Prediction of depression symptoms in individual subjects with face and eye movement tracking
BackgroundDepression is a challenge to diagnose reliably and the current gold standard for trials of DSM-5 has been in agreement between two or more medical specialists. Research studies aiming to objectively predict depression have typically used brain scanning. Less expensive methods from cognitiv...
Saved in:
Published in | Psychological medicine Vol. 52; no. 9; pp. 1784 - 1792 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Cambridge, UK
Cambridge University Press
01.07.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 0033-2917 1469-8978 1469-8978 |
DOI | 10.1017/S0033291720003608 |
Cover
Loading…
Abstract | BackgroundDepression is a challenge to diagnose reliably and the current gold standard for trials of DSM-5 has been in agreement between two or more medical specialists. Research studies aiming to objectively predict depression have typically used brain scanning. Less expensive methods from cognitive neuroscience may allow quicker and more reliable diagnoses, and contribute to reducing the costs of managing the condition. In the current study we aimed to develop a novel inexpensive system for detecting elevated symptoms of depression based on tracking face and eye movements during the performance of cognitive tasks.MethodsIn total, 75 participants performed two novel cognitive tasks with verbal affective distraction elements while their face and eye movements were recorded using inexpensive cameras. Data from 48 participants (mean age 25.5 years, standard deviation of 6.1 years, 25 with elevated symptoms of depression) passed quality control and were included in a case-control classification analysis with machine learning.ResultsClassification accuracy using cross-validation (within-study replication) reached 79% (sensitivity 76%, specificity 82%), when face and eye movement measures were combined. Symptomatic participants were characterised by less intense mouth and eyelid movements during different stages of the two tasks, and by differences in frequencies and durations of fixations on affectively salient distraction words.ConclusionsElevated symptoms of depression can be detected with face and eye movement tracking during the cognitive performance, with a close to clinically-relevant accuracy (~80%). Future studies should validate these results in larger samples and in clinical populations. |
---|---|
AbstractList | BackgroundDepression is a challenge to diagnose reliably and the current gold standard for trials of DSM-5 has been in agreement between two or more medical specialists. Research studies aiming to objectively predict depression have typically used brain scanning. Less expensive methods from cognitive neuroscience may allow quicker and more reliable diagnoses, and contribute to reducing the costs of managing the condition. In the current study we aimed to develop a novel inexpensive system for detecting elevated symptoms of depression based on tracking face and eye movements during the performance of cognitive tasks.MethodsIn total, 75 participants performed two novel cognitive tasks with verbal affective distraction elements while their face and eye movements were recorded using inexpensive cameras. Data from 48 participants (mean age 25.5 years, standard deviation of 6.1 years, 25 with elevated symptoms of depression) passed quality control and were included in a case-control classification analysis with machine learning.ResultsClassification accuracy using cross-validation (within-study replication) reached 79% (sensitivity 76%, specificity 82%), when face and eye movement measures were combined. Symptomatic participants were characterised by less intense mouth and eyelid movements during different stages of the two tasks, and by differences in frequencies and durations of fixations on affectively salient distraction words.ConclusionsElevated symptoms of depression can be detected with face and eye movement tracking during the cognitive performance, with a close to clinically-relevant accuracy (~80%). Future studies should validate these results in larger samples and in clinical populations. Depression is a challenge to diagnose reliably and the current gold standard for trials of DSM-5 has been in agreement between two or more medical specialists. Research studies aiming to objectively predict depression have typically