Comparing carbon and nitrogen stocks in paddy and upland soils: Accumulation, stabilization mechanisms, and environmental drivers

[Display omitted] •Mechanisms of higher C and N stocks in paddies than upland soils are reviewed.•Climate effects on stocks are weakened by management (puddling and flooding).•Larger organic C input in paddies compared to most upland cereals was found.•Lower O2 availability leads to slow decompositi...

Full description

Saved in:
Bibliographic Details
Published inGeoderma Vol. 398; p. 115121
Main Authors Wei, Liang, Ge, Tida, Zhu, Zhenke, Luo, Yu, Yang, Yuanhe, Xiao, Mouliang, Yan, Zhifeng, Li, Yuhong, Wu, Jinshui, Kuzyakov, Yakov
Format Journal Article
LanguageEnglish
Published Elsevier B.V 15.09.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] •Mechanisms of higher C and N stocks in paddies than upland soils are reviewed.•Climate effects on stocks are weakened by management (puddling and flooding).•Larger organic C input in paddies compared to most upland cereals was found.•Lower O2 availability leads to slow decomposition of organic matter in paddies.•Fe and Mn oxidation–reduction dynamics stabilise C in paddy soils. Paddy soils, a type of Hydragric Anthrosol, have much greater soil organic C (SOC) and total N (TN) contents than that in upland soils. However, this fact has never been generalized or mechanistically explained. We conducted a global meta-analysis on the organic C and total N contents and their stocks in continuous paddy soils (578 sites) and compared them with those in adjacent upland soils. Average C stocks up to depths of 35 cm in upland and paddy soils were 31 and 47 Mg C ha−1, respectively. The N stocks in upland and paddy soils were 2.2 and 3.2 Mg N ha−1, respectively. The combined effects of mean annual temperature and precipitation showed that C and N stocks in paddy and upland soils are generally the largest under cool and humid conditions and the smallest in warm and dry climates. Quantitative analysis of climatic, and soil physical and chemical factors showed that 1) climate effects are weakened by management such as puddling and flooding, thereby increasing the importance of soil physico-chemical properties, which control soil organic matter (SOM) stabilization, and 2) climate (e.g., mean annual precipitation) mainly affects C and N stocks in upland soils; the chemical properties (such as pH), on the other hand, primarily affect C and N stocks in paddy soils. Greater C and N stocks in paddy soils are the result of 1) a larger input of organic C by rice than by most upland cereals, 2) slower decomposition of plant residues and SOM under anoxic conditions, and 3) a greater importance of sesquioxides in the biochemical stabilization of SOM. We conclude that these man-made paddy soils store more organic C and N than their upland neighbors despite long-term and intensive management.
AbstractList Paddy soils, a type of Hydragric Anthrosol, have much greater soil organic C (SOC) and total N (TN) contents than that in upland soils. However, this fact has never been generalized or mechanistically explained. We conducted a global meta-analysis on the organic C and total N contents and their stocks in continuous paddy soils (578 sites) and compared them with those in adjacent upland soils. Average C stocks up to depths of 35 cm in upland and paddy soils were 31 and 47 Mg C ha⁻¹, respectively. The N stocks in upland and paddy soils were 2.2 and 3.2 Mg N ha⁻¹, respectively. The combined effects of mean annual temperature and precipitation showed that C and N stocks in paddy and upland soils are generally the largest under cool and humid conditions and the smallest in warm and dry climates. Quantitative analysis of climatic, and soil physical and chemical factors showed that 1) climate effects are weakened by management such as puddling and flooding, thereby increasing the importance of soil physico-chemical properties, which control soil organic matter (SOM) stabilization, and 2) climate (e.g., mean annual precipitation) mainly affects C and N stocks in upland soils; the chemical properties (such as pH), on the other hand, primarily affect C and N stocks in paddy soils. Greater C and N stocks in paddy soils are the result of 1) a larger input of organic C by rice than by most upland cereals, 2) slower decomposition of plant residues and SOM under anoxic conditions, and 3) a greater importance of sesquioxides in the biochemical stabilization of SOM. We conclude that these man-made paddy soils store more organic C and N than their upland neighbors despite long-term and intensive management.
[Display omitted] •Mechanisms of higher C and N stocks in paddies than upland soils are reviewed.•Climate effects on stocks are weakened by management (puddling and flooding).•Larger organic C input in paddies compared to most upland cereals was found.•Lower O2 availability leads to slow decomposition of organic matter in paddies.•Fe and Mn oxidation–reduction dynamics stabilise C in paddy soils. Paddy soils, a type of Hydragric Anthrosol, have much greater soil organic C (SOC) and total N (TN) contents than that in upland soils. However, this fact has never been generalized or mechanistically explained. We conducted a global meta-analysis on the organic C and total N contents and their stocks in continuous paddy soils (578 sites) and compared them with those in adjacent upland soils. Average C stocks up to depths of 35 cm in upland and paddy soils were 31 and 47 Mg C ha−1, respectively. The N stocks in upland and paddy soils were 2.2 and 3.2 Mg N ha−1, respectively. The combined effects of mean annual temperature and precipitation showed that C and N stocks in paddy and upland soils are generally the largest under cool and humid conditions and the smallest in warm and dry climates. Quantitative analysis of climatic, and soil physical and chemical factors showed that 1) climate effects are weakened by management such as puddling and flooding, thereby increasing the importance of soil physico-chemical properties, which control soil organic matter (SOM) stabilization, and 2) climate (e.g., mean annual precipitation) mainly affects C and N stocks in upland soils; the chemical properties (such as pH), on the other hand, primarily affect C and N stocks in paddy soils. Greater C and N stocks in paddy soils are the result of 1) a larger input of organic C by rice than by most upland cereals, 2) slower decomposition of plant residues and SOM under anoxic conditions, and 3) a greater importance of sesquioxides in the biochemical stabilization of SOM. We conclude that these man-made paddy soils store more organic C and N than their upland neighbors despite long-term and intensive management.
ArticleNumber 115121
Author Wei, Liang
Yang, Yuanhe
Kuzyakov, Yakov
Xiao, Mouliang
Li, Yuhong
Wu, Jinshui
Zhu, Zhenke
Luo, Yu
Yan, Zhifeng
Ge, Tida
Author_xml – sequence: 1
  givenname: Liang
  surname: Wei
  fullname: Wei, Liang
  organization: Key Laboratory of Agro-ecological Processes in Subtropical Region & Changsha Research Station for Agricultural and Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan 410125, China
– sequence: 2
  givenname: Tida
  surname: Ge
  fullname: Ge, Tida
  email: gtd@isa.ac.cn
  organization: Key Laboratory of Agro-ecological Processes in Subtropical Region & Changsha Research Station for Agricultural and Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan 410125, China
– sequence: 3
  givenname: Zhenke
  surname: Zhu
  fullname: Zhu, Zhenke
  organization: Key Laboratory of Agro-ecological Processes in Subtropical Region & Changsha Research Station for Agricultural and Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan 410125, China
– sequence: 4
  givenname: Yu
  surname: Luo
  fullname: Luo, Yu
  organization: Institute of Soil and Water Resources and Environmental Science, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
– sequence: 5
  givenname: Yuanhe
  surname: Yang
  fullname: Yang, Yuanhe
  organization: State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
– sequence: 6
  givenname: Mouliang
  surname: Xiao
  fullname: Xiao, Mouliang
  organization: Key Laboratory of Agro-ecological Processes in Subtropical Region & Changsha Research Station for Agricultural and Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan 410125, China
– sequence: 7
  givenname: Zhifeng
  surname: Yan
  fullname: Yan, Zhifeng
  organization: Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University
– sequence: 8
  givenname: Yuhong
  orcidid: 0000-0001-5688-9740
  surname: Li
  fullname: Li, Yuhong
  organization: Key Laboratory of Agro-ecological Processes in Subtropical Region & Changsha Research Station for Agricultural and Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan 410125, China
– sequence: 9
  givenname: Jinshui
  surname: Wu
  fullname: Wu, Jinshui
  organization: Key Laboratory of Agro-ecological Processes in Subtropical Region & Changsha Research Station for Agricultural and Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan 410125, China
– sequence: 10
  givenname: Yakov
  orcidid: 0000-0002-9863-8461
  surname: Kuzyakov
  fullname: Kuzyakov, Yakov
  organization: Key Laboratory of Agro-ecological Processes in Subtropical Region & Changsha Research Station for Agricultural and Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan 410125, China
BookMark eNqFkMtu2zAQRYkiAeo8fqHgMgvLJfUiVXTRwEgfgIFukjVBkSN3XIlUScpAssufR7abTTZZDQZzzwD3XJAz5x0Q8omzFWe8_rxbbcFbCINe5SznK84rnvMPZMGlyLM6r5ozsmBzMhOs5h_JRYy7eRUsZwvyvPbDqAO6LTU6tN5R7Sx1mILfgqMxefM3UnR01NY-Ho_T2B9G9NjHL_TWmGmYep3Qu-Wc1y32-HRc6QDmj3YYh7g8kuD2GLwbwCXdUxtwDyFekfNO9xGu_89L8vD97n79M9v8_vFrfbvJTNEUKdOFlEZAaaysRdO0gnWirpkpbSVZqTlUui3LwrSFLiVY0XUdAytlx7piriqLS3Jz-jsG_2-CmNSA0UA_lwE_RZVXFW8KKWQ9R7-eoib4GAN0ymA6VkpBY684UwfzaqdezauDeXUyP-P1G3wMOOjw-D747QTC7GGPEFQ0CM6AxQAmKevxvRcvoE-m6w
CitedBy_id crossref_primary_10_1016_j_scitotenv_2024_171048
crossref_primary_10_3389_fenvs_2023_1152439
crossref_primary_10_1016_j_scitotenv_2024_178234
crossref_primary_10_1007_s11104_023_06032_4
crossref_primary_10_1016_j_agee_2024_109353
crossref_primary_10_1002_ldr_5235
crossref_primary_10_1007_s11104_024_06792_7
crossref_primary_10_3390_agronomy13041133
crossref_primary_10_1016_j_catena_2025_108869
crossref_primary_10_1016_j_catena_2024_108582
crossref_primary_10_1016_j_envres_2024_120397
crossref_primary_10_1007_s44246_024_00181_6
crossref_primary_10_1016_j_catena_2025_108862
crossref_primary_10_3390_land13081296
crossref_primary_10_3390_agriculture11060561
crossref_primary_10_1002_ldr_4141
crossref_primary_10_1016_j_pedsph_2023_05_011
crossref_primary_10_1016_j_geoderma_2023_116342
crossref_primary_10_1007_s00374_022_01681_6
crossref_primary_10_1111_gcb_15968
crossref_primary_10_1007_s10661_023_11673_0
crossref_primary_10_1016_j_jenvman_2024_123788
crossref_primary_10_1002_saj2_20431
crossref_primary_10_1016_j_catena_2023_106968
crossref_primary_10_1016_j_apsoil_2024_105531
crossref_primary_10_3390_f14081678
crossref_primary_10_1007_s11368_023_03664_y
crossref_primary_10_1007_s11104_023_06461_1
