Prediction of depression symptoms in individual subjects with face and eye movement tracking

BackgroundDepression is a challenge to diagnose reliably and the current gold standard for trials of DSM-5 has been in agreement between two or more medical specialists. Research studies aiming to objectively predict depression have typically used brain scanning. Less expensive methods from cognitiv...

Full description

Saved in:
Bibliographic Details
Published inPsychological medicine Vol. 52; no. 9; pp. 1784 - 1792
Main Authors Stolicyn, Aleks, Steele, J. Douglas, Seriès, Peggy
Format Journal Article
LanguageEnglish
Published Cambridge, UK Cambridge University Press 01.07.2022
Subjects
Online AccessGet full text
ISSN0033-2917
1469-8978
1469-8978
DOI10.1017/S0033291720003608

Cover

Loading…
Abstract BackgroundDepression is a challenge to diagnose reliably and the current gold standard for trials of DSM-5 has been in agreement between two or more medical specialists. Research studies aiming to objectively predict depression have typically used brain scanning. Less expensive methods from cognitive neuroscience may allow quicker and more reliable diagnoses, and contribute to reducing the costs of managing the condition. In the current study we aimed to develop a novel inexpensive system for detecting elevated symptoms of depression based on tracking face and eye movements during the performance of cognitive tasks.MethodsIn total, 75 participants performed two novel cognitive tasks with verbal affective distraction elements while their face and eye movements were recorded using inexpensive cameras. Data from 48 participants (mean age 25.5 years, standard deviation of 6.1 years, 25 with elevated symptoms of depression) passed quality control and were included in a case-control classification analysis with machine learning.ResultsClassification accuracy using cross-validation (within-study replication) reached 79% (sensitivity 76%, specificity 82%), when face and eye movement measures were combined. Symptomatic participants were characterised by less intense mouth and eyelid movements during different stages of the two tasks, and by differences in frequencies and durations of fixations on affectively salient distraction words.ConclusionsElevated symptoms of depression can be detected with face and eye movement tracking during the cognitive performance, with a close to clinically-relevant accuracy (~80%). Future studies should validate these results in larger samples and in clinical populations.
AbstractList BackgroundDepression is a challenge to diagnose reliably and the current gold standard for trials of DSM-5 has been in agreement between two or more medical specialists. Research studies aiming to objectively predict depression have typically used brain scanning. Less expensive methods from cognitive neuroscience may allow quicker and more reliable diagnoses, and contribute to reducing the costs of managing the condition. In the current study we aimed to develop a novel inexpensive system for detecting elevated symptoms of depression based on tracking face and eye movements during the performance of cognitive tasks.MethodsIn total, 75 participants performed two novel cognitive tasks with verbal affective distraction elements while their face and eye movements were recorded using inexpensive cameras. Data from 48 participants (mean age 25.5 years, standard deviation of 6.1 years, 25 with elevated symptoms of depression) passed quality control and were included in a case-control classification analysis with machine learning.ResultsClassification accuracy using cross-validation (within-study replication) reached 79% (sensitivity 76%, specificity 82%), when face and eye movement measures were combined. Symptomatic participants were characterised by less intense mouth and eyelid movements during different stages of the two tasks, and by differences in frequencies and durations of fixations on affectively salient distraction words.ConclusionsElevated symptoms of depression can be detected with face and eye movement tracking during the cognitive performance, with a close to clinically-relevant accuracy (~80%). Future studies should validate these results in larger samples and in clinical populations.
Depression is a challenge to diagnose reliably and the current gold standard for trials of DSM-5 has been in agreement between two or more medical specialists. Research studies aiming to objectively predict depression have typically used brain scanning. Less expensive methods from cognitive neuroscience may allow quicker and more reliable diagnoses, and contribute to reducing the costs of managing the condition. In the current study we aimed to develop a novel inexpensive system for detecting elevated symptoms of depression based on tracking face and eye movements during the performance of cognitive tasks.BACKGROUNDDepression is a challenge to diagnose reliably and the current gold standard for trials of DSM-5 has been in agreement between two or more medical specialists. Research studies aiming to objectively predict depression have typically used brain scanning. Less expensive methods from cognitive neuroscience may allow quicker and more reliable diagnoses, and contribute to reducing the costs of managing the condition. In the current study we aimed to develop a novel inexpensive system for detecting elevated symptoms of depression based on tracking face and eye movements during the performance of cognitive tasks.In total, 75 participants performed two novel cognitive tasks with verbal affective distraction elements while their face and eye movements were recorded using inexpensive cameras. Data from 48 participants (mean age 25.5 years, standard deviation of 6.1 years, 25 with elevated symptoms of depression) passed quality control and were included in a case-control classification analysis with machine learning.METHODSIn total, 75 participants performed two novel cognitive tasks with verbal affective distraction elements while their face and eye movements were recorded using inexpensive cameras. Data from 48 participants (mean age 25.5 years, standard deviation of 6.1 years, 25 with elevated symptoms of depression) passed quality control and were included in a case-control classification analysis with machine learning.Classification accuracy using cross-validation (within-study replication) reached 79% (sensitivity 76%, specificity 82%), when face and eye movement measures were combined. Symptomatic participants were characterised by less intense mouth and eyelid movements during different stages of the two tasks, and by differences in frequencies and durations of fixations on affectively salient distraction words.RESULTSClassification accuracy using cross-validation (within-study replication) reached 79% (sensitivity 76%, specificity 82%), when face and eye movement measures were combined. Symptomatic participants were characterised by less intense mouth and eyelid movements during different stages of the two tasks, and by differences in frequencies and durations of fixations on affectively salient distraction words.Elevated symptoms of depression can be detected with face and eye movement tracking during the cognitive performance, with a close to clinically-relevant accuracy (~80%). Future studies should validate these results in larger samples and in clinical populations.CONCLUSIONSElevated symptoms of depression can be detected with face and eye movement tracking during the cognitive performance, with a close to clinically-relevant accuracy (~80%). Future studies should validate these results in larger samples and in clinical populations.
