, Guggenberger, Marschner, Flessa (b0325) 2006; 57 Moore, Dalva (b0335) 2001; 166 Wang, Chen, Jing, Yao, Feng, Lin (b0470) 2018; 122 Ge, Yuan, Zhu, Wu, Nie, Liu, Tong, Wu, Brookes (b0145) 2012; 48 Huang, Pan, Guo, Qian, Zhang (b0185) 2014; 14 Doetterl, Stevens, Six, Merckx, Van Oost, Casanova Pinto, Casanova-Katny, Muñoz, Boudin, Zagal Venegas, Boeckx (b0100) 2015; 8 Peters, Hemp, Appelhans, Becker, Behler, Classen, Detsch, Ensslin, Ferger, Frederiksen, Gebert, Gerschlauer, Gütlein, Helbig-Bonitz, Hemp, Kindeketa, Kühnel, Mayr, Mwangomo, Ngereza, Njovu, Otte, Pabst, Renner, Röder, Rutten, Schellenberger Costa, Sierra-Cornejo, Vollstädt, Dulle, Eardley, Howell, Keller, Peters, Ssymank, Kakengi, Zhang, Bogner, Böhning-Gaese, Brandl, Hertel, Huwe, Kiese, Kleyer, Kuzyakov, Nauss, Schleuning, Tschapka, Fischer, Steffan-Dewenter (b0365) 2019; 568 Sierra, Trumbore, Davidson, Vicca, Janssens (b0410) 2015; 7 Kaiser, Guggenberger (b0215) 2000; 31 Kögel-Knabner, Amelung, Cao, Fiedler, Frenzel, Jahn, Kalbitz, Kölbl, Schloter (b0240) 2010; 157 Chen, Hall, Coward, Thompson (b0060) 2020; 11 Zhu, Hu, Yang, Zhan, Zhang, Hu (b0550) 2014; 9 Jia, Kuzyakov, Wang, Tan, Zhu, Feng (b0210) 2020; 31 Khan, Mack, Castillo, Kaiser, Joergensen (b0230) 2016; 271 Guo, Lin (b0155) 2001; 3 Six, Elliott, Paustian (b0420) 2000; 64 Hobley, Baldock, Wilson (b0175) 2016; 223 Kushwaha, Tripathi, Singh (b0250) 2000; 56 Du, Chen, Yu, Polizzotto, Sun, Kuzyakov (b0105) 2020; 375 Saree, Ponphang-nga, Sarobol, Limtong, Chidthaisong (b0395) 2012; 3 Bond-Lamberty, Bailey, Chen, Gough, Vargas (b0055) 2018; 560 Raza, Miao, Wang, Ju, Chen, Zhou, Kuzyakov (b0375) 2020; 26 Davidson, Janssens (b0085) 2006; 440 Zamanian, Zarebanadkouki, Kuzyakov (b0525) 2018; 24 Zhu, Zeng, Ge, Hu, Tong, Shibistova, He, Wang, Guggenberger, Wu (b0565) 2016; 13 Zou, Zhang, Huo, Sun, Lu, Jiang, Yu (b0570) 2018; 325 Gunina, Kuzyakov (b0150) 2014; 71 Rowley, Grand, Verrecchia (b0380) 2018; 137 Hou, Ouyang, Maxim, Wilson, Kuzyakov (b0180) 2016; 95 Kramer, Sanderman, Chadwick, Chorover, Vitousek (b0245) 2012; 18 Gao, Huang, Zhu, Wang, Li (b0130) 2001; 11 Lu, Watanabe, Kimura (b0320) 2004; 71 Hobley, Wilson, Wilkie, Gray, Koen (b0170) 2015; 390 Tan, Lal, Smeck, Calhoun (b0440) 2004; 121 Zhu, Ge, Luo, Liu, Xu, Tong, Shibistova, Guggenberger, Wu (b0560) 2018; 121 Liu, Liu, Mu, Ma, Li, Li (b0300) 2017; 33 Chen, Xia, Rui, Ning, Hu, Tang, He, Li, Kuzyakov, Ge, Wu, Su (b0070) 2020; 292 Alam, Bell, Haque, Kader (b0005) 2018; 183 Wang, River, Richardson (b0465) 2019; 135 Yudina, Kuzyakov (b0510) 2019; 25 Zhu, Ge, Hu, Zhou, Wang, Shibistova, Guggenberger, Su, Wu (b0555) 2017; 416 Sahrawat (b0385) 2004; 35 Banerjee, Helgason, Wang, Winsley, Ferrari, Siciliano (b0030) 2016; 95 Barral, Arias, Guérif (b0035) 1998; 46 Lavkulich, Arocena (b0280) 2011; 91 Williams, Santner, Larsen, Lehto, Oburger, Wenzel, Glud, Davison, Zhang (b0495) 2014; 48 Hall, Silver, Timokhin, Hammel (b0160) 2016; 98 Iskrenova-Tchoukova, Kalinichev, Kirkpatrick (b0195) 2010; 26 Liu, Ge, Zhu, Liu, Luo, Li, Wang, Gavrichkova, Xu, Wang, Wu, Guggenberger, Kuzyakov (b0310) 2019; 133 Shipitalo, Protz (b0405) 1989; 45 Clarholm, Skyllberg (b0075) 2013; 63 Ge, Wu, Chen, Yuan, Zou, Li, Zhou, Liu, Tong, Brookes, Wu (b0140) 2013; 113 Jastrow, Amonette, Bailey (b0205) 2007; 80 Qiu, Ge, Liu, Chen, Hu, Wu, Su, Kuzyakov (b0370) 2018; 84 Wong, Greene, Dalal, Murphy (b0505) 2010; 26 Zang, Blagodatskaya, Wang, Xu, Kuzyakov (b0530) 2017; 53 Bailey, Pries, Lajtha (b0020) 2019; 14 Khan, Seshadri, Bolan, Saint, Kirkham, Chowdhury, Yamaguchi, Lee, Li, Kunhikrishnan, Qi, Karunanithi, Qiu, Zhu, Syu (b0235) 2016; 138 Pausch, Tian, Riederer, Kuzyakov (b0360) 2013; 364 Wei, Razavi, Wang, Zhu, Liu, Wu, Kuzyakov, Ge (b0475) 2019; 135 Banerjee, Aggarwal, Pathak, Singh, Chaudhary (b0025) 2006; 119 Denef, Zotarelli, Boddey, Six (b0095) 2007; 39 Bharati, Mohanty, Rao, Adhya (b0045) 2001; 3 Kayler, Kaiser, Gessler, Ellerbrock, Sommer (b0220) 2011; 8 IUSS-WRB (b0200) 2014 Smernik, Olk, Mahieu (b0425) 2004; 55 Badgery, Simmons, Murphy, Rawson, Andersson, Lonergan, van de Ven (b0015) 2013; 51 Wiesmeier, Hübner, Barthold, Spörlein, Geuß, Hangen, Reischl, Schilling, von Lützow, Kögel-Knabner (b0485) 2013; 176 Zhou, Lv, Chen, Westby, Ren (b0545) 2014; 2014 Manjaiah, Voroney, Sen (b0330) 2000; 32 Atere, Ge, Zhu, Liu, Huang, Shibsitova, Guggenberger, Wu (b0010) 2018; 445 Lavallee, Soong, Cotrufo (b0275) 2019; 26 Benbi, Brar, Toor, Sharma (b0040) 2015; 25 Zhou, Song, Pan, Li, Zhang (b0540) 2009; 153 Ge, Wei, Razavi, Zhu, Hu, Kuzyakov, Jones, Wu (b0135) 2017; 113 Yudina, Fomin, Kotelnikova, Milanovskii (b0515) 2018; 51 Urbanski, Kölbl, Lehndorff, Houtermans, Schad, Zhang, Utami, Kögel-Knabner (b0450) 2017; 180 Torn, Trumbore, Chadwick, Vitousek, Hendricks (b0445) 1997; 389 Sun, Huang, Yu, Zhang (b0435) 2015; 397 Wei, Zhu, Wei, Wu, Ge (b0480) 2019; 10 LIU, LI, WU, HUANG, SU, WEI (b0290) 2010; 56 Davidson, Janssens, Luo (b0090) 2006; 12 Huang, Rui, Peng, Huang, Zhang (b0190) 2010; 86 Liu, He, Zhang, Schroder, Li, Zhou, Zhang (b0295) 2010; 20 Witt, Cassman, Olk, Biker, Liboon, Samson, Ottow (b0500) 2000; 225 Müller, Höper (b0340) 2004; 36 Eickhorst, Tippkötter (b0110) 2009; 102 Courtier-Murias (10.1016/j.geoderma.2021.115121_b0080) 2013; 171 Urbanski (10.1016/j.geoderma.2021.115121_b0450) 2017; 180 Jia (10.1016/j.geoderma.2021.115121_b0210) 2020; 31 Hall (10.1016/j.geoderma.2021.115121_b0160) 2016; 98 Gao (10.1016/j.geoderma.2021.115121_b0130) 2001; 11 Banerjee (10.1016/j.geoderma.2021.115121_b0030) 2016; 95 Wiesmeier (10.1016/j.geoderma.2021.115121_b0490) 2012; 63 Sun (10.1016/j.geoderma.2021.115121_b0435) 2015; 397 Qiu (10.1016/j.geoderma.2021.115121_b0370) 2018; 84 Bond-Lamberty (10.1016/j.geoderma.2021.115121_b0055) 2018; 560 Hou (10.1016/j.geoderma.2021.115121_b0180) 2016; 95 LIU (10.1016/j.geoderma.2021.115121_b0290) 2010; 56 Doetterl (10.1016/j.geoderma.2021.115121_b0100) 2015; 8 Pausch (10.1016/j.geoderma.2021.115121_b0355) 2018; 24 Yudina (10.1016/j.geoderma.2021.115121_b0510) 2019; 25 Huang (10.1016/j.geoderma.2021.115121_b0185) 2014; 14 Tan (10.1016/j.geoderma.2021.115121_b0440) 2004; 121 Raza (10.1016/j.geoderma.2021.115121_b0375) 2020; 26 Denef (10.1016/j.geoderma.2021.115121_b0095) 2007; 39 Zang (10.1016/j.geoderma.2021.115121_b0530) 2017; 53 Liu (10.1016/j.geoderma.2021.115121_b0310) 2019; 133 Lavkulich (10.1016/j.geoderma.2021.115121_b0280) 2011; 91 Peters (10.1016/j.geoderma.2021.115121_b0365) 2019; 568 Zou (10.1016/j.geoderma.2021.115121_b0570) 2018; 325 Huang (10.1016/j.geoderma.2021.115121_b0190) 2010; 86 Zhou (10.1016/j.geoderma.2021.115121_b0540) 2009; 153 Eusterhues (10.1016/j.geoderma.2021.115121_b0115) 2001; 45 Liu (10.1016/j.geoderma.2021.115121_b0300) 2017; 33 Wei (10.1016/j.geoderma.2021.115121_b0480) 2019; 10 Zamanian (10.1016/j.geoderma.2021.115121_b0525) 2018; 24 Pausch (10.1016/j.geoderma.2021.115121_b0360) 2013; 364 Wei (10.1016/j.geoderma.2021.115121_b0475) 2019; 135 Hobley (10.1016/j.geoderma.2021.115121_b0175) 2016; 223 Six (10.1016/j.geoderma.2021.115121_b0420) 2000; 64 Smernik (10.1016/j.geoderma.2021.115121_b0425) 2004; 55 Iskrenova-Tchoukova (10.1016/j.geoderma.2021.115121_b0195) 2010; 26 Zhu (10.1016/j.geoderma.2021.115121_b0550) 2014; 9 Liu (10.1016/j.geoderma.2021.115121_b0305) 2019; 338 Wong (10.1016/j.geoderma.2021.115121_b0505) 2010; 26 Badgery (10.1016/j.geoderma.2021.115121_b0015) 2013; 51 Liu (10.1016/j.geoderma.2021.115121_b0295) 2010; 20 Jastrow (10.1016/j.geoderma.2021.115121_b0205) 2007; 80 Shipitalo (10.1016/j.geoderma.2021.115121_b0405) 1989; 45 Ge (10.1016/j.geoderma.2021.115121_b0145) 2012; 48 Kramer (10.1016/j.geoderma.2021.115121_b0245) 2012; 18 Davidson (10.1016/j.geoderma.2021.115121_b0090) 2006; 12 Lavallee (10.1016/j.geoderma.2021.115121_b0275) 2019; 26 Zhao (10.1016/j.geoderma.2021.115121_b0535) 2018; 115 Wang (10.1016/j.geoderma.2021.115121_b0465) 2019; 135 Bierke (10.1016/j.geoderma.2021.115121_b0050) 2008; 146 Khan (10.1016/j.geoderma.2021.115121_b0235) 2016; 138 Hobley (10.1016/j.geoderma.2021.115121_b0170) 2015; 390 Benbi (10.1016/j.geoderma.2021.115121_b0040) 2015; 25 Kaiser (10.1016/j.geoderma.2021.115121_b0215) 2000; 31 Six (10.1016/j.geoderma.2021.115121_b0415) 2002; 241 Sasakawa (10.1016/j.geoderma.2021.115121_b0400) 1978; 62 Chen (10.1016/j.geoderma.2021.115121_b0070) 2020; 292 Kögel-Knabner (10.1016/j.geoderma.2021.115121_b0240) 2010; 157 Ge (10.1016/j.geoderma.2021.115121_b0140) 2013; 113 Lu (10.1016/j.geoderma.2021.115121_b0320) 2004; 71 Williams (10.1016/j.geoderma.2021.115121_b0495) 