Immobilized lipase-catalysed esterification and transesterification reactions in non-aqueous media for the synthesis of tetrahydrofurfuryl butyrate: comparison and kinetic modeling
Immobilized lipase-catalyzed synthesis of tetrahydrofurfuryl butyrate is reported in this paper. Esterification and transesterification of tetrahydrofurfuryl alcohol (THFA) with butyric acid (BA) and transesterification with ethyl butyrate (EB) to prepare tetrahydrofurfuryl butyrate (THFB) were stud...
Saved in:
Published in | Chemical engineering science Vol. 59; no. 2; pp. 373 - 383 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Oxford
Elsevier Ltd
2004
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 0009-2509 1873-4405 |
DOI | 10.1016/j.ces.2003.09.034 |
Cover
Loading…
Abstract | Immobilized lipase-catalyzed synthesis of tetrahydrofurfuryl butyrate is reported in this paper. Esterification and transesterification of tetrahydrofurfuryl alcohol (THFA) with butyric acid (BA) and transesterification with ethyl butyrate (EB) to prepare tetrahydrofurfuryl butyrate (THFB) were studied systematically including kinetic modeling. A series of immobilized lipases such as Novozym 435, Lipozyme IM 20,
Pseudomonas species lipase on toyonite (PSL/Toyo),
Candida rugosa lipase (CRL) on polypropylene, CRL on egg shells and CRL on celite were screened to establish that Novozym 435 was the best catalyst for both esterification and transesterification at 30°C. The effects of various parameters on reaction rates were studied in detail for both reactions with Novozym 435. The ping-pong bi–bi mechanism with inhibition by the substrate THFA fits the data for esterification whereas the ping-pong bi–bi mechanism with inhibition by both the reactants (THFA and EB) and both the products (THFB and ethanol) is valid for the transesterification reaction. The kinetic parameters deduced from these models were used to simulate the conversions, which are in good agreement with the experimental values. Since transesterification suffers inhibition by both the substrates and products, esterification is a better method compared to transesterification. |
---|---|
AbstractList | Immobilized lipase-catalyzed synthesis of tetrahydrofurfuryl butyrate is reported in this paper. Esterification and transesterification of tetrahydrofurfuryl alcohol (THFA) with butyric acid (BA) and transesterification with ethyl butyrate (EB) to prepare tetrahydrofurfuryl butyrate (THFB) were studied systematically including kinetic modeling. A series of immobilized lipases such as Novozym 435, Lipozyme IM 20,
Pseudomonas species lipase on toyonite (PSL/Toyo),
Candida rugosa lipase (CRL) on polypropylene, CRL on egg shells and CRL on celite were screened to establish that Novozym 435 was the best catalyst for both esterification and transesterification at 30°C. The effects of various parameters on reaction rates were studied in detail for both reactions with Novozym 435. The ping-pong bi–bi mechanism with inhibition by the substrate THFA fits the data for esterification whereas the ping-pong bi–bi mechanism with inhibition by both the reactants (THFA and EB) and both the products (THFB and ethanol) is valid for the transesterification reaction. The kinetic parameters deduced from these models were used to simulate the conversions, which are in good agreement with the experimental values. Since transesterification suffers inhibition by both the substrates and products, esterification is a better method compared to transesterification. Immobilized lipase-catalyzed synthesis of tetrahydrofurfuryl butyrate is reported in this paper. Esterification and transesterification of tetrahydrofurfuryl alcohol (THFA) with butyric acid (BA) and transesterification with ethyl butyrate (EB) to prepare tetrahydrofurfuryl butyrate (THFB) were studied systematically