Strain-Dependent Resistance of PDMS and Carbon Nanotubes Composite Microstructures

We report the development of a micropatterned nanocomposite composed of elastomer poly(dimethylsiloxane) (PDMS) and multiwalled carbon nanotubes, and its resistive response to large mechanical deformations. Microstructures of nanocomposite were embedded into unfilled PDMS to work as a strain sensor...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on nanotechnology Vol. 9; no. 5; pp. 590 - 595
Main Authors Liu, Chao-Xuan, Choi, Jin-Woo
Format Journal Article
LanguageEnglish
Published New York IEEE 01.09.2010
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1536-125X
1941-0085
DOI10.1109/TNANO.2010.2060350

Cover

Loading…
Abstract We report the development of a micropatterned nanocomposite composed of elastomer poly(dimethylsiloxane) (PDMS) and multiwalled carbon nanotubes, and its resistive response to large mechanical deformations. Microstructures of nanocomposite were embedded into unfilled PDMS to work as a strain sensor and devices were fabricated with simplicity through microcontact printing and screen-printing approaches. When subject to large tensile strains (>45%), nanocomposite sensors revealed significant change in electrical resistance. Also, cyclic loadings of sample yielded repeatable resistive responses. An interesting observation of hysteresis effect was confirmed with multiple tests and possible underlying mechanisms were discussed. As a flexible and biocompatible elastomer, the micropatterned nanocomposite could prove useful in sensing biomechanical strains and other various applications.
AbstractList We report the development of a micropatterned nanocomposite composed of elastomer poly(dimethylsiloxane) (PDMS) and multiwalled carbon nanotubes, and its resistive response to large mechanical deformations. Microstructures of nanocomposite were embedded into unfilled PDMS to work as a strain sensor and devices were fabricated with simplicity through microcontact printing and screen-printing approaches. When subject to large tensile strains (>45%), nanocomposite sensors revealed significant change in electrical resistance. Also, cyclic loadings of sample yielded repeatable resistive responses. An interesting observation of hysteresis effect was confirmed with multiple tests and possible underlying mechanisms were discussed. As a flexible and biocompatible elastomer, the micropatterned nanocomposite could prove useful in sensing biomechanical strains and other various applications.
Author Chao-Xuan Liu
Jin-Woo Choi
Author_xml – sequence: 1
  givenname: Chao-Xuan
  surname: Liu
  fullname: Liu, Chao-Xuan
– sequence: 2
  givenname: Jin-Woo
  surname: Choi
  fullname: Choi, Jin-Woo
BookMark eNp9kE1PAjEQhhujiYD-Ab1s4sHTYj-23e6R4GciYAATb5vuMk1KoMW2e_DfW4R48OBpOs3zdqZPH51aZwGhK4KHhODqbjkdTWdDilNPscCM4xPUI1VBcowlP01nzkROKP84R_0Q1hiTUnDZQ_NF9MrY_B52YFdgYzaHYEJUtoXM6eztfrLIlF1lY-UbZ7Opsi52DYRs7LY7F0yEbGJa70L0XRs7D-ECnWm1CXB5rAP0_viwHD_nr7Onl_HoNW9ZxWJeVVKXSoGulBSyZIQLogSnLSFFuipKvhKklRi0KBvZYCkEBdroldKKaynZAN0e3t1599lBiPXWhBY2G2XBdaGWJEGiwCKRN3_Iteu8TcvVBNNKCkYkSxQ9UPvfBA-63nmzVf4rQfXecv1jud5bro-WU0j-CbUmqmic3Xvd_B-9PkQNAPzO4pzIgmL2DVnli_Q
CODEN ITNECU
CitedBy_id crossref_primary_10_1007_s00542_011_1399_3
crossref_primary_10_1007_s13233_020_8095_z
crossref_primary_10_1109_JSEN_2023_3248021
crossref_primary_10_1016_j_compositesb_2019_01_090
crossref_primary_10_1016_j_cej_2024_155992
crossref_primary_10_1149_2_0162003JES
crossref_primary_10_1088_0964_1726_23_6_065006
crossref_primary_10_1088_2631_8695_acebb9
crossref_primary_10_1016_j_conbuildmat_2020_121619
crossref_primary_10_1002_adfm_201002508
crossref_primary_10_1007_s10008_013_2277_y
crossref_primary_10_3390_s21175760
crossref_primary_10_1088_2053_1591_1_3_035029
crossref_primary_10_1016_j_sna_2020_112494
crossref_primary_10_1088_0960_1317_21_11_115012
crossref_primary_10_1109_JSEN_2014_2368989
crossref_primary_10_1177_0021998316644846
crossref_primary_10_1021_ie301551a
crossref_primary_10_1016_j_cej_2024_151433
crossref_primary_10_1063_1_4998440
crossref_primary_10_1109_JSEN_2021_3124914
crossref_primary_10_1021_acsaelm_0c00278