crossref_primary_10_1016_j_geoderma_2023_116580
crossref_primary_10_1016_j_chemosphere_2023_138927
crossref_primary_10_1016_j_catena_2021_105483
crossref_primary_10_1007_s00374_022_01618_z
crossref_primary_10_1088_1755_1315_1116_1_012079
crossref_primary_10_1016_j_jhazmat_2021_126221
crossref_primary_10_1016_j_gecco_2024_e03317
crossref_primary_10_1111_gcb_16372
crossref_primary_10_1016_j_agee_2023_108562
crossref_primary_10_1016_j_agee_2025_109577
crossref_primary_10_3390_agronomy14051014
crossref_primary_10_1016_j_geodrs_2023_e00668
crossref_primary_10_1007_s11368_024_03782_1
crossref_primary_10_1111_gcb_17536
crossref_primary_10_1016_j_apsoil_2023_104931
crossref_primary_10_1016_j_scitotenv_2022_160602
crossref_primary_10_1002_jeq2_20496
crossref_primary_10_1016_j_scitotenv_2024_173160
crossref_primary_10_1016_j_scitotenv_2023_164974
crossref_primary_10_1016_j_foreco_2024_121933
crossref_primary_10_1016_j_soilbio_2021_108312
crossref_primary_10_1016_j_xplc_2024_101224
crossref_primary_10_1111_sum_13139
crossref_primary_10_1016_j_still_2024_106152
crossref_primary_10_1002_fes3_70009
crossref_primary_10_1007_s00374_023_01769_7
crossref_primary_10_1016_j_geodrs_2023_e00656
crossref_primary_10_1007_s11104_021_05168_5
crossref_primary_10_1016_j_earscirev_2022_104214
crossref_primary_10_1016_j_jag_2023_103250
crossref_primary_10_1007_s00374_022_01643_y
crossref_primary_10_1021_acsearthspacechem_4c00122
crossref_primary_10_1016_j_funbio_2023_04_005
crossref_primary_10_3390_agronomy12092064
crossref_primary_10_1016_j_scitotenv_2022_156242
crossref_primary_10_1016_j_agee_2021_107798
crossref_primary_10_1007_s00253_023_12701_2
crossref_primary_10_1111_ejss_13539
crossref_primary_10_3389_fsufs_2023_1296922
crossref_primary_10_1016_j_envpol_2024_124572
crossref_primary_10_1016_j_apsoil_2022_104593
crossref_primary_10_1007_s44246_022_00008_2
crossref_primary_10_1016_j_scitotenv_2022_154460
crossref_primary_10_3390_agronomy12102562
crossref_primary_10_1016_j_scitotenv_2021_149717
crossref_primary_10_1038_s43017_023_00482_1
crossref_primary_10_1016_j_soilbio_2023_108972
crossref_primary_10_1016_j_soilbio_2024_109425
crossref_primary_10_1007_s11104_023_06396_7
crossref_primary_10_1016_j_catena_2022_106484
crossref_primary_10_1002_ldr_5278
crossref_primary_10_3390_agronomy14061312
crossref_primary_10_1016_j_jhazmat_2021_126391
crossref_primary_10_1111_1462_2920_15655
crossref_primary_10_1016_j_apsoil_2023_104980
crossref_primary_10_1038_s43705_023_00300_1
crossref_primary_10_1016_j_soilbio_2022_108568
crossref_primary_10_1016_j_fcr_2024_109614
crossref_primary_10_1016_j_soilad_2024_100014
crossref_primary_10_1016_j_soilbio_2022_108684
crossref_primary_10_3390_agronomy14061140
crossref_primary_10_1016_j_fcr_2024_109732
crossref_primary_10_1016_j_soilbio_2021_108345
crossref_primary_10_3390_pr10112425
crossref_primary_10_1016_j_pedsph_2023_07_004
crossref_primary_10_1007_s11368_022_03270_4
crossref_primary_10_18393_ejss_1564167
crossref_primary_10_1016_j_jenvman_2024_121239
crossref_primary_10_1111_geb_13616
crossref_primary_10_1016_j_scitotenv_2022_155810
crossref_primary_10_1016_j_apsoil_2022_104650
crossref_primary_10_3389_fpls_2024_1362149
crossref_primary_10_1016_j_envpol_2024_124510
crossref_primary_10_1016_j_apsoil_2025_105902
crossref_primary_10_1016_j_catena_2025_108968
crossref_primary_10_1111_gcb_17213
crossref_primary_10_1007_s11356_023_27617_7
crossref_primary_10_1007_s42729_023_01209_3
crossref_primary_10_1007_s42832_024_0254_2
crossref_primary_10_1007_s00374_023_01706_8
crossref_primary_10_1016_j_agee_2024_108953
crossref_primary_10_1016_j_apsoil_2024_105399
crossref_primary_10_1016_j_soilbio_2022_108669
crossref_primary_10_1016_j_scitotenv_2023_168602
crossref_primary_10_1080_20964129_2021_1941271
crossref_primary_10_1007_s42773_024_00312_7
crossref_primary_10_1016_j_jhazmat_2024_133540
crossref_primary_10_1016_j_soilbio_2022_108785
crossref_primary_10_1016_j_jenvman_2024_122286
crossref_primary_10_1016_j_scitotenv_2024_171227
crossref_primary_10_1038_s43247_021_00229_0
crossref_primary_10_1016_j_fcr_2024_109510
Cites_doi 10.1016/j.soilbio.2015.12.004
10.1007/s11368-013-0789-9
10.1002/ldr.3477
10.1081/CSS-120029721
10.1038/38260
10.1016/j.geoderma.2003.11.003
10.1016/j.geoderma.2018.03.031
10.1016/j.soilbio.2006.12.024
10.1002/jpln.201600542
10.1016/j.soilbio.2016.04.010
10.1016/S1465-9972(01)00019-8
10.1111/j.1365-2486.2005.01065.x
10.5194/bg-13-4481-2016
10.1016/j.agee.2020.106816
10.1097/00010694-200101000-00007
10.1007/s11104-012-1363-8
10.1016/S0146-6380(00)00046-2
10.1016/j.still.2018.05.009
10.1016/j.scitotenv.2014.04.071
10.1111/gcb.13850
10.1007/s10533-017-0410-1
10.1016/j.apsoil.2019.01.013
10.1007/s11104-015-2611-5
10.1007/s11104-018-03905-x
10.1111/j.1475-2743.2009.00251.x
10.2136/sssaj2000.6431042x
10.1016/j.soilbio.2006.04.009
10.1016/j.geoderma.2020.114512
10.1016/S1002-0160(15)30034-5
10.1071/SR12358
10.1111/j.1365-2486.2012.02681.x
10.1016/j.soilbio.2018.03.003
10.1038/nature04514
10.1021/es1023898
10.1111/j.1365-2389.2011.01418.x
10.1021/la102535n
10.1016/j.soilbio.2018.03.024
10.1111/j.1365-2389.2004.00600.x
10.1371/journal.pone.0088900
10.1016/j.agee.2016.03.004
10.4141/cjss2011-014
10.1023/A:1026594118145
10.1016/j.geoderma.2008.05.004
10.1016/j.soilbio.2019.04.011
10.1016/S0167-1987(00)00135-5
10.1016/S0038-0717(02)00251-1
10.1007/s003740000248
10.1080/00380768.2015.1089787
10.1007/s10533-004-3258-0
10.1016/j.agee.2013.05.012
10.5194/bg-13-6565-2016
10.1002/2014MS000358
10.1016/S1002-0160(10)60056-2
10.1007/s11104-017-3210-4
10.1016/j.ejsobi.2017.12.003
10.1134/S1064229318110091
10.1073/pnas.1700292114
10.1038/s41586-018-0358-x
10.1007/s11104-015-2380-1
10.1111/gcb.14859
10.1016/j.gca.2013.03.020
10.1016/j.geoderma.2009.07.018
10.1007/s10661-005-9021-8
10.1038/s41586-019-1048-z
10.1021/es501127k
10.1111/gcb.14779
10.1016/j.earscirev.2016.03.003
10.1007/s11104-011-0995-4
10.1007/s00374-009-0413-8
10.1111/j.1365-2486.2003.00717.x
10.1104/pp.62.4.665
10.1080/02757540.2016.1268131
10.1016/j.geoderma.2018.11.040
10.1023/B:FRES.0000017470.14789.2a
10.1111/gcb.14148
10.1038/s41561-018-0258-6
10.1016/j.soilbio.2019.05.011
10.1016/S0167-1987(98)00092-0
10.1016/j.soilbio.2015.12.008
10.1016/j.soilbio.2013.03.019
10.1016/j.soilbio.2003.12.015
10.1016/j.soilbio.2019.04.016
10.1016/S1465-9972(00)00034-9
10.1016/j.geoderma.2010.03.009
10.1016/j.geoderma.2016.02.019
10.1016/j.soilbio.2019.02.019
10.1038/ngeo2516
10.5194/bg-8-2895-2011
10.1016/0016-7061(89)90016-5
10.1007/s10584-006-9178-3
10.1088/1748-9326/ab2c11
10.1007/s00374-017-1194-0
10.1016/j.soilbio.2014.01.011
10.1111/gcb.15101
10.1111/j.1747-0765.2010.00510.x
10.1016/j.rhisph.2019.100145
10.1016/j.still.2008.07.007
10.1007/s10705-009-9279-2
10.1016/bs.agron.2016.04.002
10.1038/s41467-020-16071-5
10.1016/j.soilbio.2017.06.005
10.1038/nclimate2580
10.1111/j.1365-2389.2006.00809.x
10.1016/j.agee.2013.03.010
10.1007/s00248-002-1007-2
10.1016/j.soilbio.2012.01.009
10.1023/A:1016125726789
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright_xml – notice: 2021 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.geoderma.2021.115121
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1872-6259
ExternalDocumentID 10_1016_j_geoderma_2021_115121
S0016706121002019
GroupedDBID --K
--M
-DZ
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATLK
AAXUO
ABFRF
ABGRD
ABJNI
ABMAC
ABQEM
ABQYD
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADQTV
AEBSH
AEFWE
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BKOJK
BLXMC
CBWCG
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IMUCA
J1W
KOM
LW9
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SAB
SDF
SDG
SES
SPC
SPCBC
SSA
SSE
SSZ
T5K
~02
~G-
29H
AAHBH
AALCJ
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEGFY
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
GROUPED_DOAJ
HLV
HMA
HMC
HVGLF
HZ~
H~9
K-O
OHT
R2-
RIG
SEN
SEP
SEW
SSH
VH1
WUQ
XPP
Y6R
ZMT
7S9
L.6
ID FETCH-LOGICAL-c393t-a388c7e4cd86799b70f7660c4d5804a1e5ab443cb3a48ed7fff0ed88f0f370283
IEDL.DBID .~1
ISSN 0016-7061
IngestDate Fri Jul 11 10:28:44 EDT 2025
Tue Jul 01 04:04:55 EDT 2025
Thu Apr 24 23:01:13 EDT 2025
Fri Feb 23 02:43:32 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Upland soils
C and N stocks
Microbial turnover
Carbon sequestration
Paddy soils
Land-use change
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c393t-a388c7e4cd86799b70f7660c4d5804a1e5ab443cb3a48ed7fff0ed88f0f370283
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-5688-9740
0000-0002-9863-8461
OpenAccessLink https://doi.org/10.1016/j.geoderma.2021.115121
PQID 2551938786
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2551938786
crossref_citationtrail_10_1016_j_geoderma_2021_115121
crossref_primary_10_1016_j_geoderma_2021_115121
elsevier_sciencedirect_doi_10_1016_j_geoderma_2021_115121
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-09-15
PublicationDateYYYYMMDD 2021-09-15
PublicationDate_xml – month: 09
  year: 2021
  text: 2021-09-15
  day: 15
PublicationDecade 2020
PublicationTitle Geoderma
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Pausch, Kuzyakov (b0355) 2018; 24
Zamanian, Pustovoytov, Kuzyakov (b0520) 2016; 157
Courtier-Murias, Simpson, Marzadori, Baldoni, Ciavatta, Fernández, López-de-Sá, Plaza (b0080) 2013; 171
Fierer, Schimel, Holden (b0125) 2003; 35
Kusunoki, Nanzyo, Kanno, Takahashi (b0255) 2015; 61
Liu, Wang, Ding, Lu, Li, Cheng, Zheng, Filley, Zhang, Zheng, Pan (b0315) 2016; 13
Bierke, Kaiser, Guggenberger (b0050) 2008; 146
von Lützow, Kögel-Knabner (b0455) 2009; 46
Wang, Chen (b0460) 2004; 68
Sasakawa, Yamamoto (b0400) 1978; 62
Kuzyakov, Razavi (b0265) 2019; 135
Eusterhues, Rennert, Knicker, Kögel-Knabner, Totsche, Schwertmann (b0115) 2001; 45
Olk, Cassman, Schmidt-Rohr, Anders, Mao, Deenik (b0345) 2006; 38
Sokol, Bradford (b0430) 2018; 12
Six, Conant, Paul, Paustian (b0415) 2002; 241
Sanaullah, Rumpel, Charrier, Chabbi (b0390) 2011; 352
Zhao, Wang, Hu, Zhang, Ouyang, Zhang, Huang, Zhao, Wu, Xie, Zhu, Yu, Pan, Xu, Shi (b0535) 2018; 115
Fierer, Schimel, Holden (b0120) 2003; 45
Liu, Ge, Ye, Liu, Shibistova, Wang, Wang, Li, Guggenberger, Kuzyakov, Wu (b0305) 2019; 338
Wiesmeier, Steffens, Mueller, Kölbl, Reszkowska, Peth, Horn, Kögel-Knabner (b0490) 2012; 63
Chen, Wang, Li, Hu, Zheng, He, Ge, Wu, Kuzyakov, Su (b0065) 2014; 488-489
Li, Rui, Zhang, Feng, Lu, Shen, Zheng, Li, Song, Pan (b0285) 2019; 138
Pan, Li, Wu, Zhang (b0350) 2003; 10
Keiluweit, Bougoure, Nico, Pett-Ridge, Weber, Kleber (b0225) 2015; 5
Lutzow, Kogel-Knabner, Ekschmitt, Matzner, Guggenberger, Marschner, Flessa (b0325) 2006; 57
Moore, Dalva (b0335) 2001; 166
Wang, Chen, Jing, Yao, Feng, Lin (b0470) 2018; 122
Ge, Yuan, Zhu, Wu, Nie, Liu, Tong, Wu, Brookes (b0145) 2012; 48
Huang, Pan, Guo, Qian, Zhang (b0185) 2014; 14
Doetterl, Stevens, Six, Merckx, Van Oost, Casanova Pinto, Casanova-Katny, Muñoz, Boudin, Zagal Venegas, Boeckx (b0100) 2015; 8