including kinetic modeling. A series of immobilized lipases such as Novozym 435, Lipozyme IM 20, Pseudomonas species lipase on toyonite (PSL/Toyo), Candida rugosa lipase (CRL) on polypropylene, CRL on egg shells and CRL on celite were screened to establish that Novozym 435 was the best catalyst for both esterification and transesterification at 30DGC. The effects of various parameters on reaction rates were studied in detail for both reactions with Novozym 435. The ping-pong bi-bi mechanism with inhibition by the substrate THFA fits the data for esterification whereas the ping-pong bi-bi mechanism with inhibition by both the reactants (THFA and EB) and both the products (THFB and ethanol) is valid for the transesterification reaction. The kinetic parameters deduced from these models were used to simulate the conversions, which are in good agreement with the experimental values. Since transesterification suffers inhibition by both the substrates and products, esterification is a better method compared to transesterification. |
Author | Devi, K.Manjula Yadav, Ganapati D. |
Author_xml | – sequence: 1 givenname: Ganapati D. surname: Yadav fullname: Yadav, Ganapati D. email: gdyadav@yahoo.com, gdyadav@hotmail.com – sequence: 2 givenname: K.Manjula surname: Devi fullname: Devi, K.Manjula |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15431495$$DView record in Pascal Francis |
BookMark | eNp9UctuFDEQtFCQ2AQ-gJsvcJuJPW_DCUU8IkXiAmfLa7dJLzP24vYiTb6LD8TLrjjkEMlS26WqbnfVJbsIMQBjr6WopZDD9a62QHUjRFsLVYu2e8Y2chrbqutEf8E2QghVNb1QL9gl0a48x1GKDftzuyxxizM-gOMz7g1BZU0280oFAMqQ0GNBMAZuguM5mUCP8ATGHi_EMfDyscr8OkA8EF_AoeE-Jp7vgdMaSiEkHj3PUDrdry5Ff0jlrDPfHvKaTIZ33MZlbxLSeeZPDJDR8iU6mDH8eMmeezMTvDrXK_b908dvN1-qu6-fb28-3FW2VW2upmZopQXnBztuYesVFBOGwUnbNcpZ31tjlBgLAlPb2WHaqt4pYUANk5d2aq_Y21PffYplI8p6QbIwzyYc19PN1LRqkl0hvjkTDVkz--KRRdL7hItJq5Z918pO9YU3nng2RaIEXlvM_zwsZuCspdDHNPVOlzT1MU0tlC5pFqV8pPzf_AnN-5MGike_EZImixCKI5jAZu0iPqH-C5_TwQ8 |
CODEN | CESCAC |
CitedBy_id | crossref_primary_10_1016_j_cjche_2014_09_024 crossref_primary_10_1007_s12039_017_1391_2 crossref_primary_10_1016_j_bej_2008_11_002 crossref_primary_10_1021_ie800193f crossref_primary_10_4236_gsc_2017_71004 crossref_primary_10_1016_j_cattod_2012_05_006 crossref_primary_10_1002_ejoc_201301243 crossref_primary_10_1016_j_cej_2012_03_064 crossref_primary_10_1515_ijcre_2014_0058 crossref_primary_10_4236_ns_2013_59127 crossref_primary_10_1515_gps_2017_0135 crossref_primary_10_1016_j_enzmictec_2005_08_013 crossref_primary_10_1016_j_biteb_2020_100519 crossref_primary_10_1007_s00449_014_1267_5 crossref_primary_10_1002_jctb_1897 crossref_primary_10_3923_biotech_2006_62_68 crossref_primary_10_1002_aic_10700 crossref_primary_10_1016_j_molcatb_2012_06_011 crossref_primary_10_1007_s11274_006_9320_4 crossref_primary_10_1016_j_molcatb_2014_08_001 crossref_primary_10_1080_15435075_2013_853177 crossref_primary_10_1002_jctb_6030 crossref_primary_10_1021_ie2012032 crossref_primary_10_1590_0001_3765202220211267 crossref_primary_10_1016_j_jtice_2016_10_054 crossref_primary_10_1016_j_biortech_2012_01_030 crossref_primary_10_1007_s00253_012_4183_0 crossref_primary_10_1016_j_fuproc_2009_05_016 crossref_primary_10_1016_j_jics_2024_101258 crossref_primary_10_1016_j_cej_2007_05_034 crossref_primary_10_1016_j_procbio_2008_08_010 crossref_primary_10_1016_j_molcata_2003_09_050 crossref_primary_10_1016_j_molcatb_2016_04_008 crossref_primary_10_1007_s11164_016_2689_2 crossref_primary_10_3390_biom10010070 crossref_primary_10_1039_C9RA05808G crossref_primary_10_1007_s10098_006_0082_3 crossref_primary_10_1016_j_msec_2014_09_026 crossref_primary_10_1007_s10570_012_9718_0 crossref_primary_10_1016_j_jiec_2015_07_007 crossref_primary_10_1016_j_fuel_2013_09_065 crossref_primary_10_1016_j_renene_2019_11_110 crossref_primary_10_1007_s10562_010_0479_9 crossref_primary_10_1016_j_enzmictec_2009_03_004 