Renormalized Energy and Asymptotic Expansion of Optimal Logarithmic Energy on the Sphere
We study the Hamiltonian of a two-dimensional log-gas with a confining potential V satisfying the weak growth assumption— V is of the same order as 2 log ‖ x ‖ near infinity—considered by Hardy and Kuijlaars [J Approx Theory 170:44–58, 2013 ]. We prove an asymptotic expansion, as the number n of poi...
Saved in:
Published in | Constructive approximation Vol. 47; no. 1; pp. 39 - 74 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.02.2018
Springer Nature B.V Springer Verlag |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We study the Hamiltonian of a two-dimensional log-gas with a confining potential
V
satisfying the weak growth assumption—
V
is of the same order as
2
log
‖
x
‖
near infinity—considered by Hardy and Kuijlaars [J Approx Theory 170:44–58,
2013
]. We prove an asymptotic expansion, as the number
n
of points goes to infinity, for the minimum of this Hamiltonian using the gamma-convergence method of Sandier and Serfaty [Ann Probab 43(4):2026–2083,
2015
]. We show that the asymptotic expansion as
n
→
+
∞
of the minimal logarithmic energy of
n
points on the unit sphere in
R
3
has a term of order
n
, thus proving a long-standing conjecture of Rakhmanov et al. [Math Res Lett 1:647–662,
1994
]. Finally, we prove the equivalence between the conjecture of Brauchart Brauchart, Hardin and Saff [Contemp. Math., 578:31–61,
2012
] about the value of this term and the conjecture of Sandier and Serfaty [Commun Math Phys. 313(3):635–743,
2012
] about the minimality of the triangular lattice for a “renormalized energy”
W
among configurations of fixed asymptotic density. |
---|---|
AbstractList | We study the Hamiltonian of a two-dimensional log-gas with a confining potential V satisfying the weak growth assumption—V is of the same order as 2log‖x‖ near infinity—considered by Hardy and Kuijlaars [J Approx Theory 170:44–58, 2013]. We prove an asymptotic expansion, as the number n of points goes to infinity, for the minimum of this Hamiltonian using the gamma-convergence method of Sandier and Serfaty [Ann Probab 43(4):2026–2083, 2015]. We show that the asymptotic expansion as n→+∞ of the minimal logarithmic energy of n points on the unit sphere in R3 has a term of order n, thus proving a long-standing conjecture of Rakhmanov et al. [Math Res Lett 1:647–662, 1994]. Finally, we prove the equivalence between the conjecture of Brauchart Brauchart, Hardin and Saff [Contemp. Math., 578:31–61, 2012] about the value of this term and the conjecture of Sandier and Serfaty [Commun Math Phys. 313(3):635–743, 2012] about the minimality of the triangular lattice for a “renormalized energy” W among configurations of fixed asymptotic density. We study the Hamiltonian of a two-dimensional log-gas with a confining potential V satisfying the weak growth assumption— V is of the same order as 2 log ‖ x ‖ near infinity—considered by Hardy and Kuijlaars [J Approx Theory 170:44–58, 2013 ]. We prove an asymptotic expansion, as the number n of