Peters, Hemp, Appelhans, Becker, Behler, Classen, Detsch, Ensslin, Ferger, Frederiksen, Gebert, Gerschlauer, Gütlein, Helbig-Bonitz, Hemp, Kindeketa, Kühnel, Mayr, Mwangomo, Ngereza, Njovu, Otte, Pabst, Renner, Röder, Rutten, Schellenberger Costa, Sierra-Cornejo, Vollstädt, Dulle, Eardley, Howell, Keller, Peters, Ssymank, Kakengi, Zhang, Bogner, Böhning-Gaese, Brandl, Hertel, Huwe, Kiese, Kleyer, Kuzyakov, Nauss, Schleuning, Tschapka, Fischer, Steffan-Dewenter (b0365) 2019; 568
Sierra, Trumbore, Davidson, Vicca, Janssens (b0410) 2015; 7
Kaiser, Guggenberger (b0215) 2000; 31
Kögel-Knabner, Amelung, Cao, Fiedler, Frenzel, Jahn, Kalbitz, Kölbl, Schloter (b0240) 2010; 157
Chen, Hall, Coward, Thompson (b0060) 2020; 11
Zhu, Hu, Yang, Zhan, Zhang, Hu (b0550) 2014; 9
Jia, Kuzyakov, Wang, Tan, Zhu, Feng (b0210) 2020; 31
Khan, Mack, Castillo, Kaiser, Joergensen (b0230) 2016; 271
Guo, Lin (b0155) 2001; 3
Six, Elliott, Paustian (b0420) 2000; 64
Hobley, Baldock, Wilson (b0175) 2016; 223
Kushwaha, Tripathi, Singh (b0250) 2000; 56
Du, Chen, Yu, Polizzotto, Sun, Kuzyakov (b0105) 2020; 375
Saree, Ponphang-nga, Sarobol, Limtong, Chidthaisong (b0395) 2012; 3
Bond-Lamberty, Bailey, Chen, Gough, Vargas (b0055) 2018; 560
Raza, Miao, Wang, Ju, Chen, Zhou, Kuzyakov (b0375) 2020; 26
Davidson, Janssens (b0085) 2006; 440
Zamanian, Zarebanadkouki, Kuzyakov (b0525) 2018; 24
Zhu, Zeng, Ge, Hu, Tong, Shibistova, He, Wang, Guggenberger, Wu (b0565) 2016; 13
Zou, Zhang, Huo, Sun, Lu, Jiang, Yu (b0570) 2018; 325
Gunina, Kuzyakov (b0150) 2014; 71
Rowley, Grand, Verrecchia (b0380) 2018; 137
Hou, Ouyang, Maxim, Wilson, Kuzyakov (b0180) 2016; 95
Kramer, Sanderman, Chadwick, Chorover, Vitousek (b0245) 2012; 18
Gao, Huang, Zhu, Wang, Li (b0130) 2001; 11
Lu, Watanabe, Kimura (b0320) 2004; 71
Hobley, Wilson, Wilkie, Gray, Koen (b0170) 2015; 390
Tan, Lal, Smeck, Calhoun (b0440) 2004; 121
Zhu, Ge, Luo, Liu, Xu, Tong, Shibistova, Guggenberger, Wu (b0560) 2018; 121
Liu, Liu, Mu, Ma, Li, Li (b0300) 2017; 33
Chen, Xia, Rui, Ning, Hu, Tang, He, Li, Kuzyakov, Ge, Wu, Su (b0070) 2020; 292
Alam, Bell, Haque, Kader (b0005) 2018; 183
Wang, River, Richardson (b0465) 2019; 135
Yudina, Kuzyakov (b0510) 2019; 25
Zhu, Ge, Hu, Zhou, Wang, Shibistova, Guggenberger, Su, Wu (b0555) 2017; 416
Sahrawat (b0385) 2004; 35
Banerjee, Helgason, Wang, Winsley, Ferrari, Siciliano (b0030) 2016; 95
Barral, Arias, Guérif (b0035) 1998; 46
Lavkulich, Arocena (b0280) 2011; 91
Williams, Santner, Larsen, Lehto, Oburger, Wenzel, Glud, Davison, Zhang (b0495) 2014; 48
Hall, Silver, Timokhin, Hammel (b0160) 2016; 98
Iskrenova-Tchoukova, Kalinichev, Kirkpatrick (b0195) 2010; 26
Liu, Ge, Zhu, Liu, Luo, Li, Wang, Gavrichkova, Xu, Wang, Wu, Guggenberger, Kuzyakov (b0310) 2019; 133
Shipitalo, Protz (b0405) 1989; 45
Clarholm, Skyllberg (b0075) 2013; 63
Ge, Wu, Chen, Yuan, Zou, Li, Zhou, Liu, Tong, Brookes, Wu (b0140) 2013; 113
Jastrow, Amonette, Bailey (b0205) 2007; 80
Qiu, Ge, Liu, Chen, Hu, Wu, Su, Kuzyakov (b0370) 2018; 84
Wong, Greene, Dalal, Murphy (b0505) 2010; 26
Zang, Blagodatskaya, Wang, Xu, Kuzyakov (b0530) 2017; 53
Bailey, Pries, Lajtha (b0020) 2019; 14
Khan, Seshadri, Bolan, Saint, Kirkham, Chowdhury, Yamaguchi, Lee, Li, Kunhikrishnan, Qi, Karunanithi, Qiu, Zhu, Syu (b0235) 2016; 138
Pausch, Tian, Riederer, Kuzyakov (b0360) 2013; 364
Wei, Razavi, Wang, Zhu, Liu, Wu, Kuzyakov, Ge (b0475) 2019; 135
Banerjee, Aggarwal, Pathak, Singh, Chaudhary (b0025) 2006; 119
Denef, Zotarelli, Boddey, Six (b0095) 2007; 39
Bharati, Mohanty, Rao, Adhya (b0045) 2001; 3
Kayler, Kaiser, Gessler, Ellerbrock, Sommer (b0220) 2011; 8
IUSS-WRB (b0200) 2014
Smernik, Olk, Mahieu (b0425) 2004; 55
Badgery, Simmons, Murphy, Rawson, Andersson, Lonergan, van de Ven (b0015) 2013; 51
Wiesmeier, Hübner, Barthold, Spörlein, Geuß, Hangen, Reischl, Schilling, von Lützow, Kögel-Knabner (b0485) 2013; 176
Zhou, Lv, Chen, Westby, Ren (b0545) 2014; 2014
Manjaiah, Voroney, Sen (b0330) 2000; 32
Atere, Ge, Zhu, Liu, Huang, Shibsitova, Guggenberger, Wu (b0010) 2018; 445
Lavallee, Soong, Cotrufo (b0275) 2019; 26
Benbi, Brar, Toor, Sharma (b0040) 2015; 25
Zhou, Song, Pan, Li, Zhang (b0540) 2009; 153
Ge, Wei, Razavi, Zhu, Hu, Kuzyakov, Jones, Wu (b0135) 2017; 113
Yudina, Fomin, Kotelnikova, Milanovskii (b0515) 2018; 51
Urbanski, Kölbl, Lehndorff, Houtermans, Schad, Zhang, Utami, Kögel-Knabner (b0450) 2017; 180
Torn, Trumbore, Chadwick, Vitousek, Hendricks (b0445) 1997; 389
Sun, Huang, Yu, Zhang (b0435) 2015; 397
Wei, Zhu, Wei, Wu, Ge (b0480) 2019; 10
LIU, LI, WU, HUANG, SU, WEI (b0290) 2010; 56
Davidson, Janssens, Luo (b0090) 2006; 12
Huang, Rui, Peng, Huang, Zhang (b0190) 2010; 86
Liu, He, Zhang, Schroder, Li, Zhou, Zhang (b0295) 2010; 20
Witt, Cassman, Olk, Biker, Liboon, Samson, Ottow (b0500) 2000; 225
Müller, Höper (b0340) 2004; 36
Eickhorst, Tippkötter (b0110) 2009; 102
Courtier-Murias (10.1016/j.geoderma.2021.115121_b0080) 2013; 171
Urbanski (10.1016/j.geoderma.2021.115121_b0450) 2017; 180
Jia (10.1016/j.geoderma.2021.115121_b0210) 2020; 31
Hall (10.1016/j.geoderma.2021.115121_b0160) 2016; 98
Gao (10.1016/j.geoderma.2021.115121_b0130) 2001; 11
Banerjee (10.1016/j.geoderma.2021.115121_b0030) 2016; 95
Wiesmeier (10.1016/j.geoderma.2021.115121_b0490) 2012; 63
Sun (10.1016/j.geoderma.2021.115121_b0435) 2015; 397
Qiu (10.1016/j.geoderma.2021.115121_b0370) 2018; 84
Bond-Lamberty (10.1016/j.geoderma.2021.115121_b0055) 2018; 560
Hou (10.1016/j.geoderma.2021.115121_b0180) 2016; 95
LIU (10.1016/j.geoderma.2021.115121_b0290) 2010; 56
Doetterl (10.1016/j.geoderma.2021.115121_b0100) 2015; 8
Pausch (10.1016/j.geoderma.2021.115121_b0355) 2018; 24
Yudina (10.1016/j.geoderma.2021.115121_b0510) 2019; 25
Huang (10.1016/j.geoderma.2021.115121_b0185) 2014; 14
Tan (10.1016/j.geoderma.2021.115121_b0440) 2004; 121
Raza (10.1016/j.geoderma.2021.115121_b0375) 2020; 26
Denef (10.1016/j.geoderma.2021.115121_b0095) 2007; 39
Zang (10.1016/j.geoderma.2021.115121_b0530) 2017; 53
Liu (10.1016/j.geoderma.2021.115121_b0310) 2019; 133
Lavkulich (10.1016/j.geoderma.2021.115121_b0280) 2011; 91
Peters (10.1016/j.geoderma.2021.115121_b0365) 2019; 568
Zou (10.1016/j.geoderma.2021.115121_b0570) 2018; 325
Huang (10.1016/j.geoderma.2021.115121_b0190) 2010; 86
Zhou (10.1016/j.geoderma.2021.115121_b0540) 2009; 153
Eusterhues (10.1016/j.geoderma.2021.115121_b0115) 2001; 45
Liu (10.1016/j.geoderma.2021.115121_b0300) 2017; 33
Wei (10.1016/j.geoderma.2021.115121_b0480) 2019; 10
Zamanian (10.1016/j.geoderma.2021.115121_b0525) 2018; 24
Pausch (10.1016/j.geoderma.2021.115121_b0360) 2013; 364
Wei (10.1016/j.geoderma.2021.115121_b0475) 2019; 135
Hobley (10.1016/j.geoderma.2021.115121_b0175) 2016; 223
Six (10.1016/j.geoderma.2021.115121_b0420) 2000; 64
Smernik (10.1016/j.geoderma.2021.115121_b0425) 2004; 55
Iskrenova-Tchoukova (10.1016/j.geoderma.2021.115121_b0195) 2010; 26
Zhu (10.1016/j.geoderma.2021.115121_b0550) 2014; 9
Liu (10.1016/j.geoderma.2021.115121_b0305) 2019; 338
Wong (10.1016/j.geoderma.2021.115121_b0505) 2010; 26
Badgery (10.1016/j.geoderma.2021.115121_b0015) 2013; 51
Liu (10.1016/j.geoderma.2021.115121_b0295) 2010; 20
Jastrow (10.1016/j.geoderma.2021.115121_b0205) 2007; 80
Shipitalo (10.1016/j.geoderma.2021.115121_b0405) 1989; 45
Ge (10.1016/j.geoderma.2021.115121_b0145) 2012; 48
Kramer (10.1016/j.geoderma.2021.115121_b0245) 2012; 18
Davidson (10.1016/j.geoderma.2021.115121_b0090) 2006; 12
Lavallee (10.1016/j.geoderma.2021.115121_b0275) 2019; 26
Zhao (10.1016/j.geoderma.2021.115121_b0535) 2018; 115
Wang (10.1016/j.geoderma.2021.115121_b0465) 2019; 135
Bierke (10.1016/j.geoderma.2021.115121_b0050) 2008; 146
Khan (10.1016/j.geoderma.2021.115121_b0235) 2016; 138
Hobley (10.1016/j.geoderma.2021.115121_b0170) 2015; 390
Benbi (10.1016/j.geoderma.2021.115121_b0040) 2015; 25
Kaiser (10.1016/j.geoderma.2021.115121_b0215) 2000; 31
Six (10.1016/j.geoderma.2021.115121_b0415) 2002; 241
Sasakawa (10.1016/j.geoderma.2021.115121_b0400) 1978; 62
Chen (10.1016/j.geoderma.2021.115121_b0070) 2020; 292
Kögel-Knabner (10.1016/j.geoderma.2021.115121_b0240) 2010; 157
Ge (10.1016/j.geoderma.2021.115121_b0140) 2013; 113
Lu (10.1016/j.geoderma.2021.115121_b0320) 2004; 71
Williams (10.1016/j.geoderma.2021.115121_b0495) 2014; 48
Zhu (10.1016/j.geoderma.2021.115121_b0565) 2016; 13
Wiesmeier (10.1016/j.geoderma.2021.115121_b0485) 2013; 176
Manjaiah (10.1016/j.geoderma.2021.115121_b0330) 2000; 32
Liu (10.1016/j.geoderma.2021.115121_b0315) 2016; 13
Guo (10.1016/j.geoderma.2021.115121_b0155) 2001; 3
Rowley (10.1016/j.geoderma.2021.115121_b0380) 2018; 137
Banerjee (10.1016/j.geoderma.2021.115121_b0025) 2006; 119
Pan (10.1016/j.geoderma.2021.115121_b0350) 2003; 10
Sokol (10.1016/j.geoderma.2021.115121_b0430) 2018; 12
Atere (10.1016/j.geoderma.2021.115121_b0010) 2018; 445
Yudina (10.1016/j.geoderma.2021.115121_b0515) 2018; 51
Zamanian (10.1016/j.geoderma.2021.115121_b0520) 2016; 157
Zhou (10.1016/j.geoderma.2021.115121_b0545) 2014; 2014
Alam (10.1016/j.geoderma.2021.115121_b0005) 2018; 183
Kuzyakov (10.1016/j.geoderma.2021.115121_b0265) 2019; 135
Saree (10.1016/j.geoderma.2021.115121_b0395) 2012; 3
Bharati (10.1016/j.geoderma.2021.115121_b0045) 2001; 3
Sahrawat (10.1016/j.geoderma.2021.115121_b0385) 2004; 35
Khan (10.1016/j.geoderma.2021.115121_b0230) 2016; 271
Wang (10.1016/j.geoderma.2021.115121_b0470) 2018; 122
Fierer (10.1016/j.geoderma.2021.115121_b0120) 2003; 45
Zhu (10.1016/j.geoderma.2021.115121_b0555) 2017; 416
Clarholm (10.1016/j.geoderma.2021.115121_b0075) 2013; 63
Du (10.1016/j.geoderma.2021.115121_b0105) 2020; 375
Moore (10.1016/j.geoderma.2021.115121_b0335) 2001; 166
Witt (10.1016/j.geoderma.2021.115121_b0500) 2000; 225
Bailey (10.1016/j.geoderma.2021.115121_b0020) 2019; 14
Barral (10.1016/j.geoderma.2021.115121_b0035) 1998; 46
Torn (10.1016/j.geoderma.2021.115121_b0445) 1997; 389
Li (10.1016/j.geoderma.2021.115121_b0285) 2019; 138
Lutzow (10.1016/j.geoderma.2021.115121_b0325) 2006; 57
Zhu (10.1016/j.geoderma.2021.115121_b0560) 2018; 121
Kayler (10.1016/j.geoderma.2021.115121_b0220) 2011; 8
Wang (10.1016/j.geoderma.2021.115121_b0460) 2004; 68
Kusunoki (10.1016/j.geoderma.2021.115121_b0255) 2015; 61
Fierer (10.1016/j.geoderma.2021.115121_b0125) 2003; 35
Chen (10.1016/j.geoderma.2021.115121_b0060) 2020; 11
Gunina (10.1016/j.geoderma.2021.115121_b0150) 2014; 71
Eickhorst (10.1016/j.geoderma.2021.115121_b0110) 2009; 102
Olk (10.1016/j.geoderma.2021.115121_b0345) 2006; 38
von Lützow (10.1016/j.geoderma.2021.115121_b0455) 2009; 46
Sanaullah (10.1016/j.geoderma.2021.115121_b0390) 2011; 352
Ge (10.1016/j.geoderma.2021.115121_b0135) 2017; 113
Sierra (10.1016/j.geoderma.2021.115121_b0410) 2015; 7
IUSS-WRB (10.1016/j.geoderma.2021.115121_b0200) 2014
Kushwaha (10.1016/j.geoderma.2021.115121_b0250) 2000; 56
Davidson (10.1016/j.geoderma.2021.115121_b0085) 2006; 440
Chen (10.1016/j.geoderma.2021.115121_b0065) 2014; 488-489
Keiluweit (10.1016/j.geoderma.2021.115121_b0225) 2015; 5
Müller (10.1016/j.geoderma.2021.115121_b0340) 2004; 36
References_xml – volume: 389
  start-page: 170
  year: 1997
  end-page: 173
  ident: b0445
  article-title: Mineral control of soil organic carbon storage and turnover
  publication-title: Nature
– volume: 25
  start-page: 3574
  year: 2019
  end-page: 3577
  ident: b0510
  article-title: Saving the face of soil aggregates
  publication-title: Glob. Change Biol.
