Low-temperature plasma simulation based on physics-informed neural networks: Frameworks and preliminary applications

Plasma simulation is an important, and sometimes the only, approach to investigating plasma behavior. In this work, we propose two general artificial-intelligence-driven frameworks for low-temperature plasma simulation: Coefficient-Subnet Physics-Informed Neural Network (CS-PINN) and Runge–Kutta Phy...

Full description

Saved in:
Bibliographic Details
Published inPhysics of fluids (1994) Vol. 34; no. 8
Main Authors Zhong, Linlin, Wu, Bingyu, Wang, Yifan
Format Journal Article
LanguageEnglish
Published Melville American Institute of Physics 01.08.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Plasma simulation is an important, and sometimes the only, approach to investigating plasma behavior. In this work, we propose two general artificial-intelligence-driven frameworks for low-temperature plasma simulation: Coefficient-Subnet Physics-Informed Neural Network (CS-PINN) and Runge–Kutta Physics-Informed Neural Network (RK-PINN). CS-PINN uses either a neural network or an interpolation function (e.g., spline function) as the subnet to approximate solution-dependent coefficients (e.g., electron-impact cross sections, thermodynamic properties, transport coefficients, etc.) in plasma equations. Based on this, RK-PINN incorporates the implicit Runge–Kutta formalism in neural networks to achieve a large-time step prediction of transient plasmas. Both CS-PINN and RK-PINN learn the complex non-linear relationship mapping from spatiotemporal space to the equation's solution. Based on these two frameworks, we demonstrate preliminary applications in four cases covering plasma kinetic and fluid modeling. The results verify that both CS-PINN and RK-PINN have good performance in solving plasma equations. Moreover, RK-PINN has the ability to yield a good solution for transient plasma simulation with not only large time steps but also limited noisy sensing data.
AbstractList Plasma simulation is an important, and sometimes the only, approach to investigating plasma behavior. In this work, we propose two general artificial-intelligence-driven frameworks for low-temperature plasma simulation: Coefficient-Subnet Physics-Informed Neural Network (CS-PINN) and Runge–Kutta Physics-Informed Neural Network (RK-PINN). CS-PINN uses either a neural network or an interpolation function (e.g., spline function) as the subnet to approximate solution-dependent coefficients (e.g., electron-impact cross sections, thermodynamic properties, transport coefficients, etc.) in plasma equations. Based on this, RK-PINN incorporates the implicit Runge–Kutta formalism in neural networks to achieve a large-time step prediction of transient plasmas. Both CS-PINN and RK-PINN learn the complex non-linear relationship mapping from spatiotemporal space to the equation's solution. Based on these two frameworks, we demonstrate preliminary applications in four cases covering plasma kinetic and fluid modeling. The results verify that both CS-PINN and RK-PINN have good performance in solving plasma equations. Moreover, RK-PINN has the ability to yield a good solution for transient plasma simulation with not only large time steps but also limited noisy sensing data.
Author Zhong, Linlin
Wu, Bingyu
Wang, Yifan
Author_xml – sequence: 1
  givenname: Linlin
  orcidid: 0000-0002-8135-2766
  surname: Zhong