2014; 48 Zhu (10.1016/j.geoderma.2021.115121_b0565) 2016; 13 Wiesmeier (10.1016/j.geoderma.2021.115121_b0485) 2013; 176 Manjaiah (10.1016/j.geoderma.2021.115121_b0330) 2000; 32 Liu (10.1016/j.geoderma.2021.115121_b0315) 2016; 13 Guo (10.1016/j.geoderma.2021.115121_b0155) 2001; 3 Rowley (10.1016/j.geoderma.2021.115121_b0380) 2018; 137 Banerjee (10.1016/j.geoderma.2021.115121_b0025) 2006; 119 Pan (10.1016/j.geoderma.2021.115121_b0350) 2003; 10 Sokol (10.1016/j.geoderma.2021.115121_b0430) 2018; 12 Atere (10.1016/j.geoderma.2021.115121_b0010) 2018; 445 Yudina (10.1016/j.geoderma.2021.115121_b0515) 2018; 51 Zamanian (10.1016/j.geoderma.2021.115121_b0520) 2016; 157 Zhou (10.1016/j.geoderma.2021.115121_b0545) 2014; 2014 Alam (10.1016/j.geoderma.2021.115121_b0005) 2018; 183 Kuzyakov (10.1016/j.geoderma.2021.115121_b0265) 2019; 135 Saree (10.1016/j.geoderma.2021.115121_b0395) 2012; 3 Bharati (10.1016/j.geoderma.2021.115121_b0045) 2001; 3 Sahrawat (10.1016/j.geoderma.2021.115121_b0385) 2004; 35 Khan (10.1016/j.geoderma.2021.115121_b0230) 2016; 271 Wang (10.1016/j.geoderma.2021.115121_b0470) 2018; 122 Fierer (10.1016/j.geoderma.2021.115121_b0120) 2003; 45 Zhu (10.1016/j.geoderma.2021.115121_b0555) 2017; 416 Clarholm (10.1016/j.geoderma.2021.115121_b0075) 2013; 63 Du (10.1016/j.geoderma.2021.115121_b0105) 2020; 375 Moore (10.1016/j.geoderma.2021.115121_b0335) 2001; 166 Witt (10.1016/j.geoderma.2021.115121_b0500) 2000; 225 Bailey (10.1016/j.geoderma.2021.115121_b0020) 2019; 14 Barral (10.1016/j.geoderma.2021.115121_b0035) 1998; 46 Torn (10.1016/j.geoderma.2021.115121_b0445) 1997; 389 Li (10.1016/j.geoderma.2021.115121_b0285) 2019; 138 Lutzow (10.1016/j.geoderma.2021.115121_b0325) 2006; 57 Zhu (10.1016/j.geoderma.2021.115121_b0560) 2018; 121 Kayler (10.1016/j.geoderma.2021.115121_b0220) 2011; 8 Wang (10.1016/j.geoderma.2021.115121_b0460) 2004; 68 Kusunoki (10.1016/j.geoderma.2021.115121_b0255) 2015; 61 Fierer (10.1016/j.geoderma.2021.115121_b0125) 2003; 35 Chen (10.1016/j.geoderma.2021.115121_b0060) 2020; 11 Gunina (10.1016/j.geoderma.2021.115121_b0150) 2014; 71 Eickhorst (10.1016/j.geoderma.2021.115121_b0110) 2009; 102 Olk (10.1016/j.geoderma.2021.115121_b0345) 2006; 38 von Lützow (10.1016/j.geoderma.2021.115121_b0455) 2009; 46 Sanaullah (10.1016/j.geoderma.2021.115121_b0390) 2011; 352 Ge (10.1016/j.geoderma.2021.115121_b0135) 2017; 113 Sierra (10.1016/j.geoderma.2021.115121_b0410) 2015; 7 IUSS-WRB (10.1016/j.geoderma.2021.115121_b0200) 2014 Kushwaha (10.1016/j.geoderma.2021.115121_b0250) 2000; 56 Davidson (10.1016/j.geoderma.2021.115121_b0085) 2006; 440 Chen (10.1016/j.geoderma.2021.115121_b0065) 2014; 488-489 Keiluweit (10.1016/j.geoderma.2021.115121_b0225) 2015; 5 Müller (10.1016/j.geoderma.2021.115121_b0340) 2004; 36 |
References_xml | – volume: 389 start-page: 170 year: 1997 end-page: 173 ident: b0445 article-title: Mineral control of soil organic carbon storage and turnover publication-title: Nature – volume: 25 start-page: 3574 year: 2019 end-page: 3577 ident: b0510 article-title: Saving the face of soil aggregates publication-title: Glob. Change Biol. – volume: 135 start-page: 343 year: 2019 end-page: 360 ident: b0265 article-title: Rhizosphere size and shape: Temporal dynamics and spatial stationarity publication-title: Soil Biol. Biochem. – volume: 113 start-page: 108 year: 2017 end-page: 115 ident: b0135 article-title: Stability and dynamics of enzyme activity patterns in the rice rhizosphere: effects of plant growth and temperature publication-title: Soil Biol. Biochem. – volume: 51 start-page: 645 year: 2013 ident: b0015 article-title: Relationship between environmental and land-use variables on soil carbon levels at the regional scale in central New South Wales, Australia publication-title: Soil Res. – volume: 95 start-page: 40 year: 2016 end-page: 50 ident: b0030 article-title: Legacy effects of soil moisture on microbial community structure and N publication-title: Soil Biol. Biochem. – volume: 71 start-page: 95 year: 2014 end-page: 104 ident: b0150 article-title: Pathways of litter C by formation of aggregates and SOM density fractions: Implications from publication-title: Soil Biol. Biochem. – volume: 95 start-page: 243 year: 2016 end-page: 249 ident: b0180 article-title: Lasting effect of soil warming on organic matter decomposition depends on tillage practices publication-title: Soil Biol. Biochem. – volume: 18 start-page: 2594 year: 2012 end-page: 2605 ident: b0245 article-title: Long-term carbon storage through retention of dissolved aromatic acids by reactive particles in soil publication-title: Glob. Change Biol. – volume: 157 start-page: 1 year: 2016 end-page: 17 ident: b0520 article-title: Pedogenic carbonates: Forms and formation processes publication-title: Earth Sci. Rev. – volume: 14 start-page: 083004 year: 2019 ident: b0020 article-title: What do we know about soil carbon destabilization? publication-title: Environ. Res. Lett. – volume: 14 start-page: 89 year: 2014 end-page: 98 ident: b0185 article-title: Differences in soil organic carbon stocks and fraction distributions between rice paddies and upland cropping systems in China publication-title: J. Soils Sediments – volume: 445 start-page: 153 year: 2018 end-page: 167 ident: b0010 article-title: Assimilate allocation by rice and carbon stabilisation in soil: effect of water management and phosphorus fertilisation publication-title: Plant Soil – volume: 98 start-page: 95 year: 2016 end-page: 98 ident: b0160 article-title: Iron addition to soil specifically stabilized lignin publication-title: Soil Biol. Biochem. – volume: 440 start-page: 165 year: 2006 end-page: 173 ident: b0085 article-title: Temperature sensitivity of soil carbon decomposition and feedbacks to climate change publication-title: Nature – volume: 12 start-page: 46 year: 2018 end-page: 53 ident: b0430 article-title: Microbial formation of stable soil carbon is more efficient from belowground than aboveground input publication-title: Nat. Geosci. – volume: 133 start-page: 97 year: 2019 end-page: 107 ident: b0310 article-title: Carbon input and allocation by rice into paddy soils: a review publication-title: Soil Biol. Biochem. – volume: 24 start-page: 1 year: 2018 end-page: 12 ident: b0355 article-title: Carbon input by roots into the soil: Quantification of rhizodeposition from root to ecosystem scale publication-title: Glob. Change Biol. – volume: 64 start-page: 1042 year: 2000 end-page: 1049 ident: b0420 article-title: Soil structure and soil organic matter: II. A normalized stability index and the effect of mineralogy publication-title: Soil Sci. Soc. Am. J. – volume: 153 start-page: 52 year: 2009 end-page: 60 ident: b0540 article-title: Role of chemical protection by binding to oxyhydrates in SOC sequestration in three typical paddy soils under long-term agro-ecosystem experiments from South China publication-title: Geoderma – volume: 33 start-page: 143 year: 2017 end-page: 155 ident: b0300 article-title: Vertical distributions of soil carbon and nitrogen fractions as affected by land-uses in the Ili River Valley publication-title: Chem. Ecol. – volume: 113 start-page: 70 year: 2013 end-page: 78 ident: b0140 article-title: Microbial phototrophic fixation of atmospheric CO publication-title: Geochim. Cosmochim. Acta – volume: 68 start-page: 181 year: 2004 end-page: 189 ident: b0460 article-title: Microbial biomass carbon, nitrogen and phosphorus in the soil profiles of different vegetation covers established for soil rehabilitation in a red soil region of southeastern China publication-title: Nutr. Cycl. Agroecosyst. – volume: 223 start-page: 152 year: 2016 end-page: 166 ident: b0175 article-title: Environmental and human influences on organic carbon fractions down the soil profile publication-title: Agric. Ecosyst. Environ. – volume: 122 start-page: 211 year: 2018 end-page: 219 ident: b0470 article-title: Root derived carbon transport extends the rhizosphere of rice compared to wheat publication-title: Soil Biol. Biochem. – volume: 225 start-page: 263 year: 2000 end-page: 278 ident: b0500 article-title: Crop rotation and residue management effects on carbon sequestration, nitrogen cycling and productivity of irrigated rice systems publication-title: Plant Soil – volume: 271 start-page: 115 year: 2016 end-page: 123 ident: b0230 article-title: Microbial biomass, fungal and bacterial residues, and their relationships to the soil organic matter C/N/P/S ratios publication-title: Geoderma – volume: 45 start-page: 357 year: 1989 end-page: 374 ident: b0405 