Chemical vapor deposition of poly-p-xylylene in narrow tubes

Depositing a film via chemical vapor deposition results in superior conformity compared with other deposition techniques, primarily due to the unique chemical interactions between the surface and the reactive compounds. This technique requires a readily accessible surface and so, if the transport of...

Full description

Saved in:
Bibliographic Details
Published inAIP advances Vol. 7; no. 7; pp. 075005 - 075005-13
Main Authors Bröskamp, Sara Felicitas, Redka, David, Möhlmann, Alexander, Franz, Gerhard, Jocham, Dieter
Format Journal Article
LanguageEnglish
Published Melville American Institute of Physics 01.07.2017
AIP Publishing LLC
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Depositing a film via chemical vapor deposition results in superior conformity compared with other deposition techniques, primarily due to the unique chemical interactions between the surface and the reactive compounds. This technique requires a readily accessible surface and so, if the transport of the reactive species is impeded, irrespective of whether this depletion is caused by diffusion or convective flow, a homogeneous layer thickness cannot be achieved. This is often the case when applying films to the interiors of tubes, especially tubes with a dead-end, such that the inevitable loss of film-building components leads to a drop in thickness along the deposition length. The present work examined the deposition of the organic polymer poly-p-xylylene, using a reactor with dimensions that were large compared with the mean free path and tubes in which this factor (the Knudsen number) becomes unity, such that the deposition can be approximately described with the continuum model. A so-called temperature seesaw was employed to mitigate variations in layer thickness by generating an opposing temperature gradient. It was found that, under a vacuum of several tens of mTorr, the polymer could be deposited on the interior wall of a tube with an aspect ratio of at least 100 with an accuracy of ± 7.5   %. The true ceiling temperature for the N derivate of this polymer was also determined to be 70 ± 2   ° C.
AbstractList Depositing a film via chemical vapor deposition results in superior conformity compared with other deposition techniques, primarily due to the unique chemical interactions between the surface and the reactive compounds. This technique requires a readily accessible surface and so, if the transport of the reactive species is impeded, irrespective of whether this depletion is caused by diffusion or convective flow, a homogeneous layer thickness cannot be achieved. This is often the case when applying films to the interiors of tubes, especially tubes with a dead-end, such that the inevitable loss of film-building components leads to a drop in thickness along the deposition length. The present work examined the deposition of the organic polymer poly-p-xylylene, using a reactor with dimensions that were large compared with the mean free path and tubes in which this factor (the Knudsen number) becomes unity, such that the deposition can be approximately described with the continuum model. A so-called temperature seesaw was employed to mitigate variations in layer thickness by generating an opposing temperature gradient. It was found that, under a vacuum of several tens of mTorr, the polymer could be deposited on the interior wall of a tube with an aspect ratio of at least 100 with an accuracy of ±7.5 %. The true ceiling temperature for the N derivate of this polymer was also determined to be 70±2 °C.
Depositing a film via chemical vapor deposition results in superior conformity compared with other deposition techniques, primarily due to the unique chemical interactions between the surface and the reactive compounds. This technique requires a readily accessible surface and so, if the transport of the reactive species is impeded, irrespective of whether this depletion is caused by diffusion or convective flow, a homogeneous layer thickness cannot be achieved. This is often the case when applying films to the interiors of tubes, especially tubes with a dead-end, such that the inevitable loss of film-building components leads to a drop in thickness along the deposition length. The present work examined the deposition of the organic polymer poly-p-xylylene, using a reactor with dimensions that were large compared with the mean free path and tubes in which this factor (the Knudsen number) becomes unity, such that the deposition can be approximately described with the continuum model.A so-called temperature seesaw was employed to mitigate variations in layer thickness by generating an opposing temperature gradient. It was found that, under a vacuum of several tens of mTorr, the polymer could be deposited on the interior wall of a tube with an aspect ratio of at least 100 with an accuracy of ±7.5 %. The true ceiling temperature for the N derivate of this polymer was also determined to be 70±2 °C.