used brain scanning. Less expensive methods from cognitive neuroscience may allow quicker and more reliable diagnoses, and contribute to reducing the costs of managing the condition. In the current study we aimed to develop a novel inexpensive system for detecting elevated symptoms of depression based on tracking face and eye movements during the performance of cognitive tasks.BACKGROUNDDepression is a challenge to diagnose reliably and the current gold standard for trials of DSM-5 has been in agreement between two or more medical specialists. Research studies aiming to objectively predict depression have typically used brain scanning. Less expensive methods from cognitive neuroscience may allow quicker and more reliable diagnoses, and contribute to reducing the costs of managing the condition. In the current study we aimed to develop a novel inexpensive system for detecting elevated symptoms of depression based on tracking face and eye movements during the performance of cognitive tasks.In total, 75 participants performed two novel cognitive tasks with verbal affective distraction elements while their face and eye movements were recorded using inexpensive cameras. Data from 48 participants (mean age 25.5 years, standard deviation of 6.1 years, 25 with elevated symptoms of depression) passed quality control and were included in a case-control classification analysis with machine learning.METHODSIn total, 75 participants performed two novel cognitive tasks with verbal affective distraction elements while their face and eye movements were recorded using inexpensive cameras. Data from 48 participants (mean age 25.5 years, standard deviation of 6.1 years, 25 with elevated symptoms of depression) passed quality control and were included in a case-control classification analysis with machine learning.Classification accuracy using cross-validation (within-study replication) reached 79% (sensitivity 76%, specificity 82%), when face and eye movement measures were combined. Symptomatic participants were characterised by less intense mouth and eyelid movements during different stages of the two tasks, and by differences in frequencies and durations of fixations on affectively salient distraction words.RESULTSClassification accuracy using cross-validation (within-study replication) reached 79% (sensitivity 76%, specificity 82%), when face and eye movement measures were combined. Symptomatic participants were characterised by less intense mouth and eyelid movements during different stages of the two tasks, and by differences in frequencies and durations of fixations on affectively salient distraction words.Elevated symptoms of depression can be detected with face and eye movement tracking during the cognitive performance, with a close to clinically-relevant accuracy (~80%). Future studies should validate these results in larger samples and in clinical populations.CONCLUSIONSElevated symptoms of depression can be detected with face and eye movement tracking during the cognitive performance, with a close to clinically-relevant accuracy (~80%). Future studies should validate these results in larger samples and in clinical populations. |
Author | Seriès, Peggy Steele, J. Douglas Stolicyn, Aleks |
Author_xml | – sequence: 1 givenname: Aleks orcidid: 0000-0002-1147-7539 surname: Stolicyn fullname: Stolicyn, Aleks email: a.stolicyn@ed.ac.uk organization: 1Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Kennedy Tower, Royal Edinburgh Hospital, Morningside Park, Edinburgh EH10 5HF, UK – sequence: 2 givenname: J. Douglas orcidid: 0000-0002-9822-8753 surname: Steele fullname: Steele, J. Douglas organization: 3Division of Imaging Science and Technology, School of Medicine, Dundee University, Ninewells Hospital & Medical School, Dundee DD1 9SY, UK – sequence: 3 givenname: Peggy orcidid: 0000-0002-8580-7975 surname: Seriès fullname: Seriès, Peggy organization: 2Institute for Adaptive and Neural Computation, School of Informatics, University of Edinburgh, 10 Crichton Street, Edinburgh EH8 9AB, UK |
BookMark | eNp9kE9r3DAQxUVIIJs0HyA3QS-9ONUfS5aOJbRJIdBCklvAyNI40caWtpK8Zb99bXYhkNLCwMww7zc83hk6DjEAQpeUXFFCm8_3hHDONG0YmSdJ1BFa0VrqSulGHaPVcq6W-yk6y3lNCOW0Ziv09DOB87b4GHDssYNNgpyXLe_GTYljxj7M5fzWu8kMOE_dGmzJ-LcvL7g3FrAJDsMO8Bi3MEIouCRjX314_oBOejNkuDj0c_T47evD9W119-Pm-_WXu8pyzUulrGZN3TkO0rFeaNppKwirOdGC9h3pjNSgnARJerBUOeF4Z40T3LGOSs3P0af9302KvybIpR19tjAMJkCccstqobQQNa1n6cd30nWcUpjdtUwqJZmQoplVdK-yKeacoG83yY8m7VpK2iXv9q-8Z6Z5x1hfzBLsHIcf_kvyA2nGLnn3DG-m_k39AV8xlUI |