article-title: Chemistry and micromorphology of aggregation in earthworm casts publication-title: Geoderma – volume: 338 start-page: 30 year: 2019 end-page: 39 ident: b0305 article-title: Initial utilization of rhizodeposits with rice growth in paddy soils: Rhizosphere and N fertilization effects publication-title: Geoderma – volume: 488-489 start-page: 268 year: 2014 end-page: 274 ident: b0065 article-title: Fate of publication-title: Sci. Total Environ. – volume: 176 start-page: 39 year: 2013 end-page: 52 ident: b0485 article-title: Amount, distribution and driving factors of soil organic carbon and nitrogen in cropland and grassland soils of southeast Germany (Bavaria) publication-title: Agric. Ecosyst. Environ. – volume: 102 start-page: 168 year: 2009 end-page: 178 ident: b0110 article-title: Management-induced structural dynamics in paddy soils of south east China simulated in microcosms publication-title: Soil Tillage Res. – volume: 137 start-page: 27 year: 2018 end-page: 49 ident: b0380 article-title: Calcium-mediated stabilisation of soil organic carbon publication-title: Biogeochemistry – volume: 397 start-page: 189 year: 2015 end-page: 200 ident: b0435 article-title: Differences in fertilization impacts on organic carbon content and stability in a paddy and an upland soil in subtropical China publication-title: Plant Soil – volume: 48 start-page: 8498 year: 2014 end-page: 8506 ident: b0495 article-title: Localized flux maxima of arsenic, lead, and iron around root apices in flooded lowland rice publication-title: Environ. Sci. Technol. – volume: 45 start-page: 527 year: 2001 end-page: 533 ident: b0115 article-title: Fractionation of organic matter due to reaction with ferrihydrite: coprecipitation versus adsorption publication-title: Environ. Sci. Technol. – volume: 63 start-page: 142 year: 2013 end-page: 153 ident: b0075 article-title: Translocation of metals by trees and fungi regulates pH, soil organic matter turnover and nitrogen availability in acidic forest soils publication-title: Soil Biol. Biochem. – volume: 5 start-page: 588 year: 2015 end-page: 595 ident: b0225 article-title: Mineral protection of soil carbon counteracted by root exudates publication-title: Nat. Clim. Change – volume: 56 start-page: 693 year: 2010 end-page: 704 ident: b0290 article-title: Spatial variability of soil microbial biomass carbon, nitrogen and phosphorus in a hilly red soil landscape in subtropical China publication-title: Soil Sci. Plant Nutr. – volume: 157 start-page: 1 year: 2010 end-page: 14 ident: b0240 article-title: Biogeochemistry of paddy soils publication-title: Geoderma – start-page: 1 year: 2014 end-page: 116 ident: b0200 article-title: World Reference Base for Soil Resources 2014: International soil classification system for naming soils and creating legends for soil maps publication-title: World Soil Reports – volume: 71 start-page: 1 year: 2004 end-page: 15 ident: b0320 article-title: Contribution of plant photosynthates to dissolved organic carbon in a flooded rice soil publication-title: Biogeochemistry – volume: 53 start-page: 419 year: 2017 end-page: 429 ident: b0530 article-title: Nitrogen fertilization increases rhizodeposit incorporation into microbial biomass and reduces soil organic matter losses publication-title: Biol. Fertil. Soils – volume: 121 start-page: 187 year: 2004 end-page: 195 ident: b0440 article-title: Relationships between surface soil organic carbon pool and site variables publication-title: Geoderma – volume: 38 start-page: 3303 year: 2006 end-page: 3312 ident: b0345 article-title: Chemical stabilization of soil organic nitrogen by phenolic lignin residues in anaerobic agroecosystems publication-title: Soil Biol. Biochem. – volume: 25 start-page: 534 year: 2015 end-page: 545 ident: b0040 article-title: Sensitivity of labile soil organic carbon pools to long-term fertilizer, straw and manure management in rice-wheat system publication-title: Pedosphere – volume: 48 start-page: 39 year: 2012 end-page: 46 ident: b0145 article-title: Biological carbon assimilation and dynamics in a flooded rice - Soil system publication-title: Soil Biol. Biochem. – volume: 138 start-page: 262 year: 2019 end-page: 273 ident: b0285 article-title: Macroaggregates as biochemically functional hotspots in soil matrix: evidence from a rice paddy under long-term fertilization treatments in the Taihu Lake Plain, eastern China publication-title: Appl. Soil Ecol. – volume: 46 start-page: 261 year: 1998 end-page: 272 ident: b0035 article-title: Effects of iron and organic matter on the porosity and structural stability of soil aggregates publication-title: Soil Tillage Res. – volume: 3 start-page: 25 year: 2001 end-page: 32 ident: b0045 article-title: Influence of flooded and non-flooded conditions on methane efflux from two soils planted to rice publication-title: Chemosphere-Global Change Sci. – volume: 26 start-page: 2 year: 2010 end-page: 11 ident: b0505 article-title: Soil carbon dynamics in saline and sodic soils: a review publication-title: Soil Use Manag. – volume: 146 start-page: 48 year: 2008 end-page: 57 ident: b0050 article-title: Crop residue management effects on organic matter in paddy soils — the lignin component publication-title: Geoderma – volume: 3 start-page: 147 year: 2012 end-page: 152 ident: b0395 article-title: Soil carbon cequestration affected by cropping changes from upland maize to flooded rice cultivation publication-title: J. Sustainable Energy Environ. – volume: 46 start-page: 1 year: 2009 end-page: 15 ident: b0455 article-title: Temperature sensitivity of soil organic matter decomposition—what do we know? publication-title: Biol. Fertil. Soils – volume: 26 start-page: 15909 year: 2010 end-page: 15919 ident: b0195 article-title: Metal cation complexation with natural organic matter in aqueous solutions: Molecular dynamics simulations and potentials of mean force publication-title: Langmuir – volume: 13 start-page: 6565 year: 2016 end-page: 6586 ident: b0315 article-title: Microbial activity promoted with organic carbon accumulation in macroaggregates of paddy soils under long-term rice cultivation publication-title: Biogeosciences – volume: 138 start-page: 1 year: 2016 end-page: 96 ident: b0235 article-title: Root iron plaque on wetland plants as a dynamic pool of nutrients and contaminants publication-title: Adv. Agron. – volume: 171 start-page: 9 year: 2013 end-page: 18 ident: b0080 article-title: Unraveling the long-term stabilization mechanisms of organic materials in soils by physical fractionation and NMR spectroscopy publication-title: Agric. Ecosyst. Environ. – volume: 36 start-page: 877 year: 2004 end-page: 888 ident: b0340 article-title: Soil organic matter turnover as a function of the soil clay content: consequences for model applications publication-title: Soil Biol. Biochem. – volume: 45 start-page: 63 year: 2003 end-page: 71 ident: b0120 article-title: Influence of drying-rewetting frequency on soil bacterial community structure publication-title: Microb. Ecol. – volume: 2014 start-page: 1 year: 2014 end-page: 8 ident: b0545 article-title: Soil physicochemical and biological properties of paddy-upland rotation: a review publication-title: Sci. World J. – volume: 62 start-page: 665 year: 1978 end-page: 669 ident: b0400 article-title: Comparison of the uptake of nitrate and ammonium by rice seedlings: influences of light, temperature, oxygen concentration, exogenous sucrose, and metabolic inhibitors publication-title: Plant Physiol. – volume: 292 start-page: 106816 year: 2020 ident: b0070 article-title: Microbial carbon use efficiency, biomass turnover, and necromass accumulation in paddy soil depending on fertilization publication-title: Agric. Ecosyst. Environ. – volume: 39 start-page: 1165 year: 2007 end-page: 1172 ident: b0095 article-title: Microaggregate-associated carbon as a diagnostic fraction for management-induced changes in soil organic carbon in two Oxisols publication-title: Soil Biol. Biochem. – volume: 3 start-page: 413 year: 2001 end-page: 418 ident: b0155 article-title: Carbon sink in cropland soils and the emission of greenhouse gases from paddy soils: a review of work in China publication-title: Chemosphere -Global Change Sci. – volume: 24 start-page: 2810 year: 2018 end-page: 2817 ident: b0525 article-title: Nitrogen fertilization raises CO publication-title: Glob. Change Biol. – volume: 8 start-page: 780 year: 2015 end-page: 783 ident: b0100 article-title: Soil carbon storage controlled by interactions between