Author Seriès, Peggy
Steele, J. Douglas
Stolicyn, Aleks
Author_xml – sequence: 1
  givenname: Aleks
  orcidid: 0000-0002-1147-7539
  surname: Stolicyn
  fullname: Stolicyn, Aleks
  email: a.stolicyn@ed.ac.uk
  organization: 1Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Kennedy Tower, Royal Edinburgh Hospital, Morningside Park, Edinburgh EH10 5HF, UK
– sequence: 2
  givenname: J. Douglas
  orcidid: 0000-0002-9822-8753
  surname: Steele
  fullname: Steele, J. Douglas
  organization: 3Division of Imaging Science and Technology, School of Medicine, Dundee University, Ninewells Hospital & Medical School, Dundee DD1 9SY, UK
– sequence: 3
  givenname: Peggy
  orcidid: 0000-0002-8580-7975
  surname: Seriès
  fullname: Seriès, Peggy
  organization: 2Institute for Adaptive and Neural Computation, School of Informatics, University of Edinburgh, 10 Crichton Street, Edinburgh EH8 9AB, UK
BookMark eNp9kE9r3DAQxUVIIJs0HyA3QS-9ONUfS5aOJbRJIdBCklvAyNI40caWtpK8Zb99bXYhkNLCwMww7zc83hk6DjEAQpeUXFFCm8_3hHDONG0YmSdJ1BFa0VrqSulGHaPVcq6W-yk6y3lNCOW0Ziv09DOB87b4GHDssYNNgpyXLe_GTYljxj7M5fzWu8kMOE_dGmzJ-LcvL7g3FrAJDsMO8Bi3MEIouCRjX314_oBOejNkuDj0c_T47evD9W119-Pm-_WXu8pyzUulrGZN3TkO0rFeaNppKwirOdGC9h3pjNSgnARJerBUOeF4Z40T3LGOSs3P0af9302KvybIpR19tjAMJkCccstqobQQNa1n6cd30nWcUpjdtUwqJZmQoplVdK-yKeacoG83yY8m7VpK2iXv9q-8Z6Z5x1hfzBLsHIcf_kvyA2nGLnn3DG-m_k39AV8xlUI
CitedBy_id crossref_primary_10_1177_25158414241302871
crossref_primary_10_1016_j_bspc_2024_106996
crossref_primary_10_3389_fpsyt_2024_1280935
crossref_primary_10_3390_s23239402
crossref_primary_10_3389_fneur_2025_1555630
crossref_primary_10_3390_brainsci13101415
crossref_primary_10_1017_S0033291724002010
crossref_primary_10_1080_03007995_2022_2038487
crossref_primary_10_3389_fpsyg_2021_782866
crossref_primary_10_1109_ACCESS_2024_3451728
crossref_primary_10_1038_s41598_023_41654_9
crossref_primary_10_1002_cpe_7407
crossref_primary_10_1016_j_eswa_2023_121850
crossref_primary_10_1016_j_genhosppsych_2023_04_010
crossref_primary_10_1016_j_array_2024_100372
Cites_doi 10.1111/j.1360-0443.1993.tb02093.x
10.1037/0021-843X.86.3.235
10.1007/s12193-014-0161-4
10.1016/j.cpr.2012.09.004
10.1007/s00406-004-0510-5
10.1016/j.neubiorev.2016.09.001
10.1001/archpsyc.1986.01800030087009
10.3389/fpsyg.2015.01809
10.1007/978-3-319-07869-4_14
10.1371/journal.pone.0132958
10.1016/j.jeconom.2015.02.006
10.1016/j.neuroimage.2014.11.021
10.1109/ICIP.2013.6738869
10.1007/BF02189974
10.1016/j.pscychresns.2013.09.008
10.1037/0021-843X.114.4.627
10.1093/brain/awv177
10.1016/S0165-0327(97)00097-9
10.1016/0165-1781(94)90032-9
10.1007/s12021-013-9204-3
10.1097/00006842-197609000-00006
10.1007/BF02190342
10.1177/0004867415603131
10.1016/S0167-8760(00)00181-1
10.1017/S0033291713002535
10.1126/science.1257786
10.1192/bjp.2019.88
10.1016/0005-7967(78)90047-5
10.1111/cns.13048
10.1002/da.22063
10.1017/S1355617702860131
10.1177/014662167700100306
10.1093/brain/aws084
10.1016/j.biopsych.2016.10.028
10.1176/appi.ajp.2012.12091189
10.1109/TAFFC.2017.2724035
10.3758/s13428-012-0314-x
10.1038/mp.2015.69
10.1109/WACV.2016.7477553
10.1002/wps.20087
10.1007/BF00994018
10.1016/j.imavis.2013.12.007
10.1109/FG.2015.7284869
10.1093/brain/aws059
10.1016/j.jbtep.2005.05.002
10.1016/S0165-1781(00)00168-2
10.1109/ACII.2009.5349358
10.3758/BRM.41.3.598
ContentType Journal Article
Copyright Copyright © The Author(s), 2020. Published by Cambridge University Press
Copyright_xml – notice: Copyright © The Author(s), 2020. Published by Cambridge University Press
DBID AAYXX
CITATION
0-V
3V.