Depositing a film via chemical vapor deposition results in superior conformity compared with other deposition techniques, primarily due to the unique chemical interactions between the surface and the reactive compounds. This technique requires a readily accessible surface and so, if the transport of the reactive species is impeded, irrespective of whether this depletion is caused by diffusion or convective flow, a homogeneous layer thickness cannot be achieved. This is often the case when applying films to the interiors of tubes, especially tubes with a dead-end, such that the inevitable loss of film-building components leads to a drop in thickness along the deposition length. The present work examined the deposition of the organic polymer poly-p-xylylene, using a reactor with dimensions that were large compared with the mean free path and tubes in which this factor (the Knudsen number) becomes unity, such that the deposition can be approximately described with the continuum model. A so-called temperature seesaw was employed to mitigate variations in layer thickness by generating an opposing temperature gradient. It was found that, under a vacuum of several tens of mTorr, the polymer could be deposited on the interior wall of a tube with an aspect ratio of at least 100 with an accuracy of ± 7.5   %. The true ceiling temperature for the N derivate of this polymer was also determined to be 70 ± 2   ° C.
Author Jocham, Dieter
Möhlmann, Alexander
Franz, Gerhard
Redka, David
Bröskamp, Sara Felicitas
Author_xml – sequence: 1
  givenname: Sara Felicitas
  surname: Bröskamp
  fullname: Bröskamp, Sara Felicitas
  organization: Laboratory for Surface Refinement and Thin Film Technology, Munich University of Applied Sciences
– sequence: 2
  givenname: David
  surname: Redka
  fullname: Redka, David
  organization: Laboratory for Surface Refinement and Thin Film Technology, Munich University of Applied Sciences
– sequence: 3
  givenname: Alexander
  surname: Möhlmann
  fullname: Möhlmann, Alexander
  organization: Laboratory for Surface Refinement and Thin Film Technology, Munich University of Applied Sciences
– sequence: 4
  givenname: Gerhard
  surname: Franz
  fullname: Franz, Gerhard
  email: gerhard.franz@hm.edu, www.gerhard-franz.org
  organization: Laboratory for Surface Refinement and Thin Film Technology, Munich University of Applied Sciences
– sequence: 5
  givenname: Dieter
  surname: Jocham
  fullname: Jocham, Dieter
  organization: University Hospital of the State of Schleswig-Holstein
BookMark eNp9kE1LAzEQhoNUsNYe_AcLnhS2ziRpdhe8SPGjUPDSe0izE92y3azJVu2_t2uLeHIuMwwPzwzvORs0viHGLhEmCErc4kQWhVRZfsKGHKd5KjhXgz_zGRvHuIZ9yQIhl0N2N3ujTWVNnXyY1oekpNbHqqt8k3iXtL7epW36tat3NTWUVE3SmBD8Z9JtVxQv2KkzdaTxsY_Y8vFhOXtOFy9P89n9IrWiEF1qUKLlBaGYOiOVKgVkHDkBEAijCgfOukJlpYGSkwCJhQRDWQaAboVixOYHbenNWreh2piw095U-mfhw6s2oatsTZqglwHn-dRK63gujCScosq4wRW5vevq4GqDf99S7PTab0Oz_15zRAV5Lnh_8fpA2eBjDOR-ryLoPmqN-hj1nr05sNFWnemT-wf-Bh-nfUI
CODEN AAIDBI
CitedBy_id crossref_primary_10_3390_pr10101982
crossref_primary_10_3390_coatings11060739
crossref_primary_10_3762_bjnano_8_199
Cites_doi 10.1116/1.4816942
10.1016/s0022-0248(97)00428-4
10.1116/1.4740049
10.1351/pac199062091689
10.1007/3-540-07727-8_3
10.1116/1.580858
10.1557/jmr.1996.0029
10.1088/0022-3727/35/21/306
10.1088/0022-3727/35/13/311
10.1007/bf02699324
10.1002/app.1981.070260727
10.1002/pol.1984.170220218
10.1002/pol.1966.150041209
10.1021/cm010454a
10.1021/ma60061a014
ContentType Journal Article
Copyright Author(s)
2017 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Copyright_xml – notice: Author(s)
– notice: 2017 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
DBID AJDQP
AAYXX
CITATION
8FD
H8D
L7M
DOA
DOI 10.1063/1.4994678
DatabaseName AIP Open Access Journals
CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitleList CrossRef
Technology Research Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: AJDQP
  name: AIP Open Access Journals
  url: https://publishing.aip.org/librarians/open-access-policy
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2158-3226
EndPage 075005-13
ExternalDocumentID oai_doaj_org_article_e0f0fc02285c4cf283a4e151672a1bef
10_1063_1_4994678
adv
GrantInformation_xml – fundername: German Federal Secretary of Economy
  grantid: KF257-5103 CR4
GroupedDBID 4.4
5VS
61.
