Renormalized Energy and Asymptotic Expansion of Optimal Logarithmic Energy on the Sphere

We study the Hamiltonian of a two-dimensional log-gas with a confining potential V satisfying the weak growth assumption— V is of the same order as 2 log ‖ x ‖ near infinity—considered by Hardy and Kuijlaars [J Approx Theory 170:44–58, 2013 ]. We prove an asymptotic expansion, as the number n of poi...

Full description

Saved in:
Bibliographic Details
Published inConstructive approximation Vol. 47; no. 1; pp. 39 - 74
Main Authors Bétermin, Laurent, Sandier, Etienne
Format Journal Article
LanguageEnglish
Published New York Springer US 01.02.2018
Springer Nature B.V
Springer Verlag
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We study the Hamiltonian of a two-dimensional log-gas with a confining potential V satisfying the weak growth assumption— V is of the same order as 2 log ‖ x ‖ near infinity—considered by Hardy and Kuijlaars [J Approx Theory 170:44–58, 2013 ]. We prove an asymptotic expansion, as the number n of points goes to infinity, for the minimum of this Hamiltonian using the gamma-convergence method of Sandier and Serfaty [Ann Probab 43(4):2026–2083, 2015 ]. We show that the asymptotic expansion as n → + ∞ of the minimal logarithmic energy of n points on the unit sphere in R 3 has a term of order n , thus proving a long-standing conjecture of Rakhmanov et al. [Math Res Lett 1:647–662, 1994 ]. Finally, we prove the equivalence between the conjecture of Brauchart Brauchart, Hardin and Saff [Contemp. Math., 578:31–61, 2012 ] about the value of this term and the conjecture of Sandier and Serfaty [Commun Math Phys. 313(3):635–743, 2012 ] about the minimality of the triangular lattice for a “renormalized energy” W among configurations of fixed asymptotic density.
AbstractList We study the Hamiltonian of a two-dimensional log-gas with a confining potential V satisfying the weak growth assumption—V is of the same order as 2log‖x‖ near infinity—considered by Hardy and Kuijlaars [J Approx Theory 170:44–58, 2013]. We prove an asymptotic expansion, as the number n of points goes to infinity, for the minimum of this Hamiltonian using the gamma-convergence method of Sandier and Serfaty [Ann Probab 43(4):2026–2083, 2015]. We show that the asymptotic expansion as n→+∞ of the minimal logarithmic energy of n points on the unit sphere in R3 has a term of order n, thus proving a long-standing conjecture of Rakhmanov et al. [Math Res Lett 1:647–662, 1994]. Finally, we prove the equivalence between the conjecture of Brauchart Brauchart, Hardin and Saff [Contemp. Math., 578:31–61, 2012] about the value of this term and the conjecture of Sandier and Serfaty [Commun Math Phys. 313(3):635–743, 2012] about the minimality of the triangular lattice for a “renormalized energy” W among configurations of fixed asymptotic density.
We study the Hamiltonian of a two-dimensional log-gas with a confining potential V satisfying the weak growth assumption— V is of the same order as 2 log ‖ x ‖ near infinity—considered by Hardy and Kuijlaars [J Approx Theory 170:44–58, 2013 ]. We prove an asymptotic expansion, as the number n of points goes to infinity, for the minimum of this Hamiltonian using the gamma-convergence method of Sandier and Serfaty [Ann Probab 43(4):2026–2083, 2015 ]. We show that the asymptotic expansion as n → + ∞ of the minimal logarithmic energy of n points on the unit sphere in R 3 has a term of order n , thus proving a long-standing conjecture of Rakhmanov et al. [Math Res Lett 1:647–662, 1994 ]. Finally, we prove the equivalence between the conjecture of Brauchart Brauchart, Hardin and Saff [Contemp. Math., 578:31–61, 2012 ] about the value of this term and the conjecture of Sandier and Serfaty [Commun Math Phys. 313(3):635–743, 2012 ] about the minimality of the triangular lattice for a “renormalized energy” W among configurations of fixed asymptotic density.
