Immobilized lipase-catalysed esterification and transesterification reactions in non-aqueous media for the synthesis of tetrahydrofurfuryl butyrate: comparison and kinetic modeling

Immobilized lipase-catalyzed synthesis of tetrahydrofurfuryl butyrate is reported in this paper. Esterification and transesterification of tetrahydrofurfuryl alcohol (THFA) with butyric acid (BA) and transesterification with ethyl butyrate (EB) to prepare tetrahydrofurfuryl butyrate (THFB) were stud...

Full description

Saved in:
Bibliographic Details
Published inChemical engineering science Vol. 59; no. 2; pp. 373 - 383
Main Authors Yadav, Ganapati D., Devi, K.Manjula
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 2004
Elsevier
Subjects
Online AccessGet full text
ISSN0009-2509
1873-4405
DOI10.1016/j.ces.2003.09.034

Cover

Loading…
Abstract Immobilized lipase-catalyzed synthesis of tetrahydrofurfuryl butyrate is reported in this paper. Esterification and transesterification of tetrahydrofurfuryl alcohol (THFA) with butyric acid (BA) and transesterification with ethyl butyrate (EB) to prepare tetrahydrofurfuryl butyrate (THFB) were studied systematically including kinetic modeling. A series of immobilized lipases such as Novozym 435, Lipozyme IM 20, Pseudomonas species lipase on toyonite (PSL/Toyo), Candida rugosa lipase (CRL) on polypropylene, CRL on egg shells and CRL on celite were screened to establish that Novozym 435 was the best catalyst for both esterification and transesterification at 30°C. The effects of various parameters on reaction rates were studied in detail for both reactions with Novozym 435. The ping-pong bi–bi mechanism with inhibition by the substrate THFA fits the data for esterification whereas the ping-pong bi–bi mechanism with inhibition by both the reactants (THFA and EB) and both the products (THFB and ethanol) is valid for the transesterification reaction. The kinetic parameters deduced from these models were used to simulate the conversions, which are in good agreement with the experimental values. Since transesterification suffers inhibition by both the substrates and products, esterification is a better method compared to transesterification.
AbstractList Immobilized lipase-catalyzed synthesis of tetrahydrofurfuryl butyrate is reported in this paper. Esterification and transesterification of tetrahydrofurfuryl alcohol (THFA) with butyric acid (BA) and transesterification with ethyl butyrate (EB) to prepare tetrahydrofurfuryl butyrate (THFB) were studied systematically including kinetic modeling. A series of immobilized lipases such as Novozym 435, Lipozyme IM 20, Pseudomonas species lipase on toyonite (PSL/Toyo), Candida rugosa lipase (CRL) on polypropylene, CRL on egg shells and CRL on celite were screened to establish that Novozym 435 was the best catalyst for both esterification and transesterification at 30°C. The effects of various parameters on reaction rates were studied in detail for both reactions with Novozym 435. The ping-pong bi–bi mechanism with inhibition by the substrate THFA fits the data for esterification whereas the ping-pong bi–bi mechanism with inhibition by both the reactants (THFA and EB) and both the products (THFB and ethanol) is valid for the transesterification reaction. The kinetic parameters deduced from these models were used to simulate the conversions, which are in good agreement with the experimental values. Since transesterification suffers inhibition by both the substrates and products, esterification is a better method compared to transesterification.
Immobilized lipase-catalyzed synthesis of tetrahydrofurfuryl butyrate is reported in this paper. Esterification and transesterification of tetrahydrofurfuryl alcohol (THFA) with butyric acid (BA) and transesterification with ethyl butyrate (EB) to prepare tetrahydrofurfuryl butyrate (THFB) were studied systematically including kinetic modeling. A series of immobilized lipases such as Novozym 435, Lipozyme IM 20, Pseudomonas species lipase on toyonite (PSL/Toyo), Candida rugosa lipase (CRL) on polypropylene, CRL on egg shells and CRL on celite were screened to establish that Novozym 435 was the best catalyst for both esterification and transesterification at 30DGC. The effects of various parameters on reaction rates were studied in detail for both reactions with Novozym 435. The ping-pong bi-bi mechanism with inhibition by the substrate THFA fits the data for esterification whereas the ping-pong bi-bi mechanism with inhibition by both the reactants (THFA and EB) and both the products (THFB and ethanol) is valid for the transesterification reaction. The kinetic parameters deduced from these models were used to simulate the conversions, which are in good agreement with the experimental values. Since transesterification suffers inhibition by both the substrates and products, esterification is a better method compared to transesterification.