  fullname: Zhong, Linlin
– sequence: 2
  givenname: Bingyu
  surname: Wu
  fullname: Wu, Bingyu
– sequence: 3
  givenname: Yifan
  surname: Wang
  fullname: Wang, Yifan
BookMark eNp9kEtLAzEUhYNUsK0u_AcBVwrTJk2TmXEnYlUouNF1yCQZTJ2ZxCRj6b83fYgg6uocLt899zECg852GoBzjCYYMTKlE5SUInYEhhgVZZYzxgZbn6OMMYJPwCiEFUKIlDM2BHFp11nUrdNexN5r6BoRWgGDaftGRGM7WImgFUzGvW6CkSEzXW19m2qd7r1oksS19W_hGi68aPXOQ9Ep6LxuTGs64TdQONcYuUsMp-C4Fk3QZwcdg5fF3fPtQ7Z8un-8vVlmkpQkZmVVqbqWVVkVsxyVNCdSMoWIUqlSaaGpErlWopzPUUELVlMtJcoplULmCmMyBhf7XOfte69D5Cvb-y6N5ClwxjCbFShRl3tKehuC1zV33rRpZ44R3z6VU354amKnP1hp4u6o6IVpfu242neEL_Lf-D_hD-u_Qe5UTT4BUhyaaw
CODEN PHFLE6
CitedBy_id crossref_primary_10_1088_1361_6463_acb604
crossref_primary_10_1016_j_fpp_2024_100077
crossref_primary_10_1088_1361_6595_acb28c
crossref_primary_10_3390_app14010189
crossref_primary_10_1177_13694332241260140
crossref_primary_10_7498_aps_73_20240343
crossref_primary_10_1038_s41598_024_78611_z
crossref_primary_10_1002_htj_23017
crossref_primary_10_1116_6_0003434
crossref_primary_10_1029_2023SW003823
crossref_primary_10_1109_TPS_2023_3267733
crossref_primary_10_3389_fphy_2023_1125548
crossref_primary_10_1063_5_0143741
crossref_primary_10_1088_1361_6463_adb58f
crossref_primary_10_3390_plasma6030027
Cites_doi 10.1109/TPS.2019.2898696
10.1007/s11090-019-10015-8
10.1063/5.0096511
10.1088/1361-6595/ab6074
10.1088/2053-1583/aabb81
10.1038/s41467-019-10343-5
10.1088/1361-6595/abde1c
10.4208/cicp.OA-2020-0164
10.1063/5.0055600
10.1088/0963-0252/14/4/011
10.1088/0022-3727/21/6/010
10.1063/5.0096067
10.1002/ppap.201600098
10.1063/5.0008881
10.1063/5.0046181
10.1016/j.cpc.2020.107496
10.1016/j.nanoen.2018.04.075
10.1063/1.5127274
10.1115/1.4050542
10.1063/1.5109141
10.1007/s10409-021-01148-1
10.1016/j.jcp.2018.10.045
10.1126/science.aaw4741
10.1021/acs.jpca.1c05102
10.1016/j.jcp.2019.05.027
10.1038/s41598-022-11058-2
10.1073/pnas.2101784118
10.1063/1.5097638
10.1016/j.jenvman.2021.112380
10.1007/s11090-014-9589-2
10.1017/S0956792520000169
10.1063/5.0058529
10.1016/j.jcp.2019.109136
10.1137/18M1229845
10.1016/j.ast.2021.106952
10.1088/1361-6595/aae706
10.1088/1361-6463/ab572d
ContentType Journal Article
Copyright Author(s)
2022 Author(s). Published under an exclusive license by AIP Publishing.
Copyright_xml – notice: Author(s)
– notice: 2022 Author(s). Published under an exclusive license by AIP Publishing.
DBID AAYXX
CITATION
8FD
H8D
L7M
DOI 10.1063/5.0106506
DatabaseName CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitleList Technology Research Database

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Physics
EISSN 1089-7666
ExternalDocumentID 10_1063_5_0106506
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 51907023
  funderid: 10.13039/501100001809
– fundername: National Natural Science Foundation of China
  grantid: 92066106
  funderid: 10.13039/501100001809
– fundername: Zhishan Young Scholar Project of Southeast University
– fundername: Young Scientific and Technical Talents Promotion Project of Jiangsu Association for Science and Technology
  grantid: 2021031
– fundername: Foundamental Research Funds for the Central Universities
GroupedDBID -~X
0ZJ
1UP
2-P
29O
2WC
4.4
5VS
6TJ
AAAAW
AABDS
AAEUA
AAPUP
AAYIH
ABJNI
ACBRY
ACGFS
ACLYJ
ACNCT
ACZLF
ADCTM
AEJMO
AENEX
AFATG
AFFNX
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AIDUJ
AJJCW
AJQPL
ALEPV
ALMA_UNASSIGNED_HOLDINGS
ATXIE
AWQPM
BPZLN
CS3
DU5
EBS
EJD
ESX
F5P
FDOHQ
FFFMQ
HAM