– volume: 135
  start-page: 343
  year: 2019
  end-page: 360
  ident: b0265
  article-title: Rhizosphere size and shape: Temporal dynamics and spatial stationarity
  publication-title: Soil Biol. Biochem.
– volume: 113
  start-page: 108
  year: 2017
  end-page: 115
  ident: b0135
  article-title: Stability and dynamics of enzyme activity patterns in the rice rhizosphere: effects of plant growth and temperature
  publication-title: Soil Biol. Biochem.
– volume: 51
  start-page: 645
  year: 2013
  ident: b0015
  article-title: Relationship between environmental and land-use variables on soil carbon levels at the regional scale in central New South Wales, Australia
  publication-title: Soil Res.
– volume: 95
  start-page: 40
  year: 2016
  end-page: 50
  ident: b0030
  article-title: Legacy effects of soil moisture on microbial community structure and N
  publication-title: Soil Biol. Biochem.
– volume: 71
  start-page: 95
  year: 2014
  end-page: 104
  ident: b0150
  article-title: Pathways of litter C by formation of aggregates and SOM density fractions: Implications from
  publication-title: Soil Biol. Biochem.
– volume: 95
  start-page: 243
  year: 2016
  end-page: 249
  ident: b0180
  article-title: Lasting effect of soil warming on organic matter decomposition depends on tillage practices
  publication-title: Soil Biol. Biochem.
– volume: 18
  start-page: 2594
  year: 2012
  end-page: 2605
  ident: b0245
  article-title: Long-term carbon storage through retention of dissolved aromatic acids by reactive particles in soil
  publication-title: Glob. Change Biol.
– volume: 157
  start-page: 1
  year: 2016
  end-page: 17
  ident: b0520
  article-title: Pedogenic carbonates: Forms and formation processes
  publication-title: Earth Sci. Rev.
– volume: 14
  start-page: 083004
  year: 2019
  ident: b0020
  article-title: What do we know about soil carbon destabilization?
  publication-title: Environ. Res. Lett.
– volume: 14
  start-page: 89
  year: 2014
  end-page: 98
  ident: b0185
  article-title: Differences in soil organic carbon stocks and fraction distributions between rice paddies and upland cropping systems in China
  publication-title: J. Soils Sediments
– volume: 445
  start-page: 153
  year: 2018
  end-page: 167
  ident: b0010
  article-title: Assimilate allocation by rice and carbon stabilisation in soil: effect of water management and phosphorus fertilisation
  publication-title: Plant Soil
– volume: 98
  start-page: 95
  year: 2016
  end-page: 98
  ident: b0160
  article-title: Iron addition to soil specifically stabilized lignin
  publication-title: Soil Biol. Biochem.
– volume: 440
  start-page: 165
  year: 2006
  end-page: 173
  ident: b0085
  article-title: Temperature sensitivity of soil carbon decomposition and feedbacks to climate change
  publication-title: Nature
– volume: 12
  start-page: 46
  year: 2018
  end-page: 53
  ident: b0430
  article-title: Microbial formation of stable soil carbon is more efficient from belowground than aboveground input
  publication-title: Nat. Geosci.
– volume: 133
  start-page: 97
  year: 2019
  end-page: 107
  ident: b0310
  article-title: Carbon input and allocation by rice into paddy soils: a review
  publication-title: Soil Biol. Biochem.
– volume: 24
  start-page: 1
  year: 2018
  end-page: 12
  ident: b0355
  article-title: Carbon input by roots into the soil: Quantification of rhizodeposition from root to ecosystem scale
  publication-title: Glob. Change Biol.
– volume: 64
  start-page: 1042
  year: 2000
  end-page: 1049
  ident: b0420
  article-title: Soil structure and soil organic matter: II. A normalized stability index and the effect of mineralogy
  publication-title: Soil Sci. Soc. Am. J.
– volume: 153
  start-page: 52
  year: 2009
  end-page: 60
  ident: b0540
  article-title: Role of chemical protection by binding to oxyhydrates in SOC sequestration in three typical paddy soils under long-term agro-ecosystem experiments from South China
  publication-title: Geoderma
– volume: 33
  start-page: 143
  year: 2017
  end-page: 155
  ident: b0300
  article-title: Vertical distributions of soil carbon and nitrogen fractions as affected by land-uses in the Ili River Valley
  publication-title: Chem. Ecol.
– volume: 113
  start-page: 70
  year: 2013
  end-page: 78
  ident: b0140
  article-title: Microbial phototrophic fixation of atmospheric CO
  publication-title: Geochim. Cosmochim. Acta
– volume: 68
  start-page: 181
  year: 2004
  end-page: 189
  ident: b0460
  article-title: Microbial biomass carbon, nitrogen and phosphorus in the soil profiles of different vegetation covers established for soil rehabilitation in a red soil region of southeastern China
  publication-title: Nutr. Cycl. Agroecosyst.
– volume: 223
  start-page: 152
  year: 2016
  end-page: 166
  ident: b0175
  article-title: Environmental and human influences on organic carbon fractions down the soil profile
  publication-title: Agric. Ecosyst. Environ.
– volume: 122
  start-page: 211
  year: 2018
  end-page: 219
  ident: b0470
  article-title: Root derived carbon transport extends the rhizosphere of rice compared to wheat
  publication-title: Soil Biol. Biochem.
– volume: 225
  start-page: 263
  year: 2000
  end-page: 278
  ident: b0500
  article-title: Crop rotation and residue management effects on carbon sequestration, nitrogen cycling and productivity of irrigated rice systems
  publication-title: Plant Soil
– volume: 271
  start-page: 115
  year: 2016
  end-page: 123
  ident: b0230
  article-title: Microbial biomass, fungal and bacterial residues, and their relationships to the soil organic matter C/N/P/S ratios
  publication-title: Geoderma
– volume: 45
  start-page: 357
  year: 1989
  end-page: 374
  ident: b0405
  article-title: Chemistry and micromorphology of aggregation in earthworm casts
  publication-title: Geoderma
– volume: 338
  start-page: 30
  year: 2019
  end-page: 39
  ident: b0305
  article-title: Initial utilization of rhizodeposits with rice growth in paddy soils: Rhizosphere and N fertilization effects
  publication-title: Geoderma
– volume: 488-489
  start-page: 268
  year: 2014
  end-page: 274
  ident: b0065
  article-title: Fate of
  publication-title: Sci. Total Environ.
– volume: 176
  start-page: 39
  year: 2013
  end-page: 52
  ident: b0485
  article-title: Amount, distribution and driving factors of soil organic carbon and nitrogen in cropland and grassland soils of southeast Germany (Bavaria)
  publication-title: Agric. Ecosyst. Environ.
– volume: 102
  start-page: 168
  year: 2009
  end-page: 178
  ident: b0110
  article-title: Management-induced structural dynamics in paddy soils of south east China simulated in microcosms
  publication-title: Soil Tillage Res.
– volume: 137
  start-page: 27
  year: 2018
  end-page: 49
  ident: b0380
  article-title: Calcium-mediated stabilisation of soil organic carbon
  publication-title: Biogeochemistry
– volume: 397
  start-page: 189
  year: 2015
  end-page: 200
  ident: b0435
  article-title: Differences in fertilization impacts on organic carbon content and stability in a paddy and an upland soil in subtropical China
  publication-title: Plant Soil
– volume: 48
  start-page: 8498
  year: 2014
  end-page: 8506
  ident: b0495
  article-title: Localized flux maxima of arsenic, lead, and iron around root apices in flooded lowland rice
  publication-title: Environ. Sci. Technol.
– volume: 45
  start-page: 527
  year: 2001
  end-page: 533
  ident: b0115
  article-title: Fractionation of organic matter due to reaction with ferrihydrite: coprecipitation versus adsorption
  publication-title: Environ. Sci. Technol.
– volume: 63
  start-page: 142
  year: 2013
  end-page: 153
  ident: b0075
  article-title: Translocation of metals by trees and fungi regulates pH, soil organic matter turnover and nitrogen availability in acidic forest soils
  publication-title: Soil Biol. Biochem.
– volume: 5
  start-page: 588
  year: 2015
  end-page: 595
  ident: b0225
  article-title: Mineral protection of soil carbon counteracted by root exudates
  publication-title: Nat. Clim. Change
– volume: 56
  start-page: 693
  year: 2010
  end-page: 704
  ident: b0290
  article-title: Spatial variability of soil microbial biomass carbon, nitrogen and phosphorus in a hilly red soil landscape in subtropical China
  publication-title: Soil Sci. Plant Nutr.
– volume: 157
  start-page: 1
  year: 2010
  end-page: 14
  ident: b0240
  article-title: Biogeochemistry of paddy soils
  publication-title: Geoderma
– start-page: 1
  year: 2014
  end-page: 116
  ident: b0200
  article-title: World Reference Base for Soil Resources 2014: International soil classification system for naming soils and creating legends for soil maps
  publication-title: World Soil Reports
– volume: 71
  start-page: 1
  year: 2004
  end-page: 15
  ident: b0320
  article-title: Contribution of plant photosynthates to dissolved organic carbon in a flooded rice soil
  publication-title: Biogeochemistry
– volume: 53
  start-page: 419
  year: 2017
  end-page: 429
  ident: b0530
  article-title: Nitrogen fertilization increases rhizodeposit incorporation into microbial biomass and reduces soil organic matter losses
  publication-title: Biol. Fertil. Soils
– volume: 121
  start-page: 187
  year: 2004
  end-page: 195
  ident: b0440
  article-title: Relationships between surface soil organic carbon pool and site variables
  publication-title: Geoderma
– volume: 38
  start-page: 3303
  year: 2006
  end-page: 3312
  ident: b0345
  article-title: Chemical stabilization of soil organic nitrogen by phenolic lignin residues in anaerobic agroecosystems
  publication-title: Soil Biol. Biochem.