Author Devi, K.Manjula
Yadav, Ganapati D.
Author_xml – sequence: 1
  givenname: Ganapati D.
  surname: Yadav
  fullname: Yadav, Ganapati D.
  email: gdyadav@yahoo.com, gdyadav@hotmail.com
– sequence: 2
  givenname: K.Manjula
  surname: Devi
  fullname: Devi, K.Manjula
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15431495$$DView record in Pascal Francis
BookMark eNp9UctuFDEQtFCQ2AQ-gJsvcJuJPW_DCUU8IkXiAmfLa7dJLzP24vYiTb6LD8TLrjjkEMlS26WqbnfVJbsIMQBjr6WopZDD9a62QHUjRFsLVYu2e8Y2chrbqutEf8E2QghVNb1QL9gl0a48x1GKDftzuyxxizM-gOMz7g1BZU0280oFAMqQ0GNBMAZuguM5mUCP8ATGHi_EMfDyscr8OkA8EF_AoeE-Jp7vgdMaSiEkHj3PUDrdry5Ff0jlrDPfHvKaTIZ33MZlbxLSeeZPDJDR8iU6mDH8eMmeezMTvDrXK_b908dvN1-qu6-fb28-3FW2VW2upmZopQXnBztuYesVFBOGwUnbNcpZ31tjlBgLAlPb2WHaqt4pYUANk5d2aq_Y21PffYplI8p6QbIwzyYc19PN1LRqkl0hvjkTDVkz--KRRdL7hItJq5Z918pO9YU3nng2RaIEXlvM_zwsZuCspdDHNPVOlzT1MU0tlC5pFqV8pPzf_AnN-5MGike_EZImixCKI5jAZu0iPqH-C5_TwQ8
CODEN CESCAC
CitedBy_id crossref_primary_10_1016_j_cjche_2014_09_024
crossref_primary_10_1007_s12039_017_1391_2
crossref_primary_10_1016_j_bej_2008_11_002
crossref_primary_10_1021_ie800193f
crossref_primary_10_4236_gsc_2017_71004
crossref_primary_10_1016_j_cattod_2012_05_006
crossref_primary_10_1002_ejoc_201301243
crossref_primary_10_1016_j_cej_2012_03_064
crossref_primary_10_1515_ijcre_2014_0058
crossref_primary_10_4236_ns_2013_59127
crossref_primary_10_1515_gps_2017_0135
crossref_primary_10_1016_j_enzmictec_2005_08_013
crossref_primary_10_1016_j_biteb_2020_100519
crossref_primary_10_1007_s00449_014_1267_5
crossref_primary_10_1002_jctb_1897
crossref_primary_10_3923_biotech_2006_62_68
crossref_primary_10_1002_aic_10700
crossref_primary_10_1016_j_molcatb_2012_06_011
crossref_primary_10_1007_s11274_006_9320_4
crossref_primary_10_1016_j_molcatb_2014_08_001
crossref_primary_10_1080_15435075_2013_853177
crossref_primary_10_1002_jctb_6030
crossref_primary_10_1021_ie2012032
crossref_primary_10_1590_0001_3765202220211267
crossref_primary_10_1016_j_jtice_2016_10_054
crossref_primary_10_1016_j_biortech_2012_01_030
crossref_primary_10_1007_s00253_012_4183_0
crossref_primary_10_1016_j_fuproc_2009_05_016
crossref_primary_10_1016_j_jics_2024_101258
crossref_primary_10_1016_j_cej_2007_05_034
crossref_primary_10_1016_j_procbio_2008_08_010
crossref_primary_10_1016_j_molcata_2003_09_050
crossref_primary_10_1016_j_molcatb_2016_04_008
crossref_primary_10_1007_s11164_016_2689_2
crossref_primary_10_3390_biom10010070
crossref_primary_10_1039_C9RA05808G
crossref_primary_10_1007_s10098_006_0082_3
crossref_primary_10_1016_j_msec_2014_09_026
crossref_primary_10_1007_s10570_012_9718_0
crossref_primary_10_1016_j_jiec_2015_07_007
crossref_primary_10_1016_j_fuel_2013_09_065
crossref_primary_10_1016_j_renene_2019_11_110
crossref_primary_10_1007_s10562_010_0479_9
crossref_primary_10_1016_j_enzmictec_2009_03_004
crossref_primary_10_1016_j_molcatb_2013_10_024
crossref_primary_10_1016_j_molcatb_2004_10_003
crossref_primary_10_1021_acsomega_8b01428
crossref_primary_10_1271_bbb_110117
crossref_primary_10_1016_j_mcat_2018_09_019
crossref_primary_10_1016_j_molcatb_2012_09_013
crossref_primary_10_1007_s00217_012_1819_3
crossref_primary_10_1021_ef9009313
crossref_primary_10_1002_jctb_5125
crossref_primary_10_1007_s10562_012_0902_5