Author Bétermin, Laurent
Sandier, Etienne
Author_xml – sequence: 1
  givenname: Laurent
  surname: Bétermin
  fullname: Bétermin, Laurent
  organization: Interdisciplinary Center for Scientific Computing (IWR), Institut für Angewandte Mathematik, Universität Heidelberg
– sequence: 2
  givenname: Etienne
  surname: Sandier
  fullname: Sandier, Etienne
  email: sandier@u-pec.fr
  organization: LAMA - CNRS UMR 8050, Université Paris-Est, Institut Universitaire de France
BackLink https://hal.science/hal-04245599$$DView record in HAL
BookMark eNp9kE1LAzEQhoNUsK3-AG8LnjysTj52szmWUq1QKPgB3kK6m223tMmapGL7601ZBRH0NDA8z_DOO0A9Y41G6BLDDQbgtx6A5lkKOE8FzXh6OEF9zChJQTDooT5gnqeM8PwMDbxfA-CsoLyPXh-1sW6rNs1BV8nEaLfcJ8pUycjvt22woSmTyUerjG-sSWydzNvQRDyZ2aVyTVhtj0CnRSCsdPLUrrTT5-i0VhuvL77mEL3cTZ7H03Q2v38Yj2ZpSQUNqeAauKYLVuQcSkFLXWHOaVGXuIacYEGYhnyBCRc1qSpgbIFrtihIXfGcZIIO0XV3d6U2snUxm9tLqxo5Hc3kcQeMsCwT4h1H9qpjW2ffdtoHubY7Z2I8iUXBeCE4FJHiHVU6673TtSyboEL8PzjVbCQGeaxcdpXLWLk8Vi4P0cS_zO9A_zmkc3xkzVK7H5n-lD4Be_OU4g
CitedBy_id crossref_primary_10_1007_s00365_019_09494_x
crossref_primary_10_1016_j_jat_2018_09_004
crossref_primary_10_1016_j_jco_2020_101485
crossref_primary_10_1007_s00205_018_1316_3
crossref_primary_10_1016_j_jco_2023_101742
crossref_primary_10_1007_s00205_021_01627_6
crossref_primary_10_1093_imanum_drab070
crossref_primary_10_1007_s00365_023_09673_x
crossref_primary_10_1007_s11118_020_09875_z
crossref_primary_10_1007_s00205_021_01725_5
crossref_primary_10_1088_1361_6544_aabe4b
crossref_primary_10_1007_s11118_023_10108_2
crossref_primary_10_1016_j_jco_2020_101471
crossref_primary_10_2140_tunis_2021_3_93
crossref_primary_10_1007_s11005_018_1077_9
crossref_primary_10_1090_proc_15003
crossref_primary_10_1016_j_jfa_2021_109076
crossref_primary_10_1007_s00365_018_9426_6
crossref_primary_10_1007_s00440_024_01334_9
crossref_primary_10_1063_5_0053494
crossref_primary_10_1007_s00041_020_09790_2
crossref_primary_10_1007_s10884_019_09729_2
crossref_primary_10_1016_j_jmaa_2019_03_004
crossref_primary_10_1088_1361_6544_aac75a
crossref_primary_10_1090_jams_956
crossref_primary_10_1007_s11854_022_0225_4
crossref_primary_10_1007_s10623_020_00733_y
crossref_primary_10_1063_5_0086835
crossref_primary_10_1007_s00365_023_09642_4
crossref_primary_10_1007_s00365_024_09684_2
crossref_primary_10_1007_s13324_019_00313_x
crossref_primary_10_1007_s00365_021_09534_5
Cites_doi 10.1007/s40315-015-0120-4
10.1090/S0002-9939-97-03872-0
10.1016/j.jco.2015.02.003
10.1007/BF03025291
10.1016/0022-1236(88)90070-5
10.2140/pjm.1992.154.381
10.1016/j.jnt.2014.02.015
10.1093/acprof:oso/9780198507840.001.0001
10.1017/S0017089500007047
10.1090/S0002-9947-98-02119-9
10.1016/j.jfa.2014.11.023
10.4310/MRL.1994.v1.n6.a3
10.1007/s00220-012-1508-x
10.1090/S0025-5718-08-02085-1
10.1016/j.jat.2012.03.015
10.1214/14-AOP927
10.1090/conm/578/11483
10.1007/s10955-013-0891-9
10.1007/978-3-662-03329-6
10.1073/pnas.35.7.371
10.1007/s11118-014-9387-8
ContentType Journal Article
Copyright Springer Science+Business Media New York 2016
Copyright Springer Science & Business Media 2018