H~9
M6X
M71
M73
NEUPN
NPSNA
O-B
P2P
RDFOP
RIP
RNS
ROL
RQS
SC5
TN5
UCJ
UQL
WH7
XJT
~02
AAGWI
AAYXX
ABJGX
ADMLS
BDMKI
CITATION
8FD
H8D
L7M
ID FETCH-LOGICAL-c393t-9bbdffcb9b82709573cc6d03dd9b8beae5da7eda94408586f5ecc0755cac7d113
ISSN 1070-6631
IngestDate Sun Jun 29 16:15:13 EDT 2025
Tue Jul 01 02:44:37 EDT 2025
Thu Apr 24 22:53:20 EDT 2025
Tue Jul 04 19:17:55 EDT 2023
Fri Jun 21 00:30:09 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License Published under an exclusive license by AIP Publishing.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c393t-9bbdffcb9b82709573cc6d03dd9b8beae5da7eda94408586f5ecc0755cac7d113
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8135-2766
PQID 2702616280
PQPubID 2050667
PageCount 12
ParticipantIDs crossref_primary_10_1063_5_0106506
crossref_citationtrail_10_1063_5_0106506
proquest_journals_2702616280
scitation_primary_10_1063_5_0106506
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220800
2022-08-01
20220801
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 08
  year: 2022
  text: 20220800
PublicationDecade 2020
PublicationPlace Melville
PublicationPlace_xml – name: Melville
PublicationTitle Physics of fluids (1994)
PublicationYear 2022
Publisher American Institute of Physics
Publisher_xml – name: American Institute of Physics
References Li, Wang, Xu, Zhang, Chen, Wang (c4) 2021
Pun, Batra, Ramprasad, Mishin (c27) 2019
Chen, Duan, Karniadakis (c18) 2021
Ji, Qiu, Shi, Pan, Deng (c28) 2021
Cheng, Xu, Li, Liu, Lu (c7) 2020
Raissi, Yazdani, Karniadakis (c22) 2020
Laubscher (c26) 2021
Fasoulas, Munz, Pfeiffer, Beyer, Binder, Copplestone, Mirza, Nizenkov, Ortwein, Reschke (c36) 2019
Pang, Lu, Karniadakis (c16) 2019
Arzani, Wang, D'Souza (c24) 2021
Cai, Wang, Wang, Perdikaris, Karniadakis (c25) 2021
Jagtap, Karniadakis (c17) 2020
Pitchford, Alves, Bartschat, Biagi, Bordage, Bray, Brion, Brunger, Campbell, Chachereau, Chaudhury, Christophorou, Carbone, Dyatko, Franck, Fursa, Gangwar, Guerra, Haefliger, Hagelaar, Hoesl, Itikawa, Kochetov, McEachran, Morgan, Napartovich, Puech, Rabie, Sharma, Srivastava, Stauffer, Tennyson, de Urquijo, van Dijk, Viehland, Zammit, Zatsarinny, Pancheshnyi (c38) 2017
Kawaguchi, Takahashi, Ohkama, Satoh (c29) 2020
Sanito, You, Wang (c6) 2021
Jagtap, Kawaguchi, Karniadakis (c21) 2020
Hagelaar, Pitchford (c31) 2005
Zhong, Wang, Xu, Wang, Rong (c42) 2019
Gao, Niu, Adamiak, Yang, Rong, Wang (c32) 2018
Lee, Kozato, Kikuchi, Imao (c9) 2022
Itoh, Miura, Ikuta, Nakao, Tagashira (c37) 1988
Zhong, Cressault, Teulet (c40) 2019
Raissi, Perdikaris, Karniadakis (c14) 2019
Zhong, Gu, Zheng (c3) 2019
Zhong, Gu, Wu (c30) 2020
Levchenko, Xu, Mazouffre, Lev, Pedrini, Goebel, Garrigues, Taccogna, Bazaka (c5) 2020
Gleizes (c12) 2015
Zhong, Shneider, Mao, Ju (c11) 2021
Yang, Perdikaris (c19) 2019
Han, Murdock, Seo, Bendavid (c2) 2018
Rodriguez-Torrado, Ruiz, Cueto-Felgueroso, Green, Friesen, Matringe, Togelius (c20) 2022
Chen, Hao, Wen (c10) 2022
Zhong, Murphy, Wang, Rong (c41) 2020
Zhang, Xiong, Yan, He, Liao, He, Yin, Zhang, Mai (c1) 2018
De Florio, Schiassi, Ganapol, Furfaro (c23) 2021
(2024031523522713700_c37) 1988; 21
(2024031523522713700_c8) 2016
(2024031523522713700_c5) 2020; 27
(2024031523522713700_c1) 2018; 49
(2024031523522713700_c25) 2021; 143
(2024031523522713700_c33) 2003
(2024031523522713700_c34) 2019
(2024031523522713700_c26) 2021; 33
(2024031523522713700_c39) 2014
(2024031523522713700_c12) 2015; 35