crossref_primary_10_1088_1361_665X_aa7373
crossref_primary_10_1109_TNANO_2017_2662087
crossref_primary_10_1007_s10853_020_04349_4
crossref_primary_10_1063_1_4804580
crossref_primary_10_1007_s10853_020_05394_9
crossref_primary_10_1021_nn505953t
crossref_primary_10_1002_elps_201100482
crossref_primary_10_1016_j_sna_2017_09_026
crossref_primary_10_1088_1361_6528_aa701e
crossref_primary_10_1016_j_sna_2015_09_024
crossref_primary_10_1016_j_sna_2016_11_015
crossref_primary_10_1016_j_sna_2018_09_042
crossref_primary_10_1186_s40580_019_0198_x
crossref_primary_10_1088_0960_1317_24_7_075012
crossref_primary_10_3390_mi7040061
crossref_primary_10_1088_1361_6528_aa7c07
crossref_primary_10_1115_1_4044649
crossref_primary_10_1016_j_compositesb_2018_12_089
crossref_primary_10_1002_pat_6299
crossref_primary_10_1016_j_mne_2022_100113
crossref_primary_10_1080_09276440_2022_2094573
crossref_primary_10_1088_0960_1317_22_4_045014
crossref_primary_10_1002_adfm_201501396
crossref_primary_10_3390_s20164523
crossref_primary_10_1016_j_compscitech_2012_04_012
crossref_primary_10_1039_c2lc40670e
crossref_primary_10_1109_JMEMS_2014_2338332
crossref_primary_10_1016_j_mee_2017_02_001
crossref_primary_10_1063_1_4935189
crossref_primary_10_1016_j_orgel_2016_07_010
crossref_primary_10_1088_0964_1726_25_9_093001
crossref_primary_10_3390_act7040073
crossref_primary_10_1109_TBCAS_2019_2946519
crossref_primary_10_1021_acsami_5b11205
crossref_primary_10_3389_fmats_2019_00093
crossref_primary_10_1016_j_sna_2011_09_007
crossref_primary_10_1007_s11665_024_09253_5
crossref_primary_10_1038_s41598_017_18209_w
crossref_primary_10_1002_polb_23361
crossref_primary_10_3390_ma10070724
crossref_primary_10_1021_acsnano_6b08323
crossref_primary_10_1007_s10853_013_7681_2
crossref_primary_10_1088_0964_1726_23_8_085026
crossref_primary_10_1088_2053_1591_ab61b2
crossref_primary_10_1016_j_mee_2013_11_013
Cites_doi 10.1002/polb.20597
10.1166/jnn.2007.027
10.1016/j.polymer.2005.09.039
10.1088/0957-4484/19/05/055705
10.1103/PhysRevLett.40.1197
10.1088/0960-1317/17/12/N02
10.1016/S1463-0176(99)00012-5
10.1016/S0924-4247(97)01683-X
10.1103/PhysRevB.76.195433
10.1016/j.polymer.2003.11.028
10.1103/PhysRevB.65.113413
10.1016/0924-4247(93)80143-5
10.1038/354056a0
10.1097/00000637-198307000-00006
10.1016/S0167-6636(00)00028-4
10.1126/science.1060928
10.1002/adma.200701780
10.1088/0964-1726/15/3/009
10.1016/j.jacc.2005.11.063
10.1002/adma.200600977
10.1088/0964-1726/18/5/055010
10.1016/j.mee.2009.04.012
10.1016/j.compositesb.2007.02.024
10.1088/0960-1317/18/11/115017
10.1166/jnn.2006.121
10.1002/polb.21705
10.1109/TNANO.2009.2023650
10.1088/0957-4484/15/3/026
10.1126/science.287.5453.637
10.1002/adfm.200701437
10.1088/0960-1317/19/8/085019
10.1109/TNANO.2008.928572
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Sep 2010
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Sep 2010
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
F28
FR3
DOI 10.1109/TNANO.2010.2060350
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList
Materials Research Database
Materials Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-0085
EndPage 595
ExternalDocumentID 2722333521
10_1109_TNANO_2010_2060350
5518420
Genre orig-research
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
EJD
F5P
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
AAYXX
CITATION
RIG
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
F28
FR3
ID FETCH-LOGICAL-c393t-998f7aaef9a868731561a652c1149a8475d61c80ef67b8b08662e2bfdafa5f883
IEDL.DBID RIE
ISSN 1536-125X
IngestDate Fri Jul 11 01:36:51 EDT 2025
Mon Jun 30 06:07:44 EDT 2025
Thu Apr 24 23:04:15 EDT 2025
Fri Aug 01 04:20:03 EDT 2025
Tue Aug 26 17:10:22 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c393t-998f7aaef9a868731561a652c1149a8475d61c80ef67b8b08662e2bfdafa5f883
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
content type line 23
PQID 1029863183
PQPubID 75729
PageCount 6
ParticipantIDs crossref_citationtrail_10_1109_TNANO_2010_2060350
proquest_miscellaneous_818836406
ieee_primary_5518420
crossref_primary_10_1109_TNANO_2010_2060350
proquest_journals_1029863183
PublicationCentury 2000
PublicationDate 2010-Sept.