points goes to infinity, for the minimum of this Hamiltonian using the gamma-convergence method of Sandier and Serfaty [Ann Probab 43(4):2026–2083, 2015 ]. We show that the asymptotic expansion as n → + ∞ of the minimal logarithmic energy of n points on the unit sphere in R 3 has a term of order n , thus proving a long-standing conjecture of Rakhmanov et al. [Math Res Lett 1:647–662, 1994 ]. Finally, we prove the equivalence between the conjecture of Brauchart Brauchart, Hardin and Saff [Contemp. Math., 578:31–61, 2012 ] about the value of this term and the conjecture of Sandier and Serfaty [Commun Math Phys. 313(3):635–743, 2012 ] about the minimality of the triangular lattice for a “renormalized energy” W among configurations of fixed asymptotic density. |
Author | Bétermin, Laurent Sandier, Etienne |
Author_xml | – sequence: 1 givenname: Laurent surname: Bétermin fullname: Bétermin, Laurent organization: Interdisciplinary Center for Scientific Computing (IWR), Institut für Angewandte Mathematik, Universität Heidelberg – sequence: 2 givenname: Etienne surname: Sandier fullname: Sandier, Etienne email: sandier@u-pec.fr organization: LAMA - CNRS UMR 8050, Université Paris-Est, Institut Universitaire de France |
BackLink | https://hal.science/hal-04245599$$DView record in HAL |
BookMark | eNp9kE1LAzEQhoNUsK3-AG8LnjysTj52szmWUq1QKPgB3kK6m223tMmapGL7601ZBRH0NDA8z_DOO0A9Y41G6BLDDQbgtx6A5lkKOE8FzXh6OEF9zChJQTDooT5gnqeM8PwMDbxfA-CsoLyPXh-1sW6rNs1BV8nEaLfcJ8pUycjvt22woSmTyUerjG-sSWydzNvQRDyZ2aVyTVhtj0CnRSCsdPLUrrTT5-i0VhuvL77mEL3cTZ7H03Q2v38Yj2ZpSQUNqeAauKYLVuQcSkFLXWHOaVGXuIacYEGYhnyBCRc1qSpgbIFrtihIXfGcZIIO0XV3d6U2snUxm9tLqxo5Hc3kcQeMsCwT4h1H9qpjW2ffdtoHubY7Z2I8iUXBeCE4FJHiHVU6673TtSyboEL8PzjVbCQGeaxcdpXLWLk8Vi4P0cS_zO9A_zmkc3xkzVK7H5n-lD4Be_OU4g |
CitedBy_id | crossref_primary_10_1007_s00365_019_09494_x crossref_primary_10_1016_j_jat_2018_09_004 crossref_primary_10_1016_j_jco_2020_101485 crossref_primary_10_1007_s00205_018_1316_3 crossref_primary_10_1016_j_jco_2023_101742 crossref_primary_10_1007_s00205_021_01627_6 crossref_primary_10_1093_imanum_drab070 crossref_primary_10_1007_s00365_023_09673_x crossref_primary_10_1007_s11118_020_09875_z crossref_primary_10_1007_s00205_021_01725_5 crossref_primary_10_1088_1361_6544_aabe4b crossref_primary_10_1007_s11118_023_10108_2 crossref_primary_10_1016_j_jco_2020_101471 crossref_primary_10_2140_tunis_2021_3_93 crossref_primary_10_1007_s11005_018_1077_9 crossref_primary_10_1090_proc_15003 crossref_primary_10_1016_j_jfa_2021_109076 crossref_primary_10_1007_s00365_018_9426_6 crossref_primary_10_1007_s00440_024_01334_9 crossref_primary_10_1063_5_0053494 crossref_primary_10_1007_s00041_020_09790_2 crossref_primary_10_1007_s10884_019_09729_2 crossref_primary_10_1016_j_jmaa_2019_03_004 crossref_primary_10_1088_1361_6544_aac75a crossref_primary_10_1090_jams_956 crossref_primary_10_1007_s11854_022_0225_4 crossref_primary_10_1007_s10623_020_00733_y crossref_primary_10_1063_5_0086835 crossref_primary_10_1007_s00365_023_09642_4 crossref_primary_10_1007_s00365_024_09684_2 crossref_primary_10_1007_s13324_019_00313_x crossref_primary_10_1007_s00365_021_09534_5 |