geochemistry and climate publication-title: Nat. Geosci. – volume: 57 start-page: 426 year: 2006 end-page: 445 ident: b0325 article-title: Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions - a review publication-title: Eur. J. Soil Sci. – volume: 20 start-page: 666 year: 2010 end-page: 673 ident: b0295 article-title: Impact of land use and soil fertility on distributions of soil aggregate fractions and some nutrients publication-title: Pedosphere – volume: 63 start-page: 22 year: 2012 end-page: 31 ident: b0490 article-title: Aggregate stability and physical protection of soil organic carbon in semi-arid steppe soils publication-title: Eur. J. Soil Sci. – volume: 32 start-page: 273 year: 2000 end-page: 278 ident: b0330 article-title: Soil organic carbon stocks, storage profile and microbial biomass under different crop management systems in a tropical agricultural ecosystem publication-title: Biol. Fertil. Soils – volume: 121 start-page: 67 year: 2018 end-page: 76 ident: b0560 article-title: Microbial stoichiometric flexibility regulates rice straw mineralization and its priming effect in paddy soil publication-title: Soil Biol. Biochem. – volume: 12 start-page: 154 year: 2006 end-page: 164 ident: b0090 article-title: On the variability of respiration in terrestrial ecosystems: moving beyond Q10 publication-title: Global Change Biol. – volume: 91 start-page: 781 year: 2011 end-page: 806 ident: b0280 article-title: Luvisolic soils of Canada: Genesis, distribution, and classification publication-title: Can. J. Soil Sci. – volume: 135 start-page: 134 year: 2019 end-page: 143 ident: b0475 article-title: Labile carbon matters more than temperature for enzyme activity in paddy soil publication-title: Soil Biol. Biochem. – volume: 115 start-page: 4045 year: 2018 end-page: 4050 ident: b0535 article-title: Economics- and policy-driven organic carbon input enhancement dominates soil organic carbon accumulation in Chinese croplands publication-title: Proc. Natl. Acad. Sci. – volume: 390 start-page: 111 year: 2015 end-page: 127 ident: b0170 article-title: Drivers of soil organic carbon storage and vertical distribution in Eastern Australia publication-title: Plant Soil – volume: 241 start-page: 155 year: 2002 end-page: 176 ident: b0415 article-title: Stabilization mechanisms of soil organic matter: implications for C-saturation of soils publication-title: Plant Soil – volume: 119 start-page: 173 year: 2006 end-page: 189 ident: b0025 article-title: Dynamics of organic carbon and microbial biomass in alluvial soil with tillage and amendments in rice-wheat systems publication-title: Environ. Monit. Assess. – volume: 31 start-page: 711 year: 2000 end-page: 725 ident: b0215 article-title: The role of DOM sorption to mineral surfaces in the preservation of organic matter in soils publication-title: Org Geochem. – volume: 183 start-page: 28 year: 2018 end-page: 41 ident: b0005 article-title: Minimal soil disturbance and increased residue retention increase soil carbon in rice-based cropping systems on the Eastern Gangetic Plain publication-title: Soil Tillage Res. – volume: 61 start-page: 910 year: 2015 end-page: 916 ident: b0255 article-title: Effect of water management on the vivianite content of paddy-rice roots publication-title: Soil Science and Plant Nutrition – volume: 84 start-page: 27 year: 2018 end-page: 34 ident: b0370 article-title: Effects of biotic and abiotic factors on soil organic matter mineralization: experiments and structural modeling analysis publication-title: Eur. J. Soil Biol. – volume: 135 start-page: 48 year: 2019 end-page: 50 ident: b0465 article-title: Does an ‘iron gate’ carbon preservation mechanism exist in organic–rich wetlands? publication-title: Soil Biol. Biochem. – volume: 325 start-page: 141 year: 2018 end-page: 151 ident: b0570 article-title: Wetland saturation with introduced Fe(III) reduces total carbon emissions and promotes the sequestration of DOC publication-title: Geoderma – volume: 56 start-page: 153 year: 2000 end-page: 166 ident: b0250 article-title: Variations in soil microbial biomass and N availability due to residue and tillage management in a dryland rice agroecosystem publication-title: Soil Tillage Res. – volume: 364 start-page: 273 year: 2013 end-page: 285 ident: b0360 article-title: Estimation of rhizodeposition at field scale: upscaling of a publication-title: Plant Soil – volume: 26 start-page: 261 year: 2019 end-page: 273 ident: b0275 article-title: Conceptualizing soil organic matter into particulate and mineral-associated forms to address global change in the 21st century publication-title: Glob. Change Biol. – volume: 9 year: 2014 ident: b0550 article-title: Effects of different tillage and straw return on soil organic carbon in a rice-wheat rotation system publication-title: PLoS ONE – volume: 26 start-page: 3738 year: 2020 end-page: 3751 ident: b0375 article-title: Dramatic loss of inorganic carbon by nitrogen-induced soil acidification in Chinese croplands publication-title: Glob. Change Biol. – volume: 10 start-page: 100145 year: 2019 ident: b0480 article-title: Biogeochemical cycles of key elements in the paddy-rice rhizosphere: Microbial mechanisms and coupling processes publication-title: Rhizosphere – volume: 51 start-page: 1326 year: 2018 end-page: 1347 ident: b0515 article-title: From the notion of elementary soil particle to the particle-size and microaggregate-size distribution analyses: a review publication-title: Eurasian Soil Sci. – volume: 10 start-page: 79 year: 2003 end-page: 92 ident: b0350 article-title: Storage and sequestration potential of topsoil organic carbon in China's paddy soils publication-title: Global Change Biol. – volume: 166 start-page: 38 year: 2001 end-page: 47 ident: b0335 article-title: Some controls on the release of dissolved organic carbon by plant tissues and soils publication-title: Soil Sci. – volume: 35 start-page: 167 year: 2003 end-page: 176 ident: b0125 article-title: Variations in microbial community composition through two soil depth profiles publication-title: Soil Biol. Biochem. – volume: 180 start-page: 366 year: 2017 end-page: 380 ident: b0450 article-title: Paddy management on different soil types does not promote lignin accumulation publication-title: J. Plant Nutr. Soil Sci. – volume: 86 start-page: 153 year: 2010 end-page: 160 ident: b0190 article-title: Organic carbon fractions affected by long-term fertilization in a subtropical paddy soil publication-title: Nutr. Cycl. Agroecosyst. – volume: 13 start-page: 4481 year: 2016 end-page: 4489 ident: b0565 article-title: Fate of rice shoot and root residues, rhizodeposits, and microbe-assimilated carbon in paddy soil - Part 1: decomposition and priming effect publication-title: Biogeosciences – volume: 8 start-page: 2895 year: 2011 end-page: 2906 ident: b0220 article-title: Application of δ publication-title: Biogeosciences – volume: 352 start-page: 277 year: 2011 end-page: 288 ident: b0390 article-title: How does drought stress influence the decomposition of plant litter with contrasting quality in a grassland ecosystem? publication-title: Plant Soil – volume: 568 start-page: 88 year: 2019 end-page: 92 ident: b0365 article-title: Climate-land-use interactions shape tropical mountain biodiversity and ecosystem functions publication-title: Nature – volume: 11 start-page: 349 year: 2001 end-page: 357 ident: b0130 article-title: Long-term impact of soil management on microbial biomass C, N and P in rice-based cropping system publication-title: Pedosphere – volume: 31 start-page: 632 year: 2020 end-page: 645 ident: b0210 article-title: Temperature sensitivity of decomposition of soil organic matter fractions increases with their turnover time publication-title: Land Degrad. Dev. – volume: 416 start-page: 243 year: 2017 end-page: 257 ident: b0555 article-title: Fate of rice shoot and root residues, rhizodeposits, and microbial assimilated carbon in paddy soil - part 2: turnover and microbial utilization publication-title: Plant Soil – volume: 375 start-page: 114512 year: 2020 ident: b0105 article-title: An iron-dependent burst of hydroxyl radicals stimulates straw decomposition and CO publication-title: Geoderma – volume: 11 start-page: 2255 year: 2020 ident: b0060 article-title: Iron-mediated organic matter decomposition in humid soils can counteract protection publication-title: Nat. Commun. – volume: 7 start-page: 335 year: 2015 end-page: 356 ident: b0410 article-title: Sensitivity of decomposition rates of soil organic matter with respect