7QJ
7QP
7QR
7RV
7TK
7X7
7XB
88E
88G
8FD
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
ALSLI
AZQEC
BENPR
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
HEHIP
K9.
KB0
M0S
M1P
M2M
M2O
M2S
MBDVC
NAPCQ
P64
PHGZM
PHGZT
PJZUB
PKEHL
POGQB
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
PRQQA
PSYQQ
Q9U
7X8
DOI 10.1017/S0033291720003608
DatabaseName CrossRef
ProQuest Social Sciences Premium Collection【Remote access available】
ProQuest Central (Corporate)
Applied Social Sciences Index & Abstracts (ASSIA)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Nursing & Allied Health Database
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
Technology Research Database
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central
ProQuest Central UK/Ireland
Social Science Premium Collection
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
Sociology Collection
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
ProQuest Health & Medical Collection
Medical Database ProQuest
Psychology Database
Research Library
ProQuest sociology
Research Library (Corporate)
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest Sociology & Social Sciences Collection
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Social Sciences
ProQuest One Psychology
ProQuest Central Basic
MEDLINE - Academic
DatabaseTitle CrossRef
ProQuest One Psychology
Research Library Prep
ProQuest Central Student
ProQuest Central Essentials
Sociology & Social Sciences Collection
ProQuest Central China
Health Research Premium Collection
Health & Medical Research Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Sociology
ProQuest Medical Library (Alumni)
Social Science Premium Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Sociology Collection
Health Research Premium Collection (Alumni)
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest Social Sciences Premium Collection
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
ProQuest Sociology & Social Sciences Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
Applied Social Sciences Index and Abstracts (ASSIA)
ProQuest Central
ProQuest Health & Medical Research Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Research Library
ProQuest Sociology Collection
ProQuest One Social Sciences
ProQuest Central Basic
ProQuest Nursing & Allied Health Source
ProQuest Psychology Journals (Alumni)
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList ProQuest One Psychology
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1469-8978
EndPage 1792
ExternalDocumentID 10_1017_S0033291720003608
GroupedDBID ---
-1D
-1F
-2P
-2V
-E.
-~6
-~N
.FH
.GJ
.XZ
0-V
08P
09C
09E
0E1
0R~
123
29P
3V.
4.4
41~
53G
5RE
5VS
6~7
74X
74Y
7RV
7X7
7~V
88E
8FI
8FJ
8G5
8R4
8R5
9M5
AAAZR
AABES
AABWE
AACJH
AAEED
AAGFV
AAKTX
AAMNQ
AARAB
AASVR
AAUIS
AAUKB
AAWTL
AAYEP
ABBXD
ABBZL
ABGDZ
ABITZ
ABIVO
ABJNI
ABKKG
ABLJU
ABMYL
ABQTM
ABQWD
ABROB
ABTCQ
ABUWG
ABVFV
ABWCF
ABXAU
ABZCX
ABZUI
ACBMC
ACCHT
ACETC
ACGFO
ACGFS
ACHQT
ACIMK
ACIWK
ACPRK
ACQFJ
ACREK
ACUIJ
ACUYZ
ACWGA
ACYZP
ACZBM
ACZUX
ADAZD
ADBBV
ADDNB
ADFEC
ADFRT
ADGEJ
ADKIL
ADOCW
ADOVH
ADOVT
ADVJH
AEBAK
AEBPU
AEHGV
AEMTW
AENCP
AENEX
AENGE
AEPLO
AEYHU
AEYYC
AFFNX
AFFUJ
AFKQG
AFKRA
AFKSM
AFLOS
AFLVW
AFUTZ
AGABE
AGJUD
AGLWM
AGOOT
AHIPN
AHLTW
AHMBA
AHQXX
AHRGI
AIGNW
AIHIV
AIOIP
AISIE
AJ7
AJCYY
AJPFC
AJQAS
AKZCZ
ALMA_UNASSIGNED_HOLDINGS
ALSLI
ALVPG
ANPSP
AQJOH
ARABE
ARALO
ARZZG
ASOEW
ATUCA
AUXHV
AYIQA
AZGZS
AZQEC
BBLKV
BCGOX
BENPR
BESQT
BGHMG
BJBOZ
BKEYQ
BLZWO
BMAJL
BPHCQ
BQFHP
BRIRG
BVXVI
C0O
C45
CAG
CBIIA
CCPQU
CCQAD
CCUQV
CDIZJ
CFAFE
CFBFF
CGQII
CHEAL
CJCSC
COF
CS3
DC4
DOHLZ
DU5
DWQXO
EBS
EGQIC
EJD
EX3
F5P
FA8
FYUFA
GNUQQ
GUQSH
HEHIP
HG-
HMCUK
HST
HZ~
H~9
I.6
I.7
I.9
IH6
IOEEP
IOO
IS6
I~P
J36
J38
J3A
J5H
JHPGK
JQKCU
JVRFK
KAFGG
KC5
KCGVB
KFECR
L7B
L98
LHUNA
LW7
M-V
M1P
M2M
M2O
M2S
M7~
M8.