(2024031523522713700_c11) 2021; 30
(2024031523522713700_c27) 2019; 10
(2024031523522713700_c29) 2020; 29
(2024031523522713700_c40) 2019; 47
(2024031523522713700_c28) 2021; 125
(2024031523522713700_c19) 2019; 394
(2024031523522713700_c22) 2020; 367
(2024031523522713700_c14) 2019; 378
(2024031523522713700_c23) 2021; 33
(2024031523522713700_c38) 2017; 14
(2024031523522713700_c9) 2022; 34
(2024031523522713700_c30) 2020; 257
(2024031523522713700_c7) 2020; 27
(2024031523522713700_c10) 2022; 34
(2024031523522713700_c16) 2019; 41
(2024031523522713700_c42) 2019; 39
(2024031523522713700_c32) 2018; 27
(2024031523522713700_c36) 2019; 31
(2024031523522713700_c41) 2020; 53
(2024031523522713700_c21) 2020; 404
(2024031523522713700_c4) 2021; 117
(2024031523522713700_c17) 2020; 28
(2024031523522713700_c31) 2005; 14
(2024031523522713700_c6) 2021; 288
(2024031523522713700_c20) 2022; 12
(2024031523522713700_c24) 2021; 33
(2024031523522713700_c3) 2019; 26
2024031523522713700_c15
2024031523522713700_c13
(2024031523522713700_c18) 2021; 32
2024031523522713700_c35
(2024031523522713700_c2) 2018; 5
References_xml – start-page: 8098
  year: 2021
  ident: c28
  article-title: Stiff-pinn: Physics-informed neural network for stiff chemical kinetics
  publication-title: J. Phys. Chem. A
– start-page: 020601
  year: 2020
  ident: c5
  article-title: Perspectives, frontiers, and new horizons for plasma-based space electric propulsion
  publication-title: Phys. Plasmas
– start-page: 071905
  year: 2021
  ident: c24
  article-title: Uncovering near-wall blood flow from sparse data with physics-informed neural networks
  publication-title: Phys. Fluids
– start-page: 065202
  year: 2020
  ident: c41
  article-title: Calculation of two-temperature plasma composition: Part 1. Mass action law methods and extremum searching methods
  publication-title: J. Phys. D: Appl. Phys.
– start-page: 555
  year: 2018
  ident: c1
  article-title: α-MoO by plasma etching with improved capacity and stabilized structure for lithium storage
  publication-title: Nano Energy
– start-page: 397
  year: 2021
  ident: c18
  article-title: Learning and meta-learning of stochastic advection–diffusion–reaction systems from sparse measurements
  publication-title: Eur. J. Appl. Math.
– start-page: 1600098
  year: 2017
  ident: c38
  article-title: LXCat: An open-access, web-based platform for data needed for modeling low temperature plasmas
  publication-title: Plasma Process. Polym.
– start-page: 047110
  year: 2021
  ident: c23
  article-title: Physics-informed neural networks for rarefied-gas dynamics: Thermal creep flow in the Bhatnagar–Gross–Krook approximation
  publication-title: Phys. Fluids
– start-page: 063514
  year: 2020
  ident: c7
  article-title: On the dose of plasma medicine: Equivalent total oxidation potential (ETOP)
  publication-title: Phys. Plasmas
– start-page: 109136
  year: 2020
  ident: c21
  article-title: Adaptive activation functions accelerate convergence in deep and physics-informed neural networks
  publication-title: J. Comput. Phys.
– start-page: 087101
  year: 2021
  ident: c26
  article-title: Simulation of multi-species flow and heat transfer using physics-informed neural networks
  publication-title: Phys. Fluids
– start-page: 035002
  year: 2021
  ident: c11
  article-title: Dynamics and chemical mode analysis of plasma thermal-chemical instability
  publication-title: Plasma Sources Sci. Technol.