to simultaneous changes in temperature and moisture publication-title: J. Adv. Model. Earth Syst. – volume: 55 start-page: 367 year: 2004 end-page: 379 ident: b0425 article-title: Quantitative solid-state 13C NMR spectroscopy of organic matter fractions in lowland rice soils publication-title: Eur. J. Soil Sci. – volume: 560 start-page: 80 year: 2018 end-page: 83 ident: b0055 article-title: Globally rising soil heterotrophic respiration over recent decades publication-title: Nature – volume: 80 start-page: 5 year: 2007 end-page: 23 ident: b0205 article-title: Mechanisms controlling soil carbon turnover and their potential application for enhancing carbon sequestration publication-title: Clim. Change – volume: 35 start-page: 399 year: 2004 end-page: 411 ident: b0385 article-title: Ammonium production in submerged soils and sediments: the role of reducible iron publication-title: Commun. Soil Sci. Plant Anal. – volume: 95 start-page: 40 year: 2016 ident: 10.1016/j.geoderma.2021.115121_b0030 article-title: Legacy effects of soil moisture on microbial community structure and N2O emissions publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2015.12.004 – volume: 14 start-page: 89 issue: 1 year: 2014 ident: 10.1016/j.geoderma.2021.115121_b0185 article-title: Differences in soil organic carbon stocks and fraction distributions between rice paddies and upland cropping systems in China publication-title: J. Soils Sediments doi: 10.1007/s11368-013-0789-9 – volume: 31 start-page: 632 issue: 5 year: 2020 ident: 10.1016/j.geoderma.2021.115121_b0210 article-title: Temperature sensitivity of decomposition of soil organic matter fractions increases with their turnover time publication-title: Land Degrad. Dev. doi: 10.1002/ldr.3477 – volume: 35 start-page: 399 issue: 3-4 year: 2004 ident: 10.1016/j.geoderma.2021.115121_b0385 article-title: Ammonium production in submerged soils and sediments: the role of reducible iron publication-title: Commun. Soil Sci. Plant Anal. doi: 10.1081/CSS-120029721 – volume: 389 start-page: 170 issue: 6647 year: 1997 ident: 10.1016/j.geoderma.2021.115121_b0445 article-title: Mineral control of soil organic carbon storage and turnover publication-title: Nature doi: 10.1038/38260 – volume: 121 start-page: 187 issue: 3-4 year: 2004 ident: 10.1016/j.geoderma.2021.115121_b0440 article-title: Relationships between surface soil organic carbon pool and site variables publication-title: Geoderma doi: 10.1016/j.geoderma.2003.11.003 – volume: 325 start-page: 141 year: 2018 ident: 10.1016/j.geoderma.2021.115121_b0570 article-title: Wetland saturation with introduced Fe(III) reduces total carbon emissions and promotes the sequestration of DOC publication-title: Geoderma doi: 10.1016/j.geoderma.2018.03.031 – volume: 39 start-page: 1165 issue: 5 year: 2007 ident: 10.1016/j.geoderma.2021.115121_b0095 article-title: Microaggregate-associated carbon as a diagnostic fraction for management-induced changes in soil organic carbon in two Oxisols publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2006.12.024 – volume: 180 start-page: 366 issue: 3 year: 2017 ident: 10.1016/j.geoderma.2021.115121_b0450 article-title: Paddy management on different soil types does not promote lignin accumulation publication-title: J. Plant Nutr. Soil Sci. doi: 10.1002/jpln.201600542 – volume: 98 start-page: 95 year: 2016 ident: 10.1016/j.geoderma.2021.115121_b0160 article-title: Iron addition to soil specifically stabilized lignin publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2016.04.010 – volume: 3 start-page: 413 issue: 4 year: 2001 ident: 10.1016/j.geoderma.2021.115121_b0155 article-title: Carbon sink in cropland soils and the emission of greenhouse gases from paddy soils: a review of work in China publication-title: Chemosphere -Global Change Sci. doi: 10.1016/S1465-9972(01)00019-8 – volume: 12 start-page: 154 year: 2006 ident: 10.1016/j.geoderma.2021.115121_b0090 article-title: On the variability of respiration in terrestrial ecosystems: moving beyond Q10 publication-title: Global Change Biol. doi: 10.1111/j.1365-2486.2005.01065.x – volume: 13 start-page: 4481 issue: 15 year: 2016 ident: 10.1016/j.geoderma.2021.115121_b0565 article-title: Fate of rice shoot and root residues, rhizodeposits, and microbe-assimilated carbon in paddy soil - Part 1: decomposition and priming effect publication-title: Biogeosciences doi: 10.5194/bg-13-4481-2016 – volume: 292 start-page: 106816 year: 2020 ident: 10.1016/j.geoderma.2021.115121_b0070 article-title: Microbial carbon use efficiency, biomass turnover, and necromass accumulation in paddy soil depending on fertilization publication-title: Agric. Ecosyst. Environ. doi: 10.1016/j.agee.2020.106816 – volume: 166 start-page: 38 issue: 1 year: 2001 ident: 10.1016/j.geoderma.2021.115121_b0335 article-title: Some controls on the release of dissolved organic carbon by plant tissues and soils publication-title: Soil Sci. doi: 10.1097/00010694-200101000-00007 – volume: 364 start-page: 273 issue: 1-2 year: 2013 ident: 10.1016/j.geoderma.2021.115121_b0360 article-title: Estimation of rhizodeposition at field scale: upscaling of a 14C labeling study publication-title: Plant Soil doi: 10.1007/s11104-012-1363-8 – volume: 31 start-page: 711 issue: 7-8 year: 2000 ident: 10.1016/j.geoderma.2021.115121_b0215 article-title: The role of DOM sorption to mineral surfaces in the preservation of organic matter in soils publication-title: Org Geochem. doi: 10.1016/S0146-6380(00)00046-2 – volume: 183 start-page: 28 year: 2018 ident: 10.1016/j.geoderma.2021.115121_b0005 article-title: Minimal soil disturbance and increased residue retention increase soil carbon in rice-based cropping systems on the Eastern Gangetic Plain publication-title: Soil Tillage Res. doi: 10.1016/j.still.2018.05.009 – volume: 488-489 start-page: 268 year: 2014 ident: 10.1016/j.geoderma.2021.115121_b0065 article-title: Fate of 14C-labeled dissolved organic matter in paddy and upland soils in responding to moisture publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2014.04.071 – volume: 24 start-page: 1 issue: 1 year: 2018 ident: 10.1016/j.geoderma.2021.115121_b0355 article-title: Carbon input by roots into the soil: Quantification of rhizodeposition from root to ecosystem scale publication-title: Glob. Change Biol. doi: 10.1111/gcb.13850 – volume: 137 start-page: 27 issue: 1-2 year: 2018 ident: 10.1016/j.geoderma.2021.115121_b0380 article-title: Calcium-mediated stabilisation of soil organic carbon publication-title: Biogeochemistry doi: 10.1007/s10533-017-0410-1 – volume: 2014 start-page: 1 year: 2014 ident: 10.1016/j.geoderma.2021.115121_b0545 article-title: Soil physicochemical and biological properties of paddy-upland rotation: a review publication-title: Sci. World J. – volume: 138 start-page: 262 year: 2019 ident: 10.1016/j.geoderma.2021.115121_b0285 article-title: Macroaggregates as biochemically functional hotspots in soil matrix: evidence from a rice paddy under long-term fertilization treatments in the Taihu Lake Plain, eastern China publication-title: Appl. Soil Ecol. doi: 10.1016/j.apsoil.2019.01.013 – volume: 397 start-page: 189 issue: 1-2 year: 2015 ident: 10.1016/j.geoderma.2021.115121_b0435 article-title: Differences in fertilization impacts on organic carbon content and stability in a paddy and an upland soil in subtropical China publication-title: Plant Soil doi: 10.1007/s11104-015-2611-5 – volume: 445 start-page: 153 issue: 1-2 year: 2018 ident: 10.1016/j.geoderma.2021.115121_b0010 article-title: Assimilate allocation by rice and carbon stabilisation in soil: effect of water management and phosphorus fertilisation publication-title: Plant Soil doi: 10.1007/s11104-018-03905-x – volume: 26 start-page: 2 year: 2010 ident: 10.1016/j.geoderma.2021.115121_b0505 article-title: Soil carbon dynamics in saline and sodic soils: a review publication-title: Soil Use Manag. doi: 10.1111/j.1475-2743.2009.00251.x – volume: 64 start-page: 1042 issue: 3 year: 2000 ident: 10.1016/j.geoderma.2021.115121_b0420 article-title: Soil structure and soil organic matter: II. A normalized stability index and the effect of mineralogy publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2000.6431042x – volume: 38 start-page: 3303 issue: 11 year: 2006 ident: 10.1016/j.geoderma.2021.115121_b0345 article-title: Chemical stabilization of soil organic nitrogen by phenolic lignin residues in anaerobic agroecosystems publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2006.04.009 – volume: 375 start-page: 114512 year: 