Low-temperature plasma simulation based on physics-informed neural networks: Frameworks and preliminary applications
Plasma simulation is an important, and sometimes the only, approach to investigating plasma behavior. In this work, we propose two general artificial-intelligence-driven frameworks for low-temperature plasma simulation: Coefficient-Subnet Physics-Informed Neural Network (CS-PINN) and Runge–Kutta Phy...
Saved in:
Published in | Physics of fluids (1994) Vol. 34; no. 8 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Melville
American Institute of Physics
01.08.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Plasma simulation is an important, and sometimes the only, approach to investigating plasma behavior. In this work, we propose two general artificial-intelligence-driven frameworks for low-temperature plasma simulation: Coefficient-Subnet Physics-Informed Neural Network (CS-PINN) and Runge–Kutta Physics-Informed Neural Network (RK-PINN). CS-PINN uses either a neural network or an interpolation function (e.g., spline function) as the subnet to approximate solution-dependent coefficients (e.g., electron-impact cross sections, thermodynamic properties, transport coefficients, etc.) in plasma equations. Based on this, RK-PINN incorporates the implicit Runge–Kutta formalism in neural networks to achieve a large-time step prediction of transient plasmas. Both CS-PINN and RK-PINN learn the complex non-linear relationship mapping from spatiotemporal space to the equation's solution. Based on these two frameworks, we demonstrate preliminary applications in four cases covering plasma kinetic and fluid modeling. The results verify that both CS-PINN and RK-PINN have good performance in solving plasma equations. Moreover, RK-PINN has the ability to yield a good solution for transient plasma simulation with not only large time steps but also limited noisy sensing data. |
---|---|
AbstractList | Plasma simulation is an important, and sometimes the only, approach to investigating plasma behavior. In this work, we propose two general artificial-intelligence-driven frameworks for low-temperature plasma simulation: Coefficient-Subnet Physics-Informed Neural Network (CS-PINN) and Runge–Kutta Physics-Informed Neural Network (RK-PINN). CS-PINN uses either a neural network or an interpolation function (e.g., spline function) as the subnet to approximate solution-dependent coefficients (e.g., electron-impact cross sections, thermodynamic properties, transport coefficients, etc.) in plasma equations. Based on this, RK-PINN incorporates the implicit Runge–Kutta formalism in neural networks to achieve a large-time step prediction of transient plasmas. Both CS-PINN and RK-PINN learn the complex non-linear relationship mapping from spatiotemporal space to the equation's solution. Based on these two frameworks, we demonstrate preliminary applications in four cases covering plasma kinetic and fluid modeling. The results verify that both CS-PINN and RK-PINN have good performance in solving plasma equations. Moreover, RK-PINN has the ability to yield a good solution for transient plasma simulation with not only large time steps but also limited noisy sensing data. |
Author | Zhong, Linlin Wu, Bingyu Wang, Yifan |
Author_xml | – sequence: 1 givenname: Linlin orcidid: 0000-0002-8135-2766 surname: Zhong fullname: Zhong, Linlin – sequence: 2 givenname: Bingyu surname: Wu fullname: Wu, Bingyu – sequence: 3 givenname: Yifan surname: Wang fullname: Wang, Yifan |