N4W
NAPCQ
NEJ
NIKVX
NMFBF
NZEOI
O9-
OMB
OMC
OMH
OVD
OYBOY
P2P
PQQKQ
PROAC
PSQYO
PSYQQ
Q2X
RCA
RIG
ROL
RR0
S6-
S6U
SAAAG
SY4
T9M
TEORI
UAP
UCJ
UKHRP
UT1
UU6
VVN
WFFJZ
WH7
WOW
WQ3
WXU
WXY
WYP
YOC
YZZ
ZA5
ZCA
ZDLDU
ZGI
ZJOSE
ZMEZD
ZXP
ZYDXJ
~V1
AAKNA
AATMM
AAYXX
ABHFL
ABVKB
ABVZP
ABXHF
ACDLN
ACEJA
ACOZI
ACRPL
ADNMO
ADPDF
AEMFK
AFZFC
AGQPQ
AKMAY
ALIPV
ANOYL
CITATION
IPYYG
PHGZM
PHGZT
7QJ
7QP
7QR
7TK
7XB
8FD
8FK
FR3
K9.
MBDVC
P64
PJZUB
PKEHL
POGQB
PPXIY
PQEST
PQUKI
PRINS
PRQQA
Q9U
7X8
ID FETCH-LOGICAL-c393t-8c9274bd3e6d2f591b9c502430951fb0ba69e8d6e60fec18d5d3bcad53d2b1693
IEDL.DBID 7X7
ISSN 0033-2917
1469-8978
IngestDate Fri Jul 11 15:31:37 EDT 2025
Fri Jul 25 10:23:11 EDT 2025
Tue Jul 01 04:16:04 EDT 2025
Thu Apr 24 23:08:48 EDT 2025
Wed Mar 13 06:01:43 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords prediction
eye movements
eye-tracking
depression
face movements
machine learning
Cognitive tasks
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c393t-8c9274bd3e6d2f591b9c502430951fb0ba69e8d6e60fec18d5d3bcad53d2b1693
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8580-7975
0000-0002-1147-7539
0000-0002-9822-8753
OpenAccessLink https://www.cambridge.org/core/services/aop-cambridge-core/content/view/D3DD91C657FAB8C8676C0353750BC134/S0033291720003608a.pdf/div-class-title-prediction-of-depression-symptoms-in-individual-subjects-with-face-and-eye-movement-tracking-div.pdf
PQID 2688625657
PQPubID 35753
PageCount 9
ParticipantIDs proquest_miscellaneous_2458955414
proquest_journals_2688625657
crossref_primary_10_1017_S0033291720003608
crossref_citationtrail_10_1017_S0033291720003608
cambridge_journals_10_1017_S0033291720003608
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-07-01
PublicationDateYYYYMMDD 2022-07-01
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Cambridge, UK
PublicationPlace_xml – name: Cambridge, UK
– name: Cambridge
PublicationTitle Psychological medicine
PublicationTitleAlternate Psychol. Med
PublicationYear 2022
Publisher Cambridge University Press
Publisher_xml – name: Cambridge University Press
References 2015; 6
2009; 41
2017; 82
2015; 105
1992; 242
2019; 10
2013; 45
2005; 114
1993; 88
1997; 46
2002; 8
2015; 10
2015; 187
2000; 95
1977; 86
1978; 16
2016; 50
2016; 71
2015; 9
2012; 32
1990; 240
2001; 41
2014; 44
2018; 24
1995; 20
2004; 254
2012; 135
2015; 138
1986; 43
2013; 214
2013; 30
2016; 21
2019; 215
1977; 1
2014; 13
2013; 170
1976a; 192
2014; 12
1976b; 38
1994; 51
2014; 32
2005; 36
S0033291720003608_ref30
S0033291720003608_ref31
S0033291720003608_ref32
S0033291720003608_ref33
S0033291720003608_ref34
S0033291720003608_ref35
S0033291720003608_ref25
S0033291720003608_ref26
S0033291720003608_ref27
S0033291720003608_ref28
S0033291720003608_ref29
Ekman (S0033291720003608_ref11) 2002
S0033291720003608_ref20
S0033291720003608_ref21
S0033291720003608_ref22
S0033291720003608_ref23
S0033291720003608_ref24
S0033291720003608_ref6
S0033291720003608_ref14
S0033291720003608_ref15
S0033291720003608_ref5
S0033291720003608_ref16
S0033291720003608_ref8
S0033291720003608_ref7
S0033291720003608_ref17
S0033291720003608_ref18
S0033291720003608_ref9
S0033291720003608_ref19
S0033291720003608_ref1
S0033291720003608_ref4
S0033291720003608_ref3
S0033291720003608_ref50
S0033291720003608_ref51
S0033291720003608_ref10
S0033291720003608_ref12
S0033291720003608_ref13
S0033291720003608_ref47
S0033291720003608_ref48
S0033291720003608_ref49
S0033291720003608_ref40
S0033291720003608_ref41
S0033291720003608_ref42
S0033291720003608_ref43
(S0033291720003608_ref2) 2013
S0033291720003608_ref44
S0033291720003608_ref45
S0033291720003608_ref46
S0033291720003608_ref36
S0033291720003608_ref37
S0033291720003608_ref38
S0033291720003608_ref39
References_xml – volume: 9
  start-page: 17
  issue: 1
  year: 2015
  end-page: 29
  article-title: Automatic nonverbal behavior indicators of depression and PTSD: The effect of gender
  publication-title: Journal on Multimodal User Interfaces
– volume: 24
  start-page: 1037
  issue: 11
  year: 2018
  end-page: 1052
  article-title: Machine learning in major depression: From classification to treatment outcome prediction
  publication-title: CNS Neuroscience & Therapeutics
– volume: 30
  start-page: 515
  issue: 6
  year: 2013
  end-page: 527
  article-title: Cognitive deficits and functional outcomes in major depressive disorder: Determinants, substrates, and treatment interventions