2020 ident: 10.1016/j.geoderma.2021.115121_b0105 article-title: An iron-dependent burst of hydroxyl radicals stimulates straw decomposition and CO2 emission from soil hotspots: Consequences of Fenton or Fenton-like reactions publication-title: Geoderma doi: 10.1016/j.geoderma.2020.114512 – volume: 25 start-page: 534 issue: 4 year: 2015 ident: 10.1016/j.geoderma.2021.115121_b0040 article-title: Sensitivity of labile soil organic carbon pools to long-term fertilizer, straw and manure management in rice-wheat system publication-title: Pedosphere doi: 10.1016/S1002-0160(15)30034-5 – volume: 51 start-page: 645 issue: 8 year: 2013 ident: 10.1016/j.geoderma.2021.115121_b0015 article-title: Relationship between environmental and land-use variables on soil carbon levels at the regional scale in central New South Wales, Australia publication-title: Soil Res. doi: 10.1071/SR12358 – volume: 18 start-page: 2594 issue: 8 year: 2012 ident: 10.1016/j.geoderma.2021.115121_b0245 article-title: Long-term carbon storage through retention of dissolved aromatic acids by reactive particles in soil publication-title: Glob. Change Biol. doi: 10.1111/j.1365-2486.2012.02681.x – volume: 121 start-page: 67 year: 2018 ident: 10.1016/j.geoderma.2021.115121_b0560 article-title: Microbial stoichiometric flexibility regulates rice straw mineralization and its priming effect in paddy soil publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2018.03.003 – volume: 440 start-page: 165 issue: 7081 year: 2006 ident: 10.1016/j.geoderma.2021.115121_b0085 article-title: Temperature sensitivity of soil carbon decomposition and feedbacks to climate change publication-title: Nature doi: 10.1038/nature04514 – volume: 45 start-page: 527 issue: 2 year: 2001 ident: 10.1016/j.geoderma.2021.115121_b0115 article-title: Fractionation of organic matter due to reaction with ferrihydrite: coprecipitation versus adsorption publication-title: Environ. Sci. Technol. doi: 10.1021/es1023898 – volume: 63 start-page: 22 year: 2012 ident: 10.1016/j.geoderma.2021.115121_b0490 article-title: Aggregate stability and physical protection of soil organic carbon in semi-arid steppe soils publication-title: Eur. J. Soil Sci. doi: 10.1111/j.1365-2389.2011.01418.x – volume: 26 start-page: 15909 issue: 20 year: 2010 ident: 10.1016/j.geoderma.2021.115121_b0195 article-title: Metal cation complexation with natural organic matter in aqueous solutions: Molecular dynamics simulations and potentials of mean force publication-title: Langmuir doi: 10.1021/la102535n – volume: 122 start-page: 211 year: 2018 ident: 10.1016/j.geoderma.2021.115121_b0470 article-title: Root derived carbon transport extends the rhizosphere of rice compared to wheat publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2018.03.024 – volume: 55 start-page: 367 year: 2004 ident: 10.1016/j.geoderma.2021.115121_b0425 article-title: Quantitative solid-state 13C NMR spectroscopy of organic matter fractions in lowland rice soils publication-title: Eur. J. Soil Sci. doi: 10.1111/j.1365-2389.2004.00600.x – volume: 9 issue: 2 year: 2014 ident: 10.1016/j.geoderma.2021.115121_b0550 article-title: Effects of different tillage and straw return on soil organic carbon in a rice-wheat rotation system publication-title: PLoS ONE doi: 10.1371/journal.pone.0088900 – volume: 223 start-page: 152 year: 2016 ident: 10.1016/j.geoderma.2021.115121_b0175 article-title: Environmental and human influences on organic carbon fractions down the soil profile publication-title: Agric. Ecosyst. Environ. doi: 10.1016/j.agee.2016.03.004 – volume: 91 start-page: 781 issue: 5 year: 2011 ident: 10.1016/j.geoderma.2021.115121_b0280 article-title: Luvisolic soils of Canada: Genesis, distribution, and classification publication-title: Can. J. Soil Sci. doi: 10.4141/cjss2011-014 – volume: 225 start-page: 263 year: 2000 ident: 10.1016/j.geoderma.2021.115121_b0500 article-title: Crop rotation and residue management effects on carbon sequestration, nitrogen cycling and productivity of irrigated rice systems publication-title: Plant Soil doi: 10.1023/A:1026594118145 – volume: 146 start-page: 48 issue: 1-2 year: 2008 ident: 10.1016/j.geoderma.2021.115121_b0050 article-title: Crop residue management effects on organic matter in paddy soils — the lignin component publication-title: Geoderma doi: 10.1016/j.geoderma.2008.05.004 – volume: 135 start-page: 48 year: 2019 ident: 10.1016/j.geoderma.2021.115121_b0465 article-title: Does an ‘iron gate’ carbon preservation mechanism exist in organic–rich wetlands? publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2019.04.011 – volume: 56 start-page: 153 issue: 3-4 year: 2000 ident: 10.1016/j.geoderma.2021.115121_b0250 article-title: Variations in soil microbial biomass and N availability due to residue and tillage management in a dryland rice agroecosystem publication-title: Soil Tillage Res. doi: 10.1016/S0167-1987(00)00135-5 – volume: 35 start-page: 167 issue: 1 year: 2003 ident: 10.1016/j.geoderma.2021.115121_b0125 article-title: Variations in microbial community composition through two soil depth profiles publication-title: Soil Biol. Biochem. doi: 10.1016/S0038-0717(02)00251-1 – volume: 32 start-page: 273 issue: 4 year: 2000 ident: 10.1016/j.geoderma.2021.115121_b0330 article-title: Soil organic carbon stocks, storage profile and microbial biomass under different crop management systems in a tropical agricultural ecosystem publication-title: Biol. Fertil. Soils doi: 10.1007/s003740000248 – volume: 61 start-page: 910 issue: 6 year: 2015 ident: 10.1016/j.geoderma.2021.115121_b0255 article-title: Effect of water management on the vivianite content of paddy-rice roots publication-title: Soil Science and Plant Nutrition doi: 10.1080/00380768.2015.1089787 – volume: 71 start-page: 1 issue: 1 year: 2004 ident: 10.1016/j.geoderma.2021.115121_b0320 article-title: Contribution of plant photosynthates to dissolved organic carbon in a flooded rice soil publication-title: Biogeochemistry doi: 10.1007/s10533-004-3258-0 – volume: 176 start-page: 39 year: 2013 ident: 10.1016/j.geoderma.2021.115121_b0485 article-title: Amount, distribution and driving factors of soil organic carbon and nitrogen in cropland and grassland soils of southeast Germany (Bavaria) publication-title: Agric. Ecosyst. Environ. doi: 10.1016/j.agee.2013.05.012 – volume: 13 start-page: 6565 issue: 24 year: 2016 ident: 10.1016/j.geoderma.2021.115121_b0315 article-title: Microbial activity promoted with organic carbon accumulation in macroaggregates of paddy soils under long-term rice cultivation publication-title: Biogeosciences doi: 10.5194/bg-13-6565-2016 – volume: 7 start-page: 335 issue: 1 year: 2015 ident: 10.1016/j.geoderma.2021.115121_b0410 article-title: Sensitivity of decomposition rates of soil organic matter with respect to simultaneous changes in temperature and moisture publication-title: J. Adv. Model. Earth Syst. doi: 10.1002/2014MS000358 – volume: 20 start-page: 666 issue: 5 year: 2010 ident: 10.1016/j.geoderma.2021.115121_b0295 article-title: Impact of land use and soil fertility on distributions of soil aggregate fractions and some nutrients publication-title: Pedosphere doi: 10.1016/S1002-0160(10)60056-2 – volume: 416 start-page: 243 issue: 1-2 year: 2017 ident: 10.1016/j.geoderma.2021.115121_b0555 article-title: Fate of rice shoot and root residues, rhizodeposits, and microbial assimilated carbon in paddy soil - part 2: turnover and microbial utilization publication-title: Plant Soil doi: 10.1007/s11104-017-3210-4 – volume: 84 start-page: 27 year: 2018 ident: 10.1016/j.geoderma.2021.115121_b0370 article-title: Effects of biotic and abiotic factors on soil organic matter mineralization: experiments and structural modeling analysis publication-title: Eur. J. Soil Biol. doi: 10.1016/j.ejsobi.2017.12.003 – volume: 51 start-page: 1326 issue: 11 year: 2018 ident: 10.1016/j.geoderma.2021.115121_b0515 article-title: From the notion of elementary soil particle to the particle-size and microaggregate-size distribution analyses: a review publication-title: Eurasian Soil Sci. doi: 10.1134/S1064229318110091 – volume: 115 start-page: 4045 issue: 16 year: 2018 ident: 10.1016/j.geoderma.2021.115121_b0535 article-title: Economics- and policy-driven organic carbon input enhancement dominates soil organic carbon accumulation in Chinese croplands publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1700292114 – volume: 560 start-page: 80 issue: 7716 year: 2018 ident: 10.1016/j.geoderma.2021.115121_b0055 article-title: Globally rising