BookMark | eNp9kEtLAzEUhYNUsK0u_AcBVwrTJk2TmXEnYlUouNF1yCQZTJ2ZxCRj6b83fYgg6uocLt899zECg852GoBzjCYYMTKlE5SUInYEhhgVZZYzxgZbn6OMMYJPwCiEFUKIlDM2BHFp11nUrdNexN5r6BoRWgGDaftGRGM7WImgFUzGvW6CkSEzXW19m2qd7r1oksS19W_hGi68aPXOQ9Ep6LxuTGs64TdQONcYuUsMp-C4Fk3QZwcdg5fF3fPtQ7Z8un-8vVlmkpQkZmVVqbqWVVkVsxyVNCdSMoWIUqlSaaGpErlWopzPUUELVlMtJcoplULmCmMyBhf7XOfte69D5Cvb-y6N5ClwxjCbFShRl3tKehuC1zV33rRpZ44R3z6VU354amKnP1hp4u6o6IVpfu242neEL_Lf-D_hD-u_Qe5UTT4BUhyaaw |
CODEN | PHFLE6 |
CitedBy_id | crossref_primary_10_1088_1361_6463_acb604 crossref_primary_10_1016_j_fpp_2024_100077 crossref_primary_10_1088_1361_6595_acb28c crossref_primary_10_3390_app14010189 crossref_primary_10_1177_13694332241260140 crossref_primary_10_7498_aps_73_20240343 crossref_primary_10_1038_s41598_024_78611_z crossref_primary_10_1002_htj_23017 crossref_primary_10_1116_6_0003434 crossref_primary_10_1029_2023SW003823 crossref_primary_10_1109_TPS_2023_3267733 crossref_primary_10_3389_fphy_2023_1125548 crossref_primary_10_1063_5_0143741 crossref_primary_10_1088_1361_6463_adb58f crossref_primary_10_3390_plasma6030027 |
Cites_doi | 10.1109/TPS.2019.2898696 10.1007/s11090-019-10015-8 10.1063/5.0096511 10.1088/1361-6595/ab6074 10.1088/2053-1583/aabb81 10.1038/s41467-019-10343-5 10.1088/1361-6595/abde1c 10.4208/cicp.OA-2020-0164 10.1063/5.0055600 10.1088/0963-0252/14/4/011 10.1088/0022-3727/21/6/010 10.1063/5.0096067 10.1002/ppap.201600098 10.1063/5.0008881 10.1063/5.0046181 10.1016/j.cpc.2020.107496 10.1016/j.nanoen.2018.04.075 10.1063/1.5127274 10.1115/1.4050542 10.1063/1.5109141 10.1007/s10409-021-01148-1 10.1016/j.jcp.2018.10.045 10.1126/science.aaw4741 10.1021/acs.jpca.1c05102 10.1016/j.jcp.2019.05.027 10.1038/s41598-022-11058-2 10.1073/pnas.2101784118 10.1063/1.5097638 10.1016/j.jenvman.2021.112380 10.1007/s11090-014-9589-2 10.1017/S0956792520000169 10.1063/5.0058529 10.1016/j.jcp.2019.109136 10.1137/18M1229845 10.1016/j.ast.2021.106952 10.1088/1361-6595/aae706 10.1088/1361-6463/ab572d |
ContentType | Journal Article |
Copyright | Author(s) 2022 Author(s). Published under an exclusive license by AIP Publishing. |
Copyright_xml | – notice: Author(s) – notice: 2022 Author(s). Published under an exclusive license by AIP Publishing. |
DBID | AAYXX CITATION 8FD H8D L7M |
DOI | 10.1063/5.0106506 |
DatabaseName | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | Technology Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Physics |
EISSN | 1089-7666 |
ExternalDocumentID | 10_1063_5_0106506 |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 51907023 funderid: 10.13039/501100001809 – fundername: National Natural Science Foundation of China grantid: 92066106 funderid: 10.13039/501100001809 – fundername: Zhishan Young Scholar Project of Southeast University – fundername: Young Scientific and Technical Talents Promotion Project of Jiangsu Association for Science and Technology grantid: 2021031 – fundername: Foundamental Research Funds for the Central Universities |
GroupedDBID | -~X 0ZJ 1UP 2-P 29O 2WC 4.4 5VS 6TJ AAAAW AABDS AAEUA AAPUP AAYIH ABJNI ACBRY ACGFS ACLYJ ACNCT ACZLF ADCTM AEJMO AENEX AFATG AFFNX AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AIDUJ AJJCW AJQPL ALEPV ALMA_UNASSIGNED_HOLDINGS ATXIE AWQPM BPZLN CS3 DU5 EBS EJD ESX F5P FDOHQ FFFMQ HAM H~9 M6X M71 M73 NEUPN NPSNA O-B P2P RDFOP RIP RNS ROL RQS SC5 TN5 UCJ UQL WH7 XJT ~02 AAGWI AAYXX ABJGX ADMLS BDMKI CITATION 8FD H8D L7M |
ID | FETCH-LOGICAL-c393t-9bbdffcb9b82709573cc6d03dd9b8beae5da7eda94408586f5ecc0755cac7d113 |
ISSN | 1070-6631 |