  publication-title: Depression and Anxiety
– volume: 46
  start-page: 135
  issue: 2
  year: 1997
  end-page: 141
  article-title: Subjective and expressive emotional responses in depression
  publication-title: Journal of Affective Disorders
– volume: 16
  start-page: 97
  issue: 2
  year: 1978
  end-page: 102
  article-title: Effect of thought-stopping on thoughts, mood and corrugator EMG in depressed patients
  publication-title: Behaviour Research and Therapy
– volume: 36
  start-page: 183
  issue: 3
  year: 2005
  end-page: 196
  article-title: Facial expression of emotions in borderline personality disorder and depression
  publication-title: Journal of Behavior Therapy and Experimental Psychiatry
– volume: 10
  start-page: 445
  issue: 4
  year: 2019
  end-page: 470
  article-title: Automatic assessment of depression based on visual cues: A systematic review
  publication-title: IEEE Transactions on Affective Computing
– volume: 41
  start-page: 53
  issue: 1
  year: 2001
  end-page: 64
  article-title: Facial and autonomic activity in depression: Social context differences during imagery
  publication-title: International Journal of Psychophysiology: Official Journal of the International Organization of Psychophysiology
– volume: 38
  start-page: 337
  issue: 5
  year: 1976b
  end-page: 347
  article-title: Facial expression and imagery in depression: An electromyographic study
  publication-title: Psychosomatic Medicine
– volume: 6
  start-page: 1809
  year: 2015
  article-title: Eye movement in unipolar and bipolar depression: A systematic review of the literature
  publication-title: Frontiers in Psychology
– volume: 32
  start-page: 641
  issue: 10
  year: 2014
  end-page: 647
  article-title: Nonverbal Social Withdrawal in Depression: Evidence from manual and automatic analysis
  publication-title: Image and Vision Computing
– volume: 1
  start-page: 385
  issue: 3
  year: 1977
  end-page: 401
  article-title: The CES-D scale: A self-report depression scale for research in the general population
  publication-title: Applied Psychological Measurement
– volume: 44
  start-page: 2029
  issue: 10
  year: 2014
  end-page: 2040
  article-title: Cognitive impairment in depression: A systematic review and meta-analysis
  publication-title: Psychological Medicine
– volume: 187
  start-page: 95
  issue: 1
  year: 2015
  end-page: 112
  article-title: Cross-validation for selecting a model selection procedure
  publication-title: Journal of Econometrics
– volume: 135
  start-page: 1508
  issue: Pt 5
  year: 2012
  end-page: 1521
  article-title: Multi-centre diagnostic classification of individual structural neuroimaging scans from patients with major depressive disorder
  publication-title: Brain: A Journal of Neurology
– volume: 8
  start-page: 847
  issue: 6
  year: 2002
  end-page: 854
  article-title: The National Adult Reading Test as a measure of premorbid intelligence: A comparison with estimates derived from demographic variables
  publication-title: Journal of the International Neuropsychological Society: JINS
– volume: 10
  start-page: e0132958
  issue: 7
  year: 2015
  article-title: Structural MRI-based predictions in patients with Treatment-Refractory Depression (TRD)
  publication-title: PloS One
– volume: 51
  start-page: 127
  issue: 2
  year: 1994
  end-page: 138
  article-title: Decreased perceptual sensitivity to emotion-evoking stimuli in depression
  publication-title: Psychiatry Research
– volume: 12
  start-page: 229
  issue: 2
  year: 2014
  end-page: 244
  article-title: A review of feature reduction techniques in neuroimaging
  publication-title: Neuroinformatics
– volume: 32
  start-page: 704
  issue: 8
  year: 2012
  end-page: 723
  article-title: Eye tracking of attention in the affective disorders: A meta-analytic review and synthesis
  publication-title: Clinical Psychology Review
– volume: 138
  start-page: 2766
  issue: Pt 9
  year: 2015
  end-page: 2776
  article-title: Failure of hippocampal deactivation during loss events in treatment-resistant depression
  publication-title: Brain: A Journal of Neurology
– volume: 45
  start-page: 1191
  issue: 4
  year: 2013
  end-page: 1207
  article-title: Norms of valence, arousal, and dominance for 13915 English lemmas
  publication-title: Behavior Research Methods