crossref_primary_10_1016_j_enzmictec_2009_11_008
crossref_primary_10_1002_kin_21629
crossref_primary_10_1016_j_procbio_2010_05_004
crossref_primary_10_1371_journal_pone_0133857
crossref_primary_10_1016_j_molcatb_2006_02_016
crossref_primary_10_1016_j_molcatb_2011_02_012
crossref_primary_10_1002_elsc_200900097
crossref_primary_10_1016_j_enzmictec_2018_01_008
crossref_primary_10_1007_s00449_018_2023_z
crossref_primary_10_1263_jbb_103_122
crossref_primary_10_3390_catal11091121
crossref_primary_10_1002_jctb_1975
crossref_primary_10_1007_s12010_009_8696_7
crossref_primary_10_1007_s10562_017_2046_0
crossref_primary_10_1080_10242422_2019_1664480
crossref_primary_10_1007_s10098_005_0012_9
crossref_primary_10_1002_ffj_3502
crossref_primary_10_1016_j_indcrop_2015_11_031
crossref_primary_10_3389_fbioe_2021_817023
crossref_primary_10_1002_jctb_1738
crossref_primary_10_1007_s12010_019_03098_8
crossref_primary_10_1016_j_ces_2009_04_003
crossref_primary_10_1111_1750_3841_16618
crossref_primary_10_1080_10826068_2016_1201681
crossref_primary_10_1016_j_molcatb_2013_05_017
crossref_primary_10_1016_j_molcatb_2012_05_011
crossref_primary_10_1081_SCC_200061687
crossref_primary_10_3136_fstr_20_207
crossref_primary_10_3390_catal10101216
crossref_primary_10_1016_j_procbio_2016_12_011
crossref_primary_10_1515_ijcre_2017_0179
crossref_primary_10_1039_D4RA03290J
crossref_primary_10_1016_j_foodchem_2025_143151
crossref_primary_10_1016_j_cherd_2018_08_025
crossref_primary_10_1016_j_bcab_2018_02_012
crossref_primary_10_1002_bab_1859
crossref_primary_10_1016_j_molcatb_2012_05_007
crossref_primary_10_1016_j_cattod_2012_04_052
crossref_primary_10_1021_ie402069c
crossref_primary_10_1016_j_supflu_2009_05_003
crossref_primary_10_1007_s13197_017_2725_2
crossref_primary_10_1016_j_foodchem_2021_130650
crossref_primary_10_1016_j_procbio_2023_06_011
crossref_primary_10_1002_jctb_1237
crossref_primary_10_1016_j_foodchem_2022_133949
crossref_primary_10_1021_ie070889t
crossref_primary_10_1007_s11356_019_05833_4
crossref_primary_10_1016_j_jbiotec_2005_11_006
crossref_primary_10_1007_s00449_018_1892_5
crossref_primary_10_1016_j_cep_2019_107605
Cites_doi 10.1007/BF00282141
10.1016/S0021-9258(18)68435-2
10.1016/0141-8130(83)90047-8
10.1016/S0009-2509(99)00092-5
10.1016/S1369-703X(03)00026-3
10.1016/0141-0229(92)90110-A
10.1007/BF01027127
10.1002/bit.10008
10.1002/bit.10117
10.1007/s002530051410
10.1016/S0141-0229(03)00064-4
10.1016/0167-4838(92)90278-L
10.1016/0141-0229(93)90123-J
10.1016/S1369-703X(03)00125-6
10.1016/S1369-703X(01)00164-4
10.1146/annurev.bi.52.070183.001403
10.1007/s11746-001-0267-2
ContentType Journal Article
Copyright 2003 Elsevier Ltd
2004 INIST-CNRS
Copyright_xml – notice: 2003 Elsevier Ltd
– notice: 2004 INIST-CNRS
DBID AAYXX
CITATION
IQODW
8FD
F28
FR3
DOI 10.1016/j.ces.2003.09.034
DatabaseName CrossRef
Pascal-Francis
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitleList
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
EISSN 1873-4405
EndPage 383
ExternalDocumentID 15431495
10_1016_j_ces_2003_09_034
S0009250903005001
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29B
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABNUV
ABTAH
ABXDB
ABYKQ
ACBEA
ACDAQ
ACGFO
ACGFS
ACNCT
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AI.