Cites_doi | 10.1007/s40315-015-0120-4 10.1090/S0002-9939-97-03872-0 10.1016/j.jco.2015.02.003 10.1007/BF03025291 10.1016/0022-1236(88)90070-5 10.2140/pjm.1992.154.381 10.1016/j.jnt.2014.02.015 10.1093/acprof:oso/9780198507840.001.0001 10.1017/S0017089500007047 10.1090/S0002-9947-98-02119-9 10.1016/j.jfa.2014.11.023 10.4310/MRL.1994.v1.n6.a3 10.1007/s00220-012-1508-x 10.1090/S0025-5718-08-02085-1 10.1016/j.jat.2012.03.015 10.1214/14-AOP927 10.1090/conm/578/11483 10.1007/s10955-013-0891-9 10.1007/978-3-662-03329-6 10.1073/pnas.35.7.371 10.1007/s11118-014-9387-8 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media New York 2016 Copyright Springer Science & Business Media 2018 Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: Springer Science+Business Media New York 2016 – notice: Copyright Springer Science & Business Media 2018 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION 1XC |
DOI | 10.1007/s00365-016-9357-z |
DatabaseName | CrossRef Hyper Article en Ligne (HAL) |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1432-0940 |
EndPage | 74 |
ExternalDocumentID | oai_HAL_hal_04245599v1 10_1007_s00365_016_9357_z |
GroupedDBID | -52 -5D -5G -BR -EM -Y2 -~C -~X .86 .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29F 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 6TJ 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BAPOH BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD EPL ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAS LLZTM M4Y MA- MK~ ML~ N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P9R PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RIG RNI ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z8M ZMTXR ZWQNP ZY4 ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG ADXHL AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION ABRTQ 1XC UMC |
ID | FETCH-LOGICAL-c393t-97e07e3b48670c93ced17738fc1f0621924e06b1279f2dd044b1f4b82fd762593 |
IEDL.DBID | U2A |
ISSN | 0176-4276 |
IngestDate | Fri May 09 12:23:45 EDT 2025 Fri Jul 25 11:15:46 EDT 2025 Thu Apr 24 23:08:53 EDT 2025 Tue Jul 01 03:09:31 EDT 2025 Fri Feb 21 02:30:06 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Weak confinement Primary 52A40 82B05 Renormalized energy 31C20 Crystallization 82B21 Ginzburg–Landau Triangular lattice Secondary 41A60 Logarithmic energy Vortices Abrikosov lattices Logarithmic potential theory Coulomb gas Gamma-convergence Number theory |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c393t-97e07e3b48670c93ced17738fc1f0621924e06b1279f2dd044b1f4b82fd762593 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://hal.science/hal-00979926v5/file/Sphere%20Betermin%20Sandier.pdf |
PQID | 1984789708 |
PQPubID | 2043922 |
PageCount | 36 |
ParticipantIDs | hal_primary_oai_HAL_hal_04245599v1 proquest_journals_1984789708 crossref_citationtrail_10_1007_s00365_016_9357_z crossref_primary_10_1007_s00365_016_9357_z springer_journals_10_1007_s00365_016_9357_z |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-02-01 |