– volume: 25
  start-page: 534
  year: 2015
  end-page: 545
  ident: b0040
  article-title: Sensitivity of labile soil organic carbon pools to long-term fertilizer, straw and manure management in rice-wheat system
  publication-title: Pedosphere
– volume: 48
  start-page: 39
  year: 2012
  end-page: 46
  ident: b0145
  article-title: Biological carbon assimilation and dynamics in a flooded rice - Soil system
  publication-title: Soil Biol. Biochem.
– volume: 138
  start-page: 262
  year: 2019
  end-page: 273
  ident: b0285
  article-title: Macroaggregates as biochemically functional hotspots in soil matrix: evidence from a rice paddy under long-term fertilization treatments in the Taihu Lake Plain, eastern China
  publication-title: Appl. Soil Ecol.
– volume: 46
  start-page: 261
  year: 1998
  end-page: 272
  ident: b0035
  article-title: Effects of iron and organic matter on the porosity and structural stability of soil aggregates
  publication-title: Soil Tillage Res.
– volume: 3
  start-page: 25
  year: 2001
  end-page: 32
  ident: b0045
  article-title: Influence of flooded and non-flooded conditions on methane efflux from two soils planted to rice
  publication-title: Chemosphere-Global Change Sci.
– volume: 26
  start-page: 2
  year: 2010
  end-page: 11
  ident: b0505
  article-title: Soil carbon dynamics in saline and sodic soils: a review
  publication-title: Soil Use Manag.
– volume: 146
  start-page: 48
  year: 2008
  end-page: 57
  ident: b0050
  article-title: Crop residue management effects on organic matter in paddy soils — the lignin component
  publication-title: Geoderma
– volume: 3
  start-page: 147
  year: 2012
  end-page: 152
  ident: b0395
  article-title: Soil carbon cequestration affected by cropping changes from upland maize to flooded rice cultivation
  publication-title: J. Sustainable Energy Environ.
– volume: 46
  start-page: 1
  year: 2009
  end-page: 15
  ident: b0455
  article-title: Temperature sensitivity of soil organic matter decomposition—what do we know?
  publication-title: Biol. Fertil. Soils
– volume: 26
  start-page: 15909
  year: 2010
  end-page: 15919
  ident: b0195
  article-title: Metal cation complexation with natural organic matter in aqueous solutions: Molecular dynamics simulations and potentials of mean force
  publication-title: Langmuir
– volume: 13
  start-page: 6565
  year: 2016
  end-page: 6586
  ident: b0315
  article-title: Microbial activity promoted with organic carbon accumulation in macroaggregates of paddy soils under long-term rice cultivation
  publication-title: Biogeosciences
– volume: 138
  start-page: 1
  year: 2016
  end-page: 96
  ident: b0235
  article-title: Root iron plaque on wetland plants as a dynamic pool of nutrients and contaminants
  publication-title: Adv. Agron.
– volume: 171
  start-page: 9
  year: 2013
  end-page: 18
  ident: b0080
  article-title: Unraveling the long-term stabilization mechanisms of organic materials in soils by physical fractionation and NMR spectroscopy
  publication-title: Agric. Ecosyst. Environ.
– volume: 36
  start-page: 877
  year: 2004
  end-page: 888
  ident: b0340
  article-title: Soil organic matter turnover as a function of the soil clay content: consequences for model applications
  publication-title: Soil Biol. Biochem.
– volume: 45
  start-page: 63
  year: 2003
  end-page: 71
  ident: b0120
  article-title: Influence of drying-rewetting frequency on soil bacterial community structure
  publication-title: Microb. Ecol.
– volume: 2014
  start-page: 1
  year: 2014
  end-page: 8
  ident: b0545
  article-title: Soil physicochemical and biological properties of paddy-upland rotation: a review
  publication-title: Sci. World J.
– volume: 62
  start-page: 665
  year: 1978
  end-page: 669
  ident: b0400
  article-title: Comparison of the uptake of nitrate and ammonium by rice seedlings: influences of light, temperature, oxygen concentration, exogenous sucrose, and metabolic inhibitors
  publication-title: Plant Physiol.
– volume: 292
  start-page: 106816
  year: 2020
  ident: b0070
  article-title: Microbial carbon use efficiency, biomass turnover, and necromass accumulation in paddy soil depending on fertilization
  publication-title: Agric. Ecosyst. Environ.
– volume: 39
  start-page: 1165
  year: 2007
  end-page: 1172
  ident: b0095
  article-title: Microaggregate-associated carbon as a diagnostic fraction for management-induced changes in soil organic carbon in two Oxisols
  publication-title: Soil Biol. Biochem.
– volume: 3
  start-page: 413
  year: 2001
  end-page: 418
  ident: b0155
  article-title: Carbon sink in cropland soils and the emission of greenhouse gases from paddy soils: a review of work in China
  publication-title: Chemosphere -Global Change Sci.
– volume: 24
  start-page: 2810
  year: 2018
  end-page: 2817
  ident: b0525
  article-title: Nitrogen fertilization raises CO
  publication-title: Glob. Change Biol.
– volume: 8
  start-page: 780
  year: 2015
  end-page: 783
  ident: b0100
  article-title: Soil carbon storage controlled by interactions between geochemistry and climate
  publication-title: Nat. Geosci.
– volume: 57
  start-page: 426
  year: 2006
  end-page: 445
  ident: b0325
  article-title: Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions - a review
  publication-title: Eur. J. Soil Sci.
– volume: 20
  start-page: 666
  year: 2010
  end-page: 673
  ident: b0295
  article-title: Impact of land use and soil fertility on distributions of soil aggregate fractions and some nutrients
  publication-title: Pedosphere
– volume: 63
  start-page: 22
  year: 2012
  end-page: 31
  ident: b0490
  article-title: Aggregate stability and physical protection of soil organic carbon in semi-arid steppe soils
  publication-title: Eur. J. Soil Sci.
– volume: 32
  start-page: 273
  year: 2000
  end-page: 278
  ident: b0330
  article-title: Soil organic carbon stocks, storage profile and microbial biomass under different crop management systems in a tropical agricultural ecosystem
  publication-title: Biol. Fertil. Soils
– volume: 121
  start-page: 67
  year: 2018
  end-page: 76
  ident: b0560
  article-title: Microbial stoichiometric flexibility regulates rice straw mineralization and its priming effect in paddy soil
  publication-title: Soil Biol. Biochem.
– volume: 12
  start-page: 154
  year: 2006
  end-page: 164
  ident: b0090
  article-title: On the variability of respiration in terrestrial ecosystems: moving beyond Q10
  publication-title: Global Change Biol.
– volume: 91
  start-page: 781
  year: 2011
  end-page: 806
  ident: b0280
  article-title: Luvisolic soils of Canada: Genesis, distribution, and classification
  publication-title: Can. J. Soil Sci.
– volume: 135
  start-page: 134
  year: 2019
  end-page: 143
  ident: b0475
  article-title: Labile carbon matters more than temperature for enzyme activity in paddy soil
  publication-title: Soil Biol. Biochem.
– volume: 115
  start-page: 4045
  year: 2018
  end-page: 4050
  ident: b0535
  article-title: Economics- and policy-driven organic carbon input enhancement dominates soil organic carbon accumulation in Chinese croplands
  publication-title: Proc. Natl. Acad. Sci.
– volume: 390
  start-page: 111
  year: 2015
  end-page: 127
  ident: b0170
  article-title: Drivers of soil organic carbon storage and vertical distribution in Eastern Australia
  publication-title: Plant Soil
– volume: 241
  start-page: 155
  year: 2002
  end-page: 176
  ident: b0415
  article-title: Stabilization mechanisms of soil organic matter: implications for C-saturation of soils
  publication-title: Plant Soil
– volume: 119
  start-page: 173
  year: 2006
  end-page: 189
  ident: b0025
  article-title: Dynamics of organic carbon and microbial biomass in alluvial soil with tillage and amendments in rice-wheat systems
  publication-title: Environ. Monit. Assess.
– volume: 31
  start-page: 711
  year: 2000
  end-page: 725
  ident: b0215
  article-title: The role of DOM sorption to mineral surfaces in the preservation of organic matter in soils
  publication-title: Org Geochem.
– volume: 183
  start-page: 28
  year: 2018
  end-page: 41
  ident: b0005
  article-title: Minimal soil disturbance and increased residue retention increase soil carbon in rice-based cropping systems on the Eastern Gangetic Plain
  publication-title: Soil Tillage Res.
– volume: 61
  start-page: 910
  year: 2015
  end-page: 916
  ident: b0255
  article-title: Effect of water management on the vivianite content of paddy-rice roots
  publication-title: Soil Science and Plant Nutrition
– volume: 84
  start-page: 27
  year: 2018
  end-page: 34
  ident: b0370
  article-title: Effects of biotic and abiotic factors on soil organic matter mineralization: experiments and structural modeling analysis
  publication-title: Eur. J. Soil Biol.
– volume: 135
  start-page: 48
  year: 2019
  end-page: 50
  ident: b0465
  article-title: Does an ‘iron gate’ carbon preservation mechanism exist in organic–rich wetlands?
  publication-title: Soil Biol. Biochem.
– volume: 325
  start-page: 141
  year: 2018
  end-page: 151
  ident: b0570
  article-title: Wetland saturation with introduced Fe(III) reduces total carbon emissions and promotes the sequestration of DOC
  publication-title: Geoderma
– volume: 56
  start-page: 153
  year: 2000
  end-page: 166
  ident: b0250
  article-title: Variations in soil microbial biomass and N availability due to residue and tillage management in a dryland rice agroecosystem
  publication-title: Soil Tillage Res.
– volume: 364
  start-page: 273
  year: 2013
  end-page: 285
  ident: b0360
  article-title: Estimation of rhizodeposition at field scale: upscaling of a
  publication-title: Plant Soil
– volume: 26
  start-page: 261
  year: 2019
  end-page: 273
  ident: b0275
  article-title: Conceptualizing soil organic matter into particulate and mineral-associated forms to address global change in the 21st century
  publication-title: Glob. Change Biol.
– volume: 9
  year: 2014
  ident: b0550
  article-title: Effects of different tillage and straw return on soil organic carbon in a rice-wheat rotation system
  publication-title: PLoS ONE
– volume: 26
  start-page: 3738
  year: 2020
  end-page: 3751
  ident: b0375
  article-title: Dramatic loss of inorganic carbon by nitrogen-induced soil acidification in Chinese croplands
  publication-title: Glob. Change Biol.
– volume: 10
  start-page: 100145
  year: 2019
  ident: b0480
  article-title: Biogeochemical cycles of key elements in the paddy-rice rhizosphere: Microbial mechanisms and coupling processes
  publication-title: Rhizosphere
– volume: 51
  start-page: 1326
  year: 2018
  end-page: 1347
  ident: b0515
  article-title: From the notion of elementary soil particle to the particle-size and microaggregate-size distribution analyses: a review
  publication-title: Eurasian Soil Sci.
– volume: 10
  start-page: 79
  year: 2003
  end-page: 92
  ident: b0350
  article-title: Storage and sequestration potential of topsoil organic carbon in China's paddy soils
  publication-title: Global Change Biol.
– volume: 166
  start-page: 38
  year: 2001
  end-page: 47
  ident: b0335
  article-title: Some controls on the release of dissolved organic carbon by plant tissues and soils
  publication-title: Soil Sci.
– volume: 35
  start-page: 167
  year: 2003
  end-page: 176
  ident: b0125
  article-title: Variations in microbial community composition through two soil depth profiles
  publication-title: Soil Biol. Biochem.
– volume: 180
  start-page: 366
  year: 2017
  end-page: 380
  ident: b0450
  article-title: Paddy management on different soil types does not promote lignin accumulation
  publication-title: J. Plant Nutr. Soil Sci.
– volume: 86
  start-page: 153
  year: 2010
  end-page: 160
  ident: b0190
  article-title: Organic carbon fractions affected by long-term fertilization in a subtropical paddy soil
  publication-title: Nutr. Cycl. Agroecosyst.
– volume: 13
  start-page: 4481
  year: 2016
  end-page: 4489
  ident: b0565
  article-title: Fate of rice shoot and root residues, rhizodeposits, and microbe-assimilated carbon in paddy soil - Part 1: decomposition and priming effect
  publication-title: Biogeosciences
– volume: 8
  start-page: 2895
  year: 2011
  end-page: 2906
  ident: b0220
  article-title: Application of δ
  publication-title: Biogeosciences
– volume: 352
  start-page: 277
  year: 2011
  end-page: 288
  ident: b0390
  article-title: How does drought stress influence the decomposition of plant litter with contrasting quality in a grassland ecosystem?
  publication-title: Plant Soil
– volume: 568
  start-page: 88
  year: 2019
  end-page: 92
  ident: b0365
  article-title: Climate-land-use interactions shape tropical mountain biodiversity and ecosystem functions
  publication-title: Nature
– volume: 11
  start-page: 349
  year: 2001
  end-page: 357
  ident: b0130
  article-title: Long-term impact of soil management on microbial biomass C, N and P in rice-based cropping system
  publication-title: Pedosphere
– volume: 31
  start-page: 632
  year: 2020
  end-page: 645
  ident: b0210
  article-title: Temperature sensitivity of decomposition of soil organic matter fractions increases with their turnover time
  publication-title: Land Degrad. Dev.