– start-page: 102719
  year: 2021
  ident: c25
  article-title: Physics-Informed Neural Networks (PINNs) for heat transfer problems
  publication-title: J. Heat Transfer
– start-page: 032002
  year: 2018
  ident: c2
  article-title: Recent progress in plasma-assisted synthesis and modification of 2D materials
  publication-title: 2D Mater.
– start-page: 103507
  year: 2019
  ident: c3
  article-title: An improved method for fast evaluating arc quenching performance of a gas based on 1D arc decaying model
  publication-title: Phys. Plasmas
– start-page: 107496
  year: 2020
  ident: c30
  article-title: Deep learning for thermal plasma simulation: Solving 1-D arc model as an example
  publication-title: Comput. Phys. Commun.
– start-page: 686
  year: 2019
  ident: c14
  article-title: Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations
  publication-title: J. Comput. Phys.
– start-page: 722
  year: 2005
  ident: c31
  article-title: Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models
  publication-title: Plasma Sources Sci. Technol.
– start-page: 106952
  year: 2021
  ident: c4
  article-title: Advances in plasma-assisted ignition and combustion for combustors of aerospace engines
  publication-title: Aerosp. Sci. Technol.
– start-page: 1026
  year: 2020
  ident: c22
  article-title: Hidden fluid mechanics: Learning velocity and pressure fields from flow visualizations
  publication-title: Science
– start-page: 922
  year: 1988
  ident: c37
  article-title: Electron swarm development in SF6. I. Boltzmann equation analysis
  publication-title: J. Phys. D: Appl. Phys.
– start-page: 1835
  year: 2019
  ident: c40
  article-title: Evaluation of arc quenching ability for a gas by combining 1-D hydrokinetic modeling and Boltzmann equation analysis
  publication-title: IEEE Trans. Plasma Sci.
– start-page: 073605
  year: 2022
  ident: c10
  article-title: Control of supersonic compression corner flow using a plasma actuator
  publication-title: Phys. Fluids
– start-page: 2002
  year: 2020
  ident: c17
  article-title: Extended physics-informed neural networks (xpinns): A generalized space-time domain decomposition based deep learning framework for nonlinear partial differential equations
  publication-title: Commun. Comput. Phys.
– start-page: 072006
  year: 2019
  ident: c36
  article-title: Combining particle-in-cell and direct simulation Monte Carlo for the simulation of reactive plasma flows
  publication-title: Phys. Fluids
– start-page: A2603
  year: 2019
  ident: c16
  article-title: fPINNs: Fractional physics-informed neural networks
  publication-title: SIAM J. Sci. Comput.
– start-page: 7557
  year: 2022
  ident: c20
  article-title: Physics-informed attention-based neural network for hyperbolic partial differential equations: Application to the Buckley–Leverett problem
  publication-title: Sci. Rep.
– start-page: 136
  year: 2019
  ident: c19
  article-title: Adversarial uncertainty quantification in physics-informed neural networks
  publication-title: J. Comput. Phys.
– start-page: 1379
  year: 2019
  ident: c42
  article-title: Effects of buffer gases on plasma properties and arc decaying characteristics of C F N-N and C F N-CO arc plasmas
  publication-title: Plasma Chem. Chem. Plasma Process.
– start-page: 077102
  year: 2022
  ident: c9
  article-title: Numerical simulation of flow control around a rectangular cylinder by dielectric barrier discharge plasma actuators
  publication-title: Phys. Fluids
– start-page: 115001
  year: 2018
  ident: c32
  article-title: Numerical simulation of negative point-plane corona discharge mechanism in SF6 gas
  publication-title: Plasma Sources Sci. Technol.
– start-page: 455
  year: 2015
  ident: c12
  article-title: Perspectives on thermal plasma modelling
  publication-title: Plasma Chem. Plasma Process.
– start-page: 112380
  year: 2021
  ident: c6
  article-title: Application of plasma technology for treating e-waste: A review
  publication-title: J. Environ. Manage.
– start-page: 025021
  year: 2020
  ident: c29
  article-title: Deep learning for solving the Boltzmann equation of electrons in weakly ionized plasma
  publication-title: Plasma Sources Sci. Technol.
– start-page: 2339
  year: 2019
  ident: c27
  article-title: Physically informed artificial neural networks for atomistic modeling of materials
  publication-title: Nat. Commun.