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Springer Science+Business Media New York 2016
– notice: Copyright Springer Science & Business Media 2018
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
1XC
DOI 10.1007/s00365-016-9357-z
DatabaseName CrossRef
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1432-0940
EndPage 74
ExternalDocumentID oai_HAL_hal_04245599v1
10_1007_s00365_016_9357_z
GroupedDBID -52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29F
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
6TJ
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
MK~
ML~
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P9R
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z8M
ZMTXR
ZWQNP
ZY4
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
ADXHL
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
ABRTQ
1XC
UMC
ID FETCH-LOGICAL-c393t-97e07e3b48670c93ced17738fc1f0621924e06b1279f2dd044b1f4b82fd762593
IEDL.DBID U2A
ISSN 0176-4276
IngestDate Fri May 09 12:23:45 EDT 2025
Fri Jul 25 11:15:46 EDT 2025
Thu Apr 24 23:08:53 EDT 2025
Tue Jul 01 03:09:31 EDT 2025
Fri Feb 21 02:30:06 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Weak confinement
Primary 52A40
82B05
Renormalized energy
31C20
Crystallization
82B21
Ginzburg–Landau
Triangular lattice
Secondary 41A60
Logarithmic energy
Vortices
Abrikosov lattices
Logarithmic potential theory
Coulomb gas
Gamma-convergence
Number theory
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c393t-97e07e3b48670c93ced17738fc1f0621924e06b1279f2dd044b1f4b82fd762593
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://hal.science/hal-00979926v5/file/Sphere%20Betermin%20Sandier.pdf
PQID 1984789708
PQPubID 2043922
PageCount 36
ParticipantIDs hal_primary_oai_HAL_hal_04245599v1
proquest_journals_1984789708
crossref_citationtrail_10_1007_s00365_016_9357_z
crossref_primary_10_1007_s00365_016_9357_z
springer_journals_10_1007_s00365_016_9357_z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-02-01
PublicationDateYYYYMMDD 2018-02-01
PublicationDate_xml – month: 02
  year: 2018
  text: 2018-02-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Constructive approximation
PublicationTitleAbbrev Constr Approx
PublicationYear 2018
Publisher Springer US
Springer Nature B.V
Springer Verlag
Publisher_xml – name: Springer US
– name: Springer Nature B.V
– name: Springer Verlag
References Smale (CR26) 1998; 20
Cohen (CR9) 2007
Kuijlaars, Saff (CR16) 1998; 350
Leblé (CR17) 2015; 268
Hardy (CR13) 2012; 17
Bloom, Levenberg, Wielonsky (CR1) 2015; 15
CR12
CR11
Chiu (CR7) 1997; 125
Osgood, Phillips, Sarnak (CR19) 1988; 80
Coulangeon, Lazzarini (CR10) 2014; 141
Brauchart, Grabner (CR5) 2015; 31
Rakhmanov, Saff, Zhou (CR20) 1994; 1
Wagner (CR27) 1992; 154
Kuijlaars, Saff (CR15) 1997; 19
Sandier, Serfaty (CR23) 2012; 313
CR4
CR8
Hardy, Kuijlaars (CR14) 2013; 170
Brauchart (CR3) 2008; 77
Serfaty (CR25) 2013; 154
Braides (CR2) 2002
CR22
CR21
Sandier, Serfaty (CR24) 2015; 43
Brauchart, Hardin, Saff (CR6) 2012; 578
Montgomery (CR18) 1988; 30