IngestDate | Sun Jun 29 16:15:13 EDT 2025 Tue Jul 01 02:44:37 EDT 2025 Thu Apr 24 22:53:20 EDT 2025 Tue Jul 04 19:17:55 EDT 2023 Fri Jun 21 00:30:09 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | Published under an exclusive license by AIP Publishing. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c393t-9bbdffcb9b82709573cc6d03dd9b8beae5da7eda94408586f5ecc0755cac7d113 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-8135-2766 |
PQID | 2702616280 |
PQPubID | 2050667 |
PageCount | 12 |
ParticipantIDs | crossref_primary_10_1063_5_0106506 crossref_citationtrail_10_1063_5_0106506 proquest_journals_2702616280 scitation_primary_10_1063_5_0106506 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220800 2022-08-01 20220801 |
PublicationDateYYYYMMDD | 2022-08-01 |
PublicationDate_xml | – month: 08 year: 2022 text: 20220800 |
PublicationDecade | 2020 |
PublicationPlace | Melville |
PublicationPlace_xml | – name: Melville |
PublicationTitle | Physics of fluids (1994) |
PublicationYear | 2022 |
Publisher | American Institute of Physics |
Publisher_xml | – name: American Institute of Physics |
References | Li, Wang, Xu, Zhang, Chen, Wang (c4) 2021 Pun, Batra, Ramprasad, Mishin (c27) 2019 Chen, Duan, Karniadakis (c18) 2021 Ji, Qiu, Shi, Pan, Deng (c28) 2021 Cheng, Xu, Li, Liu, Lu (c7) 2020 Raissi, Yazdani, Karniadakis (c22) 2020 Laubscher (c26) 2021 Fasoulas, Munz, Pfeiffer, Beyer, Binder, Copplestone, Mirza, Nizenkov, Ortwein, Reschke (c36) 2019 Pang, Lu, Karniadakis (c16) 2019 Arzani, Wang, D'Souza (c24) 2021 Cai, Wang, Wang, Perdikaris, Karniadakis (c25) 2021 Jagtap, Karniadakis (c17) 2020 Pitchford, Alves, Bartschat, Biagi, Bordage, Bray, Brion, Brunger, Campbell, Chachereau, Chaudhury, Christophorou, Carbone, Dyatko, Franck, Fursa, Gangwar, Guerra, Haefliger, Hagelaar, Hoesl, Itikawa, Kochetov, McEachran, Morgan, Napartovich, Puech, Rabie, Sharma, Srivastava, Stauffer, Tennyson, de Urquijo, van Dijk, Viehland, Zammit, Zatsarinny, Pancheshnyi (c38) 2017 Kawaguchi, Takahashi, Ohkama, Satoh (c29) 2020 Sanito, You, Wang (c6) 2021 Jagtap, Kawaguchi, Karniadakis (c21) 2020 Hagelaar, Pitchford (c31) 2005 Zhong, Wang, Xu, Wang, Rong (c42) 2019 Gao, Niu, Adamiak, Yang, Rong, Wang (c32) 2018 Lee, Kozato, Kikuchi, Imao (c9) 2022 Itoh, Miura, Ikuta, Nakao, Tagashira (c37) 1988 Zhong, Cressault, Teulet (c40) 2019 Raissi, Perdikaris, Karniadakis (c14) 2019 Zhong, Gu, Zheng (c3) 2019 Zhong, Gu, Wu (c30) 2020 Levchenko, Xu, Mazouffre, Lev, Pedrini, Goebel, Garrigues, Taccogna, Bazaka (c5) 2020 Gleizes (c12) 2015 Zhong, Shneider, Mao, Ju (c11) 2021 Yang, Perdikaris (c19) 2019 Han, Murdock, Seo, Bendavid (c2) 2018 Rodriguez-Torrado, Ruiz, Cueto-Felgueroso, Green, Friesen, Matringe, Togelius (c20) 2022 Chen, Hao, Wen (c10) 2022 Zhong, Murphy, Wang, Rong (c41) 2020 Zhang, Xiong, Yan, He, Liao, He, Yin, Zhang, Mai (c1) 2018 De Florio, Schiassi, Ganapol, Furfaro (c23) 2021 (2024031523522713700_c37) 1988; 21 (2024031523522713700_c8) 2016 (2024031523522713700_c5) 2020; 27 (2024031523522713700_c1) 2018; 49 (2024031523522713700_c25) 2021; 143 (2024031523522713700_c33) 2003 (2024031523522713700_c34) 2019 (2024031523522713700_c26) 2021; 33 (2024031523522713700_c39) 2014 (2024031523522713700_c12) 2015; 35 (2024031523522713700_c11) 2021; 30 (2024031523522713700_c27) 2019; 10 (2024031523522713700_c29) 2020; 29 (2024031523522713700_c40) 2019; 47 (2024031523522713700_c28) 2021; 125 (2024031523522713700_c19) 2019; 394 (2024031523522713700_c22) 2020; 367 (2024031523522713700_c14) 2019; 378 (2024031523522713700_c23) 2021; 33 (2024031523522713700_c38) 2017; 14 (2024031523522713700_c9) 2022; 34 (2024031523522713700_c30) 2020; 257 (2024031523522713700_c7) 2020; 27 (2024031523522713700_c10) 2022; 34 (2024031523522713700_c16) 2019; 41 (2024031523522713700_c42) 2019; 39 (2024031523522713700_c32) 2018; 27 (2024031523522713700_c36) 2019; 31 (2024031523522713700_c41) 2020; 53 (2024031523522713700_c21) 2020; 404 (2024031523522713700_c4) 2021; 117 (2024031523522713700_c17) 2020; 28 (2024031523522713700_c31) 2005; 14 (2024031523522713700_c6) 2021; 288 (2024031523522713700_c20) 2022; 12 (2024031523522713700_c24) 2021; 33 (2024031523522713700_c3) 2019; 26 2024031523522713700_c15 2024031523522713700_c13 (2024031523522713700_c18) 2021; 32 2024031523522713700_c35 (2024031523522713700_c2) 2018; 5 |