AIDUJ
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
HLY
HVGLF
HZ~
IHE
J1W
KOM
LX7
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SC5
SCE
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSG
SSZ
T5K
T9H
VH1
WUQ
XFK
XPP
Y6R
ZMT
ZY4
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
EFKBS
IQODW
8FD
F28
FR3
ID FETCH-LOGICAL-c393t-82631cedf6c7bebf9e00966d1c429dcf5caa90766de834c68b95d90ae968f1c83
IEDL.DBID AIKHN
ISSN 0009-2509
IngestDate Wed Jul 30 11:10:14 EDT 2025
Mon Jul 21 09:13:37 EDT 2025
Thu Apr 24 23:08:09 EDT 2025
Tue Jul 01 01:15:57 EDT 2025
Fri Feb 23 02:32:42 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Transesterification
Kinetics
Inhibition
Ethyl butyrate
Tetrahydrofurfuryl alcohol
Esterification
Tetrahydrofurfuryl butyrate
Butyric acid
Ping-pong bi–bi mechanism
Enzymatic catalysis
Kinetic parameter
Reaction rate
Immobilized enzyme
Modeling
Catalyst
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c393t-82631cedf6c7bebf9e00966d1c429dcf5caa90766de834c68b95d90ae968f1c83
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 28239814
PQPubID 23500
PageCount 11
ParticipantIDs proquest_miscellaneous_28239814
pascalfrancis_primary_15431495
crossref_citationtrail_10_1016_j_ces_2003_09_034
crossref_primary_10_1016_j_ces_2003_09_034
elsevier_sciencedirect_doi_10_1016_j_ces_2003_09_034
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2004
2004-01-00
20040101
PublicationDateYYYYMMDD 2004-01-01
PublicationDate_xml – year: 2004
  text: 2004
PublicationDecade 2000
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Chemical engineering science
PublicationYear 2004
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Rizzi, Stylos, Riek (BIB11) 1992; 14
Fogler (BIB2) 1995
Hennipman, Romein, Straathof (BIB4) 1998
Yadav, Manjula Devi (BIB19) 2001; 78
Yadav, G.D., Trivedi, A.H., 2003. Kinetic modeling of immobilized-lipase catalyzed transesterification of
octanol with vinyl acetate in non-aqueous media, Enzyme and Microbial Technology 32 (7), 783–789.
Perry, R.H., Green, D.W. (Eds.), 1984. Perry's Chemical Engineers’ Hand Book, 6th Edition. McGraw-Hill, New York, pp. 3–287.
Kostraby, Smallridge, Trewhella (BIB6) 2002; 77
Yadav, Krishnan (BIB17) 1999; 54
Segel, I.H., 1975. Enzyme Kinetics. John Wiley & Sons, New York, pp. 607–623.
Heinsman, Valente, Smienk, van der Padt, Franssen, de Groot, van't Riet (BIB3) 2001; 76
Yadav, G.D., Manjula Devi, K., 2003. Kinetic of hydrolysis of tetrahydrofurfuryl butyrate in a three phase system containing immobilized lipase from
Zaks, Klibanov (BIB23) 1988; 263
Valivety, Halling, Macrea (BIB15) 1992; 1118
Langrand, Triantaphylides, Baratti (BIB7) 1988; 10
Yadav, Manjula Devi (BIB20) 2002; 10
Santaniello, Ferraboschi, Grisenti (BIB12) 1993; 15
Yadav, G.D., Lathi, P.S., 2003. Kinetics and mechanism of synthesis of butyl isobutyrate over immobilised lipases. Biochemical Engineering Journal 16 (3), 245–252.
Poole, Finney (BIB9) 1983; 5
Finney, J.L., Poole, P.L., 1984. Protein hydration and enzyme activity: the role of hydration induced conformation & dynamic change in the activity of lysozome, Comments. Molecular and Cellular Biophysics 2, 129–151.