JS Brauchart (9357_CR6) 2012; 578
T Bloom (9357_CR1) 2015; 15
G Wagner (9357_CR27) 1992; 154
9357_CR8
B Osgood (9357_CR19) 1988; 80
9357_CR12
9357_CR11
S Serfaty (9357_CR25) 2013; 154
9357_CR4
E Sandier (9357_CR23) 2012; 313
A Hardy (9357_CR14) 2013; 170
EA Rakhmanov (9357_CR20) 1994; 1
ABJ Kuijlaars (9357_CR15) 1997; 19
JS Brauchart (9357_CR5) 2015; 31
A Braides (9357_CR2) 2002
H Cohen (9357_CR9) 2007
P Chiu (9357_CR7) 1997; 125
HL Montgomery (9357_CR18) 1988; 30
ABJ Kuijlaars (9357_CR16) 1998; 350
JS Brauchart (9357_CR3) 2008; 77
S Smale (9357_CR26) 1998; 20
9357_CR22
9357_CR21
T Leblé (9357_CR17) 2015; 268
E Sandier (9357_CR24) 2015; 43
A Hardy (9357_CR13) 2012; 17
R Coulangeon (9357_CR10) 2014; 141
References_xml – ident: CR22
– volume: 15
  start-page: 555
  issue: 4
  year: 2015
  end-page: 594
  ident: CR1
  article-title: Logarithmic potential theory and large deviation
  publication-title: Comput. Methods Funct. Theory
  doi: 10.1007/s40315-015-0120-4
– volume: 125
  start-page: 723
  year: 1997
  end-page: 730
  ident: CR7
  article-title: Height of flat tori
  publication-title: Proc. Am. Math. Soc.
  doi: 10.1090/S0002-9939-97-03872-0
– ident: CR4
– ident: CR12
– volume: 19
  start-page: 5
  year: 1997
  end-page: 11
  ident: CR15
  article-title: Distributing many points on a sphere
  publication-title: Math. Intell.
– volume: 31
  start-page: 293
  year: 2015
  end-page: 326
  ident: CR5
  article-title: Distributing many points on spheres: minimal energy and designs
  publication-title: J. Complex.
  doi: 10.1016/j.jco.2015.02.003
– volume: 20
  start-page: 7
  year: 1998
  end-page: 15
  ident: CR26
  article-title: Mathematical problems for the next century
  publication-title: Math. Intell.
  doi: 10.1007/BF03025291
– ident: CR8
– volume: 80
  start-page: 148
  year: 1988
  end-page: 211
  ident: CR19
  article-title: Extremals of determinants of Laplacians
  publication-title: J. Funct. Anal.
  doi: 10.1016/0022-1236(88)90070-5
– volume: 154
  start-page: 381
  year: 1992
  end-page: 396
  ident: CR27
  article-title: On means of distances on the surface of a sphere. II. Upper bounds
  publication-title: Pac. J. Math.
  doi: 10.2140/pjm.1992.154.381
– volume: 141
  start-page: 288
  year: 2014
  end-page: 315
  ident: CR10
  article-title: Spherical designs and heights of Euclidean lattices
  publication-title: J. Number Theory
  doi: 10.1016/j.jnt.2014.02.015
– year: 2002
  ident: CR2
  publication-title: Gamma-Convergence for Beginners
  doi: 10.1093/acprof:oso/9780198507840.001.0001
– volume: 30
  start-page: 75
  year: 1988
  end-page: 85
  ident: CR18
  article-title: Minimal theta functions
  publication-title: Glasg. Math. J.
  doi: 10.1017/S0017089500007047
– year: 2007
  ident: CR9
  publication-title: Number theory II: Analytic and Modern Methods
– ident: CR21
– volume: 17
  start-page: 1
  issue: 19
  year: 2012
  end-page: 12
  ident: CR13
  article-title: A note on large deviations for 2D Coulomb gas with weakly confining potential
  publication-title: Electron. Commun. Probab.