AAFWJ
ABFTF
ACGFO
ADBBV
ADCTM
AEGXH
AENEX
AFPKN
AGKCL
AGLKD
AHSDT
AIAGR
AJDQP
ALMA_UNASSIGNED_HOLDINGS
BCNDV
EBS
EJD
FRP
GROUPED_DOAJ
HH5
IPNFZ
KQ8
M~E
OK1
RIG
RIP
RNS
ROL
RQS
AAYXX
CITATION
8FD
H8D
L7M
ID FETCH-LOGICAL-c393t-a141c29e135fa466d307212e00e03a69f0fcf967da0d2e3041940ae77001fb13
IEDL.DBID DOA
ISSN 2158-3226
IngestDate Thu Jul 04 21:10:44 EDT 2024
Fri Sep 13 03:24:16 EDT 2024
Fri Aug 23 01:38:39 EDT 2024
Fri Jun 21 00:14:38 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License 2158-3226/2017/7(7)/075005/13/$0.00
All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c393t-a141c29e135fa466d307212e00e03a69f0fcf967da0d2e3041940ae77001fb13
OpenAccessLink https://doaj.org/article/e0f0fc02285c4cf283a4e151672a1bef
PQID 2116088321
PQPubID 2050671
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_e0f0fc02285c4cf283a4e151672a1bef
scitation_primary_10_1063_1_4994678
proquest_journals_2116088321
crossref_primary_10_1063_1_4994678
PublicationCentury 2000
PublicationDate 20170700
2017-07-01
20170701
PublicationDateYYYYMMDD 2017-07-01
PublicationDate_xml – month: 07
  year: 2017
  text: 20170700
PublicationDecade 2010
PublicationPlace Melville
PublicationPlace_xml – name: Melville
PublicationTitle AIP advances
PublicationYear 2017
Publisher American Institute of Physics
AIP Publishing LLC
Publisher_xml – name: American Institute of Physics
– name: AIP Publishing LLC
References Beach (c7) 1978; 11
Kramer, Sharma, Hennecke, Yasuda (c3) 1984; 22
Lee, Lee, Park (c20) 2002; 19
Gorham (c2) 1966; 4
Tolstopyatov, Yang, Kim (c18) 2002; 35
Semlyen (c10) 1976; 21
Schamberger, Ziegler, Franz (c5) 2012; 30
Hirth, Pérez-Grassi, Dorigo, Koch (c14) 2010; 7790
Broer, Luijks (c12) 1981; 26
Yasuda, Yeh, Fusselman (c4) 1990; 62
Ganguli, Agrawal, Wang, McDonald, Lu, Yang, Gill (c8) 1997; 15
Fortin, Lu (c9) 2002; 14
Tolstopyatov, Yang, Kim (c19) 2002; 35
Franz, Schamberger (c11) 2013; 31
Tolstopyatov (c13) 2002; 35
Yang, Ganguli, Karcz, Gill, Lu (c1) 1998; 183
Gaynor (c15) 1996; 11
(2023080703375578600_c2) 1966; 4
(2023080703375578600_c11) 2013; 31
(2023080703375578600_c13) 2002; 35
Suzuki (2023080703375578600_c17) 1993
(2023080703375578600_c1) 1998; 183
(2023080703375578600_c4) 1990; 62
(2023080703375578600_c21) 2004
(2023080703375578600_c10) 1976; 21
(2023080703375578600_c15) 1996; 11
(2023080703375578600_c6) 1965
(2023080703375578600_c3) 1984; 22
(2023080703375578600_c14) 2010; 7790
(2023080703375578600_c18) 2002; 35
(2023080703375578600_c5) 2012; 30
(2023080703375578600_c12) 1981; 26
2023080703375578600_c16
(2023080703375578600_c7) 1978; 11
(2023080703375578600_c9) 2002; 14
(2023080703375578600_c8) 1997; 15
(2023080703375578600_c19) 2002; 35
(2023080703375578600_c20) 2002; 19
References_xml – volume: 183
  start-page: 385
  year: 1998
  ident: c1
  publication-title: J. Crystal Growth
  contributor:
    fullname: Lu
– volume: 30
  start-page: 01801
  year: 2012
  ident: c5
  publication-title: J. Vac. Sci. Technol. B
  contributor:
    fullname: Franz
– volume: 31
  start-page: 061602
  year: 2013
  ident: c11
  publication-title: J. Vac. Sci. Technol. A
  contributor:
    fullname: Schamberger
– volume: 22
  start-page: 475
  year: 1984
  ident: c3
  publication-title: J. Polymer Sci.