CitedBy_id | crossref_primary_10_1177_25158414241302871 crossref_primary_10_1016_j_bspc_2024_106996 crossref_primary_10_3389_fpsyt_2024_1280935 crossref_primary_10_3390_s23239402 crossref_primary_10_3389_fneur_2025_1555630 crossref_primary_10_3390_brainsci13101415 crossref_primary_10_1017_S0033291724002010 crossref_primary_10_1080_03007995_2022_2038487 crossref_primary_10_3389_fpsyg_2021_782866 crossref_primary_10_1109_ACCESS_2024_3451728 crossref_primary_10_1038_s41598_023_41654_9 crossref_primary_10_1002_cpe_7407 crossref_primary_10_1016_j_eswa_2023_121850 crossref_primary_10_1016_j_genhosppsych_2023_04_010 crossref_primary_10_1016_j_array_2024_100372 |
Cites_doi | 10.1111/j.1360-0443.1993.tb02093.x 10.1037/0021-843X.86.3.235 10.1007/s12193-014-0161-4 10.1016/j.cpr.2012.09.004 10.1007/s00406-004-0510-5 10.1016/j.neubiorev.2016.09.001 10.1001/archpsyc.1986.01800030087009 10.3389/fpsyg.2015.01809 10.1007/978-3-319-07869-4_14 10.1371/journal.pone.0132958 10.1016/j.jeconom.2015.02.006 10.1016/j.neuroimage.2014.11.021 10.1109/ICIP.2013.6738869 10.1007/BF02189974 10.1016/j.pscychresns.2013.09.008 10.1037/0021-843X.114.4.627 10.1093/brain/awv177 10.1016/S0165-0327(97)00097-9 10.1016/0165-1781(94)90032-9 10.1007/s12021-013-9204-3 10.1097/00006842-197609000-00006 10.1007/BF02190342 10.1177/0004867415603131 10.1016/S0167-8760(00)00181-1 10.1017/S0033291713002535 10.1126/science.1257786 10.1192/bjp.2019.88 10.1016/0005-7967(78)90047-5 10.1111/cns.13048 10.1002/da.22063 10.1017/S1355617702860131 10.1177/014662167700100306 10.1093/brain/aws084 10.1016/j.biopsych.2016.10.028 10.1176/appi.ajp.2012.12091189 10.1109/TAFFC.2017.2724035 10.3758/s13428-012-0314-x 10.1038/mp.2015.69 10.1109/WACV.2016.7477553 10.1002/wps.20087 10.1007/BF00994018 10.1016/j.imavis.2013.12.007 10.1109/FG.2015.7284869 10.1093/brain/aws059 10.1016/j.jbtep.2005.05.002 10.1016/S0165-1781(00)00168-2 10.1109/ACII.2009.5349358 10.3758/BRM.41.3.598 |
ContentType | Journal Article |
Copyright | Copyright © The Author(s), 2020. Published by Cambridge University Press |
Copyright_xml | – notice: Copyright © The Author(s), 2020. Published by Cambridge University Press |
DBID | AAYXX CITATION 0-V 3V. 7QJ 7QP 7QR 7RV 7TK 7X7 7XB 88E 88G 8FD 8FI 8FJ 8FK 8G5 ABUWG AFKRA ALSLI AZQEC BENPR CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH HEHIP K9. KB0 M0S M1P M2M M2O M2S MBDVC NAPCQ P64 PHGZM PHGZT PJZUB PKEHL POGQB PPXIY PQEST PQQKQ PQUKI PRINS PRQQA PSYQQ Q9U 7X8 |
DOI | 10.1017/S0033291720003608 |
DatabaseName | CrossRef ProQuest Social Sciences Premium Collection【Remote access available】 ProQuest Central (Corporate) Applied Social Sciences Index & Abstracts (ASSIA) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Nursing & Allied Health Database Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) Technology Research Database Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central ProQuest Central UK/Ireland Social Science Premium Collection ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library Sociology Collection ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) ProQuest Health & Medical Collection Medical Database ProQuest Psychology Database Research Library ProQuest sociology Research Library (Corporate) Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest Sociology & Social Sciences Collection ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Social Sciences ProQuest One Psychology ProQuest Central Basic MEDLINE - Academic |
DatabaseTitle | CrossRef ProQuest One Psychology Research Library Prep ProQuest Central Student ProQuest Central Essentials Sociology & Social Sciences Collection ProQuest Central China Health Research Premium Collection Health & Medical Research Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Sociology ProQuest Medical Library (Alumni) Social Science Premium Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Sociology Collection Health Research Premium Collection (Alumni) Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest Social Sciences Premium Collection ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) ProQuest Sociology & Social Sciences Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) Applied Social Sciences Index and Abstracts (ASSIA) ProQuest Central ProQuest Health & Medical Research Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Research Library ProQuest Sociology Collection ProQuest One Social Sciences ProQuest Central Basic ProQuest Nursing & Allied Health Source ProQuest Psychology Journals (Alumni) ProQuest Medical Library ProQuest Psychology Journals ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | ProQuest One Psychology MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1469-8978 |