Tramper, L.C.J., Lilly, M.D. (Eds.), 1987. Biocatalysis in Organic Solvents. Elsevier Publications, Amsterdam, pp. 147–153.
Weber, Klein, Mukherjee (BIB16) 1999; 51
Karplus, McCammon (BIB5) 1983; 52
Reslow, Adlercreutz, Mattiasson (BIB10) 1987; 26
Biochemical Engineering Journal, in press.
Hennipman (10.1016/j.ces.2003.09.034_BIB4) 1998
Yadav (10.1016/j.ces.2003.09.034_BIB17) 1999; 54
Karplus (10.1016/j.ces.2003.09.034_BIB5) 1983; 52
Langrand (10.1016/j.ces.2003.09.034_BIB7) 1988; 10
Valivety (10.1016/j.ces.2003.09.034_BIB15) 1992; 1118
10.1016/j.ces.2003.09.034_BIB1
Santaniello (10.1016/j.ces.2003.09.034_BIB12) 1993; 15
Yadav (10.1016/j.ces.2003.09.034_BIB19) 2001; 78
Weber (10.1016/j.ces.2003.09.034_BIB16) 1999; 51
Fogler (10.1016/j.ces.2003.09.034_BIB2) 1995
10.1016/j.ces.2003.09.034_BIB14
10.1016/j.ces.2003.09.034_BIB8
10.1016/j.ces.2003.09.034_BIB13
Heinsman (10.1016/j.ces.2003.09.034_BIB3) 2001; 76
10.1016/j.ces.2003.09.034_BIB22
10.1016/j.ces.2003.09.034_BIB18
Reslow (10.1016/j.ces.2003.09.034_BIB10) 1987; 26
Rizzi (10.1016/j.ces.2003.09.034_BIB11) 1992; 14
Poole (10.1016/j.ces.2003.09.034_BIB9) 1983; 5
Yadav (10.1016/j.ces.2003.09.034_BIB20) 2002; 10
10.1016/j.ces.2003.09.034_BIB21
Zaks (10.1016/j.ces.2003.09.034_BIB23) 1988; 263
Kostraby (10.1016/j.ces.2003.09.034_BIB6) 2002; 77
References_xml – volume: 54
  start-page: 4189
  year: 1999
  end-page: 4197
  ident: BIB17
  article-title: Acylation of 2-Methoxynaphthalene
  publication-title: Chemical Engineering Science
– volume: 52
  start-page: 263
  year: 1983
  end-page: 300
  ident: BIB5
  article-title: Dynamics of proteins—elements and function
  publication-title: Annual Reviews in Biochemistry
– year: 1998
  ident: BIB4
  publication-title: ENCORA version 1.1b
– reference: Yadav, G.D., Manjula Devi, K., 2003. Kinetic of hydrolysis of tetrahydrofurfuryl butyrate in a three phase system containing immobilized lipase from
– volume: 10
  start-page: 93
  year: 2002
  end-page: 101
  ident: BIB20
  article-title: Enzymatic synthesis of perlauric acid using Novozym 435
  publication-title: Biochemical Engineering Journal
– volume: 14
  start-page: 709
  year: 1992
  ident: BIB11
  article-title: A kinetic-study of immobilized lipase catalyzing the synthesis of isoamyl acetate by transesterification in normal-hexane
  publication-title: Enzyme and Microbial Technology
– volume: 76
  start-page: 193
  year: 2001
  ident: BIB3
  article-title: The effect of ethanol on the kinetics of lipase-mediated enantioselective esterification of 4-methyloctanoic acid and the hydrolysis of its ethyl ester
  publication-title: Biotechnology and Bioengineering
– reference: Segel, I.H., 1975. Enzyme Kinetics. John Wiley & Sons, New York, pp. 607–623.
– volume: 5
  start-page: 308
  year: 1983
  ident: BIB9
  article-title: Hydration-induced conformational and flexibility changes in lysozyme at low water-content
  publication-title: International Journal of Biological Macromolecules
– volume: 15
  start-page: 367
  year: 1993
  end-page: 382
  ident: BIB12
  article-title: Lipase-catalyzed transesterification in organic solvents. Applications to the preparation of enantiomerically pure compounds
  publication-title: Enzyme and Microbial Technology
– volume: 1118
  start-page: 218
  year: 1992
  end-page: 222
  ident: BIB15
  article-title: Reaction rate with suspended lipase catalyst shows similar dependence on water activity in different organic solvents
  publication-title: Biochimica et Biophysica Acta
– year: 1995
  ident: BIB2
  publication-title: Elements of Chemical Reaction Engineering
– reference: . Biochemical Engineering Journal, in press.