– ident: 2024031523522713700_c35
– year: 2019
  ident: 2024031523522713700_c34
  article-title: PyTorch: An imperative style, high-performance deep learning library
– volume-title: Chebfun Guide
  year: 2014
  ident: 2024031523522713700_c39
– volume: 47
  start-page: 1835
  year: 2019
  ident: 2024031523522713700_c40
  article-title: Evaluation of arc quenching ability for a gas by combining 1-D hydrokinetic modeling and Boltzmann equation analysis
  publication-title: IEEE Trans. Plasma Sci.
  doi: 10.1109/TPS.2019.2898696
– volume: 39
  start-page: 1379
  year: 2019
  ident: 2024031523522713700_c42
  article-title: Effects of buffer gases on plasma properties and arc decaying characteristics of C4F7N-N2 and C4F7N-CO2 arc plasmas
  publication-title: Plasma Chem. Chem. Plasma Process.
  doi: 10.1007/s11090-019-10015-8
– volume: 34
  start-page: 073605
  year: 2022
  ident: 2024031523522713700_c10
  article-title: Control of supersonic compression corner flow using a plasma actuator
  publication-title: Phys. Fluids
  doi: 10.1063/5.0096511
– volume: 29
  start-page: 025021
  year: 2020
  ident: 2024031523522713700_c29
  article-title: Deep learning for solving the Boltzmann equation of electrons in weakly ionized plasma
  publication-title: Plasma Sources Sci. Technol.
  doi: 10.1088/1361-6595/ab6074
– volume: 5
  start-page: 032002
  year: 2018
  ident: 2024031523522713700_c2
  article-title: Recent progress in plasma-assisted synthesis and modification of 2D materials
  publication-title: 2D Mater.
  doi: 10.1088/2053-1583/aabb81
– volume: 10
  start-page: 2339
  year: 2019
  ident: 2024031523522713700_c27
  article-title: Physically informed artificial neural networks for atomistic modeling of materials
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-10343-5
– volume: 30
  start-page: 035002
  year: 2021
  ident: 2024031523522713700_c11
  article-title: Dynamics and chemical mode analysis of plasma thermal-chemical instability
  publication-title: Plasma Sources Sci. Technol.
  doi: 10.1088/1361-6595/abde1c
– volume: 28
  start-page: 2002
  year: 2020
  ident: 2024031523522713700_c17
  article-title: Extended physics-informed neural networks (xpinns): A generalized space-time domain decomposition based deep learning framework for nonlinear partial differential equations
  publication-title: Commun. Comput. Phys.
  doi: 10.4208/cicp.OA-2020-0164
– volume: 33
  start-page: 071905
  year: 2021
  ident: 2024031523522713700_c24
  article-title: Uncovering near-wall blood flow from sparse data with physics-informed neural networks
  publication-title: Phys. Fluids
  doi: 10.1063/5.0055600
– volume: 14
  start-page: 722
  year: 2005
  ident: 2024031523522713700_c31
  article-title: Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models
  publication-title: Plasma Sources Sci. Technol.
  doi: 10.1088/0963-0252/14/4/011
– volume: 21
  start-page: 922
  year: 1988
  ident: 2024031523522713700_c37
  article-title: Electron swarm development in SF6. I. Boltzmann equation analysis
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/21/6/010
– volume: 34
  start-page: 077102
  year: 2022
  ident: 2024031523522713700_c9
  article-title: Numerical simulation of flow control around a rectangular cylinder by dielectric barrier discharge plasma actuators
  publication-title: Phys. Fluids
  doi: 10.1063/5.0096067
– volume: 14
  start-page: 1600098
  year: 2017
  ident: 2024031523522713700_c38
  article-title: LXCat: An open-access, web-based platform for data needed for modeling low temperature plasmas
  publication-title: Plasma Process. Polym.