EndPage | 1792 |
ExternalDocumentID | 10_1017_S0033291720003608 |
GroupedDBID | --- -1D -1F -2P -2V -E. -~6 -~N .FH .GJ .XZ 0-V 08P 09C 09E 0E1 0R~ 123 29P 3V. 4.4 41~ 53G 5RE 5VS 6~7 74X 74Y 7RV 7X7 7~V 88E 8FI 8FJ 8G5 8R4 8R5 9M5 AAAZR AABES AABWE AACJH AAEED AAGFV AAKTX AAMNQ AARAB AASVR AAUIS AAUKB AAWTL AAYEP ABBXD ABBZL ABGDZ ABITZ ABIVO ABJNI ABKKG ABLJU ABMYL ABQTM ABQWD ABROB ABTCQ ABUWG ABVFV ABWCF ABXAU ABZCX ABZUI ACBMC ACCHT ACETC ACGFO ACGFS ACHQT ACIMK ACIWK ACPRK ACQFJ ACREK ACUIJ ACUYZ ACWGA ACYZP ACZBM ACZUX ADAZD ADBBV ADDNB ADFEC ADFRT ADGEJ ADKIL ADOCW ADOVH ADOVT ADVJH AEBAK AEBPU AEHGV AEMTW AENCP AENEX AENGE AEPLO AEYHU AEYYC AFFNX AFFUJ AFKQG AFKRA AFKSM AFLOS AFLVW AFUTZ AGABE AGJUD AGLWM AGOOT AHIPN AHLTW AHMBA AHQXX AHRGI AIGNW AIHIV AIOIP AISIE AJ7 AJCYY AJPFC AJQAS AKZCZ ALMA_UNASSIGNED_HOLDINGS ALSLI ALVPG ANPSP AQJOH ARABE ARALO ARZZG ASOEW ATUCA AUXHV AYIQA AZGZS AZQEC BBLKV BCGOX BENPR BESQT BGHMG BJBOZ BKEYQ BLZWO BMAJL BPHCQ BQFHP BRIRG BVXVI C0O C45 CAG CBIIA CCPQU CCQAD CCUQV CDIZJ CFAFE CFBFF CGQII CHEAL CJCSC COF CS3 DC4 DOHLZ DU5 DWQXO EBS EGQIC EJD EX3 F5P FA8 FYUFA GNUQQ GUQSH HEHIP HG- HMCUK HST HZ~ H~9 I.6 I.7 I.9 IH6 IOEEP IOO IS6 I~P J36 J38 J3A J5H JHPGK JQKCU JVRFK KAFGG KC5 KCGVB KFECR L7B L98 LHUNA LW7 M-V M1P M2M M2O M2S M7~ M8. N4W NAPCQ NEJ NIKVX NMFBF NZEOI O9- OMB OMC OMH OVD OYBOY P2P PQQKQ PROAC PSQYO PSYQQ Q2X RCA RIG ROL RR0 S6- S6U SAAAG SY4 T9M TEORI UAP UCJ UKHRP UT1 UU6 VVN WFFJZ WH7 WOW WQ3 WXU WXY WYP YOC YZZ ZA5 ZCA ZDLDU ZGI ZJOSE ZMEZD ZXP ZYDXJ ~V1 AAKNA AATMM AAYXX ABHFL ABVKB ABVZP ABXHF ACDLN ACEJA ACOZI ACRPL ADNMO ADPDF AEMFK AFZFC AGQPQ AKMAY ALIPV ANOYL CITATION IPYYG PHGZM PHGZT 7QJ 7QP 7QR 7TK 7XB 8FD 8FK FR3 K9. MBDVC P64 PJZUB PKEHL POGQB PPXIY PQEST PQUKI PRINS PRQQA Q9U 7X8 |
ID | FETCH-LOGICAL-c393t-8c9274bd3e6d2f591b9c502430951fb0ba69e8d6e60fec18d5d3bcad53d2b1693 |
IEDL.DBID | 7X7 |
ISSN | 0033-2917 1469-8978 |
IngestDate | Fri Jul 11 15:31:37 EDT 2025 Fri Jul 25 10:23:11 EDT 2025 Tue Jul 01 04:16:04 EDT 2025 Thu Apr 24 23:08:48 EDT 2025 Wed Mar 13 06:01:43 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | prediction eye movements eye-tracking depression face movements machine learning Cognitive tasks |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c393t-8c9274bd3e6d2f591b9c502430951fb0ba69e8d6e60fec18d5d3bcad53d2b1693 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-8580-7975 0000-0002-1147-7539 0000-0002-9822-8753 |
OpenAccessLink | https://www.cambridge.org/core/services/aop-cambridge-core/content/view/D3DD91C657FAB8C8676C0353750BC134/S0033291720003608a.pdf/div-class-title-prediction-of-depression-symptoms-in-individual-subjects-with-face-and-eye-movement-tracking-div.pdf |
PQID | 2688625657 |
PQPubID | 35753 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2458955414 proquest_journals_2688625657 crossref_primary_10_1017_S0033291720003608 crossref_citationtrail_10_1017_S0033291720003608 cambridge_journals_10_1017_S0033291720003608 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-07-01 |
PublicationDateYYYYMMDD | 2022-07-01 |
PublicationDate_xml | – month: 07 year: 2022 text: 2022-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge, UK |
PublicationPlace_xml | – name: Cambridge, UK – name: Cambridge |
PublicationTitle | Psychological medicine |
PublicationTitleAlternate | Psychol. Med |
PublicationYear | 2022 |
Publisher | Cambridge University Press |
Publisher_xml | – name: Cambridge University Press |