References_xml | – start-page: 8098 year: 2021 ident: c28 article-title: Stiff-pinn: Physics-informed neural network for stiff chemical kinetics publication-title: J. Phys. Chem. A – start-page: 020601 year: 2020 ident: c5 article-title: Perspectives, frontiers, and new horizons for plasma-based space electric propulsion publication-title: Phys. Plasmas – start-page: 071905 year: 2021 ident: c24 article-title: Uncovering near-wall blood flow from sparse data with physics-informed neural networks publication-title: Phys. Fluids – start-page: 065202 year: 2020 ident: c41 article-title: Calculation of two-temperature plasma composition: Part 1. Mass action law methods and extremum searching methods publication-title: J. Phys. D: Appl. Phys. – start-page: 555 year: 2018 ident: c1 article-title: α-MoO by plasma etching with improved capacity and stabilized structure for lithium storage publication-title: Nano Energy – start-page: 397 year: 2021 ident: c18 article-title: Learning and meta-learning of stochastic advection–diffusion–reaction systems from sparse measurements publication-title: Eur. J. Appl. Math. – start-page: 1600098 year: 2017 ident: c38 article-title: LXCat: An open-access, web-based platform for data needed for modeling low temperature plasmas publication-title: Plasma Process. Polym. – start-page: 047110 year: 2021 ident: c23 article-title: Physics-informed neural networks for rarefied-gas dynamics: Thermal creep flow in the Bhatnagar–Gross–Krook approximation publication-title: Phys. Fluids – start-page: 063514 year: 2020 ident: c7 article-title: On the dose of plasma medicine: Equivalent total oxidation potential (ETOP) publication-title: Phys. Plasmas – start-page: 109136 year: 2020 ident: c21 article-title: Adaptive activation functions accelerate convergence in deep and physics-informed neural networks publication-title: J. Comput. Phys. – start-page: 087101 year: 2021 ident: c26 article-title: Simulation of multi-species flow and heat transfer using physics-informed neural networks publication-title: Phys. Fluids – start-page: 035002 year: 2021 ident: c11 article-title: Dynamics and chemical mode analysis of plasma thermal-chemical instability publication-title: Plasma Sources Sci. Technol. – start-page: 102719 year: 2021 ident: c25 article-title: Physics-Informed Neural Networks (PINNs) for heat transfer problems publication-title: J. Heat Transfer – start-page: 032002 year: 2018 ident: c2 article-title: Recent progress in plasma-assisted synthesis and modification of 2D materials publication-title: 2D Mater. – start-page: 103507 year: 2019 ident: c3 article-title: An improved method for fast evaluating arc quenching performance of a gas based on 1D arc decaying model publication-title: Phys. Plasmas – start-page: 107496 year: 2020 ident: c30 article-title: Deep learning for thermal plasma simulation: Solving 1-D arc model as an example publication-title: Comput. Phys. Commun. – start-page: 686 year: 2019 ident: c14 article-title: Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations publication-title: J. Comput. Phys. – start-page: 722 year: 2005 ident: c31 