– volume: 350
  start-page: 523
  issue: 2
  year: 1998
  end-page: 538
  ident: CR16
  article-title: Asymptotics for minimal discrete energy on the sphere
  publication-title: Trans. Am. Math. Soc.
  doi: 10.1090/S0002-9947-98-02119-9
– volume: 268
  start-page: 1649
  issue: 7
  year: 2015
  end-page: 1677
  ident: CR17
  article-title: A uniqueness result for minimizers of the 1D log-gas renormalized energy
  publication-title: J. Funct. Anal.
  doi: 10.1016/j.jfa.2014.11.023
– volume: 1
  start-page: 647
  year: 1994
  end-page: 662
  ident: CR20
  article-title: Minimal discrete energy on the sphere
  publication-title: Math. Res. Lett.
  doi: 10.4310/MRL.1994.v1.n6.a3
– volume: 313
  start-page: 635
  issue: 3
  year: 2012
  end-page: 743
  ident: CR23
  article-title: From the Ginzburg–Landau model to vortex lattice problems
  publication-title: Commun. Math. Phys.
  doi: 10.1007/s00220-012-1508-x
– ident: CR11
– volume: 77
  start-page: 1599
  year: 2008
  end-page: 1613
  ident: CR3
  article-title: Optimal logarithmic energy points on the unit sphere
  publication-title: Math. Comput.
  doi: 10.1090/S0025-5718-08-02085-1
– volume: 170
  start-page: 44
  year: 2013
  end-page: 58
  ident: CR14
  article-title: Weakly admissible vector equilibrium problems
  publication-title: J. Approx. Theory
  doi: 10.1016/j.jat.2012.03.015
– volume: 43
  start-page: 2026
  issue: 4
  year: 2015
  end-page: 2083
  ident: CR24
  article-title: 2d Coulomb gases and the renormalized energy
  publication-title: Ann. Probab.
  doi: 10.1214/14-AOP927
– volume: 578
  start-page: 31
  year: 2012
  end-page: 61
  ident: CR6
  article-title: The next-order term for optimal Riesz and logarithmic energy asymptotics on the sphere
  publication-title: Contemp. Math.
  doi: 10.1090/conm/578/11483
– volume: 154
  start-page: 660
  issue: 3
  year: 2013
  end-page: 680
  ident: CR25
  article-title: Ginzburg–Landau vortices, Coulomb gases, and renormalized energies
  publication-title: J. Stat. Phys.
  doi: 10.1007/s10955-013-0891-9
– volume: 77
  start-page: 1599
  year: 2008
  ident: 9357_CR3
  publication-title: Math. Comput.
  doi: 10.1090/S0025-5718-08-02085-1
– volume: 31
  start-page: 293
  year: 2015
  ident: 9357_CR5
  publication-title: J. Complex.
  doi: 10.1016/j.jco.2015.02.003
– volume: 313
  start-page: 635
  issue: 3
  year: 2012
  ident: 9357_CR23
  publication-title: Commun. Math. Phys.
  doi: 10.1007/s00220-012-1508-x
– volume: 154
  start-page: 660
  issue: 3
  year: 2013
  ident: 9357_CR25
  publication-title: J. Stat. Phys.
  doi: 10.1007/s10955-013-0891-9
– volume-title: Number theory II: Analytic and Modern Methods
  year: 2007
  ident: 9357_CR9
– volume: 170
  start-page: 44
  year: 2013
  ident: 9357_CR14
  publication-title: J. Approx. Theory
  doi: 10.1016/j.jat.2012.03.015
– volume: 350
  start-page: 523
  issue: 2
  year: 1998
  ident: 9357_CR16
  publication-title: Trans. Am. Math. Soc.
  doi: 10.1090/S0002-9947-98-02119-9
– ident: 9357_CR11
– volume: 19
  start-page: 5
  year: 1997
  ident: 9357_CR15
  publication-title: Math. Intell.