2010-09-00
20100901
PublicationDateYYYYMMDD 2010-09-01
PublicationDate_xml – month: 09
  year: 2010
  text: 2010-Sept.
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on nanotechnology
PublicationTitleAbbrev TNANO
PublicationYear 2010
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
ref15
ref14
ref33
ref11
ref32
ref10
ref2
ref1
ref17
ref16
lei (ref19) 1998; 65
ref24
ref23
ref26
ref25
ref22
ref21
djunisbekov (ref31) 2002
ref28
ref27
ref29
ref8
ref7
caneba (ref30) 2004; 3
ref9
engel (ref20) 2006
ref4
ref3
ref6
baughman (ref18) 2002; 297
ref5
References_xml – ident: ref5
  doi: 10.1002/polb.20597
– ident: ref10
  doi: 10.1166/jnn.2007.027
– ident: ref2
  doi: 10.1016/j.polymer.2005.09.039
– volume: 3
  start-page: 73
  year: 2004
  ident: ref30
  article-title: electrical and thermal coatings from a singlewalled carbon nanotube (swcnt)/polymer composite
  publication-title: J Miner Mater Character Eng
– ident: ref12
  doi: 10.1088/0957-4484/19/05/055705
– ident: ref26
  doi: 10.1103/PhysRevLett.40.1197
– ident: ref25
  doi: 10.1088/0960-1317/17/12/N02
– ident: ref24
  doi: 10.1016/S1463-0176(99)00012-5
– volume: 65
  start-page: 187
  year: 1998
  ident: ref19
  article-title: Thin-film thermocouples and strain-gauge technologies for engine applications
  publication-title: Sens Actuator A-Phys
  doi: 10.1016/S0924-4247(97)01683-X
– ident: ref11
  doi: 10.1103/PhysRevB.76.195433
– ident: ref34
  doi: 10.1016/j.polymer.2003.11.028
– ident: ref8
  doi: 10.1103/PhysRevB.65.113413
– ident: ref28
  doi: 10.1016/0924-4247(93)80143-5
– ident: ref1
  doi: 10.1038/354056a0
– ident: ref3
  doi: 10.1097/00000637-198307000-00006
– ident: ref29
  doi: 10.1016/S0167-6636(00)00028-4
– volume: 297
  start-page: 787
  year: 2002
  ident: ref18
  article-title: carbon nanotubes-the route toward applications
  publication-title: Science
  doi: 10.1126/science.1060928
– ident: ref22
  doi: 10.1002/adma.200701780
– ident: ref16
  doi: 10.1088/0964-1726/15/3/009
– ident: ref35
  doi: 10.1016/j.jacc.2005.11.063
– year: 2002
  ident: ref31
  publication-title: Stress Relaxation in Viscoelastic Materials
– ident: ref9
  doi: 10.1002/adma.200600977
– ident: ref32
  doi: 10.1088/0964-1726/18/5/055010
– ident: ref14
  doi: 10.1016/j.mee.2009.04.012
– ident: ref13
  doi: 10.1016/j.compositesb.2007.02.024
– start-page: 316
  year: 2006
  ident: ref20
  article-title: multi-layer embedment of conductive and non-conductive pdms for all-elastomer mems
  publication-title: Proc 12th Hilton Head Conf Tech Dig
– ident: ref15
  doi: 10.1088/0960-1317/18/11/115017
– ident: ref4
  doi: 10.1166/jnn.2006.121
– ident: ref33
  doi: 10.1002/polb.21705
– ident: ref27
  doi: 10.1109/TNANO.2009.2023650
– ident: ref7
  doi: 10.1088/0957-4484/15/3/026
– ident: ref6
  doi: 10.1126/science.287.5453.637
– ident: ref21
  doi: 10.1002/adfm.200701437
– ident: ref23