  contributor:
    fullname: Yasuda
– volume: 15
  start-page: 3138
  year: 1997
  ident: c8
  publication-title: J. Vac. Sci. Technol. A
  contributor:
    fullname: Gill
– volume: 21
  start-page: 41
  year: 1976
  ident: c10
  publication-title: Adv. Polym. Sci.
  contributor:
    fullname: Semlyen
– volume: 7790
  start-page: 7790-33
  year: 2010
  ident: c14
  article-title: Comparison of different film thickness evaluation algorithms applicable to spectrometric interrogation systems
  publication-title: Proc. SPIE
  contributor:
    fullname: Koch
– volume: 19
  start-page: 722
  year: 2002
  ident: c20
  publication-title: Korean J. Chem. Eng.
  contributor:
    fullname: Park
– volume: 4
  start-page: 3027
  year: 1966
  ident: c2
  publication-title: J. Polym. Sci., Part [A-1]
  contributor:
    fullname: Gorham
– volume: 35
  start-page: 2723
  year: 2002
  ident: c18
  publication-title: J. Phys. D: Appl. Phys.
  contributor:
    fullname: Kim
– volume: 35
  start-page: 2723
  year: 2002
  ident: c19
  publication-title: J. Phys. D: Appl. Phys.
  contributor:
    fullname: Kim
– volume: 26
  start-page: 2415
  year: 1981
  ident: c12
  publication-title: J. Appl. Polymer Sci.
  contributor:
    fullname: Luijks
– volume: 35
  start-page: 1516
  year: 2002
  ident: c13
  publication-title: J. Phys. D: Appl. Phys.
  contributor:
    fullname: Tolstopyatov
– volume: 62
  start-page: 1689
  year: 1990
  ident: c4
  publication-title: Pure Appl. Chem.
  contributor:
    fullname: Fusselman
– volume: 11
  start-page: 236
  year: 1996
  ident: c15
  publication-title: J. Mater. Res
  contributor:
    fullname: Gaynor
– volume: 11
  start-page: 72
  year: 1978
  ident: c7
  publication-title: Macromolecules
  contributor:
    fullname: Beach
– volume: 14
  start-page: 1945
  year: 2002
  ident: c9
  publication-title: Chem. Mater.
  contributor:
    fullname: Lu
– volume: 31
  start-page: 061602
  issue: 6
  year: 2013
  ident: 2023080703375578600_c11
  publication-title: J. Vac. Sci. Technol. A
  doi: 10.1116/1.4816942
– start-page: 373
  volume-title: Fundamentals of Adsorption
  year: 1993
  ident: 2023080703375578600_c17
  article-title: Effect of structural heterogeneity on multicomponent adsorption: Benzene and p-xylene mixture on silicalite
  contributor:
    fullname: Suzuki
– volume: 183
  start-page: 385
  year: 1998
  ident: 2023080703375578600_c1
  publication-title: J. Crystal Growth
  doi: 10.1016/s0022-0248(97)00428-4
– volume: 30
  start-page: 01801
  year: 2012
  ident: 2023080703375578600_c5
  publication-title: J. Vac. Sci. Technol. B
  doi: 10.1116/1.4740049
– volume: 62
  start-page: 1689
  year: 1990
  ident: 2023080703375578600_c4
  publication-title: Pure Appl. Chem.