– volume: 15
  start-page: 555
  issue: 4
  year: 2015
  ident: 9357_CR1
  publication-title: Comput. Methods Funct. Theory
  doi: 10.1007/s40315-015-0120-4
– volume: 43
  start-page: 2026
  issue: 4
  year: 2015
  ident: 9357_CR24
  publication-title: Ann. Probab.
  doi: 10.1214/14-AOP927
– volume: 154
  start-page: 381
  year: 1992
  ident: 9357_CR27
  publication-title: Pac. J. Math.
  doi: 10.2140/pjm.1992.154.381
– volume: 30
  start-page: 75
  year: 1988
  ident: 9357_CR18
  publication-title: Glasg. Math. J.
  doi: 10.1017/S0017089500007047
– ident: 9357_CR22
  doi: 10.1007/978-3-662-03329-6
– ident: 9357_CR8
  doi: 10.1073/pnas.35.7.371
– volume-title: Gamma-Convergence for Beginners
  year: 2002
  ident: 9357_CR2
  doi: 10.1093/acprof:oso/9780198507840.001.0001
– ident: 9357_CR21
– volume: 268
  start-page: 1649
  issue: 7
  year: 2015
  ident: 9357_CR17
  publication-title: J. Funct. Anal.
  doi: 10.1016/j.jfa.2014.11.023
– volume: 141
  start-page: 288
  year: 2014
  ident: 9357_CR10
  publication-title: J. Number Theory
  doi: 10.1016/j.jnt.2014.02.015
– volume: 17
  start-page: 1
  issue: 19
  year: 2012
  ident: 9357_CR13
  publication-title: Electron. Commun. Probab.
– volume: 20
  start-page: 7
  year: 1998
  ident: 9357_CR26
  publication-title: Math. Intell.
  doi: 10.1007/BF03025291
– ident: 9357_CR4
  doi: 10.1007/s11118-014-9387-8
– ident: 9357_CR12
– volume: 578
  start-page: 31
  year: 2012
  ident: 9357_CR6
  publication-title: Contemp. Math.
  doi: 10.1090/conm/578/11483
– volume: 125
  start-page: 723
  year: 1997
  ident: 9357_CR7
  publication-title: Proc. Am. Math. Soc.
  doi: 10.1090/S0002-9939-97-03872-0
– volume: 80
  start-page: 148
  year: 1988
  ident: 9357_CR19
  publication-title: J. Funct. Anal.
  doi: 10.1016/0022-1236(88)90070-5
– volume: 1
  start-page: 647
  year: 1994
  ident: 9357_CR20
  publication-title: Math. Res. Lett.
  doi: 10.4310/MRL.1994.v1.n6.a3
SSID ssj0015837
Score 2.4070249
Snippet We study the Hamiltonian of a two-dimensional log-gas with a confining potential V satisfying the weak growth assumption— V is of the same order as 2 log ‖ x ‖...
We study the Hamiltonian of a two-dimensional log-gas with a confining potential V satisfying the weak growth assumption—V is of the same order as 2log‖x‖ near...
SourceID hal
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 39
SubjectTerms Analysis
Asymptotic properties
Asymptotic series
Confining
Infinity
Mathematics
Mathematics and Statistics
Numerical Analysis
Quantum theory
Title Renormalized Energy and Asymptotic Expansion of Optimal Logarithmic Energy on the Sphere
URI https://link.springer.com/article/10.1007/s00365-016-9357-z
https://www.proquest.com/docview/1984789708