References | 2015; 6 2009; 41 2017; 82 2015; 105 1992; 242 2019; 10 2013; 45 2005; 114 1993; 88 1997; 46 2002; 8 2015; 10 2015; 187 2000; 95 1977; 86 1978; 16 2016; 50 2016; 71 2015; 9 2012; 32 1990; 240 2001; 41 2014; 44 2018; 24 1995; 20 2004; 254 2012; 135 2015; 138 1986; 43 2013; 214 2013; 30 2016; 21 2019; 215 1977; 1 2014; 13 2013; 170 1976a; 192 2014; 12 1976b; 38 1994; 51 2014; 32 2005; 36 S0033291720003608_ref30 S0033291720003608_ref31 S0033291720003608_ref32 S0033291720003608_ref33 S0033291720003608_ref34 S0033291720003608_ref35 S0033291720003608_ref25 S0033291720003608_ref26 S0033291720003608_ref27 S0033291720003608_ref28 S0033291720003608_ref29 Ekman (S0033291720003608_ref11) 2002 S0033291720003608_ref20 S0033291720003608_ref21 S0033291720003608_ref22 S0033291720003608_ref23 S0033291720003608_ref24 S0033291720003608_ref6 S0033291720003608_ref14 S0033291720003608_ref15 S0033291720003608_ref5 S0033291720003608_ref16 S0033291720003608_ref8 S0033291720003608_ref7 S0033291720003608_ref17 S0033291720003608_ref18 S0033291720003608_ref9 S0033291720003608_ref19 S0033291720003608_ref1 S0033291720003608_ref4 S0033291720003608_ref3 S0033291720003608_ref50 S0033291720003608_ref51 S0033291720003608_ref10 S0033291720003608_ref12 S0033291720003608_ref13 S0033291720003608_ref47 S0033291720003608_ref48 S0033291720003608_ref49 S0033291720003608_ref40 S0033291720003608_ref41 S0033291720003608_ref42 S0033291720003608_ref43 (S0033291720003608_ref2) 2013 S0033291720003608_ref44 S0033291720003608_ref45 S0033291720003608_ref46 S0033291720003608_ref36 S0033291720003608_ref37 S0033291720003608_ref38 S0033291720003608_ref39 |
References_xml | – volume: 9 start-page: 17 issue: 1 year: 2015 end-page: 29 article-title: Automatic nonverbal behavior indicators of depression and PTSD: The effect of gender publication-title: Journal on Multimodal User Interfaces – volume: 24 start-page: 1037 issue: 11 year: 2018 end-page: 1052 article-title: Machine learning in major depression: From classification to treatment outcome prediction publication-title: CNS Neuroscience & Therapeutics – volume: 30 start-page: 515 issue: 6 year: 2013 end-page: 527 article-title: Cognitive deficits and functional outcomes in major depressive disorder: Determinants, substrates, and treatment interventions publication-title: Depression and Anxiety – volume: 46 start-page: 135 issue: 2 year: 1997 end-page: 141 article-title: Subjective and expressive emotional responses in depression publication-title: Journal of Affective Disorders – volume: 16 start-page: 97 issue: 2 year: 1978 end-page: 102 article-title: Effect of thought-stopping on thoughts, mood and corrugator EMG in depressed patients publication-title: Behaviour Research and Therapy – volume: 36 start-page: 183 issue: 3 year: 2005 end-page: 196 article-title: Facial expression of emotions in borderline personality disorder and depression publication-title: Journal of Behavior Therapy and Experimental Psychiatry – volume: 10 start-page: 445 issue: 4 year: 2019 end-page: 470 article-title: Automatic assessment of depression based on visual cues: A systematic review publication-title: IEEE Transactions on Affective Computing – volume: 41 start-page: 53 issue: 1 year: 2001 end-page: 64 article-title: Facial and autonomic activity in depression: Social context differences during imagery publication-title: International Journal of Psychophysiology: Official Journal of the International Organization of Psychophysiology – volume: 38 start-page: 337 issue: 5 year: 1976b end-page: 347 article-title: Facial expression and imagery in depression: An electromyographic study publication-title: Psychosomatic Medicine – volume: 6 start-page: 1809 year: 2015 article-title: Eye movement in unipolar and bipolar depression: A systematic review of the literature publication-title: Frontiers in Psychology – volume: 32 start-page: 641 issue: 10 year: 2014 end-page: 647 article-title: Nonverbal Social Withdrawal in Depression: Evidence from manual and automatic analysis publication-title: Image and Vision Computing – volume: 1 start-page: 385 issue: 3 year: 1977 end-page: 401 article-title: The CES-D scale: A self-report depression scale for research in the general population publication-title: Applied Psychological Measurement – volume: 44 start-page: 2029 issue: 10 year: 2014 end-page: 2040 article-title: Cognitive impairment in depression: A systematic review and meta-analysis publication-title: Psychological Medicine – volume: 187 start-page: 95 issue: 1 year: 2015 end-page: 112 article-title: Cross-validation for selecting a model selection procedure publication-title: Journal of Econometrics – volume: 135 start-page: 1508 issue: Pt 5 year: 2012 end-page: 1521 article-title: Multi-centre diagnostic classification of individual structural neuroimaging scans from patients with major depressive disorder publication-title: Brain: A Journal of Neurology – volume: 8 start-page: 847 issue: 6 year: 