article-title: Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models publication-title: Plasma Sources Sci. Technol. – start-page: 106952 year: 2021 ident: c4 article-title: Advances in plasma-assisted ignition and combustion for combustors of aerospace engines publication-title: Aerosp. Sci. Technol. – start-page: 1026 year: 2020 ident: c22 article-title: Hidden fluid mechanics: Learning velocity and pressure fields from flow visualizations publication-title: Science – start-page: 922 year: 1988 ident: c37 article-title: Electron swarm development in SF6. I. Boltzmann equation analysis publication-title: J. Phys. D: Appl. Phys. – start-page: 1835 year: 2019 ident: c40 article-title: Evaluation of arc quenching ability for a gas by combining 1-D hydrokinetic modeling and Boltzmann equation analysis publication-title: IEEE Trans. Plasma Sci. – start-page: 073605 year: 2022 ident: c10 article-title: Control of supersonic compression corner flow using a plasma actuator publication-title: Phys. Fluids – start-page: 2002 year: 2020 ident: c17 article-title: Extended physics-informed neural networks (xpinns): A generalized space-time domain decomposition based deep learning framework for nonlinear partial differential equations publication-title: Commun. Comput. Phys. – start-page: 072006 year: 2019 ident: c36 article-title: Combining particle-in-cell and direct simulation Monte Carlo for the simulation of reactive plasma flows publication-title: Phys. Fluids – start-page: A2603 year: 2019 ident: c16 article-title: fPINNs: Fractional physics-informed neural networks publication-title: SIAM J. Sci. Comput. – start-page: 7557 year: 2022 ident: c20 article-title: Physics-informed attention-based neural network for hyperbolic partial differential equations: Application to the Buckley–Leverett problem publication-title: Sci. Rep. – start-page: 136 year: 2019 ident: c19 article-title: Adversarial uncertainty quantification in physics-informed neural networks publication-title: J. Comput. Phys. – start-page: 1379 year: 2019 ident: c42 article-title: Effects of buffer gases on plasma properties and arc decaying characteristics of C F N-N and C F N-CO arc plasmas publication-title: Plasma Chem. Chem. Plasma Process. – start-page: 077102 year: 2022 ident: c9 article-title: Numerical simulation of flow control around a rectangular cylinder by dielectric barrier discharge plasma actuators publication-title: Phys. Fluids – start-page: 115001 year: 2018 ident: c32 article-title: Numerical simulation of negative point-plane corona discharge mechanism in SF6 gas publication-title: Plasma Sources Sci. Technol. – start-page: 455 year: 2015 ident: c12 article-title: Perspectives on thermal plasma modelling publication-title: Plasma Chem. Plasma Process. – start-page: 112380 year: 2021 ident: c6 article-title: Application of plasma technology for treating e-waste: A review publication-title: J. Environ. Manage. – start-page: 025021 year: 2020 ident: c29 article-title: Deep learning for solving the Boltzmann equation of electrons in weakly ionized plasma publication-title: Plasma Sources Sci. Technol. – start-page: 2339 year: 2019 ident: c27 article-title: Physically informed artificial neural networks for atomistic modeling of materials publication-title: Nat. Commun. – ident: 2024031523522713700_c35 – year: 2019 ident: 2024031523522713700_c34 article-title: PyTorch: An imperative style, high-performance deep learning library – volume-title: Chebfun Guide year: 2014 ident: 2024031523522713700_c39 – volume: 47 start-page: 1835 year: 2019 ident: 2024031523522713700_c40 article-title: Evaluation