https://hal.science/hal-04245599
Volume 47
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZSyQxEC48XtYHcS8cL8Li00og6Sudx0ZGh10P2N2B8anppKt3BO0RpxWdX2-qL1xxBd-a7i9pSCWpqlTVF4B9YxRKRMvJ2OABZoJrpye4NVFGDkdu69qq07NoNA5-TMJJW8c977Ldu5BkvVP3xW5EnUKJZhHXfqj4YhlWQ3Ld3SQee0kfOgjjhihTqogHnoq6UOZrXfyjjJanlAr5zM58ERqtNc7RBqy3piJLGtl-hCUsP8Haac-zOv8Mk19YktF5dbnAnA3rOj6WlTlL5o_XN9XModjwwS14OhNjs4Kdux3CwdnJ7K9zkqvpNQGaZg7gema_iWcAv8D4aPjncMTbuxK49bVfca1QKPQNEegJq32LuVTKjwsrCxF55GahiIz0lC68PBdBYGQRmNgrckUukP8VVspZiZvAMoNFZk1oBBIbljUydo8UsFWYOQdkAKIbtNS2ROJ0n8VV2lMg1-OcUvIYjXO6GMD3vslNw6LxFvibk0SPI_7rUXKS0rs6ThtqfS8HsNMJKm1X3TyV2unaWCsRD-CgE96zz__749a70NvwwVlNcZO6vQMr1e0d7jrLpDJ7sJocX_wc7tUz8gmENdtn
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB7xOFAOqPShLk8LcWplyc7L8XGFFi2wC1Jhpb1FsTOBSpBFbECwvx5PXqKordRblHx2pJnYM5OZ-QxwaIxCiWg5ORs8wFRw7ewEtyZKKeDIbNVbNT6PhpPgdBpOmz7ueVvt3qYkq526a3Yj6hQqNIu49kPFF8uw6nyBmOq4Jl6_Sx2EcU2UKVXEA09FbSrzT1P8ZoyWb6gU8o2f-S41Wlmc44-w0biKrF_rdhOWsPgE6-OOZ3X-GaY_sSCn8_bXAjM2qPr4WFpkrD9_ubsvZw7FBs9uwdM_MTbL2YXbIRycjWbXLkgub-4IUA9zADczuySeAfwCk-PB1dGQN2clcOtrv-RaoVDoGyLQE1b7FjOplB_nVuYi8ijMQhEZ6Smde1kmgsDIPDCxl2eKQiD_K6wUswK_AUsN5qk1oRFIbFjWyNhdUsJWYeoCkB6IVmiJbYjE6TyL26SjQK7knFDxGMk5WfTgezfkvmbR-Bf4wGmiwxH_9bA_SuhelacNtX6SPdhpFZU0q26eSO1sbayViHvwo1Xem8d_e-PWf6H3YW14NR4lo5Pzs2344DyouC7j3oGV8uERd52XUpq96qt8BR2f3MY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dSxwxEB-qBakPpdYWz9oaSp-UYLJf2Twe7R1ne1pRD-5t2WRnVdC9w9sWvb--mf1CxRb6tuz-koVMkpnJzPwC8MUYhRLRcjI2eICp4NrpCW5NlJLDkdmqturoOBpNgu_TcNrcc7pos93bkGRd00AsTUV5MM_yg67wjWhUKOks4toPFV-uwEu3G0ua1hOv34URwrgmzZQq4oGnojas-VwXjxTTyiWlRT6wOZ-ESSvtM3wDrxuzkfVrOW_ACyzewvpRx7m62ITpKRZkgF5fLTFjg6qmj6VFxvqL-5t5OXMoNrhzi5_Ox9gsZz_dbuHgbDy7cA5zeXlDgLqZA7ie2RlxDuA7mAwH519HvLk3gVtf-yXXCoVC3xCZnrDat5hJpfw4tzIXkUcuF4rISE_p3MsyEQRG5oGJvTxT5A7572G1mBW4BSw1mKfWhEYgMWNZI2P3SMFbhalzRnog2kFLbEMqTndbXCcdHXI1zgklktE4J8se7HVN5jWjxr_An50kOhxxYY_644TeVTHbUOvfsgc7raCSZgUuEqmd3o21EnEP9lvhPfj8tz9u_xd6F9ZOvg2T8eHxjw_wyhlTcZ3RvQOr5e0v_OgMltJ8qiblH_s_4QI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Renormalized+Energy+and+Asymptotic+Expansion+of+Optimal+Logarithmic+Energy+on+the+Sphere&rft.jtitle=Constructive+approximation&rft.au=B%C3%A9termin%2C+Laurent&rft.au=Sandier%2C+Etienne&rft.date=2018-02-01&rft.pub=Springer+US&rft.issn=0176-4276&rft.eissn=1432-0940&rft.volume=47&rft.issue=1&rft.spage=39&rft.epage=74&rft_id=info:doi/10.1007%2Fs00365-016-9357-z&rft.externalDocID=10_1007_s00365_016_9357_z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0176-4276&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0176-4276&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0176-4276&client=summon