2002 end-page: 854 article-title: The National Adult Reading Test as a measure of premorbid intelligence: A comparison with estimates derived from demographic variables publication-title: Journal of the International Neuropsychological Society: JINS – volume: 10 start-page: e0132958 issue: 7 year: 2015 article-title: Structural MRI-based predictions in patients with Treatment-Refractory Depression (TRD) publication-title: PloS One – volume: 51 start-page: 127 issue: 2 year: 1994 end-page: 138 article-title: Decreased perceptual sensitivity to emotion-evoking stimuli in depression publication-title: Psychiatry Research – volume: 12 start-page: 229 issue: 2 year: 2014 end-page: 244 article-title: A review of feature reduction techniques in neuroimaging publication-title: Neuroinformatics – volume: 32 start-page: 704 issue: 8 year: 2012 end-page: 723 article-title: Eye tracking of attention in the affective disorders: A meta-analytic review and synthesis publication-title: Clinical Psychology Review – volume: 138 start-page: 2766 issue: Pt 9 year: 2015 end-page: 2776 article-title: Failure of hippocampal deactivation during loss events in treatment-resistant depression publication-title: Brain: A Journal of Neurology – volume: 45 start-page: 1191 issue: 4 year: 2013 end-page: 1207 article-title: Norms of valence, arousal, and dominance for 13915 English lemmas publication-title: Behavior Research Methods – volume: 135 start-page: 1498 issue: Pt 5 year: 2012 end-page: 1507 article-title: Identifying major depression using whole-brain functional connectivity: A multivariate pattern analysis publication-title: Brain: A Journal of Neurology – volume: 20 start-page: 273 issue: 3 year: 1995 end-page: 297 article-title: Support-vector networks publication-title: Machine Learning – volume: 95 start-page: 157 issue: 2 year: 2000 end-page: 167 article-title: Reduced facial expression and social context in major depression: Discrepancies between facial muscle activity and self-reported emotion publication-title: Psychiatry Research – volume: 214 start-page: 306 issue: 3 year: 2013 end-page: 312 article-title: Identifying major depressive disorder using Hurst exponent of resting-state brain networks publication-title: Psychiatry Research – volume: 215 start-page: 404 issue: 1 year: 2019 end-page: 408 article-title: Pragmatic neuroscience for clinical psychiatry publication-title: The British Journal of Psychiatry: The Journal of Mental Science – volume: 242 start-page: 46 issue: 1 year: 1992 end-page: 52 article-title: Facial expression and emotional face recognition in schizophrenia and depression publication-title: European Archives of Psychiatry and Clinical Neuroscience – volume: 82 start-page: 330 issue: 5 year: 2017 end-page: 338 article-title: Detecting neuroimaging biomarkers for depression: A meta-analysis of multivariate pattern recognition studies publication-title: Biological Psychiatry – volume: 105 start-page: 493 year: 2015 end-page: 506 article-title: Sparse network-based models for patient classification using fMRI publication-title: NeuroImage – volume: 41 start-page: 598 issue: 3 year: 2009 end-page: 614 article-title: Millisecond precision psychological research in a world of commodity computers: New hardware, new problems? publication-title: Behavior Research Methods – volume: 114 start-page: 627 issue: 4 year: 2005 end-page: 639 article-title: Emotion context insensitivity in major depressive disorder publication-title: Journal of Abnormal Psychology – volume: 88 start-page: 791 issue: 6 year: 1993 end-page: 804 article-title: Development of the Alcohol Use Disorders Identification Test (AUDIT): WHO collaborative project on early detection of persons with harmful alcohol consumption--II publication-title: Addiction (Abingdon, England) – volume: 13 start-page: 28 issue: 1 year: 2014 end-page: 35 article-title: The RDoC framework: Facilitating transition from ICD/DSM to dimensional approaches that integrate neuroscience and psychopathology publication-title: World Psychiatry: Official Journal of the World Psychiatric Association (WPA) – volume: 86 start-page: 235 issue: 3 year: 1977 end-page: 241 article-title: Manipulation of thought content as a determinant of mood and corrugator electromyographic activity in depressed patients publication-title: Journal of Abnormal Psychology – volume: 254 start-page: 335 issue: 5 year: 2004 end-page: 