– volume: 10
  start-page: 549
  year: 1988
  end-page: 554
  ident: BIB7
  article-title: Lipase-catalyzed formation of flavour esters
  publication-title: Biotechnology Letters
– volume: 78
  start-page: 347
  year: 2001
  end-page: 351
  ident: BIB19
  article-title: A kinetic model for the enzyme-catalysed self epoxidation of oleic acid
  publication-title: Journal of American Oil Chemists Society
– volume: 77
  start-page: 827
  year: 2002
  ident: BIB6
  article-title: Yeast-mediated preparation of I-PAC in an organic solvent
  publication-title: Biotechnology and Bioengineering
– reference: Yadav, G.D., Trivedi, A.H., 2003. Kinetic modeling of immobilized-lipase catalyzed transesterification of
– reference: Tramper, L.C.J., Lilly, M.D. (Eds.), 1987. Biocatalysis in Organic Solvents. Elsevier Publications, Amsterdam, pp. 147–153.
– volume: 51
  start-page: 401
  year: 1999
  ident: BIB16
  article-title: Long-chain acyl thioesters prepared by solvent-free thioesterification and transthioesterification catalysed by microbial lipases
  publication-title: Applied Microbiology and Biotechnology
– reference: Perry, R.H., Green, D.W. (Eds.), 1984. Perry's Chemical Engineers’ Hand Book, 6th Edition. McGraw-Hill, New York, pp. 3–287.
– reference: Finney, J.L., Poole, P.L., 1984. Protein hydration and enzyme activity: the role of hydration induced conformation & dynamic change in the activity of lysozome, Comments. Molecular and Cellular Biophysics 2, 129–151.
– reference: Yadav, G.D., Lathi, P.S., 2003. Kinetics and mechanism of synthesis of butyl isobutyrate over immobilised lipases. Biochemical Engineering Journal 16 (3), 245–252.
– reference: -octanol with vinyl acetate in non-aqueous media, Enzyme and Microbial Technology 32 (7), 783–789.
– volume: 26
  start-page: 1
  year: 1987
  end-page: 12
  ident: BIB10
  article-title: Organic-solvents for bioorganic synthesis. 1. Optimization of parameters for a chymotrypsin catalyzed process
  publication-title: Applied Microbiology and Biotechnology
– volume: 263
  start-page: 8017
  year: 1988
  end-page: 8021
  ident: BIB23
  article-title: The effect of water on enzyme action in organic media
  publication-title: Journal of Biological Chemistry
– volume: 26
  start-page: 1
  year: 1987
  ident: 10.1016/j.ces.2003.09.034_BIB10
  article-title: Organic-solvents for bioorganic synthesis. 1. Optimization of parameters for a chymotrypsin catalyzed process
  publication-title: Applied Microbiology and Biotechnology
  doi: 10.1007/BF00282141
– ident: 10.1016/j.ces.2003.09.034_BIB14
– volume: 263
  start-page: 8017
  year: 1988
  ident: 10.1016/j.ces.2003.09.034_BIB23
  article-title: The effect of water on enzyme action in organic media
  publication-title: Journal of Biological Chemistry
  doi: 10.1016/S0021-9258(18)68435-2
– ident: 10.1016/j.ces.2003.09.034_BIB13
– volume: 5
  start-page: 308
  issue: 5
  year: 1983
  ident: 10.1016/j.ces.2003.09.034_BIB9
  article-title: Hydration-induced conformational and flexibility changes in lysozyme at low water-content
  publication-title: International Journal of Biological Macromolecules
  doi: 10.1016/0141-8130(83)90047-8
– volume: 54
  start-page: 4189
  year: 1999