of arc quenching ability for a gas by combining 1-D hydrokinetic modeling and Boltzmann equation analysis publication-title: IEEE Trans. Plasma Sci. doi: 10.1109/TPS.2019.2898696 – volume: 39 start-page: 1379 year: 2019 ident: 2024031523522713700_c42 article-title: Effects of buffer gases on plasma properties and arc decaying characteristics of C4F7N-N2 and C4F7N-CO2 arc plasmas publication-title: Plasma Chem. Chem. Plasma Process. doi: 10.1007/s11090-019-10015-8 – volume: 34 start-page: 073605 year: 2022 ident: 2024031523522713700_c10 article-title: Control of supersonic compression corner flow using a plasma actuator publication-title: Phys. Fluids doi: 10.1063/5.0096511 – volume: 29 start-page: 025021 year: 2020 ident: 2024031523522713700_c29 article-title: Deep learning for solving the Boltzmann equation of electrons in weakly ionized plasma publication-title: Plasma Sources Sci. Technol. doi: 10.1088/1361-6595/ab6074 – volume: 5 start-page: 032002 year: 2018 ident: 2024031523522713700_c2 article-title: Recent progress in plasma-assisted synthesis and modification of 2D materials publication-title: 2D Mater. doi: 10.1088/2053-1583/aabb81 – volume: 10 start-page: 2339 year: 2019 ident: 2024031523522713700_c27 article-title: Physically informed artificial neural networks for atomistic modeling of materials publication-title: Nat. Commun. doi: 10.1038/s41467-019-10343-5 – volume: 30 start-page: 035002 year: 2021 ident: 2024031523522713700_c11 article-title: Dynamics and chemical mode analysis of plasma thermal-chemical instability publication-title: Plasma Sources Sci. Technol. doi: 10.1088/1361-6595/abde1c – volume: 28 start-page: 2002 year: 2020 ident: 2024031523522713700_c17 article-title: Extended physics-informed neural networks (xpinns): A generalized space-time domain decomposition based deep learning framework for nonlinear partial differential equations publication-title: Commun. Comput. Phys. doi: 10.4208/cicp.OA-2020-0164 – volume: 33 start-page: 071905 year: 2021 ident: 2024031523522713700_c24 article-title: Uncovering near-wall blood flow from sparse data with physics-informed neural networks publication-title: Phys. Fluids doi: 10.1063/5.0055600 – volume: 14 start-page: 722 year: 2005 ident: 2024031523522713700_c31 article-title: Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models publication-title: Plasma Sources Sci. Technol. doi: 10.1088/0963-0252/14/4/011 – volume: 21 start-page: 922 year: 1988 ident: 2024031523522713700_c37 article-title: Electron swarm development in SF6. I. Boltzmann equation analysis publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/0022-3727/21/6/010 – volume: 34 start-page: 077102 year: 2022 ident: 2024031523522713700_c9 article-title: Numerical simulation of flow control around a rectangular cylinder by dielectric barrier discharge plasma actuators publication-title: Phys. Fluids doi: 10.1063/5.0096067 – volume: 14 start-page: 1600098 year: 2017 ident: 2024031523522713700_c38 article-title: LXCat: An open-access, web-based platform for data needed for modeling low temperature plasmas publication-title: Plasma Process. Polym. doi: 10.1002/ppap.201600098 – volume: 27 start-page: 063514 year: 2020 ident: 2024031523522713700_c7 article-title: On the dose of plasma medicine: Equivalent total oxidation potential (ETOP) publication-title: Phys. Plasmas doi: 10.1063/5.0008881 – volume: 33 start-page: 047110 year: 2021 ident: 2024031523522713700_c23 article-title: Physics-informed neural networks for rarefied-gas dynamics: Thermal creep flow in the Bhatnagar–Gross–Krook approximation publication-title: Phys. Fluids