342 article-title: Facial expressivity in the course of schizophrenia and depression publication-title: European Archives of Psychiatry and Clinical Neuroscience – volume: 170 start-page: 1 issue: 1 year: 2013 end-page: 5 article-title: The initial field trials of DSM-5: New blooms and old thorns publication-title: The American Journal of Psychiatry – volume: 43 start-page: 269 issue: 3 year: 1986 end-page: 274 article-title: Facial electromyography in depression. Subgroup differences publication-title: Archives of General Psychiatry – volume: 50 start-page: 228 issue: 3 year: 2016 end-page: 242 article-title: Coffee and caffeine consumption and depression: A meta-analysis of observational studies publication-title: The Australian and New Zealand Journal of Psychiatry – volume: 192 start-page: 489 issue: 4238 year: 1976a end-page: 491 article-title: Facial muscle patterning to affective imagery in depressed and nondepressed subjects publication-title: Science (New York, NY) – volume: 71 start-page: 294 year: 2016 end-page: 312 article-title: A review of caffeine's effects on cognitive, physical and occupational performance publication-title: Neuroscience and Biobehavioral Reviews – volume: 21 start-page: 806 issue: 6 year: 2016 end-page: 812 article-title: Subcortical brain alterations in major depressive disorder: Findings from the ENIGMA Major Depressive Disorder working group publication-title: Molecular Psychiatry – volume: 240 start-page: 67 issue: 2 year: 1990 end-page: 76 article-title: Computer-based analysis of facial action in schizophrenic and depressed patients publication-title: European Archives of Psychiatry and Clinical Neuroscience – ident: S0033291720003608_ref35 doi: 10.1111/j.1360-0443.1993.tb02093.x – ident: S0033291720003608_ref43 doi: 10.1037/0021-843X.86.3.235 – ident: S0033291720003608_ref42 doi: 10.1007/s12193-014-0161-4 – ident: S0033291720003608_ref3 doi: 10.1016/j.cpr.2012.09.004 – ident: S0033291720003608_ref14 doi: 10.1007/s00406-004-0510-5 – volume-title: Facial action coding system (FACS) year: 2002 ident: S0033291720003608_ref11 – ident: S0033291720003608_ref24 doi: 10.1016/j.neubiorev.2016.09.001 – ident: S0033291720003608_ref19 doi: 10.1001/archpsyc.1986.01800030087009 – ident: S0033291720003608_ref7 doi: 10.3389/fpsyg.2015.01809 – ident: S0033291720003608_ref51 doi: 10.1007/978-3-319-07869-4_14 – ident: S0033291720003608_ref20 doi: 10.1371/journal.pone.0132958 – ident: S0033291720003608_ref50 doi: 10.1016/j.jeconom.2015.02.006 – ident: S0033291720003608_ref33 doi: 10.1016/j.neuroimage.2014.11.021 – ident: S0033291720003608_ref1 doi: 10.1109/ICIP.2013.6738869 – ident: S0033291720003608_ref37 doi: 10.1007/BF02189974 – ident: S0033291720003608_ref27 – ident: S0033291720003608_ref47 doi: 10.1016/j.pscychresns.2013.09.008 – volume-title: Diagnostic and statistical manual of mental disorders year: 2013 ident: S0033291720003608_ref2 – ident: S0033291720003608_ref34 doi: 10.1037/0021-843X.114.4.627 – ident: S0033291720003608_ref21 doi: 10.1093/brain/awv177 – ident: S0033291720003608_ref40 doi: 10.1016/S0165-0327(97)00097-9 – ident: S0033291720003608_ref48 doi: 10.1016/0165-1781(94)90032-9 – ident: S0033291720003608_ref26 doi: 10.1007/s12021-013-9204-3 – ident: S0033291720003608_ref39 doi: 10.1097/00006842-197609000-00006 – ident: S0033291720003608_ref13 doi: 10.1007/BF02190342 – ident: S0033291720003608_ref45 doi: 10.1177/0004867415603131 – ident: S0033291720003608_ref17 doi: 10.1016/S0167-8760(00)00181-1 – ident: S0033291720003608_ref32 doi: 10.1017/S0033291713002535 – ident: S0033291720003608_ref38 doi: 10.1126/science.1257786 – ident: S0033291720003608_ref41 doi: 10.1192/bjp.2019.88 – ident: S0033291720003608_ref44 doi: 10.1016/0005-7967(78)90047-5 – ident: S0033291720003608_ref15 doi: 10.1111/cns.13048 – ident: S0033291720003608_ref23 doi: 10.1002/da.22063 – ident: S0033291720003608_ref6 doi: 10.1017/S1355617702860131 – ident: S0033291720003608_ref30 doi: 10.1177/014662167700100306 – ident: S0033291720003608_ref25 doi: 10.1093/brain/aws084 – ident: S0033291720003608_ref22 doi: 10.1016/j.biopsych.2016.10.028 – ident: S0033291720003608_ref12 doi: 10.1176/appi.ajp.2012.12091189 – ident: S0033291720003608_ref28 doi: 10.1109/TAFFC.2017.2724035 – ident: S0033291720003608_ref46 doi: 10.3758/s13428-012-0314-x – ident: S0033291720003608_ref36 doi: 10.1038/mp.2015.69 – ident: S0033291720003608_ref5 doi: 10.1109/WACV.2016.7477553 – ident: S0033291720003608_ref10 doi: 10.1002/wps.20087 – ident: S0033291720003608_ref9 doi: 10.1007/BF00994018 – ident: S0033291720003608_ref18 doi: 10.1016/j.imavis.2013.12.007 – ident: S0033291720003608_ref4 doi: 10.1109/FG.2015.7284869 – ident: S0033291720003608_ref49 doi: 10.1093/brain/aws059 – ident: S0033291720003608_ref31 doi: 10.1016/j.jbtep.2005.05.002 – ident: S0033291720003608_ref16 doi: 10.1016/S0165-1781(00)00168-2 – ident: S0033291720003608_ref8 doi: 10.1109/ACII.2009.5349358 – ident: S0033291720003608_ref29 doi: 10.3758/BRM.41.3.598 |