soil heterotrophic respiration over recent decades publication-title: Nature doi: 10.1038/s41586-018-0358-x – volume: 390 start-page: 111 issue: 1-2 year: 2015 ident: 10.1016/j.geoderma.2021.115121_b0170 article-title: Drivers of soil organic carbon storage and vertical distribution in Eastern Australia publication-title: Plant Soil doi: 10.1007/s11104-015-2380-1 – volume: 26 start-page: 261 issue: 1 year: 2019 ident: 10.1016/j.geoderma.2021.115121_b0275 article-title: Conceptualizing soil organic matter into particulate and mineral-associated forms to address global change in the 21st century publication-title: Glob. Change Biol. doi: 10.1111/gcb.14859 – volume: 113 start-page: 70 year: 2013 ident: 10.1016/j.geoderma.2021.115121_b0140 article-title: Microbial phototrophic fixation of atmospheric CO2 in China subtropical upland and paddy soils publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2013.03.020 – volume: 153 start-page: 52 issue: 1-2 year: 2009 ident: 10.1016/j.geoderma.2021.115121_b0540 article-title: Role of chemical protection by binding to oxyhydrates in SOC sequestration in three typical paddy soils under long-term agro-ecosystem experiments from South China publication-title: Geoderma doi: 10.1016/j.geoderma.2009.07.018 – volume: 119 start-page: 173 issue: 1-3 year: 2006 ident: 10.1016/j.geoderma.2021.115121_b0025 article-title: Dynamics of organic carbon and microbial biomass in alluvial soil with tillage and amendments in rice-wheat systems publication-title: Environ. Monit. Assess. doi: 10.1007/s10661-005-9021-8 – volume: 11 start-page: 349 year: 2001 ident: 10.1016/j.geoderma.2021.115121_b0130 article-title: Long-term impact of soil management on microbial biomass C, N and P in rice-based cropping system publication-title: Pedosphere – volume: 568 start-page: 88 issue: 7750 year: 2019 ident: 10.1016/j.geoderma.2021.115121_b0365 article-title: Climate-land-use interactions shape tropical mountain biodiversity and ecosystem functions publication-title: Nature doi: 10.1038/s41586-019-1048-z – volume: 48 start-page: 8498 issue: 15 year: 2014 ident: 10.1016/j.geoderma.2021.115121_b0495 article-title: Localized flux maxima of arsenic, lead, and iron around root apices in flooded lowland rice publication-title: Environ. Sci. Technol. doi: 10.1021/es501127k – volume: 25 start-page: 3574 issue: 11 year: 2019 ident: 10.1016/j.geoderma.2021.115121_b0510 article-title: Saving the face of soil aggregates publication-title: Glob. Change Biol. doi: 10.1111/gcb.14779 – volume: 157 start-page: 1 year: 2016 ident: 10.1016/j.geoderma.2021.115121_b0520 article-title: Pedogenic carbonates: Forms and formation processes publication-title: Earth Sci. Rev. doi: 10.1016/j.earscirev.2016.03.003 – volume: 352 start-page: 277 issue: 1-2 year: 2011 ident: 10.1016/j.geoderma.2021.115121_b0390 article-title: How does drought stress influence the decomposition of plant litter with contrasting quality in a grassland ecosystem? publication-title: Plant Soil doi: 10.1007/s11104-011-0995-4 – volume: 46 start-page: 1 issue: 1 year: 2009 ident: 10.1016/j.geoderma.2021.115121_b0455 article-title: Temperature sensitivity of soil organic matter decomposition—what do we know? publication-title: Biol. Fertil. Soils doi: 10.1007/s00374-009-0413-8 – volume: 10 start-page: 79 year: 2003 ident: 10.1016/j.geoderma.2021.115121_b0350 article-title: Storage and sequestration potential of topsoil organic carbon in China's paddy soils publication-title: Global Change Biol. doi: 10.1111/j.1365-2486.2003.00717.x – volume: 62 start-page: 665 issue: 4 year: 1978 ident: 10.1016/j.geoderma.2021.115121_b0400 article-title: Comparison of the uptake of nitrate and ammonium by rice seedlings: influences of light, temperature, oxygen concentration, exogenous sucrose, and metabolic inhibitors publication-title: Plant Physiol. doi: 10.1104/pp.62.4.665 – volume: 33 start-page: 143 issue: 2 year: 2017 ident: 10.1016/j.geoderma.2021.115121_b0300 article-title: Vertical distributions of soil carbon and nitrogen fractions as affected by land-uses in the Ili River Valley publication-title: Chem. Ecol. doi: 10.1080/02757540.2016.1268131 – volume: 338 start-page: 30 year: 2019 ident: 10.1016/j.geoderma.2021.115121_b0305 article-title: Initial utilization of rhizodeposits with rice growth in paddy soils: Rhizosphere and N fertilization effects publication-title: Geoderma doi: 10.1016/j.geoderma.2018.11.040 – volume: 3 start-page: 147 year: 2012 ident: 10.1016/j.geoderma.2021.115121_b0395 article-title: Soil carbon cequestration affected by cropping changes from upland maize to flooded rice cultivation publication-title: J. Sustainable Energy Environ. – volume: 68 start-page: 181 issue: 2 year: 2004 ident: 10.1016/j.geoderma.2021.115121_b0460 article-title: Microbial biomass carbon, nitrogen and phosphorus in the soil profiles of different vegetation covers established for soil rehabilitation in a red soil region of southeastern China publication-title: Nutr. Cycl. Agroecosyst. doi: 10.1023/B:FRES.0000017470.14789.2a – volume: 24 start-page: 2810 issue: 7 year: 2018 ident: 10.1016/j.geoderma.2021.115121_b0525 article-title: Nitrogen fertilization raises CO2 efflux from inorganic carbon: a global assessment publication-title: Glob. Change Biol. doi: 10.1111/gcb.14148 – volume: 12 start-page: 46 issue: 1 year: 2018 ident: 10.1016/j.geoderma.2021.115121_b0430 article-title: Microbial formation of stable soil carbon is more efficient from belowground than aboveground input publication-title: Nat. Geosci. doi: 10.1038/s41561-018-0258-6 – volume: 135 start-page: 343 year: 2019 ident: 10.1016/j.geoderma.2021.115121_b0265 article-title: Rhizosphere size and shape: Temporal dynamics and spatial stationarity publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2019.05.011 – volume: 46 start-page: 261 issue: 3-4 year: 1998 ident: 10.1016/j.geoderma.2021.115121_b0035 article-title: Effects of iron and organic matter on the porosity and structural stability of soil aggregates publication-title: Soil Tillage Res. doi: 10.1016/S0167-1987(98)00092-0 – volume: 95 start-page: 243 year: 2016 ident: 10.1016/j.geoderma.2021.115121_b0180 article-title: Lasting effect of soil warming on organic matter decomposition depends on tillage practices publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2015.12.008 – volume: 63 start-page: 142 year: 2013 ident: 10.1016/j.geoderma.2021.115121_b0075 article-title: Translocation of metals by trees and fungi regulates pH, soil organic matter turnover and nitrogen availability in acidic forest soils publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2013.03.019 – volume: 36 start-page: 877 issue: 6 year: 2004 ident: 10.1016/j.geoderma.2021.115121_b0340 article-title: Soil organic matter turnover as a function of the soil clay content: consequences for model applications publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2003.12.015 – volume: 135 start-page: 134 year: 2019 ident: 10.1016/j.geoderma.2021.115121_b0475 article-title: Labile carbon matters more than temperature for enzyme activity in paddy soil publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2019.04.016 – volume: 3 start-page: 25 issue: 1 year: 2001 ident: 10.1016/j.geoderma.2021.115121_b0045 article-title: Influence of flooded and non-flooded conditions on methane efflux from two soils planted to rice publication-title: Chemosphere-Global Change Sci. doi: 10.1016/S1465-9972(00)00034-9 – volume: 157 start-page: 1 issue: 1-2 year: 2010 ident: 10.1016/j.geoderma.2021.115121_b0240 article-title: Biogeochemistry of paddy soils publication-title: Geoderma doi: 10.1016/j.geoderma.2010.03.009 – volume: 271 start-page: 115 year: 2016 ident: 10.1016/j.geoderma.2021.115121_b0230 article-title: Microbial biomass, fungal and bacterial residues, and their relationships to the soil organic matter C/N/P/S ratios publication-title: Geoderma doi: 10.1016/j.geoderma.2016.02.019 – volume: 133 start-page: 97 year: 2019 ident: 10.1016/j.geoderma.2021.115121_b0310 article-title: Carbon input and allocation by rice into paddy soils: a review publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2019.02.019 – volume: 8 start-page: 780 issue: 10 year: 2015 ident: 10.1016/j.geoderma.2021.115121_b0100 article-title: Soil carbon storage controlled by interactions between geochemistry and climate publication-title: Nat. Geosci. doi: 10.1038/ngeo2516 – volume: 8 start-page: 2895 year: 2011 ident: 10.1016/j.geoderma.2021.115121_b0220 article-title: Application