– volume: 416
  start-page: 243
  year: 2017
  end-page: 257
  ident: b0555
  article-title: Fate of rice shoot and root residues, rhizodeposits, and microbial assimilated carbon in paddy soil - part 2: turnover and microbial utilization
  publication-title: Plant Soil
– volume: 375
  start-page: 114512
  year: 2020
  ident: b0105
  article-title: An iron-dependent burst of hydroxyl radicals stimulates straw decomposition and CO
  publication-title: Geoderma
– volume: 11
  start-page: 2255
  year: 2020
  ident: b0060
  article-title: Iron-mediated organic matter decomposition in humid soils can counteract protection
  publication-title: Nat. Commun.
– volume: 7
  start-page: 335
  year: 2015
  end-page: 356
  ident: b0410
  article-title: Sensitivity of decomposition rates of soil organic matter with respect to simultaneous changes in temperature and moisture
  publication-title: J. Adv. Model. Earth Syst.
– volume: 55
  start-page: 367
  year: 2004
  end-page: 379
  ident: b0425
  article-title: Quantitative solid-state 13C NMR spectroscopy of organic matter fractions in lowland rice soils
  publication-title: Eur. J. Soil Sci.
– volume: 560
  start-page: 80
  year: 2018
  end-page: 83
  ident: b0055
  article-title: Globally rising soil heterotrophic respiration over recent decades
  publication-title: Nature
– volume: 80
  start-page: 5
  year: 2007
  end-page: 23
  ident: b0205
  article-title: Mechanisms controlling soil carbon turnover and their potential application for enhancing carbon sequestration
  publication-title: Clim. Change
– volume: 35
  start-page: 399
  year: 2004
  end-page: 411
  ident: b0385
  article-title: Ammonium production in submerged soils and sediments: the role of reducible iron
  publication-title: Commun. Soil Sci. Plant Anal.
– volume: 95
  start-page: 40
  year: 2016
  ident: 10.1016/j.geoderma.2021.115121_b0030
  article-title: Legacy effects of soil moisture on microbial community structure and N2O emissions
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2015.12.004
– volume: 14
  start-page: 89
  issue: 1
  year: 2014
  ident: 10.1016/j.geoderma.2021.115121_b0185
  article-title: Differences in soil organic carbon stocks and fraction distributions between rice paddies and upland cropping systems in China
  publication-title: J. Soils Sediments
  doi: 10.1007/s11368-013-0789-9
– volume: 31
  start-page: 632
  issue: 5
  year: 2020
  ident: 10.1016/j.geoderma.2021.115121_b0210
  article-title: Temperature sensitivity of decomposition of soil organic matter fractions increases with their turnover time
  publication-title: Land Degrad. Dev.
  doi: 10.1002/ldr.3477
– volume: 35
  start-page: 399
  issue: 3-4
  year: 2004
  ident: 10.1016/j.geoderma.2021.115121_b0385
  article-title: Ammonium production in submerged soils and sediments: the role of reducible iron
  publication-title: Commun. Soil Sci. Plant Anal.
  doi: 10.1081/CSS-120029721
– volume: 389
  start-page: 170
  issue: 6647
  year: 1997
  ident: 10.1016/j.geoderma.2021.115121_b0445
  article-title: Mineral control of soil organic carbon storage and turnover
  publication-title: Nature
  doi: 10.1038/38260
– volume: 121
  start-page: 187
  issue: 3-4
  year: 2004
  ident: 10.1016/j.geoderma.2021.115121_b0440
  article-title: Relationships between surface soil organic carbon pool and site variables
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2003.11.003
– volume: 325
  start-page: 141
  year: 2018
  ident: 10.1016/j.geoderma.2021.115121_b0570
  article-title: Wetland saturation with introduced Fe(III) reduces total carbon emissions and promotes the sequestration of DOC
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2018.03.031
– volume: 39
  start-page: 1165
  issue: 5
  year: 2007
  ident: 10.1016/j.geoderma.2021.115121_b0095
  article-title: Microaggregate-associated carbon as a diagnostic fraction for management-induced changes in soil organic carbon in two Oxisols
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2006.12.024
– volume: 180
  start-page: 366
  issue: 3
  year: 2017
  ident: 10.1016/j.geoderma.2021.115121_b0450
  article-title: Paddy management on different soil types does not promote lignin accumulation
  publication-title: J. Plant Nutr. Soil Sci.
  doi: 10.1002/jpln.201600542
– volume: 98
  start-page: 95
  year: 2016
  ident: 10.1016/j.geoderma.2021.115121_b0160
  article-title: Iron addition to soil specifically stabilized lignin
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2016.04.010
– volume: 3
  start-page: 413
  issue: 4
  year: 2001
  ident: 10.1016/j.geoderma.2021.115121_b0155
  article-title: Carbon sink in cropland soils and the emission of greenhouse gases from paddy soils: a review of work in China
  publication-title: Chemosphere -Global Change Sci.
  doi: 10.1016/S1465-9972(01)00019-8
– volume: 12
  start-page: 154
  year: 2006
  ident: 10.1016/j.geoderma.2021.115121_b0090
  article-title: On the variability of respiration in terrestrial ecosystems: moving beyond Q10
  publication-title: Global Change Biol.
  doi: 10.1111/j.1365-2486.2005.01065.x
– volume: 13
  start-page: 4481
  issue: 15
  year: 2016
  ident: 10.1016/j.geoderma.2021.115121_b0565
  article-title: Fate of rice shoot and root residues, rhizodeposits, and microbe-assimilated carbon in paddy soil - Part 1: decomposition and priming effect
  publication-title: Biogeosciences
  doi: 10.5194/bg-13-4481-2016
– volume: 292
  start-page: 106816
  year: 2020
  ident: 10.1016/j.geoderma.2021.115121_b0070
  article-title: Microbial carbon use efficiency, biomass turnover, and necromass accumulation in paddy soil depending on fertilization
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/j.agee.2020.106816
– volume: 166
  start-page: 38
  issue: 1
  year: 2001
  ident: 10.1016/j.geoderma.2021.115121_b0335
  article-title: Some controls on the release of dissolved organic carbon by plant tissues and soils
  publication-title: Soil Sci.
  doi: 10.1097/00010694-200101000-00007
– volume: 364
  start-page: 273
  issue: 1-2
  year: 2013
  ident: 10.1016/j.geoderma.2021.115121_b0360
  article-title: Estimation of rhizodeposition at field scale: upscaling of a 14C labeling study
  publication-title: Plant Soil
  doi: 10.1007/s11104-012-1363-8
– volume: 31
  start-page: 711
  issue: 7-8
  year: 2000
  ident: 10.1016/j.geoderma.2021.115121_b0215
  article-title: The role of DOM sorption to mineral surfaces in the preservation of organic matter in soils
  publication-title: Org Geochem.
  doi: 10.1016/S0146-6380(00)00046-2
– volume: 183
  start-page: 28
  year: 2018
  ident: 10.1016/j.geoderma.2021.115121_b0005
  article-title: Minimal soil disturbance and increased residue retention increase soil carbon in rice-based cropping systems on the Eastern Gangetic Plain
  publication-title: Soil Tillage Res.
  doi: 10.1016/j.still.2018.05.009
– volume: 488-489
  start-page: 268
  year: 2014
  ident: 10.1016/j.geoderma.2021.115121_b0065
  article-title: Fate of 14C-labeled dissolved organic matter in paddy and upland soils in responding to moisture
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2014.04.071
– volume: 24
  start-page: 1
  issue: 1
  year: 2018
  ident: 10.1016/j.geoderma.2021.115121_b0355
  article-title: Carbon input by roots into the soil: Quantification of rhizodeposition from root to ecosystem scale
  publication-title: Glob. Change Biol.
  doi: 10.1111/gcb.13850
– volume: 137
  start-page: 27
  issue: 1-2
  year: 2018
  ident: 10.1016/j.geoderma.2021.115121_b0380
  article-title: Calcium-mediated stabilisation of soil organic carbon
  publication-title: Biogeochemistry
  doi: 10.1007/s10533-017-0410-1
– volume: 2014
  start-page: 1
  year: 2014
  ident: 10.1016/j.geoderma.2021.115121_b0545
  article-title: Soil physicochemical and biological properties of paddy-upland rotation: a review
  publication-title: Sci. World J.
– volume: 138
  start-page: 262
  year: 2019
  ident: 10.1016/j.geoderma.2021.115121_b0285
  article-title: Macroaggregates as biochemically functional hotspots in soil matrix: evidence from a rice paddy under long-term fertilization treatments in the Taihu Lake Plain, eastern China
  publication-title: Appl. Soil Ecol.
  doi: 10.1016/j.apsoil.2019.01.013
– volume: 397
  start-page: 189
  issue: 1-2
  year: 2015
  ident: 10.1016/j.geoderma.2021.115121_b0435
  article-title: Differences in fertilization impacts on organic carbon content and stability in a paddy and an upland soil in subtropical China
  publication-title: Plant Soil
  doi: 10.1007/s11104-015-2611-5
– volume: 445
  start-page: 153
  issue: 1-2
  year: 2018
  ident: 10.1016/j.geoderma.2021.115121_b0010
  article-title: Assimilate allocation by rice and carbon stabilisation in soil: effect of water management and phosphorus fertilisation
  publication-title: Plant Soil
  doi: 10.1007/s11104-018-03905-x
– volume: 26
  start-page: 2
  year: 2010
  ident: 10.1016/j.geoderma.2021.115121_b0505
  article-title: Soil carbon dynamics in saline and sodic soils: a review
  publication-title: Soil Use Manag.
  doi: 10.1111/j.1475-2743.2009.00251.x
– volume: 64
  start-page: 1042
  issue: 3
  year: 2000
  ident: 10.1016/j.geoderma.2021.115121_b0420
  article-title: Soil structure and soil organic matter: II. A normalized stability index and the effect of mineralogy
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2000.6431042x
– volume: 38
  start-page: 3303
  issue: 11
  year: 2006
  ident: 10.1016/j.geoderma.2021.115121_b0345
  article-title: Chemical stabilization of soil organic nitrogen by phenolic lignin residues in anaerobic agroecosystems
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2006.04.009
– volume: 375
  start-page: 114512
  year: 2020
  ident: 10.1016/j.geoderma.2021.115121_b0105
  article-title: An iron-dependent burst of hydroxyl radicals stimulates straw decomposition and CO2 emission from soil hotspots: Consequences of Fenton or Fenton-like reactions
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2020.114512
– volume: 25
  start-page: 534
  issue: 4
  year: 2015
  ident: 10.1016/j.geoderma.2021.115121_b0040
  article-title: Sensitivity of labile soil organic carbon pools to long-term fertilizer, straw and manure management in rice-wheat system
  publication-title: Pedosphere
  doi: 10.1016/S1002-0160(15)30034-5
– volume: 51
  start-page: 645
  issue: 8
  year: 2013
  ident: 10.1016/j.geoderma.2021.115121_b0015
  article-title: Relationship between environmental and land-use variables on soil carbon levels at the regional scale in central New South Wales, Australia
  publication-title: Soil Res.
  doi: 10.1071/SR12358
– volume: 18
  start-page: 2594
  issue: 8
  year: 2012
  ident: 10.1016/j.geoderma.2021.115121_b0245
  article-title: Long-term carbon storage through retention of dissolved aromatic acids by reactive particles in soil
  publication-title: Glob. Change Biol.