SSID | ssj0013142 |
Score | 2.5250845 |
Snippet | BackgroundDepression is a challenge to diagnose reliably and the current gold standard for trials of DSM-5 has been in agreement between two or more medical... Depression is a challenge to diagnose reliably and the current gold standard for trials of DSM-5 has been in agreement between two or more medical specialists.... |
SourceID | proquest crossref cambridge |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1784 |
SubjectTerms | Automation Caffeine Cameras Classification Clinical trials Cognitive ability Cognitive tasks Digital cameras Distraction Experiments Eye movements Eyelid Face Keyboards Machine learning Medical imaging Mental depression Nervous system Neurosciences Original Article Quality control Specialists Symptoms Task performance Tracking |
Title | Prediction of depression symptoms in individual subjects with face and eye movement tracking |
URI | https://www.cambridge.org/core/product/identifier/S0033291720003608/type/journal_article https://www.proquest.com/docview/2688625657 https://www.proquest.com/docview/2458955414 |
Volume | 52 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwEA-6gfgifuJ0jgg-icV-pW2eRGVjCBtDHOxBKM0XDFw71-5h_7259GMMYW8lTUq5XHK_3F1-h9CDaytt9mxlERooy1eOshixuaVVhyuqAuEa-uLROBhO_Y8ZmVUOt7xKq6z3RLNRi4yDj_zZDSINviFI97L8taBqFERXqxIah6gN1GVw-Apn4TaK4PglW7ipV-aEdVTTUEbrRmhzDSULVJfccivs2qjdLdrYncEpOqkAI34tZ_gMHcj0HB2NqpD4BfqerOAZ5IszhZvM1hTnm8WyyBY5nqd43ty7wvmage8lx-CCxSrhEiepwHIj8SIz7OEFLlYJBx_6JZoO-l_vQ6sqmWBxj3qFFXGqj5lMeFJLWRHqMMoJkA4CklLMZklAZSQCGdhKcicSRHiMJ4J4wmXAy3KFWmmWymuEPTBuia3hE2O-YCoCCluNJpkGPIGiooOeGoHFleLncZk0Fsb_5NtBdi3TmFf041AF42ffkMdmyLLk3tjXuVtP1PZvtkrTQffNa72AICqSpDJb6z4-iSiBaug3-z9xi45duPtgcnW7qFWs1vJOI5KC9Yza9VD7rT-efP4BOrnbAw |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LaxsxEB6cBJpcSp7EebQqJJfSJfvSenUoJaQ1ThOHHhLwIbBZvcAQ7zreNcV_qr-xGu3DhIBvuS1aSYiZkWY0M_oG4Mx3tVF7rnYoi7QTak87nLrCMaIjNNOR9C188fAuGjyEv0d01IF_zVsYTKtszkR7UMtcoI_8wo9iY3xjkO7H9MXBqlEYXW1KaFRicaMWf82Vrfh-_dPw99z3-7_urwZOXVXAEQELSicWzNzEuAyUWYimzONMUMTlQ2NDc5enEVOxjFTkaiW8WFIZcJFKGkifI3SJmXcNNozidTGFsDfqLaMWXlihk9v6aF6viaJaiGrTiG2-hYDBapZLLIfXOvG1SrB6rr8NH2sDlVxWErUDHZXtwodhHYLfg8c_M_xGfpJckzaTNiPFYjIt80lBxhkZt--8SDHn6OspCLp8iU6FImkmiVooMsktWnlJylkq0Ge_Dw_vQswDWM_yTB0CCVCZpq4x1zgPJdcxQuYa65UbAyvSTHbhW0uwpN5oRVIlqfWSN_TtgtvQNBE13DlW3XheNeRrO2RaYX2s6nzSMGq5mqWQduFL-9tsWIzCpJnK56ZPSGNGsfr60eopPsPm4H54m9xe390cw5aP7y5snvAJrJezuTo11lDJP1kRJPD03jL_HywoFuM |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEB7SFEIvJX3RbZNGgfZSauKXbOsQSkmy5NGEHBrYQ8G1XhDI2tu1l7B_rb-uM_JjCYG95WZkSYiZkWY0M_oG4HPoW1R7vvW4SKwX28B6kvvKQ9FRVthEhw6--PIqOb2Jzyd8sgH_-rcwlFbZn4nuoNaVIh_5QZhkaHxTkO7AdmkR18fj77O_HlWQokhrX06jFZELs7zH61t9eHaMvP4ShuOTX0enXldhwFORiBovUwJvZVJHBhdluQikUJww-sjwsNKXRSJMphOT-NaoINNcR1IVmkc6lARjgvM-g-dphGoT91I6SVcRjCBukcpdrbQg7SOqDq4aG6ktdHAwVNlyhevwUD8-VA9O54234WVnrLIfrXS9gg1Tvoatyy4c_wZ-X8_pm3jLKsuGrNqS1cvprKmmNbst2e3w5ovVC0l-n5qR-5fZQhlWlJqZpWHTyiGXN6yZF4r892_h5kmI-Q42y6o074FFpFgLH003KWMtbUbwuWjJSjS2Eiv0CL4NBMu7TVfnbcJamj-i7wj8nqa56qDPqQLH3bohX4chsxb3Y13nnZ5Rq9WsBHYE-8Nv3LwUkSlKUy2wT8wzwakS-4f1U-zBFkp7_vPs6uIjvAjpCYZLGd6BzWa-MLtoGDXyk5NABn-eWuT_A0KxGxk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+depression+symptoms+in+individual+subjects+with+face+and+eye+movement+tracking&rft.jtitle=Psychological+medicine&rft.au=Stolicyn%2C+Aleks&rft.au=Steele%2C+J.+Douglas&rft.au=Seri%C3%A8s%2C+Peggy&rft.date=2022-07-01&rft.issn=0033-2917&rft.eissn=1469-8978&rft.volume=52&rft.issue=9&rft.spage=1784&rft.epage=1792&rft_id=info:doi/10.1017%2FS0033291720003608&rft.externalDBID=n%2Fa&rft.externalDocID=10_1017_S0033291720003608 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0033-2917&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0033-2917&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0033-2917&client=summon |