  ident: 10.1016/j.ces.2003.09.034_BIB17
  article-title: Acylation of 2-Methoxynaphthalene
  publication-title: Chemical Engineering Science
  doi: 10.1016/S0009-2509(99)00092-5
– ident: 10.1016/j.ces.2003.09.034_BIB18
  doi: 10.1016/S1369-703X(03)00026-3
– volume: 14
  start-page: 709
  year: 1992
  ident: 10.1016/j.ces.2003.09.034_BIB11
  article-title: A kinetic-study of immobilized lipase catalyzing the synthesis of isoamyl acetate by transesterification in normal-hexane
  publication-title: Enzyme and Microbial Technology
  doi: 10.1016/0141-0229(92)90110-A
– ident: 10.1016/j.ces.2003.09.034_BIB1
– volume: 10
  start-page: 549
  issue: 8
  year: 1988
  ident: 10.1016/j.ces.2003.09.034_BIB7
  article-title: Lipase-catalyzed formation of flavour esters
  publication-title: Biotechnology Letters
  doi: 10.1007/BF01027127
– volume: 76
  start-page: 193
  year: 2001
  ident: 10.1016/j.ces.2003.09.034_BIB3
  article-title: The effect of ethanol on the kinetics of lipase-mediated enantioselective esterification of 4-methyloctanoic acid and the hydrolysis of its ethyl ester
  publication-title: Biotechnology and Bioengineering
  doi: 10.1002/bit.10008
– volume: 77
  start-page: 827
  year: 2002
  ident: 10.1016/j.ces.2003.09.034_BIB6
  article-title: Yeast-mediated preparation of I-PAC in an organic solvent
  publication-title: Biotechnology and Bioengineering
  doi: 10.1002/bit.10117
– volume: 51
  start-page: 401
  year: 1999
  ident: 10.1016/j.ces.2003.09.034_BIB16
  article-title: Long-chain acyl thioesters prepared by solvent-free thioesterification and transthioesterification catalysed by microbial lipases
  publication-title: Applied Microbiology and Biotechnology
  doi: 10.1007/s002530051410
– ident: 10.1016/j.ces.2003.09.034_BIB8
– year: 1995
  ident: 10.1016/j.ces.2003.09.034_BIB2
– ident: 10.1016/j.ces.2003.09.034_BIB22
  doi: 10.1016/S0141-0229(03)00064-4
– volume: 1118
  start-page: 218
  year: 1992
  ident: 10.1016/j.ces.2003.09.034_BIB15
  article-title: Reaction rate with suspended lipase catalyst shows similar dependence on water activity in different organic solvents
  publication-title: Biochimica et Biophysica Acta
  doi: 10.1016/0167-4838(92)90278-L
– volume: 15
  start-page: 367
  year: 1993
  ident: 10.1016/j.ces.2003.09.034_BIB12
  article-title: Lipase-catalyzed transesterification in organic solvents. Applications to the preparation of enantiomerically pure compounds
  publication-title: Enzyme and Microbial Technology
  doi: 10.1016/0141-0229(93)90123-J
– ident: 10.1016/j.ces.2003.09.034_BIB21
  doi: 10.1016/S1369-703X(03)00125-6
– volume: 10
  start-page: 93
  issue: 2
  year: 2002
  ident: 10.1016/j.ces.2003.09.034_BIB20
  article-title: Enzymatic synthesis of perlauric acid using Novozym 435
  publication-title: Biochemical Engineering Journal
  doi: 10.1016/S1369-703X(01)00164-4
– volume: 52
  start-page: 263
  year: 1983
  ident: 10.1016/j.ces.2003.09.034_BIB5
  article-title: Dynamics of proteins—elements and function
  publication-title: Annual Reviews in Biochemistry
  doi: 10.1146/annurev.bi.52.070183.001403
– year: 1998
  ident: 10.1016/j.ces.2003.09.034_BIB4
– volume: 78
  start-page: 347
  year: 2001
  ident: 10.1016/j.ces.2003.09.034_BIB19