– volume: 135
  start-page: 1498
  issue: Pt 5
  year: 2012
  end-page: 1507
  article-title: Identifying major depression using whole-brain functional connectivity: A multivariate pattern analysis
  publication-title: Brain: A Journal of Neurology
– volume: 20
  start-page: 273
  issue: 3
  year: 1995
  end-page: 297
  article-title: Support-vector networks
  publication-title: Machine Learning
– volume: 95
  start-page: 157
  issue: 2
  year: 2000
  end-page: 167
  article-title: Reduced facial expression and social context in major depression: Discrepancies between facial muscle activity and self-reported emotion
  publication-title: Psychiatry Research
– volume: 214
  start-page: 306
  issue: 3
  year: 2013
  end-page: 312
  article-title: Identifying major depressive disorder using Hurst exponent of resting-state brain networks
  publication-title: Psychiatry Research
– volume: 215
  start-page: 404
  issue: 1
  year: 2019
  end-page: 408
  article-title: Pragmatic neuroscience for clinical psychiatry
  publication-title: The British Journal of Psychiatry: The Journal of Mental Science
– volume: 242
  start-page: 46
  issue: 1
  year: 1992
  end-page: 52
  article-title: Facial expression and emotional face recognition in schizophrenia and depression
  publication-title: European Archives of Psychiatry and Clinical Neuroscience
– volume: 82
  start-page: 330
  issue: 5
  year: 2017
  end-page: 338
  article-title: Detecting neuroimaging biomarkers for depression: A meta-analysis of multivariate pattern recognition studies
  publication-title: Biological Psychiatry
– volume: 105
  start-page: 493
  year: 2015
  end-page: 506
  article-title: Sparse network-based models for patient classification using fMRI
  publication-title: NeuroImage
– volume: 41
  start-page: 598
  issue: 3
  year: 2009
  end-page: 614
  article-title: Millisecond precision psychological research in a world of commodity computers: New hardware, new problems?
  publication-title: Behavior Research Methods
– volume: 114
  start-page: 627
  issue: 4
  year: 2005
  end-page: 639
  article-title: Emotion context insensitivity in major depressive disorder
  publication-title: Journal of Abnormal Psychology
– volume: 88
  start-page: 791
  issue: 6
  year: 1993
  end-page: 804
  article-title: Development of the Alcohol Use Disorders Identification Test (AUDIT): WHO collaborative project on early detection of persons with harmful alcohol consumption--II
  publication-title: Addiction (Abingdon, England)
– volume: 13
  start-page: 28
  issue: 1
  year: 2014
  end-page: 35
  article-title: The RDoC framework: Facilitating transition from ICD/DSM to dimensional approaches that integrate neuroscience and psychopathology
  publication-title: World Psychiatry: Official Journal of the World Psychiatric Association (WPA)
– volume: 86
  start-page: 235
  issue: 3
  year: 1977
  end-page: 241
  article-title: Manipulation of thought content as a determinant of mood and corrugator electromyographic activity in depressed patients
  publication-title: Journal of Abnormal Psychology
– volume: 254
  start-page: 335
  issue: 5
  year: 2004
  end-page: 342
  article-title: Facial expressivity in the course of schizophrenia and depression
  publication-title: European Archives of Psychiatry and Clinical Neuroscience
– volume: 170
  start-page: 1
  issue: 1
  year: 2013
  end-page: 5
  article-title: The initial field trials of DSM-5: New blooms and old thorns
  publication-title: The American Journal of Psychiatry
– volume: 43
  start-page: 269
  issue: 3
  year: 1986
  end-page: 274
  article-title: Facial electromyography in depression. Subgroup differences
  publication-title: Archives of General Psychiatry
– volume: 50
  start-page: 228
  issue: 3
  year: 2016
  end-page: 242
  article-title: Coffee and caffeine consumption and depression: A meta-analysis of observational studies
  publication-title: The Australian and New Zealand Journal of Psychiatry
– volume: 192
  start-page: 489
  issue: 4238
  year: 1976a
  end-page: 491
  article-title: Facial muscle patterning to affective imagery in depressed and nondepressed subjects
  publication-title: Science (New York, NY)
– volume: 71
  start-page: 294
  year: 2016
  end-page: 312
  article-title: A review of caffeine's effects on cognitive, physical and occupational performance