  doi: 10.1351/pac199062091689
– volume: 21
  start-page: 41
  year: 1976
  ident: 2023080703375578600_c10
  publication-title: Adv. Polym. Sci.
  doi: 10.1007/3-540-07727-8_3
– volume: 15
  start-page: 3138
  year: 1997
  ident: 2023080703375578600_c8
  publication-title: J. Vac. Sci. Technol. A
  doi: 10.1116/1.580858
– volume: 7790
  start-page: 7790-33
  year: 2010
  ident: 2023080703375578600_c14
  article-title: Comparison of different film thickness evaluation algorithms applicable to spectrometric interrogation systems
  publication-title: Proc. SPIE
– start-page: 54
  year: 1965
  ident: 2023080703375578600_c6
– volume: 11
  start-page: 236
  year: 1996
  ident: 2023080703375578600_c15
  publication-title: J. Mater. Res
  doi: 10.1557/jmr.1996.0029
– volume: 35
  start-page: 2723
  year: 2002
  ident: 2023080703375578600_c19
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/35/21/306
– volume: 35
  start-page: 1516
  year: 2002
  ident: 2023080703375578600_c13
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/35/13/311
– volume: 35
  start-page: 2723
  year: 2002
  ident: 2023080703375578600_c18
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/35/21/306
– volume: 19
  start-page: 722
  year: 2002
  ident: 2023080703375578600_c20
  publication-title: Korean J. Chem. Eng.
  doi: 10.1007/bf02699324
– volume: 26
  start-page: 2415
  year: 1981
  ident: 2023080703375578600_c12
  publication-title: J. Appl. Polymer Sci.
  doi: 10.1002/app.1981.070260727
– ident: 2023080703375578600_c16
– volume: 22
  start-page: 475
  year: 1984
  ident: 2023080703375578600_c3
  publication-title: J. Polymer Sci.
  doi: 10.1002/pol.1984.170220218
– start-page: 45
  volume-title: Chemical Vapor Deposition Polymerization
  year: 2004
  ident: 2023080703375578600_c21
– volume: 4
  start-page: 3027
  year: 1966
  ident: 2023080703375578600_c2
  publication-title: J. Polym. Sci., Part [A-1]
  doi: 10.1002/pol.1966.150041209
– volume: 14
  start-page: 1945
  year: 2002
  ident: 2023080703375578600_c9
  publication-title: Chem. Mater.
  doi: 10.1021/cm010454a
– volume: 11
  start-page: 72
  year: 1978
  ident: 2023080703375578600_c7
  publication-title: Macromolecules
  doi: 10.1021/ma60061a014
SSID ssj0000491084
Score 2.134461
Snippet Depositing a film via chemical vapor deposition results in superior conformity compared with other deposition techniques, primarily due to the unique chemical...
SourceID doaj
proquest
crossref
scitation
SourceType Open Website
Aggregation Database
Publisher
StartPage 075005
SubjectTerms Aspect ratio
Building components
Ceilings
Chemical vapor deposition
Continuum modeling
Convective flow
Diffusion layers
Organic chemistry
Polymers
Temperature gradients
Thickness
Tubes
SummonAdditionalLinks – databaseName: AIP Open Access Journals
  dbid: AJDQP