doi: 10.1063/5.0046181 – volume: 257 start-page: 107496 year: 2020 ident: 2024031523522713700_c30 article-title: Deep learning for thermal plasma simulation: Solving 1-D arc model as an example publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2020.107496 – volume: 49 start-page: 555 year: 2018 ident: 2024031523522713700_c1 article-title: α-MoO3-x by plasma etching with improved capacity and stabilized structure for lithium storage publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.04.075 – volume: 26 start-page: 103507 year: 2019 ident: 2024031523522713700_c3 article-title: An improved method for fast evaluating arc quenching performance of a gas based on 1D arc decaying model publication-title: Phys. Plasmas doi: 10.1063/1.5127274 – volume: 143 start-page: 102719 year: 2021 ident: 2024031523522713700_c25 article-title: Physics-Informed Neural Networks (PINNs) for heat transfer problems publication-title: J. Heat Transfer doi: 10.1115/1.4050542 – volume-title: An Introduction to Numerical Analysis year: 2003 ident: 2024031523522713700_c33 – volume: 27 start-page: 020601 year: 2020 ident: 2024031523522713700_c5 article-title: Perspectives, frontiers, and new horizons for plasma-based space electric propulsion publication-title: Phys. Plasmas doi: 10.1063/1.5109141 – ident: 2024031523522713700_c15 doi: 10.1007/s10409-021-01148-1 – volume: 378 start-page: 686 year: 2019 ident: 2024031523522713700_c14 article-title: Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2018.10.045 – volume: 367 start-page: 1026 year: 2020 ident: 2024031523522713700_c22 article-title: Hidden fluid mechanics: Learning velocity and pressure fields from flow visualizations publication-title: Science doi: 10.1126/science.aaw4741 – volume: 125 start-page: 8098 year: 2021 ident: 2024031523522713700_c28 article-title: Stiff-pinn: Physics-informed neural network for stiff chemical kinetics publication-title: J. Phys. Chem. A doi: 10.1021/acs.jpca.1c05102 – volume: 394 start-page: 136 year: 2019 ident: 2024031523522713700_c19 article-title: Adversarial uncertainty quantification in physics-informed neural networks publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2019.05.027 – volume-title: Kinetics and Spectroscopy of Low Temperature Plasmas year: 2016 ident: 2024031523522713700_c8 – volume: 12 start-page: 7557 year: 2022 ident: 2024031523522713700_c20 article-title: Physics-informed attention-based neural network for hyperbolic partial differential equations: Application to the Buckley–Leverett problem publication-title: Sci. Rep. doi: 10.1038/s41598-022-11058-2 – ident: 2024031523522713700_c13 doi: 10.1073/pnas.2101784118 – volume: 31 start-page: 072006 year: 2019 ident: 2024031523522713700_c36 article-title: Combining particle-in-cell and direct simulation Monte Carlo for the simulation of reactive plasma flows publication-title: Phys. Fluids doi: 10.1063/1.5097638 – volume: 288 start-page: 112380 year: 2021 ident: 2024031523522713700_c6 article-title: Application of plasma technology for treating e-waste: A review publication-title: J. Environ. Manage. doi: 10.1016/j.jenvman.2021.112380 – volume: 35 start-page: 455 year: 2015 ident: 2024031523522713700_c12 article-title: Perspectives on thermal plasma modelling publication-title: Plasma Chem. Plasma Process. doi: 10.1007/s11090-014-9589-2 – volume: 32 start-page: 397 year: 2021 ident: 2024031523522713700_c18 article-title: Learning and meta-learning of stochastic advection–diffusion–reaction systems from sparse measurements publication-title: Eur. J. Appl. Math. doi: 10.1017/S0956792520000169 – volume: 33 start-page: 087101 