  publication-title: Neuroscience and Biobehavioral Reviews
– volume: 21
  start-page: 806
  issue: 6
  year: 2016
  end-page: 812
  article-title: Subcortical brain alterations in major depressive disorder: Findings from the ENIGMA Major Depressive Disorder working group
  publication-title: Molecular Psychiatry
– volume: 240
  start-page: 67
  issue: 2
  year: 1990
  end-page: 76
  article-title: Computer-based analysis of facial action in schizophrenic and depressed patients
  publication-title: European Archives of Psychiatry and Clinical Neuroscience
– ident: S0033291720003608_ref35
  doi: 10.1111/j.1360-0443.1993.tb02093.x
– ident: S0033291720003608_ref43
  doi: 10.1037/0021-843X.86.3.235
– ident: S0033291720003608_ref42
  doi: 10.1007/s12193-014-0161-4
– ident: S0033291720003608_ref3
  doi: 10.1016/j.cpr.2012.09.004
– ident: S0033291720003608_ref14
  doi: 10.1007/s00406-004-0510-5
– volume-title: Facial action coding system (FACS)
  year: 2002
  ident: S0033291720003608_ref11
– ident: S0033291720003608_ref24
  doi: 10.1016/j.neubiorev.2016.09.001
– ident: S0033291720003608_ref19
  doi: 10.1001/archpsyc.1986.01800030087009
– ident: S0033291720003608_ref7
  doi: 10.3389/fpsyg.2015.01809
– ident: S0033291720003608_ref51
  doi: 10.1007/978-3-319-07869-4_14
– ident: S0033291720003608_ref20
  doi: 10.1371/journal.pone.0132958
– ident: S0033291720003608_ref50
  doi: 10.1016/j.jeconom.2015.02.006
– ident: S0033291720003608_ref33
  doi: 10.1016/j.neuroimage.2014.11.021
– ident: S0033291720003608_ref1
  doi: 10.1109/ICIP.2013.6738869
– ident: S0033291720003608_ref37
  doi: 10.1007/BF02189974
– ident: S0033291720003608_ref27
– ident: S0033291720003608_ref47
  doi: 10.1016/j.pscychresns.2013.09.008
– volume-title: Diagnostic and statistical manual of mental disorders
  year: 2013
  ident: S0033291720003608_ref2
– ident: S0033291720003608_ref34
  doi: 10.1037/0021-843X.114.4.627
– ident: S0033291720003608_ref21
  doi: 10.1093/brain/awv177
– ident: S0033291720003608_ref40
  doi: 10.1016/S0165-0327(97)00097-9
– ident: S0033291720003608_ref48
  doi: 10.1016/0165-1781(94)90032-9
– ident: S0033291720003608_ref26
  doi: 10.1007/s12021-013-9204-3
– ident: S0033291720003608_ref39
  doi: 10.1097/00006842-197609000-00006
– ident: S0033291720003608_ref13
  doi: 10.1007/BF02190342
– ident: S0033291720003608_ref45
  doi: 10.1177/0004867415603131
– ident: S0033291720003608_ref17
  doi: 10.1016/S0167-8760(00)00181-1
– ident: S0033291720003608_ref32
  doi: 10.1017/S0033291713002535
– ident: S0033291720003608_ref38
  doi: 10.1126/science.1257786
– ident: S0033291720003608_ref41
  doi: 10.1192/bjp.2019.88
– ident: S0033291720003608_ref44
  doi: 10.1016/0005-7967(78)90047-5
– ident: S0033291720003608_ref15
  doi: 10.1111/cns.13048
– ident: S0033291720003608_ref23
  doi: 10.1002/da.22063
– ident: S0033291720003608_ref6
  doi: 10.1017/S1355617702860131
– ident: S0033291720003608_ref30
  doi: 10.1177/014662167700100306
– ident: S0033291720003608_ref25
  doi: 10.1093/brain/aws084
– ident: S0033291720003608_ref22
  doi: 10.1016/j.biopsych.2016.10.028
– ident: S0033291720003608_ref12
  doi: 10.1176/appi.ajp.2012.12091189
– ident: S0033291720003608_ref28
  doi: 10.1109/TAFFC.2017.2724035
– ident: S0033291720003608_ref46
  doi: 10.3758/s13428-012-0314-x
– ident: S0033291720003608_ref36
  doi: 10.1038/mp.2015.69
– ident: S0033291720003608_ref5
  doi: 10.1109/WACV.2016.7477553
– ident: S0033291720003608_ref10
  doi: 10.1002/wps.20087
– ident: S0033291720003608_ref9
  doi: 10.1007/BF00994018
– ident: S0033291720003608_ref18
  doi: 10.1016/j.imavis.2013.12.007
– ident: S0033291720003608_ref4
  doi: 10.1109/FG.2015.7284869
– ident: S0033291720003608_ref49
  doi: 10.1093/brain/aws059
– ident: S0033291720003608_ref31
  doi: 10.1016/j.jbtep.2005.05.002
– ident: S0033291720003608_ref16
  doi: 10.1016/S0165-1781(00)00168-2
– ident: S0033291720003608_ref8
  doi: 10.1109/ACII.2009.5349358
– ident: S0033291720003608_ref29
  doi: 10.3758/BRM.41.3.598
SSID ssj0013142
Score 2.5250845
Snippet BackgroundDepression is a challenge to diagnose reliably and the current gold standard for trials of DSM-5 has been in agreement between two or more medical...
Depression is a challenge to diagnose reliably and the current gold standard for trials of DSM-5 has been in agreement between two or more medical specialists....