  doi: 10.1002/ppap.201600098
– volume: 27
  start-page: 063514
  year: 2020
  ident: 2024031523522713700_c7
  article-title: On the dose of plasma medicine: Equivalent total oxidation potential (ETOP)
  publication-title: Phys. Plasmas
  doi: 10.1063/5.0008881
– volume: 33
  start-page: 047110
  year: 2021
  ident: 2024031523522713700_c23
  article-title: Physics-informed neural networks for rarefied-gas dynamics: Thermal creep flow in the Bhatnagar–Gross–Krook approximation
  publication-title: Phys. Fluids
  doi: 10.1063/5.0046181
– volume: 257
  start-page: 107496
  year: 2020
  ident: 2024031523522713700_c30
  article-title: Deep learning for thermal plasma simulation: Solving 1-D arc model as an example
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2020.107496
– volume: 49
  start-page: 555
  year: 2018
  ident: 2024031523522713700_c1
  article-title: α-MoO3-x by plasma etching with improved capacity and stabilized structure for lithium storage
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.04.075
– volume: 26
  start-page: 103507
  year: 2019
  ident: 2024031523522713700_c3
  article-title: An improved method for fast evaluating arc quenching performance of a gas based on 1D arc decaying model
  publication-title: Phys. Plasmas
  doi: 10.1063/1.5127274
– volume: 143
  start-page: 102719
  year: 2021
  ident: 2024031523522713700_c25
  article-title: Physics-Informed Neural Networks (PINNs) for heat transfer problems
  publication-title: J. Heat Transfer
  doi: 10.1115/1.4050542
– volume-title: An Introduction to Numerical Analysis
  year: 2003
  ident: 2024031523522713700_c33
– volume: 27
  start-page: 020601
  year: 2020
  ident: 2024031523522713700_c5
  article-title: Perspectives, frontiers, and new horizons for plasma-based space electric propulsion
  publication-title: Phys. Plasmas
  doi: 10.1063/1.5109141
– ident: 2024031523522713700_c15
  doi: 10.1007/s10409-021-01148-1
– volume: 378
  start-page: 686
  year: 2019
  ident: 2024031523522713700_c14
  article-title: Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2018.10.045
– volume: 367
  start-page: 1026
  year: 2020
  ident: 2024031523522713700_c22
  article-title: Hidden fluid mechanics: Learning velocity and pressure fields from flow visualizations
  publication-title: Science
  doi: 10.1126/science.aaw4741
– volume: 125
  start-page: 8098
  year: 2021
  ident: 2024031523522713700_c28
  article-title: Stiff-pinn: Physics-informed neural network for stiff chemical kinetics
  publication-title: J. Phys. Chem. A
  doi: 10.1021/acs.jpca.1c05102
– volume: 394
  start-page: 136
  year: 2019
  ident: 2024031523522713700_c19
  article-title: Adversarial uncertainty quantification in physics-informed neural networks
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2019.05.027
– volume-title: Kinetics and Spectroscopy of Low Temperature Plasmas
  year: 2016
  ident: 2024031523522713700_c8
– volume: 12
  start-page: 7557
  year: 2022
  ident: 2024031523522713700_c20
  article-title: Physics-informed attention-based neural network for hyperbolic partial differential equations: Application to the Buckley–Leverett problem
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-022-11058-2
– ident: 2024031523522713700_c13
  doi: 10.1073/pnas.2101784118
– volume: 31
  start-page: 072006
  year: 2019
  ident: 2024031523522713700_c36
  article-title: Combining particle-in-cell and direct simulation Monte Carlo for the simulation of reactive plasma flows
  publication-title: Phys. Fluids
  doi: 10.1063/1.5097638
– volume: 288
  start-page: 112380
  year: 2021
  ident: 2024031523522713700_c6
  article-title: Application of plasma technology for treating e-waste: A review
  publication-title: J. Environ. Manage.
  doi: 10.1016/j.jenvman.2021.112380
– volume: 35
  start-page: 455
  year: 2015
  ident: 2024031523522713700_c12
  article-title: Perspectives on thermal plasma modelling
  publication-title: Plasma Chem. Plasma Process.
  doi: 10.1007/s11090-014-9589-2
– volume: 32
  start-page: 397
  year: 2021
  ident: 2024031523522713700_c18
  article-title: Learning and meta-learning of stochastic advection–diffusion–reaction systems from sparse measurements
  publication-title: Eur. J. Appl. Math.