PublicationDateYYYYMMDD | 2018-02-01 |
PublicationDate_xml | – month: 02 year: 2018 text: 2018-02-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Constructive approximation |
PublicationTitleAbbrev | Constr Approx |
PublicationYear | 2018 |
Publisher | Springer US Springer Nature B.V Springer Verlag |
Publisher_xml | – name: Springer US – name: Springer Nature B.V – name: Springer Verlag |
References | Smale (CR26) 1998; 20 Cohen (CR9) 2007 Kuijlaars, Saff (CR16) 1998; 350 Leblé (CR17) 2015; 268 Hardy (CR13) 2012; 17 Bloom, Levenberg, Wielonsky (CR1) 2015; 15 CR12 CR11 Chiu (CR7) 1997; 125 Osgood, Phillips, Sarnak (CR19) 1988; 80 Coulangeon, Lazzarini (CR10) 2014; 141 Brauchart, Grabner (CR5) 2015; 31 Rakhmanov, Saff, Zhou (CR20) 1994; 1 Wagner (CR27) 1992; 154 Kuijlaars, Saff (CR15) 1997; 19 Sandier, Serfaty (CR23) 2012; 313 CR4 CR8 Hardy, Kuijlaars (CR14) 2013; 170 Brauchart (CR3) 2008; 77 Serfaty (CR25) 2013; 154 Braides (CR2) 2002 CR22 CR21 Sandier, Serfaty (CR24) 2015; 43 Brauchart, Hardin, Saff (CR6) 2012; 578 Montgomery (CR18) 1988; 30 JS Brauchart (9357_CR6) 2012; 578 T Bloom (9357_CR1) 2015; 15 G Wagner (9357_CR27) 1992; 154 9357_CR8 B Osgood (9357_CR19) 1988; 80 9357_CR12 9357_CR11 S Serfaty (9357_CR25) 2013; 154 9357_CR4 E Sandier (9357_CR23) 2012; 313 A Hardy (9357_CR14) 2013; 170 EA Rakhmanov (9357_CR20) 1994; 1 ABJ Kuijlaars (9357_CR15) 1997; 19 JS Brauchart (9357_CR5) 2015; 31 A Braides (9357_CR2) 2002 H Cohen (9357_CR9) 2007 P Chiu (9357_CR7) 1997; 125 HL Montgomery (9357_CR18) 1988; 30 ABJ Kuijlaars (9357_CR16) 1998; 350 JS Brauchart (9357_CR3) 2008; 77 S Smale (9357_CR26) 1998; 20 9357_CR22 9357_CR21 T Leblé (9357_CR17) 2015; 268 E Sandier (9357_CR24) 2015; 43 A Hardy (9357_CR13) 2012; 17 R Coulangeon (9357_CR10) 2014; 141 |
References_xml | – ident: CR22 – volume: 15 start-page: 555 issue: 4 year: 2015 end-page: 594 ident: CR1 article-title: Logarithmic potential theory and large deviation publication-title: Comput. Methods Funct. Theory doi: 10.1007/s40315-015-0120-4 – volume: 125 start-page: 723 year: 1997 end-page: 730 ident: CR7 article-title: Height of flat tori publication-title: Proc. Am. Math. Soc. doi: 10.1090/S0002-9939-97-03872-0 – ident: CR4 – ident: CR12 – volume: 19 start-page: 5 year: 1997 end-page: 11 ident: CR15 article-title: Distributing many points on a sphere publication-title: Math. Intell. – volume: 31 start-page: 293 year: 2015 end-page: 326 ident: CR5 article-title: Distributing many points on spheres: minimal energy and designs publication-title: J. Complex. doi: 10.1016/j.jco.2015.02.003 – volume: 20 start-page: 7 year: 1998 end-page: 15 ident: CR26 article-title: Mathematical problems for the next century publication-title: Math. Intell. doi: 10.1007/BF03025291 – ident: CR8 – volume: 80 start-page: 148 year: 1988 end-page: 211 ident: CR19 article-title: Extremals of determinants of Laplacians publication-title: J. Funct. Anal. doi: 10.1016/0022-1236(88)90070-5 – volume: 154 start-page: 381 year: 1992 end-page: 396 ident: CR27 article-title: On means of distances on the surface of a sphere. II. Upper bounds publication-title: Pac. J. Math. doi: 10.2140/pjm.1992.154.381 – volume: 141 start-page: 288 year: 2014 end-page: 315 ident: CR10 article-title: Spherical designs and heights of Euclidean lattices publication-title: J. Number Theory doi: 10.1016/j.jnt.2014.02.015 – year: 2002 ident: CR2 publication-title: Gamma-Convergence for Beginners doi: 10.1093/acprof:oso/9780198507840.001.0001 – volume: 30 start-page: 75 year: 1988 end-page: 85 ident: CR18 article-title: Minimal theta functions publication-title: Glasg. Math. J. doi: 10.1017/S0017089500007047 – year: 2007 ident: CR9 publication-title: Number theory II: Analytic and Modern Methods – ident: CR21 – volume: 17 start-page: 1 issue: 19 year: 2012 end-page: 12 ident: CR13 article-title: A note on large deviations for 2D Coulomb gas with weakly confining potential publication-title: Electron. Commun. Probab. – volume: 350 start-page: 523 issue: 2 year: 1998 end-page: 538 ident: CR16 article-title: Asymptotics for minimal discrete energy on the sphere publication-title: Trans. Am. Math. Soc. doi: 10.1090/S0002-9947-98-02119-9 – volume: 268 start-page: 1649 issue: 7 year: 2015 end-page: 1677 ident: CR17 article-title: A uniqueness result for minimizers of the 1D log-gas renormalized energy publication-title: J. Funct. Anal. doi: 10.1016/j.jfa.2014.11.023 – volume: 1 start-page: 647 year: 1994 end-page: 662 ident: CR20 article-title: Minimal discrete energy on the sphere publication-title: Math. Res. Lett. doi: 10.4310/MRL.1994.v1.n6.a3 – volume: 313 start-page: 635 issue: 3 year: 2012 end-page: 743 ident: CR23 article-title: From the Ginzburg–Landau model to vortex lattice problems publication-title: Commun. Math. Phys. doi: 10.1007/s00220-012-1508-x – ident: CR11 – volume: 77 start-page: 1599 year: 2008 end-page: 1613 ident: CR3 article-title: Optimal logarithmic energy points on the unit sphere publication-title: Math. Comput. doi: 10.1090/S0025-5718-08-02085-1 – volume: 170 start-page: 44 year: 2013 end-page: 58 ident: CR14 article-title: Weakly admissible vector equilibrium problems publication-title: J. Approx. Theory doi: 10.1016/j.jat.2012.03.015 – volume: 43 start-page: 2026 issue: 4 year: 2015 end-page: 2083 ident: CR24 article-title: 2d Coulomb gases and the renormalized energy publication-title: Ann. Probab. doi: 10.1214/14-AOP927 – volume: 578 start-page: 31 year: 2012 end-page: 61 ident: CR6 article-title: The next-order term for optimal Riesz and logarithmic energy asymptotics on the sphere publication-title: Contemp. Math. doi: 10.1090/conm/578/11483 – volume: 154 start-page: 660 issue: 3 year: 2013 end-page: 680 ident: CR25 article-title: Ginzburg–Landau vortices, Coulomb gases, and renormalized energies publication-title: J. Stat. Phys. doi: 10.1007/s10955-013-0891-9 – volume: 77 start-page: 1599 year: 2008 ident: 9357_CR3 publication-title: Math. Comput. doi: 10.1090/S0025-5718-08-02085-1 – volume: 31 start-page: 293 year: 2015 ident: 9357_CR5 publication-title: J. Complex. doi: 10.1016/j.jco.2015.02.003 – volume: 313 start-page: 635 issue: 3 year: 2012 ident: 9357_CR23 publication-title: Commun. Math. Phys. doi: 10.1007/s00220-012-1508-x – volume: 154 start-page: 660 issue: 3 year: 2013 ident: 9357_CR25 publication-title: J. Stat. Phys. doi: 10.1007/s10955-013-0891-9 – volume-title: Number theory II: Analytic and Modern Methods year: 2007 ident: 9357_CR9 – volume: 170 start-page: 44 year: 2013 ident: 9357_CR14 publication-title: J. Approx. Theory doi: 10.1016/j.jat.2012.03.015 – volume: 350 start-page: 523 issue: 2 year: 1998 ident: 9357_CR16 publication-title: Trans. Am. Math. Soc. doi: 10.1090/S0002-9947-98-02119-9 – ident: 9357_CR11 – volume: 19 start-page: 5 year: 1997 ident: 9357_CR15 publication-title: Math. Intell. – volume: 15 start-page: 555 issue: 4 year: 2015 ident: 9357_CR1 publication-title: Comput. Methods Funct. Theory doi: 10.1007/s40315-015-0120-4 – volume: 43 start-page: 2026 issue: 4 year: 2015 ident: 9357_CR24 publication-title: Ann. Probab. doi: 10.1214/14-AOP927 – volume: 154 start-page: 381 year: 1992 ident: 9357_CR27 publication-title: Pac. J. Math. doi: 10.2140/pjm.1992.154.381 – volume: 30 start-page: 75 year: 1988 ident: 9357_CR18 publication-title: Glasg. Math. J. doi: 10.1017/S0017089500007047 – ident: 9357_CR22 doi: 10.1007/978-3-662-03329-6 – ident: 9357_CR8 doi: 10.1073/pnas.35.7.371 – volume-title: Gamma-Convergence for Beginners year: 2002 ident: 9357_CR2 doi: 10.1093/acprof:oso/9780198507840.001.0001 – ident: 9357_CR21 – volume: 268 start-page: 1649 issue: 7 year: 2015 ident: 9357_CR17 publication-title: J. Funct. Anal. doi: 10.1016/j.jfa.2014.11.023 – volume: 141 start-page: 288 year: 2014 ident: 9357_CR10 publication-title: J. Number Theory doi: 10.1016/j.jnt.2014.02.015 – volume: 17 start-page: 1 issue: 19 year: 2012 ident: 9357_CR13 publication-title: Electron. Commun. Probab. – volume: 20 start-page: 7 year: 1998 ident: 9357_CR26 publication-title: Math. Intell. doi: 10.1007/BF03025291 – ident: 9357_CR4 doi: 10.1007/s11118-014-9387-8 – ident: 9357_CR12 – volume: 578 start-page: 31 year: 2012 ident: 9357_CR6 publication-title: Contemp. Math. doi: 10.1090/conm/578/11483 – volume: 125 start-page: 723 year: 1997 ident: 9357_CR7 publication-title: Proc. Am. Math. Soc. doi: 10.1090/S0002-9939-97-03872-0 – volume: 80 start-page: 148 year: 1988 ident: 9357_CR19 publication-title: J. Funct. Anal. doi: 10.1016/0022-1236(88)90070-5 – volume: 1 start-page: 647 year: 1994 ident: 9357_CR20 publication-title: Math. Res. Lett. doi: 10.4310/MRL.1994.v1.n6.a3 |
SSID | ssj0015837 |
Score | 2.4070249 |
Snippet | We study the Hamiltonian of a two-dimensional log-gas with a confining potential
V
satisfying the weak growth assumption—
V
is of the same order as
2
log
‖
x
‖... We study the Hamiltonian of a two-dimensional log-gas with a confining potential V satisfying the weak growth assumption—V is of the same order as 2log‖x‖ near... |
SourceID | hal proquest crossref springer |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 39 |