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFD7MDdEX8Yr1RnC-RnNruoIv8zJEUBQm-FaSNAFhdMNNcf_e064d-iD4WtISvpPk-07P6VeAM6tNapGnaO6tpoorQW1uE4pHoZXOsJy7MlF8eNR3L-r-NX5tQfePCr6WF_wcRTlu594KdCq3uzZ0-vc3z0_LVykocjnrqcY36Oc9v9imMuX_pSTXkGYWFe8fpDLYhI1aDZL-Inxb0PLFNqxWXZluugOXzef85NOgTia5b3qsyDiQyXg0pxP6NR_NkTo8eStIUVkqktmH9dNdGA5uh9d3tP7dAXUylTNquOJOpJ7LOBildS5L7zLhGfNMGp0GFlxIdZIjgsJLpniqmPFJWTkOlss9aBfjwu8Dsal0yqrYsDgowxKDIiXPMdk1wgWR2ghOG1SyycLUIquK0VpmPKuhi-CqxGs5oPShri5gcLJ6WWeelbMqPXRip_DZPWmURxGhE2G49SGCowbtrN4c0wxzTo2HmxQ8gu4yAn_P5OBfow5hXZSUW7XSHkF79v7hj1EwzOxJvWC-AZQgupo
  priority: 102
  providerName: American Institute of Physics
Title Chemical vapor deposition of poly-p-xylylene in narrow tubes
URI http://dx.doi.org/10.1063/1.4994678
https://www.proquest.com/docview/2116088321/abstract/
https://doaj.org/article/e0f0fc02285c4cf283a4e151672a1bef
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NSwMxEA2iiF7ET6xWCeo1mmyy2Qa81I9SCopCBW9Lkk1AkW2xVey_d5LdLfUgXrwuewhvsvPeMLNvEDozUisDPEUKZyQRTCTEFCYjkAoNt5oWzIZC8e5e9p_E4Dl9Xlj1FWbCKnvgCrgLRz31Nri0pFZYD2yohQOaklmimXE-Zl-WLhRTr5XuZTSuGwZK6xC4tbKxFZL8gp2DzocM0flBRtGz_4fQXAMWqhriC5zT20QbtVjE3eqQW2jJldtoNQ5t2skOumz-9sefGmQ0LlwzgoVHHo9HbzMyJl-ztxkwi8MvJS6j4yKefhg32UXD3u3wuk_qbQjEcsWnRDPBbKIc46nXQsqCB2uzxFHqKNdSBZi8klkBACeOU8GUoNplobHsDeN7aLkclW4fYaO4FUakmqZeaJpp0DBFAbWwTgBgZVropEElH1eeF3nsVUues7yGroWuAl7zF4JNdXwAwcvr4OV_Ba-F2g3aef3tTHIIp4TcxxPWQqfzCPx-koP_OMkhWk8CYcdB3DZanr5_uCOQG1NzjFa6g5vHh-N4w74Bv9HQUQ
link.rule.ids 315,786,790,870,2115,27923,27957,27958,76766
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9wwEB7ahJJeStI2dNukEWmvSvSyvIZe0kfY5kULW8hN6AmBxWu6uyH77zPy2tvkEOjVyGaYkfR94xl9AvjstK0c4hQN0WmquBLUBVdS3Aqd9JYF7nOieHmlR3_U2XVx3fXm5LMwaMTsyN40K4ngcHvcOZBOkHMumn-CA1oe8yOk67jQh89hs9Slxgm-eXL2_fev9U8WpL-cDVWvKPTwnUc41Mr1P-KYWwhAq1r4A7g53YZXHU8kJyu7duBZrF_Di7Zf08_ewJf-oD-5tcigSYh99xWZJtJMJ0va0LvlZImgEslNTepWbJHMFy7O3sL49Mf424h2FyFQLys5p5Yr7kUVuSySVVoHmVXNRGQsMml1lVjyqdJlQN-KKJnilWI2lrmmnByXu7BRT-v4DoirpFdOFZYVSVlWWqQvIWAabIVPonIDOOy9YpqV3IVpy9RaGm461w3ga_bXekBWqG4fYMxMFy8TWbYqq-sUXuG3h9KqiPRCl8JyF9MA9npvm27ZzAxmoxq3PSn4AD6tI_C0Je__a9QBbI3Glxfm4ufV-Qd4KTIwtw23e7Ax_7uI-0gr5u5jN3nuAfKWx6U
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Chemical+vapor+deposition+of+poly-p-xylylene+in+narrow+tubes&rft.jtitle=AIP+advances&rft.au=Sara+Felicitas+Br%C3%B6skamp&rft.au=David+Redka&rft.au=Alexander+M%C3%B6hlmann&rft.au=Gerhard+Franz&rft.date=2017-07-01&rft.pub=AIP+Publishing+LLC&rft.issn=2158-3226&rft.eissn=2158-3226&rft.volume=7&rft.issue=7&rft.spage=075005&rft.epage=075005-13&rft_id=info:doi/10.1063%2F1.4994678&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_e0f0fc02285c4cf283a4e151672a1bef
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2158-3226&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2158-3226&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2158-3226&client=summon