  doi: 10.1017/S0956792520000169
– volume: 33
  start-page: 087101
  year: 2021
  ident: 2024031523522713700_c26
  article-title: Simulation of multi-species flow and heat transfer using physics-informed neural networks
  publication-title: Phys. Fluids
  doi: 10.1063/5.0058529
– volume: 404
  start-page: 109136
  year: 2020
  ident: 2024031523522713700_c21
  article-title: Adaptive activation functions accelerate convergence in deep and physics-informed neural networks
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2019.109136
– volume: 41
  start-page: A2603
  year: 2019
  ident: 2024031523522713700_c16
  article-title: fPINNs: Fractional physics-informed neural networks
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/18M1229845
– volume: 117
  start-page: 106952
  year: 2021
  ident: 2024031523522713700_c4
  article-title: Advances in plasma-assisted ignition and combustion for combustors of aerospace engines
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/j.ast.2021.106952
– volume: 27
  start-page: 115001
  year: 2018
  ident: 2024031523522713700_c32
  article-title: Numerical simulation of negative point-plane corona discharge mechanism in SF6 gas
  publication-title: Plasma Sources Sci. Technol.
  doi: 10.1088/1361-6595/aae706
– volume: 53
  start-page: 065202
  year: 2020
  ident: 2024031523522713700_c41
  article-title: Calculation of two-temperature plasma composition: Part 1. Mass action law methods and extremum searching methods
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/1361-6463/ab572d
SSID ssj0003926
Score 2.4697936
Snippet Plasma simulation is an important, and sometimes the only, approach to investigating plasma behavior. In this work, we propose two general...
SourceID proquest
crossref
scitation
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Electron impact
Fluid dynamics
Interpolation
Low temperature
Neural networks
Physics
Plasma
Runge-Kutta method
Simulation
Spline functions
Thermodynamic properties
Transport properties
Title Low-temperature plasma simulation based on physics-informed neural networks: Frameworks and preliminary applications
URI http://dx.doi.org/10.1063/5.0106506
https://www.proquest.com/docview/2702616280
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bi9NAFB60i-iLl1WxusqgPghlNM0kk4xvi25ZpLsKtlB9CZkbFrrp0qTK-us9k5lcdimL-hLCMJ2GnC9nvnPmXBB6rRlYPYZqEigakIjlAUlFzIlRJhY6opIHNlH45JQdz6NPi3jRubLr7JJKvJW_d-aV_I9UYQzkarNk_0Gy7aIwAPcgX7iChOH6VzKern8RW1vKF0a2LaHLs3xULs98U66R3aSUPRBwHoySuEKp9sxf1wU3ChcGXgfGTZpArbIpH7Cqe35tLkb9c-4-n_3ilrWU06y2S-UKP3Ee9TwM33-s60wqW5Oj3QO2NbBg37zYdj59p3e-LY2HrPdGgCHbxMJVvQSAvLgc6uCfpadmQdEQ4Druh9qPpZwkzPVgaXSzd3Q6DKY7VT5wLJCTLb5q2eaOstqnn7PJfDrNZkeL2U20F4I9EQ7Q3uHHk-nXdtMGmshceKp7sKYIFaPv2qUvU5fOHrkNZMXFTfSoyew-uuttCnzoAPIA3dDFPrrn7QvstXe5j275N_QQVVeQgx1ycIccXCMHw81V5GCHHNwg5z3ucIMBN7iHG9zHzSM0nxzNPhwT33-DSMppRbgQyhgpuEjDBKh4QqVkKqBKwYjQuY5VnmiVc9u1PE6ZiUEfAAWNZS4TNR7Tx2hQrAv9BOEwkJGUXMdg7kexGecsgCl5KkwkQpqbIXrTvNqseZm2R8oqq4MkGM3izEthiF62U89dRZZdkw4a-WT-gy0zm3rJxixMgyF61crsukV2zPq53nQzsnNlnl7_V8_Qne47OUCDarPVz4HHVuKFx-AfHNelig
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Low-temperature+plasma+simulation+based+on+physics-informed+neural+networks%3A+Frameworks+and+preliminary+applications&rft.jtitle=Physics+of+fluids+%281994%29&rft.au=Zhong+Linlin&rft.au=Wu%2C+Bingyu&rft.au=Wang%2C+Yifan&rft.date=2022-08-01&rft.pub=American+Institute+of+Physics&rft.issn=1070-6631&rft.eissn=1089-7666&rft.volume=34&rft.issue=8&rft_id=info:doi/10.1063%2F5.0106506&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1070-6631&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1070-6631&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1070-6631&client=summon