year: 2021 ident: 2024031523522713700_c26 article-title: Simulation of multi-species flow and heat transfer using physics-informed neural networks publication-title: Phys. Fluids doi: 10.1063/5.0058529 – volume: 404 start-page: 109136 year: 2020 ident: 2024031523522713700_c21 article-title: Adaptive activation functions accelerate convergence in deep and physics-informed neural networks publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2019.109136 – volume: 41 start-page: A2603 year: 2019 ident: 2024031523522713700_c16 article-title: fPINNs: Fractional physics-informed neural networks publication-title: SIAM J. Sci. Comput. doi: 10.1137/18M1229845 – volume: 117 start-page: 106952 year: 2021 ident: 2024031523522713700_c4 article-title: Advances in plasma-assisted ignition and combustion for combustors of aerospace engines publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2021.106952 – volume: 27 start-page: 115001 year: 2018 ident: 2024031523522713700_c32 article-title: Numerical simulation of negative point-plane corona discharge mechanism in SF6 gas publication-title: Plasma Sources Sci. Technol. doi: 10.1088/1361-6595/aae706 – volume: 53 start-page: 065202 year: 2020 ident: 2024031523522713700_c41 article-title: Calculation of two-temperature plasma composition: Part 1. Mass action law methods and extremum searching methods publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/1361-6463/ab572d |
SSID | ssj0003926 |
Score | 2.4697936 |
Snippet | Plasma simulation is an important, and sometimes the only, approach to investigating plasma behavior. In this work, we propose two general... |
SourceID | proquest crossref scitation |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Electron impact Fluid dynamics Interpolation Low temperature Neural networks Physics Plasma Runge-Kutta method Simulation Spline functions Thermodynamic properties Transport properties |
Title | Low-temperature plasma simulation based on physics-informed neural networks: Frameworks and preliminary applications |
URI | http://dx.doi.org/10.1063/5.0106506 https://www.proquest.com/docview/2702616280 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bi9NAFB60i-iLl1WxusqgPghlNM0kk4xvi25ZpLsKtlB9CZkbFrrp0qTK-us9k5lcdimL-hLCMJ2GnC9nvnPmXBB6rRlYPYZqEigakIjlAUlFzIlRJhY6opIHNlH45JQdz6NPi3jRubLr7JJKvJW_d-aV_I9UYQzkarNk_0Gy7aIwAPcgX7iChOH6VzKern8RW1vKF0a2LaHLs3xULs98U66R3aSUPRBwHoySuEKp9sxf1wU3ChcGXgfGTZpArbIpH7Cqe35tLkb9c-4-n_3ilrWU06y2S-UKP3Ee9TwM33-s60wqW5Oj3QO2NbBg37zYdj59p3e-LY2HrPdGgCHbxMJVvQSAvLgc6uCfpadmQdEQ4Druh9qPpZwkzPVgaXSzd3Q6DKY7VT5wLJCTLb5q2eaOstqnn7PJfDrNZkeL2U20F4I9EQ7Q3uHHk-nXdtMGmshceKp7sKYIFaPv2qUvU5fOHrkNZMXFTfSoyew-uuttCnzoAPIA3dDFPrrn7QvstXe5j275N_QQVVeQgx1ycIccXCMHw81V5GCHHNwg5z3ucIMBN7iHG9zHzSM0nxzNPhwT33-DSMppRbgQyhgpuEjDBKh4QqVkKqBKwYjQuY5VnmiVc9u1PE6ZiUEfAAWNZS4TNR7Tx2hQrAv9BOEwkJGUXMdg7kexGecsgCl5KkwkQpqbIXrTvNqseZm2R8oqq4MkGM3izEthiF62U89dRZZdkw4a-WT-gy0zm3rJxixMgyF61crsukV2zPq53nQzsnNlnl7_V8_Qne47OUCDarPVz4HHVuKFx-AfHNelig |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Low-temperature+plasma+simulation+based+on+physics-informed+neural+networks%3A+Frameworks+and+preliminary+applications&rft.jtitle=Physics+of+fluids+%281994%29&rft.au=Zhong+Linlin&rft.au=Wu%2C+Bingyu&rft.au=Wang%2C+Yifan&rft.date=2022-08-01&rft.pub=American+Institute+of+Physics&rft.issn=1070-6631&rft.eissn=1089-7666&rft.volume=34&rft.issue=8&rft_id=info:doi/10.1063%2F5.0106506&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1070-6631&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1070-6631&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1070-6631&client=summon |