  doi: 10.1111/j.1365-2486.2012.02681.x
– volume: 121
  start-page: 67
  year: 2018
  ident: 10.1016/j.geoderma.2021.115121_b0560
  article-title: Microbial stoichiometric flexibility regulates rice straw mineralization and its priming effect in paddy soil
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2018.03.003
– volume: 440
  start-page: 165
  issue: 7081
  year: 2006
  ident: 10.1016/j.geoderma.2021.115121_b0085
  article-title: Temperature sensitivity of soil carbon decomposition and feedbacks to climate change
  publication-title: Nature
  doi: 10.1038/nature04514
– volume: 45
  start-page: 527
  issue: 2
  year: 2001
  ident: 10.1016/j.geoderma.2021.115121_b0115
  article-title: Fractionation of organic matter due to reaction with ferrihydrite: coprecipitation versus adsorption
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es1023898
– volume: 63
  start-page: 22
  year: 2012
  ident: 10.1016/j.geoderma.2021.115121_b0490
  article-title: Aggregate stability and physical protection of soil organic carbon in semi-arid steppe soils
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/j.1365-2389.2011.01418.x
– volume: 26
  start-page: 15909
  issue: 20
  year: 2010
  ident: 10.1016/j.geoderma.2021.115121_b0195
  article-title: Metal cation complexation with natural organic matter in aqueous solutions: Molecular dynamics simulations and potentials of mean force
  publication-title: Langmuir
  doi: 10.1021/la102535n
– volume: 122
  start-page: 211
  year: 2018
  ident: 10.1016/j.geoderma.2021.115121_b0470
  article-title: Root derived carbon transport extends the rhizosphere of rice compared to wheat
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2018.03.024
– volume: 55
  start-page: 367
  year: 2004
  ident: 10.1016/j.geoderma.2021.115121_b0425
  article-title: Quantitative solid-state 13C NMR spectroscopy of organic matter fractions in lowland rice soils
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/j.1365-2389.2004.00600.x
– volume: 9
  issue: 2
  year: 2014
  ident: 10.1016/j.geoderma.2021.115121_b0550
  article-title: Effects of different tillage and straw return on soil organic carbon in a rice-wheat rotation system
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0088900
– volume: 223
  start-page: 152
  year: 2016
  ident: 10.1016/j.geoderma.2021.115121_b0175
  article-title: Environmental and human influences on organic carbon fractions down the soil profile
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/j.agee.2016.03.004
– volume: 91
  start-page: 781
  issue: 5
  year: 2011
  ident: 10.1016/j.geoderma.2021.115121_b0280
  article-title: Luvisolic soils of Canada: Genesis, distribution, and classification
  publication-title: Can. J. Soil Sci.
  doi: 10.4141/cjss2011-014
– volume: 225
  start-page: 263
  year: 2000
  ident: 10.1016/j.geoderma.2021.115121_b0500
  article-title: Crop rotation and residue management effects on carbon sequestration, nitrogen cycling and productivity of irrigated rice systems
  publication-title: Plant Soil
  doi: 10.1023/A:1026594118145
– volume: 146
  start-page: 48
  issue: 1-2
  year: 2008
  ident: 10.1016/j.geoderma.2021.115121_b0050
  article-title: Crop residue management effects on organic matter in paddy soils — the lignin component
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2008.05.004
– volume: 135
  start-page: 48
  year: 2019
  ident: 10.1016/j.geoderma.2021.115121_b0465
  article-title: Does an ‘iron gate’ carbon preservation mechanism exist in organic–rich wetlands?
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2019.04.011
– volume: 56
  start-page: 153
  issue: 3-4
  year: 2000
  ident: 10.1016/j.geoderma.2021.115121_b0250
  article-title: Variations in soil microbial biomass and N availability due to residue and tillage management in a dryland rice agroecosystem
  publication-title: Soil Tillage Res.
  doi: 10.1016/S0167-1987(00)00135-5
– volume: 35
  start-page: 167
  issue: 1
  year: 2003
  ident: 10.1016/j.geoderma.2021.115121_b0125
  article-title: Variations in microbial community composition through two soil depth profiles
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/S0038-0717(02)00251-1
– volume: 32
  start-page: 273
  issue: 4
  year: 2000
  ident: 10.1016/j.geoderma.2021.115121_b0330
  article-title: Soil organic carbon stocks, storage profile and microbial biomass under different crop management systems in a tropical agricultural ecosystem
  publication-title: Biol. Fertil. Soils
  doi: 10.1007/s003740000248
– volume: 61
  start-page: 910
  issue: 6
  year: 2015
  ident: 10.1016/j.geoderma.2021.115121_b0255
  article-title: Effect of water management on the vivianite content of paddy-rice roots
  publication-title: Soil Science and Plant Nutrition
  doi: 10.1080/00380768.2015.1089787
– volume: 71
  start-page: 1
  issue: 1
  year: 2004
  ident: 10.1016/j.geoderma.2021.115121_b0320
  article-title: Contribution of plant photosynthates to dissolved organic carbon in a flooded rice soil
  publication-title: Biogeochemistry
  doi: 10.1007/s10533-004-3258-0
– volume: 176
  start-page: 39
  year: 2013
  ident: 10.1016/j.geoderma.2021.115121_b0485
  article-title: Amount, distribution and driving factors of soil organic carbon and nitrogen in cropland and grassland soils of southeast Germany (Bavaria)
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/j.agee.2013.05.012
– volume: 13
  start-page: 6565
  issue: 24
  year: 2016
  ident: 10.1016/j.geoderma.2021.115121_b0315
  article-title: Microbial activity promoted with organic carbon accumulation in macroaggregates of paddy soils under long-term rice cultivation
  publication-title: Biogeosciences
  doi: 10.5194/bg-13-6565-2016
– volume: 7
  start-page: 335
  issue: 1
  year: 2015
  ident: 10.1016/j.geoderma.2021.115121_b0410
  article-title: Sensitivity of decomposition rates of soil organic matter with respect to simultaneous changes in temperature and moisture
  publication-title: J. Adv. Model. Earth Syst.
  doi: 10.1002/2014MS000358
– volume: 20
  start-page: 666
  issue: 5
  year: 2010
  ident: 10.1016/j.geoderma.2021.115121_b0295
  article-title: Impact of land use and soil fertility on distributions of soil aggregate fractions and some nutrients
  publication-title: Pedosphere
  doi: 10.1016/S1002-0160(10)60056-2
– volume: 416
  start-page: 243
  issue: 1-2
  year: 2017
  ident: 10.1016/j.geoderma.2021.115121_b0555
  article-title: Fate of rice shoot and root residues, rhizodeposits, and microbial assimilated carbon in paddy soil - part 2: turnover and microbial utilization
  publication-title: Plant Soil
  doi: 10.1007/s11104-017-3210-4
– volume: 84
  start-page: 27
  year: 2018
  ident: 10.1016/j.geoderma.2021.115121_b0370
  article-title: Effects of biotic and abiotic factors on soil organic matter mineralization: experiments and structural modeling analysis
  publication-title: Eur. J. Soil Biol.
  doi: 10.1016/j.ejsobi.2017.12.003
– volume: 51
  start-page: 1326
  issue: 11
  year: 2018
  ident: 10.1016/j.geoderma.2021.115121_b0515
  article-title: From the notion of elementary soil particle to the particle-size and microaggregate-size distribution analyses: a review
  publication-title: Eurasian Soil Sci.
  doi: 10.1134/S1064229318110091
– volume: 115
  start-page: 4045
  issue: 16
  year: 2018
  ident: 10.1016/j.geoderma.2021.115121_b0535
  article-title: Economics- and policy-driven organic carbon input enhancement dominates soil organic carbon accumulation in Chinese croplands
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1700292114
– volume: 560
  start-page: 80
  issue: 7716
  year: 2018
  ident: 10.1016/j.geoderma.2021.115121_b0055
  article-title: Globally rising soil heterotrophic respiration over recent decades
  publication-title: Nature
  doi: 10.1038/s41586-018-0358-x
– volume: 390
  start-page: 111
  issue: 1-2
  year: 2015
  ident: 10.1016/j.geoderma.2021.115121_b0170
  article-title: Drivers of soil organic carbon storage and vertical distribution in Eastern Australia
  publication-title: Plant Soil
  doi: 10.1007/s11104-015-2380-1
– volume: 26
  start-page: 261
  issue: 1
  year: 2019
  ident: 10.1016/j.geoderma.2021.115121_b0275
  article-title: Conceptualizing soil organic matter into particulate and mineral-associated forms to address global change in the 21st century
  publication-title: Glob. Change Biol.
  doi: 10.1111/gcb.14859
– volume: 113
  start-page: 70
  year: 2013
  ident: 10.1016/j.geoderma.2021.115121_b0140
  article-title: Microbial phototrophic fixation of atmospheric CO2 in China subtropical upland and paddy soils
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/j.gca.2013.03.020
– volume: 153
  start-page: 52
  issue: 1-2
  year: 2009
  ident: 10.1016/j.geoderma.2021.115121_b0540
  article-title: Role of chemical protection by binding to oxyhydrates in SOC sequestration in three typical paddy soils under long-term agro-ecosystem experiments from South China
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2009.07.018
– volume: 119
  start-page: 173
  issue: 1-3
  year: 2006
  ident: 10.1016/j.geoderma.2021.115121_b0025
  article-title: Dynamics of organic carbon and microbial biomass in alluvial soil with tillage and amendments in rice-wheat systems
  publication-title: Environ. Monit. Assess.
  doi: 10.1007/s10661-005-9021-8
– volume: 11
  start-page: 349
  year: 2001
  ident: 10.1016/j.geoderma.2021.115121_b0130
  article-title: Long-term impact of soil management on microbial biomass C, N and P in rice-based cropping system
  publication-title: Pedosphere
– volume: 568
  start-page: 88
  issue: 7750
  year: 2019
  ident: 10.1016/j.geoderma.2021.115121_b0365
  article-title: Climate-land-use interactions shape tropical mountain biodiversity and ecosystem functions
  publication-title: Nature
  doi: 10.1038/s41586-019-1048-z
– volume: 48
  start-page: 8498
  issue: 15
  year: 2014
  ident: 10.1016/j.geoderma.2021.115121_b0495
  article-title: Localized flux maxima of arsenic, lead, and iron around root apices in flooded lowland rice
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es501127k
– volume: 25
  start-page: 3574
  issue: 11
  year: 2019
  ident: 10.1016/j.geoderma.2021.115121_b0510
  article-title: Saving the face of soil aggregates
  publication-title: Glob. Change Biol.
  doi: 10.1111/gcb.14779
– volume: 157
  start-page: 1
  year: 2016
  ident: 10.1016/j.geoderma.2021.115121_b0520
  article-title: Pedogenic carbonates: Forms and formation processes
  publication-title: Earth Sci. Rev.
  doi: 10.1016/j.earscirev.2016.03.003
– volume: 352
  start-page: 277
  issue: 1-2
  year: 2011
  ident: 10.1016/j.geoderma.2021.115121_b0390
  article-title: How does drought stress influence the decomposition of plant litter with contrasting quality in a grassland ecosystem?
  publication-title: Plant Soil
  doi: 10.1007/s11104-011-0995-4
– volume: 46
  start-page: 1
  issue: 1
  year: 2009
  ident: 10.1016/j.geoderma.2021.115121_b0455
  article-title: Temperature sensitivity of soil organic matter decomposition—what do we know?
  publication-title: Biol. Fertil. Soils
  doi: 10.1007/s00374-009-0413-8
– volume: 10
  start-page: 79
  year: 2003
  ident: 10.1016/j.geoderma.2021.115121_b0350
  article-title: Storage and sequestration potential of topsoil organic carbon in China's paddy soils
  publication-title: Global Change Biol.
  doi: 10.1111/j.1365-2486.2003.00717.x
– volume: 62
  start-page: 665
  issue: 4
  year: 1978
  ident: 10.1016/j.geoderma.2021.115121_b0400
  article-title: Comparison of the uptake of nitrate and ammonium by rice seedlings: influences of light, temperature, oxygen concentration, exogenous sucrose, and metabolic inhibitors
  publication-title: Plant Physiol.
  doi: 10.1104/pp.62.4.665
– volume: 33
  start-page: 143
  issue: 2
  year: 2017
  ident: 10.1016/j.geoderma.2021.115121_b0300
  article-title: Vertical distributions of soil carbon and nitrogen fractions as affected by land-uses in the Ili River Valley
  publication-title: Chem. Ecol.
  doi: 10.1080/02757540.2016.1268131
– volume: 338
  start-page: 30
  year: 2019
  ident: 10.1016/j.geoderma.2021.115121_b0305
  article-title: Initial utilization of rhizodeposits with rice growth in paddy soils: Rhizosphere and N fertilization effects
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2018.11.040
– volume: 3
  start-page: 147
  year: 2012
  ident: 10.1016/j.geoderma.2021.115121_b0395
  article-title: Soil carbon cequestration affected by cropping changes from upland maize to flooded rice cultivation
  publication-title: J. Sustainable Energy Environ.