  doi: 10.1088/0960-1317/19/8/085019
– ident: ref17
  doi: 10.1109/TNANO.2008.928572
SSID ssj0017658
Score 2.2380507
Snippet We report the development of a micropatterned nanocomposite composed of elastomer poly(dimethylsiloxane) (PDMS) and multiwalled carbon nanotubes, and its...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 590
SubjectTerms Biosensors
Capacitive sensors
Carbon nanotubes
Carbon nanotubes (CNTs)
Elastomers
Electric resistance
Immune system
Mechanical sensors
Microstructure
nanocomposite
Nanocomposites
Nanomaterials
Nanoscale devices
Nanostructure
patterning
Sensors
Silicone resins
Soft lithography
Strain
strain sensor
Tensile strain
Title Strain-Dependent Resistance of PDMS and Carbon Nanotubes Composite Microstructures
URI https://ieeexplore.ieee.org/document/5518420
https://www.proquest.com/docview/1029863183
https://www.proquest.com/docview/818836406
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VnuiBV6lYKMgHbpBt1nYc-1i1VBXSbqs-pL1FtjO-FCVVN7n01zN2shEUhLhFiWM5M-PxfJkXwGdtvNBeiUwGyTOpCbM65CZD4XIhnLSYupYsV-r8Vn5fF-sd-DrlwiBiCj7DebxMvvy69X38VXYUq4dJTgD9GQG3IVdr8hiUKvXipA0c-8oU622CTG6OblbHq4shiovnKrrSfjuEUleVP1RxOl_OXsJyu7IhrORu3ndu7h-fFG3836W_ghejocmOB8l4DTvYvIG9X8oP7sPVdWoQkZ2OjXA7doWbaE-SILA2sMvT5TWzTc1O7INrG0aauO16hxsWtUiM9kK2jAF9QxHanpD7W7g9-3Zzcp6NPRYyL4zoMkJbobQWg7Fa6VIQnFtYVXBPOIluybKo1cLrHIMqnXYEgBRH7kJtgy2C1uIAdpu2wXfApLJlMJyXBVpJgqGDUMKXztTOW26LGSy2RK_8WIA8fuaPKgGR3FSJUVVkVDUyagZfpnfuh_Ib_xy9Hyk_jRyJPoPDLW-rcYduaBZutIoabQZsekx7KzpMbINtv6nImNFCkcnz_u8Tf4DnQzBBDDk7hF0iNn4kG6Vzn5Jw_gTIOeIi
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5V5QAceBXElgI-cINss7bjOMeqpVqgWVC7lfYW2c74UpSgbnLh1zN2shEvIW5R4ljOzHg8X-YF8EYXTminRCK95InUhFkt8iJBYVMhrDQYu5aUK7W8lh832WYP3k25MIgYg89wHi6jL79uXR9-lR2H6mGSE0C_k4Vk3CFba_IZ5Cp246QtHDrLZJtdikxaHK9XJ6vPQxwXT1Vwpv1yDMW-Kn8o43jCnD-Ecre2IbDkZt53du6-_1a28X8X_wgejKYmOxlk4zHsYfME7v9UgPAALq9ii4jkbGyF27FL3AaLkkSBtZ59OSuvmGlqdmpubdsw0sVt11vcsqBHQrwXsjKE9A1laHvC7k_h-vz9-nSZjF0WEicK0SWEt3xuDPrCaKVzQYBuYVTGHSEluiXzrFYLp1P0KrfaEgRSHLn1tfEm81qLZ7DftA0-ByaVyX3BeZ6hkSQa2gslXG6L2jrDTTaDxY7olRtLkIfP_FpFKJIWVWRUFRhVjYyawdvpnW9DAY5_jj4IlJ9GjkSfwdGOt9W4R7c0Cy-0CjptBmx6TLsruExMg22_rcic0UKR0XP494lfw93luryoLj6sPr2Ae0NoQQhAO4J9Ijy-JIuls6-ioP4AuLTlag
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Strain-Dependent+Resistance+of+PDMS+and+Carbon+Nanotubes+Composite+Microstructures&rft.jtitle=IEEE+transactions+on+nanotechnology&rft.au=Liu%2C+Chao-Xuan&rft.au=Choi%2C+Jin-Woo&rft.date=2010-09-01&rft.issn=1536-125X&rft.eissn=1941-0085&rft.volume=9&rft.issue=5&rft.spage=590&rft.epage=595&rft_id=info:doi/10.1109%2FTNANO.2010.2060350&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TNANO_2010_2060350
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1536-125X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1536-125X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1536-125X&client=summon