of δ13C and δ15N isotopic signatures of organic matter fractions sequentially separated from adjacent arable and forest soils to identify carbon stabilization mechanisms publication-title: Biogeosciences doi: 10.5194/bg-8-2895-2011 – volume: 45 start-page: 357 issue: 3-4 year: 1989 ident: 10.1016/j.geoderma.2021.115121_b0405 article-title: Chemistry and micromorphology of aggregation in earthworm casts publication-title: Geoderma doi: 10.1016/0016-7061(89)90016-5 – volume: 80 start-page: 5 issue: 1-2 year: 2007 ident: 10.1016/j.geoderma.2021.115121_b0205 article-title: Mechanisms controlling soil carbon turnover and their potential application for enhancing carbon sequestration publication-title: Clim. Change doi: 10.1007/s10584-006-9178-3 – volume: 14 start-page: 083004 issue: 8 year: 2019 ident: 10.1016/j.geoderma.2021.115121_b0020 article-title: What do we know about soil carbon destabilization? publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/ab2c11 – volume: 53 start-page: 419 issue: 4 year: 2017 ident: 10.1016/j.geoderma.2021.115121_b0530 article-title: Nitrogen fertilization increases rhizodeposit incorporation into microbial biomass and reduces soil organic matter losses publication-title: Biol. Fertil. Soils doi: 10.1007/s00374-017-1194-0 – volume: 71 start-page: 95 year: 2014 ident: 10.1016/j.geoderma.2021.115121_b0150 article-title: Pathways of litter C by formation of aggregates and SOM density fractions: Implications from 13C natural abundance publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2014.01.011 – volume: 26 start-page: 3738 issue: 6 year: 2020 ident: 10.1016/j.geoderma.2021.115121_b0375 article-title: Dramatic loss of inorganic carbon by nitrogen-induced soil acidification in Chinese croplands publication-title: Glob. Change Biol. doi: 10.1111/gcb.15101 – volume: 56 start-page: 693 issue: 5 year: 2010 ident: 10.1016/j.geoderma.2021.115121_b0290 article-title: Spatial variability of soil microbial biomass carbon, nitrogen and phosphorus in a hilly red soil landscape in subtropical China publication-title: Soil Sci. Plant Nutr. doi: 10.1111/j.1747-0765.2010.00510.x – volume: 10 start-page: 100145 year: 2019 ident: 10.1016/j.geoderma.2021.115121_b0480 article-title: Biogeochemical cycles of key elements in the paddy-rice rhizosphere: Microbial mechanisms and coupling processes publication-title: Rhizosphere doi: 10.1016/j.rhisph.2019.100145 – volume: 102 start-page: 168 issue: 2 year: 2009 ident: 10.1016/j.geoderma.2021.115121_b0110 article-title: Management-induced structural dynamics in paddy soils of south east China simulated in microcosms publication-title: Soil Tillage Res. doi: 10.1016/j.still.2008.07.007 – volume: 86 start-page: 153 issue: 1 year: 2010 ident: 10.1016/j.geoderma.2021.115121_b0190 article-title: Organic carbon fractions affected by long-term fertilization in a subtropical paddy soil publication-title: Nutr. Cycl. Agroecosyst. doi: 10.1007/s10705-009-9279-2 – volume: 138 start-page: 1 year: 2016 ident: 10.1016/j.geoderma.2021.115121_b0235 article-title: Root iron plaque on wetland plants as a dynamic pool of nutrients and contaminants publication-title: Adv. Agron. doi: 10.1016/bs.agron.2016.04.002 – volume: 11 start-page: 2255 year: 2020 ident: 10.1016/j.geoderma.2021.115121_b0060 article-title: Iron-mediated organic matter decomposition in humid soils can counteract protection publication-title: Nat. Commun. doi: 10.1038/s41467-020-16071-5 – volume: 113 start-page: 108 year: 2017 ident: 10.1016/j.geoderma.2021.115121_b0135 article-title: Stability and dynamics of enzyme activity patterns in the rice rhizosphere: effects of plant growth and temperature publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2017.06.005 – start-page: 1 year: 2014 ident: 10.1016/j.geoderma.2021.115121_b0200 article-title: World Reference Base for Soil Resources 2014: International soil classification system for naming soils and creating legends for soil maps – volume: 5 start-page: 588 issue: 6 year: 2015 ident: 10.1016/j.geoderma.2021.115121_b0225 article-title: Mineral protection of soil carbon counteracted by root exudates publication-title: Nat. Clim. Change doi: 10.1038/nclimate2580 – volume: 57 start-page: 426 year: 2006 ident: 10.1016/j.geoderma.2021.115121_b0325 article-title: Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions - a review publication-title: Eur. J. Soil Sci. doi: 10.1111/j.1365-2389.2006.00809.x – volume: 171 start-page: 9 year: 2013 ident: 10.1016/j.geoderma.2021.115121_b0080 article-title: Unraveling the long-term stabilization mechanisms of organic materials in soils by physical fractionation and NMR spectroscopy publication-title: Agric. Ecosyst. Environ. doi: 10.1016/j.agee.2013.03.010 – volume: 45 start-page: 63 issue: 1 year: 2003 ident: 10.1016/j.geoderma.2021.115121_b0120 article-title: Influence of drying-rewetting frequency on soil bacterial community structure publication-title: Microb. Ecol. doi: 10.1007/s00248-002-1007-2 – volume: 48 start-page: 39 year: 2012 ident: 10.1016/j.geoderma.2021.115121_b0145 article-title: Biological carbon assimilation and dynamics in a flooded rice - Soil system publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2012.01.009 – volume: 241 start-page: 155 year: 2002 ident: 10.1016/j.geoderma.2021.115121_b0415 article-title: Stabilization mechanisms of soil organic matter: implications for C-saturation of soils publication-title: Plant Soil doi: 10.1023/A:1016125726789 |
SSID | ssj0017020 |
Score | 2.639514 |
Snippet | [Display omitted]
•Mechanisms of higher C and N stocks in paddies than upland soils are reviewed.•Climate effects on stocks are weakened by management... Paddy soils, a type of Hydragric Anthrosol, have much greater soil organic C (SOC) and total N (TN) contents than that in upland soils. However, this fact has... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 115121 |
SubjectTerms | Anthrosols atmospheric precipitation C and N stocks Carbon sequestration highlands Land-use change meta-analysis Microbial turnover nitrogen paddies Paddy soils puddling quantitative analysis rice sesquioxides soil organic carbon temperature total nitrogen Upland soils |
Title | Comparing carbon and nitrogen stocks in paddy and upland soils: Accumulation, stabilization mechanisms, and environmental drivers |
URI | https://dx.doi.org/10.1016/j.geoderma.2021.115121 https://www.proquest.com/docview/2551938786 |
Volume | 398 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwELUQvbQHRFsqvopcqUfCxtixvb2tVqCFqpyKxM1yHAcF2GSV7B64IPHPmXEcRJEqDhzjeCLLbzwzkWfeEPLTeYiCHecJ85lORJ5liWVcJiV4I6fTYy891jv_uZCzS3F-lV2tkelQC4NpldH29zY9WOs4Moq7OVpUFdb4MqnSwIAFMU-g_hRCoZYfPTyneTCVRmpGJhOc_aJK-AYwwoZjgX_omIH1AO_H_uegXpnq4H9ON8lGDBzppF_bZ7Lm6y_k0-S6jeQZ_it5nPZNBetr6mybNzW1dUHhzLYNqAmFMM_ddrSq6QLMzX14uVpgZiPtmuqu-0Unzq3msZ_XIcwP7Lt9nSade6wRrrp5dxgkX1TIwbKKNuR3bJHL05O_01kSWywkjo_5MrFca6e8cAUS741zlZZKytSJItOpsACgzYXgLudWaF-osixTX2hdpiVXGJp8I-t1U_ttQh0m1IBDBHi58GWe2wyZfsLdpmTa7ZBs2FfjIv84tsG4M0Oi2Y0Z8DCIh-nx2CGjZ7lFz8DxpsR4gM38o0sG3MSbsj8GnA0cNLw9sbVvVp2Bfy8IdrXScvcd398jH_EJM05Ytk_Wl-3Kf4ewZpkfBL09IB8mZ79nF08ppPlj |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwELYoHFoOVelD0Beu1N5IN147jrdSDysKWsrjBBI313EcFGCTVbKrikul_qb-wc44DqKVEAfENc5Ylmc831j-ZoaQj9ZBFGw5j5hLVCSyJIkM4zIqAI2siodOOsx3PjySkxPx_TQ5XSJ_-lwYpFUG39_5dO-tw5dB2M3BrCwxx5fJNPYVsCDmYaPArNx3Vz_h3tZ-3fsGSv40HO7uHG9PotBaILJ8xOeR4UrZ1AmbY8G5UZbGRSplbEWeqFgYWLjJhOA240Yol6dFUcQuV6qIC54iJMO8j8iKAHeBbRM-_7rmlTAY7vJemIxweTfSks_BKLDDmS94NGTgrgBu2W2I-B82eMDbfUaehkiVjrvNWCNLrnpOVsdnTajW4V6Q39tdF8PqjFrTZHVFTZVTcBJNDXZJIa60Fy0tKzoD_3blBxczpFLSti4v2y90bO1iGhqIbcH_vtxvlxhKpw6Tkst22m55yRspebCsvPGEkpfk5EE2_hVZrurKrRNqkcEDCAz2xIUrsswkWFrIP6ZKpuwGSfp91TYUPMe-G5e6Z7ad614fGvWhO31skMG13Kwr-XGnxKhXm_7HeDXg0p2yH3o9azjZ-FxjKlcvWg2XPYiuVark63vMv0keT44PD_TB3tH-G_IER5DuwpK3ZHneLNw7iKnm2Xtvw5T8eOhD8xeELjVu |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparing+carbon+and+nitrogen+stocks+in+paddy+and+upland+soils%3A+Accumulation%2C+stabilization+mechanisms%2C+and+environmental+drivers&rft.jtitle=Geoderma&rft.au=Wei%2C+Liang&rft.au=Ge%2C+Tida&rft.au=Zhu%2C+Zhenke&rft.au=Luo%2C+Yu&rft.date=2021-09-15&rft.issn=0016-7061&rft.volume=398&rft.spage=115121&rft_id=info:doi/10.1016%2Fj.geoderma.2021.115121&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_geoderma_2021_115121 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7061&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7061&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7061&client=summon |