– volume: 68
  start-page: 181
  issue: 2
  year: 2004
  ident: 10.1016/j.geoderma.2021.115121_b0460
  article-title: Microbial biomass carbon, nitrogen and phosphorus in the soil profiles of different vegetation covers established for soil rehabilitation in a red soil region of southeastern China
  publication-title: Nutr. Cycl. Agroecosyst.
  doi: 10.1023/B:FRES.0000017470.14789.2a
– volume: 24
  start-page: 2810
  issue: 7
  year: 2018
  ident: 10.1016/j.geoderma.2021.115121_b0525
  article-title: Nitrogen fertilization raises CO2 efflux from inorganic carbon: a global assessment
  publication-title: Glob. Change Biol.
  doi: 10.1111/gcb.14148
– volume: 12
  start-page: 46
  issue: 1
  year: 2018
  ident: 10.1016/j.geoderma.2021.115121_b0430
  article-title: Microbial formation of stable soil carbon is more efficient from belowground than aboveground input
  publication-title: Nat. Geosci.
  doi: 10.1038/s41561-018-0258-6
– volume: 135
  start-page: 343
  year: 2019
  ident: 10.1016/j.geoderma.2021.115121_b0265
  article-title: Rhizosphere size and shape: Temporal dynamics and spatial stationarity
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2019.05.011
– volume: 46
  start-page: 261
  issue: 3-4
  year: 1998
  ident: 10.1016/j.geoderma.2021.115121_b0035
  article-title: Effects of iron and organic matter on the porosity and structural stability of soil aggregates
  publication-title: Soil Tillage Res.
  doi: 10.1016/S0167-1987(98)00092-0
– volume: 95
  start-page: 243
  year: 2016
  ident: 10.1016/j.geoderma.2021.115121_b0180
  article-title: Lasting effect of soil warming on organic matter decomposition depends on tillage practices
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2015.12.008
– volume: 63
  start-page: 142
  year: 2013
  ident: 10.1016/j.geoderma.2021.115121_b0075
  article-title: Translocation of metals by trees and fungi regulates pH, soil organic matter turnover and nitrogen availability in acidic forest soils
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2013.03.019
– volume: 36
  start-page: 877
  issue: 6
  year: 2004
  ident: 10.1016/j.geoderma.2021.115121_b0340
  article-title: Soil organic matter turnover as a function of the soil clay content: consequences for model applications
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2003.12.015
– volume: 135
  start-page: 134
  year: 2019
  ident: 10.1016/j.geoderma.2021.115121_b0475
  article-title: Labile carbon matters more than temperature for enzyme activity in paddy soil
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2019.04.016
– volume: 3
  start-page: 25
  issue: 1
  year: 2001
  ident: 10.1016/j.geoderma.2021.115121_b0045
  article-title: Influence of flooded and non-flooded conditions on methane efflux from two soils planted to rice
  publication-title: Chemosphere-Global Change Sci.
  doi: 10.1016/S1465-9972(00)00034-9
– volume: 157
  start-page: 1
  issue: 1-2
  year: 2010
  ident: 10.1016/j.geoderma.2021.115121_b0240
  article-title: Biogeochemistry of paddy soils
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2010.03.009
– volume: 271
  start-page: 115
  year: 2016
  ident: 10.1016/j.geoderma.2021.115121_b0230
  article-title: Microbial biomass, fungal and bacterial residues, and their relationships to the soil organic matter C/N/P/S ratios
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2016.02.019
– volume: 133
  start-page: 97
  year: 2019
  ident: 10.1016/j.geoderma.2021.115121_b0310
  article-title: Carbon input and allocation by rice into paddy soils: a review
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2019.02.019
– volume: 8
  start-page: 780
  issue: 10
  year: 2015
  ident: 10.1016/j.geoderma.2021.115121_b0100
  article-title: Soil carbon storage controlled by interactions between geochemistry and climate
  publication-title: Nat. Geosci.
  doi: 10.1038/ngeo2516
– volume: 8
  start-page: 2895
  year: 2011
  ident: 10.1016/j.geoderma.2021.115121_b0220
  article-title: Application of δ13C and δ15N isotopic signatures of organic matter fractions sequentially separated from adjacent arable and forest soils to identify carbon stabilization mechanisms
  publication-title: Biogeosciences
  doi: 10.5194/bg-8-2895-2011
– volume: 45
  start-page: 357
  issue: 3-4
  year: 1989
  ident: 10.1016/j.geoderma.2021.115121_b0405
  article-title: Chemistry and micromorphology of aggregation in earthworm casts
  publication-title: Geoderma
  doi: 10.1016/0016-7061(89)90016-5
– volume: 80
  start-page: 5
  issue: 1-2
  year: 2007
  ident: 10.1016/j.geoderma.2021.115121_b0205
  article-title: Mechanisms controlling soil carbon turnover and their potential application for enhancing carbon sequestration
  publication-title: Clim. Change
  doi: 10.1007/s10584-006-9178-3
– volume: 14
  start-page: 083004
  issue: 8
  year: 2019
  ident: 10.1016/j.geoderma.2021.115121_b0020
  article-title: What do we know about soil carbon destabilization?
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/ab2c11
– volume: 53
  start-page: 419
  issue: 4
  year: 2017
  ident: 10.1016/j.geoderma.2021.115121_b0530
  article-title: Nitrogen fertilization increases rhizodeposit incorporation into microbial biomass and reduces soil organic matter losses
  publication-title: Biol. Fertil. Soils
  doi: 10.1007/s00374-017-1194-0
– volume: 71
  start-page: 95
  year: 2014
  ident: 10.1016/j.geoderma.2021.115121_b0150
  article-title: Pathways of litter C by formation of aggregates and SOM density fractions: Implications from 13C natural abundance
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2014.01.011
– volume: 26
  start-page: 3738
  issue: 6
  year: 2020
  ident: 10.1016/j.geoderma.2021.115121_b0375
  article-title: Dramatic loss of inorganic carbon by nitrogen-induced soil acidification in Chinese croplands
  publication-title: Glob. Change Biol.
  doi: 10.1111/gcb.15101
– volume: 56
  start-page: 693
  issue: 5
  year: 2010
  ident: 10.1016/j.geoderma.2021.115121_b0290
  article-title: Spatial variability of soil microbial biomass carbon, nitrogen and phosphorus in a hilly red soil landscape in subtropical China
  publication-title: Soil Sci. Plant Nutr.
  doi: 10.1111/j.1747-0765.2010.00510.x
– volume: 10
  start-page: 100145
  year: 2019
  ident: 10.1016/j.geoderma.2021.115121_b0480
  article-title: Biogeochemical cycles of key elements in the paddy-rice rhizosphere: Microbial mechanisms and coupling processes
  publication-title: Rhizosphere
  doi: 10.1016/j.rhisph.2019.100145
– volume: 102
  start-page: 168
  issue: 2
  year: 2009
  ident: 10.1016/j.geoderma.2021.115121_b0110
  article-title: Management-induced structural dynamics in paddy soils of south east China simulated in microcosms
  publication-title: Soil Tillage Res.
  doi: 10.1016/j.still.2008.07.007
– volume: 86
  start-page: 153
  issue: 1
  year: 2010
  ident: 10.1016/j.geoderma.2021.115121_b0190
  article-title: Organic carbon fractions affected by long-term fertilization in a subtropical paddy soil
  publication-title: Nutr. Cycl. Agroecosyst.
  doi: 10.1007/s10705-009-9279-2
– volume: 138
  start-page: 1
  year: 2016
  ident: 10.1016/j.geoderma.2021.115121_b0235
  article-title: Root iron plaque on wetland plants as a dynamic pool of nutrients and contaminants
  publication-title: Adv. Agron.
  doi: 10.1016/bs.agron.2016.04.002
– volume: 11
  start-page: 2255
  year: 2020
  ident: 10.1016/j.geoderma.2021.115121_b0060
  article-title: Iron-mediated organic matter decomposition in humid soils can counteract protection
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-16071-5
– volume: 113
  start-page: 108
  year: 2017
  ident: 10.1016/j.geoderma.2021.115121_b0135
  article-title: Stability and dynamics of enzyme activity patterns in the rice rhizosphere: effects of plant growth and temperature
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2017.06.005
– start-page: 1
  year: 2014
  ident: 10.1016/j.geoderma.2021.115121_b0200
  article-title: World Reference Base for Soil Resources 2014: International soil classification system for naming soils and creating legends for soil maps
– volume: 5
  start-page: 588
  issue: 6
  year: 2015
  ident: 10.1016/j.geoderma.2021.115121_b0225
  article-title: Mineral protection of soil carbon counteracted by root exudates
  publication-title: Nat. Clim. Change
  doi: 10.1038/nclimate2580
– volume: 57
  start-page: 426
  year: 2006
  ident: 10.1016/j.geoderma.2021.115121_b0325
  article-title: Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions - a review
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/j.1365-2389.2006.00809.x
– volume: 171
  start-page: 9
  year: 2013
  ident: 10.1016/j.geoderma.2021.115121_b0080
  article-title: Unraveling the long-term stabilization mechanisms of organic materials in soils by physical fractionation and NMR spectroscopy
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/j.agee.2013.03.010
– volume: 45
  start-page: 63
  issue: 1
  year: 2003
  ident: 10.1016/j.geoderma.2021.115121_b0120
  article-title: Influence of drying-rewetting frequency on soil bacterial community structure
  publication-title: Microb. Ecol.
  doi: 10.1007/s00248-002-1007-2
– volume: 48
  start-page: 39
  year: 2012
  ident: 10.1016/j.geoderma.2021.115121_b0145
  article-title: Biological carbon assimilation and dynamics in a flooded rice - Soil system
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2012.01.009
– volume: 241
  start-page: 155
  year: 2002
  ident: 10.1016/j.geoderma.2021.115121_b0415
  article-title: Stabilization mechanisms of soil organic matter: implications for C-saturation of soils
  publication-title: Plant Soil
  doi: 10.1023/A:1016125726789
SSID ssj0017020
Score 2.639514
Snippet [Display omitted] •Mechanisms of higher C and N stocks in paddies than upland soils are reviewed.•Climate effects on stocks are weakened by management...
Paddy soils, a type of Hydragric Anthrosol, have much greater soil organic C (SOC) and total N (TN) contents than that in upland soils. However, this fact has...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 115121
SubjectTerms Anthrosols
atmospheric precipitation
C and N stocks
Carbon sequestration
highlands
Land-use change
meta-analysis
Microbial turnover
nitrogen
paddies
Paddy soils
puddling
quantitative analysis
rice
sesquioxides
soil organic carbon
temperature
total nitrogen
Upland soils
Title Comparing carbon and nitrogen stocks in paddy and upland soils: Accumulation, stabilization mechanisms, and environmental drivers
URI https://dx.doi.org/10.1016/j.geoderma.2021.115121
https://www.proquest.com/docview/2551938786
Volume 398
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwELUQvbQHRFsqvopcqUfCxtixvb2tVqCFqpyKxM1yHAcF2GSV7B64IPHPmXEcRJEqDhzjeCLLbzwzkWfeEPLTeYiCHecJ85lORJ5liWVcJiV4I6fTYy891jv_uZCzS3F-lV2tkelQC4NpldH29zY9WOs4Moq7OVpUFdb4MqnSwIAFMU-g_hRCoZYfPTyneTCVRmpGJhOc_aJK-AYwwoZjgX_omIH1AO_H_uegXpnq4H9ON8lGDBzppF_bZ7Lm6y_k0-S6jeQZ_it5nPZNBetr6mybNzW1dUHhzLYNqAmFMM_ddrSq6QLMzX14uVpgZiPtmuqu-0Unzq3msZ_XIcwP7Lt9nSade6wRrrp5dxgkX1TIwbKKNuR3bJHL05O_01kSWywkjo_5MrFca6e8cAUS741zlZZKytSJItOpsACgzYXgLudWaF-osixTX2hdpiVXGJp8I-t1U_ttQh0m1IBDBHi58GWe2wyZfsLdpmTa7ZBs2FfjIv84tsG4M0Oi2Y0Z8DCIh-nx2CGjZ7lFz8DxpsR4gM38o0sG3MSbsj8GnA0cNLw9sbVvVp2Bfy8IdrXScvcd398jH_EJM05Ytk_Wl-3Kf4ewZpkfBL09IB8mZ79nF08ppPlj
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwELYoHFoOVelD0Beu1N5IN147jrdSDysKWsrjBBI313EcFGCTVbKrikul_qb-wc44DqKVEAfENc5Ylmc831j-ZoaQj9ZBFGw5j5hLVCSyJIkM4zIqAI2siodOOsx3PjySkxPx_TQ5XSJ_-lwYpFUG39_5dO-tw5dB2M3BrCwxx5fJNPYVsCDmYaPArNx3Vz_h3tZ-3fsGSv40HO7uHG9PotBaILJ8xOeR4UrZ1AmbY8G5UZbGRSplbEWeqFgYWLjJhOA240Yol6dFUcQuV6qIC54iJMO8j8iKAHeBbRM-_7rmlTAY7vJemIxweTfSks_BKLDDmS94NGTgrgBu2W2I-B82eMDbfUaehkiVjrvNWCNLrnpOVsdnTajW4V6Q39tdF8PqjFrTZHVFTZVTcBJNDXZJIa60Fy0tKzoD_3blBxczpFLSti4v2y90bO1iGhqIbcH_vtxvlxhKpw6Tkst22m55yRspebCsvPGEkpfk5EE2_hVZrurKrRNqkcEDCAz2xIUrsswkWFrIP6ZKpuwGSfp91TYUPMe-G5e6Z7ad614fGvWhO31skMG13Kwr-XGnxKhXm_7HeDXg0p2yH3o9azjZ-FxjKlcvWg2XPYiuVark63vMv0keT44PD_TB3tH-G_IER5DuwpK3ZHneLNw7iKnm2Xtvw5T8eOhD8xeELjVu
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparing+carbon+and+nitrogen+stocks+in+paddy+and+upland+soils%3A+Accumulation%2C+stabilization+mechanisms%2C+and+environmental+drivers&rft.jtitle=Geoderma&rft.au=Wei%2C+Liang&rft.au=Ge%2C+Tida&rft.au=Zhu%2C+Zhenke&rft.au=Luo%2C+Yu&rft.date=2021-09-15&rft.issn=0016-7061&rft.volume=398&rft.spage=115121&rft_id=info:doi/10.1016%2Fj.geoderma.2021.115121&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_geoderma_2021_115121
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7061&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7061&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7061&client=summon