SourceID proquest
crossref
cambridge
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1784
SubjectTerms Automation
Caffeine
Cameras
Classification
Clinical trials
Cognitive ability
Cognitive tasks
Digital cameras
Distraction
Experiments
Eye movements
Eyelid
Face
Keyboards
Machine learning
Medical imaging
Mental depression
Nervous system
Neurosciences
Original Article
Quality control
Specialists
Symptoms
Task performance
Tracking
Title Prediction of depression symptoms in individual subjects with face and eye movement tracking
URI https://www.cambridge.org/core/product/identifier/S0033291720003608/type/journal_article
https://www.proquest.com/docview/2688625657
https://www.proquest.com/docview/2458955414
Volume 52
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwEA-6gfgifuJ0jgg-icV-pW2eRGVjCBtDHOxBKM0XDFw71-5h_7259GMMYW8lTUq5XHK_3F1-h9CDaytt9mxlERooy1eOshixuaVVhyuqAuEa-uLROBhO_Y8ZmVUOt7xKq6z3RLNRi4yDj_zZDSINviFI97L8taBqFERXqxIah6gN1GVw-Apn4TaK4PglW7ipV-aEdVTTUEbrRmhzDSULVJfccivs2qjdLdrYncEpOqkAI34tZ_gMHcj0HB2NqpD4BfqerOAZ5IszhZvM1hTnm8WyyBY5nqd43ty7wvmage8lx-CCxSrhEiepwHIj8SIz7OEFLlYJBx_6JZoO-l_vQ6sqmWBxj3qFFXGqj5lMeFJLWRHqMMoJkA4CklLMZklAZSQCGdhKcicSRHiMJ4J4wmXAy3KFWmmWymuEPTBuia3hE2O-YCoCCluNJpkGPIGiooOeGoHFleLncZk0Fsb_5NtBdi3TmFf041AF42ffkMdmyLLk3tjXuVtP1PZvtkrTQffNa72AICqSpDJb6z4-iSiBaug3-z9xi45duPtgcnW7qFWs1vJOI5KC9Yza9VD7rT-efP4BOrnbAw
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LaxsxEB6cBJpcSp7EebQqJJfSJfvSenUoJaQ1ThOHHhLwIbBZvcAQ7zreNcV_qr-xGu3DhIBvuS1aSYiZkWY0M_oG4Mx3tVF7rnYoi7QTak87nLrCMaIjNNOR9C188fAuGjyEv0d01IF_zVsYTKtszkR7UMtcoI_8wo9iY3xjkO7H9MXBqlEYXW1KaFRicaMWf82Vrfh-_dPw99z3-7_urwZOXVXAEQELSicWzNzEuAyUWYimzONMUMTlQ2NDc5enEVOxjFTkaiW8WFIZcJFKGkifI3SJmXcNNozidTGFsDfqLaMWXlihk9v6aF6viaJaiGrTiG2-hYDBapZLLIfXOvG1SrB6rr8NH2sDlVxWErUDHZXtwodhHYLfg8c_M_xGfpJckzaTNiPFYjIt80lBxhkZt--8SDHn6OspCLp8iU6FImkmiVooMsktWnlJylkq0Ge_Dw_vQswDWM_yTB0CCVCZpq4x1zgPJdcxQuYa65UbAyvSTHbhW0uwpN5oRVIlqfWSN_TtgtvQNBE13DlW3XheNeRrO2RaYX2s6nzSMGq5mqWQduFL-9tsWIzCpJnK56ZPSGNGsfr60eopPsPm4H54m9xe390cw5aP7y5snvAJrJezuTo11lDJP1kRJPD03jL_HywoFuM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEB7SFEIvJX3RbZNGgfZSauKXbOsQSkmy5NGEHBrYQ8G1XhDI2tu1l7B_rb-uM_JjCYG95WZkSYiZkWY0M_oG4HPoW1R7vvW4SKwX28B6kvvKQ9FRVthEhw6--PIqOb2Jzyd8sgH_-rcwlFbZn4nuoNaVIh_5QZhkaHxTkO7AdmkR18fj77O_HlWQokhrX06jFZELs7zH61t9eHaMvP4ShuOTX0enXldhwFORiBovUwJvZVJHBhdluQikUJww-sjwsNKXRSJMphOT-NaoINNcR1IVmkc6lARjgvM-g-dphGoT91I6SVcRjCBukcpdrbQg7SOqDq4aG6ktdHAwVNlyhevwUD8-VA9O54234WVnrLIfrXS9gg1Tvoatyy4c_wZ-X8_pm3jLKsuGrNqS1cvprKmmNbst2e3w5ovVC0l-n5qR-5fZQhlWlJqZpWHTyiGXN6yZF4r892_h5kmI-Q42y6o074FFpFgLH003KWMtbUbwuWjJSjS2Eiv0CL4NBMu7TVfnbcJamj-i7wj8nqa56qDPqQLH3bohX4chsxb3Y13nnZ5Rq9WsBHYE-8Nv3LwUkSlKUy2wT8wzwakS-4f1U-zBFkp7_vPs6uIjvAjpCYZLGd6BzWa-MLtoGDXyk5NABn-eWuT_A0KxGxk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+depression+symptoms+in+individual+subjects+with+face+and+eye+movement+tracking&rft.jtitle=Psychological+medicine&rft.au=Stolicyn%2C+Aleks&rft.au=Steele%2C+J.+Douglas&rft.au=Seri%C3%A8s%2C+Peggy&rft.date=2022-07-01&rft.issn=0033-2917&rft.eissn=1469-8978&rft.volume=52&rft.issue=9&rft.spage=1784&rft.epage=1792&rft_id=info:doi/10.1017%2FS0033291720003608&rft.externalDBID=n%2Fa&rft.externalDocID=10_1017_S0033291720003608
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0033-2917&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0033-2917&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0033-2917&client=summon