SubjectTerms | Analysis Asymptotic properties Asymptotic series Confining Infinity Mathematics Mathematics and Statistics Numerical Analysis Quantum theory |
Title | Renormalized Energy and Asymptotic Expansion of Optimal Logarithmic Energy on the Sphere |
URI | https://link.springer.com/article/10.1007/s00365-016-9357-z https://www.proquest.com/docview/1984789708 https://hal.science/hal-04245599 |
Volume | 47 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZSyQxEC48XtYHcS8cL8Li00og6Sudx0ZGh10P2N2B8anppKt3BO0RpxWdX2-qL1xxBd-a7i9pSCWpqlTVF4B9YxRKRMvJ2OABZoJrpye4NVFGDkdu69qq07NoNA5-TMJJW8c977Ldu5BkvVP3xW5EnUKJZhHXfqj4YhlWQ3Ld3SQee0kfOgjjhihTqogHnoq6UOZrXfyjjJanlAr5zM58ERqtNc7RBqy3piJLGtl-hCUsP8Haac-zOv8Mk19YktF5dbnAnA3rOj6WlTlL5o_XN9XModjwwS14OhNjs4Kdux3CwdnJ7K9zkqvpNQGaZg7gema_iWcAv8D4aPjncMTbuxK49bVfca1QKPQNEegJq32LuVTKjwsrCxF55GahiIz0lC68PBdBYGQRmNgrckUukP8VVspZiZvAMoNFZk1oBBIbljUydo8UsFWYOQdkAKIbtNS2ROJ0n8VV2lMg1-OcUvIYjXO6GMD3vslNw6LxFvibk0SPI_7rUXKS0rs6ThtqfS8HsNMJKm1X3TyV2unaWCsRD-CgE96zz__749a70NvwwVlNcZO6vQMr1e0d7jrLpDJ7sJocX_wc7tUz8gmENdtn |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB7xOFAOqPShLk8LcWplyc7L8XGFFi2wC1Jhpb1FsTOBSpBFbECwvx5PXqKordRblHx2pJnYM5OZ-QxwaIxCiWg5ORs8wFRw7ewEtyZKKeDIbNVbNT6PhpPgdBpOmz7ueVvt3qYkq526a3Yj6hQqNIu49kPFF8uw6nyBmOq4Jl6_Sx2EcU2UKVXEA09FbSrzT1P8ZoyWb6gU8o2f-S41Wlmc44-w0biKrF_rdhOWsPgE6-OOZ3X-GaY_sSCn8_bXAjM2qPr4WFpkrD9_ubsvZw7FBs9uwdM_MTbL2YXbIRycjWbXLkgub-4IUA9zADczuySeAfwCk-PB1dGQN2clcOtrv-RaoVDoGyLQE1b7FjOplB_nVuYi8ijMQhEZ6Smde1kmgsDIPDCxl2eKQiD_K6wUswK_AUsN5qk1oRFIbFjWyNhdUsJWYeoCkB6IVmiJbYjE6TyL26SjQK7knFDxGMk5WfTgezfkvmbR-Bf4wGmiwxH_9bA_SuhelacNtX6SPdhpFZU0q26eSO1sbayViHvwo1Xem8d_e-PWf6H3YW14NR4lo5Pzs2344DyouC7j3oGV8uERd52XUpq96qt8BR2f3MY |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dSxwxEB-qBakPpdYWz9oaSp-UYLJf2Twe7R1ne1pRD-5t2WRnVdC9w9sWvb--mf1CxRb6tuz-koVMkpnJzPwC8MUYhRLRcjI2eICp4NrpCW5NlJLDkdmqturoOBpNgu_TcNrcc7pos93bkGRd00AsTUV5MM_yg67wjWhUKOks4toPFV-uwEu3G0ua1hOv34URwrgmzZQq4oGnojas-VwXjxTTyiWlRT6wOZ-ESSvtM3wDrxuzkfVrOW_ACyzewvpRx7m62ITpKRZkgF5fLTFjg6qmj6VFxvqL-5t5OXMoNrhzi5_Ox9gsZz_dbuHgbDy7cA5zeXlDgLqZA7ie2RlxDuA7mAwH519HvLk3gVtf-yXXCoVC3xCZnrDat5hJpfw4tzIXkUcuF4rISE_p3MsyEQRG5oGJvTxT5A7572G1mBW4BSw1mKfWhEYgMWNZI2P3SMFbhalzRnog2kFLbEMqTndbXCcdHXI1zgklktE4J8se7HVN5jWjxr_An50kOhxxYY_644TeVTHbUOvfsgc7raCSZgUuEqmd3o21EnEP9lvhPfj8tz9u_xd6F9ZOvg2T8eHxjw_wyhlTcZ3RvQOr5e0v_OgMltJ8qiblH_s_4QI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Renormalized+Energy+and+Asymptotic+Expansion+of+Optimal+Logarithmic+Energy+on+the+Sphere&rft.jtitle=Constructive+approximation&rft.au=B%C3%A9termin%2C+Laurent&rft.au=Sandier%2C+Etienne&rft.date=2018-02-01&rft.pub=Springer+US&rft.issn=0176-4276&rft.eissn=1432-0940&rft.volume=47&rft.issue=1&rft.spage=39&rft.epage=74&rft_id=info:doi/10.1007%2Fs00365-016-9357-z&rft.externalDocID=10_1007_s00365_016_9357_z |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0176-4276&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0176-4276&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0176-4276&client=summon |