  article-title: A kinetic model for the enzyme-catalysed self epoxidation of oleic acid
  publication-title: Journal of American Oil Chemists Society
  doi: 10.1007/s11746-001-0267-2
SSID ssj0007710
Score 2.1057765
Snippet Immobilized lipase-catalyzed synthesis of tetrahydrofurfuryl butyrate is reported in this paper. Esterification and transesterification of tetrahydrofurfuryl...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 373
SubjectTerms Applied sciences
Butyric acid
Chemical engineering
Esterification
Ethyl butyrate
Exact sciences and technology
Inhibition
Kinetics
Miscellaneous
Ping-pong bi–bi mechanism
Tetrahydrofurfuryl alcohol
Tetrahydrofurfuryl butyrate
Transesterification
Title Immobilized lipase-catalysed esterification and transesterification reactions in non-aqueous media for the synthesis of tetrahydrofurfuryl butyrate: comparison and kinetic modeling
URI https://dx.doi.org/10.1016/j.ces.2003.09.034
https://www.proquest.com/docview/28239814
Volume 59
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKewEhxFMsj8UHTkihzjrrjblVFdUWRE9U6s1ybEeErrKrJnsIB34VP5BvnGShIHpAihTJiuNJZjyPZOYbxl5TlyMtS0Sqi9k8yeBxJxYxWyKyQnnldfAFFQp_OlPL8-zDxfxijx2PtTCUVjno_l6nR209jBwOb_NwU1VU4ys0DLgWhLguqIbrYCa1gmgfHJ1-XJ7tFPJikYqxoRpNGH9uxjQv7MaICtqjnWb_Mk93N7bBSyv7bhd_Ke5ojU7us3uDG8mPekofsL1QP2R3fgMXfMR-nELEKPX1W_B8VeHOIYkfa7oGAxEggdKEIme4rT1vyWz9MQ6XMhY-NLyqeb2uEwty1tuGx4oTDo-Xw4PkTVfj1FQNX5e8DbjTl85Dw2-vcHQrXmzbjjAp3nG363sY17wEvXgEHhvygOzH7Pzk_efjZTL0aEic1LJNEJ3IFLwqlVsUoSh1oKBI-dTB0HlXzp21iL8xEnKZOZUXeu61sEGrvExdLp-wfVAfnjKurM1lkNrOnMy8ElbnhCWjch1USAs9YWJkjXEDgDn10ViZMVPtqwE3qbGmNEIbcHPC3uymbHr0jpsuzkZ-m2siaGBdbpo2vSYbvxYimAHEnxP2ahQWg71LP2RsTawyCHelztPs2f-t_Jzd7vOI6IPQC7bfXm3DS7hIbTFlt95-T6fDRvgJYtEWnQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqcgCEEE-xBVofOCGFJrXXG3NDFdUW2p5aqTfLsR2RssqumuwhHPqr-IF84yQtBdEDUqRIVhJPMp6XM_MNY--oy5EWJSLV2d40kfC4E4uYLUllobzyOviCCoWPT9T8TH45n55vsP2xFobSKgfd3-v0qK2Hkd3ha-6uqopqfFMNA65TQlxPqYbrnoT4knR-uLrJ85jNsnRsp0aXj782Y5IXZDFigvZYp_JfxunRyjb4ZGXf6-IvtR1t0cET9nhwIvmnns6nbCPUz9jD36AFn7Ofh1hglPj6I3i-qPDkkMStmq7BQIRHoCShyBdua89bMlp_jMOhjGUPDa9qXi_rxIKc5brhsd6Ew9_l8B9509U4NVXDlyVvA570rfPQ7-tLHN2CF-u2I0SKj9xddz2Mc34HvXgFHtvxgOwX7Ozg8-n-PBk6NCROaNEmiE1EBk6Vys2KUJQ6UEikfOZg5rwrp85aRN8YCbmQTuWFnnqd2qBVXmYuFy_ZJqgPrxhX1uYiCG33nJBepVbnhCSjch1UyAo9YenIGuMG-HLqorEwY57ahQE3qa2mMKk24OaEvb--ZdVjd9x1sRz5bW4tQAPbctdt27fWxs1EBDKA6HPCdsbFYiC59DvG1sQqg2BX6DyTW_838w67Pz89PjJHhydfX7MHfUYRbQ29YZvt5Tq8hbPUFttRGH4BuHwXYQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Immobilized+lipase-catalysed+esterification+and+transesterification+reactions+in+non-aqueous+media+for+the+synthesis+of+tetrahydrofurfuryl+butyrate%3A+comparison+and+kinetic+modeling&rft.jtitle=Chemical+engineering+science&rft.au=YADAV%2C+Ganapati+D&rft.au=DEVI%2C+K.+Manjula&rft.date=2004&rft.pub=Elsevier&rft.issn=0009-2509&rft.volume=59&rft.issue=2&rft.spage=373&rft.epage=383&rft_id=info:doi/10.1016%2Fj.ces.2003.09.034&rft.externalDBID=n%2Fa&rft.externalDocID=15431495
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0009-2509&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0009-2509&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0009-2509&client=summon