crossref_primary_10_1016_j_molcatb_2013_10_024 crossref_primary_10_1016_j_molcatb_2004_10_003 crossref_primary_10_1021_acsomega_8b01428 crossref_primary_10_1271_bbb_110117 crossref_primary_10_1016_j_mcat_2018_09_019 crossref_primary_10_1016_j_molcatb_2012_09_013 crossref_primary_10_1007_s00217_012_1819_3 crossref_primary_10_1021_ef9009313 crossref_primary_10_1002_jctb_5125 crossref_primary_10_1007_s10562_012_0902_5 crossref_primary_10_1016_j_enzmictec_2009_11_008 crossref_primary_10_1002_kin_21629 crossref_primary_10_1016_j_procbio_2010_05_004 crossref_primary_10_1371_journal_pone_0133857 crossref_primary_10_1016_j_molcatb_2006_02_016 crossref_primary_10_1016_j_molcatb_2011_02_012 crossref_primary_10_1002_elsc_200900097 crossref_primary_10_1016_j_enzmictec_2018_01_008 crossref_primary_10_1007_s00449_018_2023_z crossref_primary_10_1263_jbb_103_122 crossref_primary_10_3390_catal11091121 crossref_primary_10_1002_jctb_1975 crossref_primary_10_1007_s12010_009_8696_7 crossref_primary_10_1007_s10562_017_2046_0 crossref_primary_10_1080_10242422_2019_1664480 crossref_primary_10_1007_s10098_005_0012_9 crossref_primary_10_1002_ffj_3502 crossref_primary_10_1016_j_indcrop_2015_11_031 crossref_primary_10_3389_fbioe_2021_817023 crossref_primary_10_1002_jctb_1738 crossref_primary_10_1007_s12010_019_03098_8 crossref_primary_10_1016_j_ces_2009_04_003 crossref_primary_10_1111_1750_3841_16618 crossref_primary_10_1080_10826068_2016_1201681 crossref_primary_10_1016_j_molcatb_2013_05_017 crossref_primary_10_1016_j_molcatb_2012_05_011 crossref_primary_10_1081_SCC_200061687 crossref_primary_10_3136_fstr_20_207 crossref_primary_10_3390_catal10101216 crossref_primary_10_1016_j_procbio_2016_12_011 crossref_primary_10_1515_ijcre_2017_0179 crossref_primary_10_1039_D4RA03290J crossref_primary_10_1016_j_foodchem_2025_143151 crossref_primary_10_1016_j_cherd_2018_08_025 crossref_primary_10_1016_j_bcab_2018_02_012 crossref_primary_10_1002_bab_1859 crossref_primary_10_1016_j_molcatb_2012_05_007 crossref_primary_10_1016_j_cattod_2012_04_052 crossref_primary_10_1021_ie402069c crossref_primary_10_1016_j_supflu_2009_05_003 crossref_primary_10_1007_s13197_017_2725_2 crossref_primary_10_1016_j_foodchem_2021_130650 crossref_primary_10_1016_j_procbio_2023_06_011 crossref_primary_10_1002_jctb_1237 crossref_primary_10_1016_j_foodchem_2022_133949 crossref_primary_10_1021_ie070889t crossref_primary_10_1007_s11356_019_05833_4 crossref_primary_10_1016_j_jbiotec_2005_11_006 crossref_primary_10_1007_s00449_018_1892_5 crossref_primary_10_1016_j_cep_2019_107605 |
Cites_doi | 10.1007/BF00282141 10.1016/S0021-9258(18)68435-2 10.1016/0141-8130(83)90047-8 10.1016/S0009-2509(99)00092-5 10.1016/S1369-703X(03)00026-3 10.1016/0141-0229(92)90110-A 10.1007/BF01027127 10.1002/bit.10008 10.1002/bit.10117 10.1007/s002530051410 10.1016/S0141-0229(03)00064-4 10.1016/0167-4838(92)90278-L 10.1016/0141-0229(93)90123-J 10.1016/S1369-703X(03)00125-6 10.1016/S1369-703X(01)00164-4 10.1146/annurev.bi.52.070183.001403 10.1007/s11746-001-0267-2 |
ContentType | Journal Article |
Copyright | 2003 Elsevier Ltd 2004 INIST-CNRS |
Copyright_xml | – notice: 2003 Elsevier Ltd – notice: 2004 INIST-CNRS |
DBID | AAYXX CITATION IQODW 8FD F28 FR3 |
DOI | 10.1016/j.ces.2003.09.034 |
DatabaseName | CrossRef Pascal-Francis Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database |
DatabaseTitle | CrossRef Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database |
DatabaseTitleList | Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Applied Sciences |
EISSN | 1873-4405 |
EndPage | 383 |
ExternalDocumentID | 15431495 10_1016_j_ces_2003_09_034 S0009250903005001 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 29B 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABFRF ABJNI ABMAC ABNUV ABTAH ABXDB ABYKQ ACBEA ACDAQ ACGFO ACGFS ACNCT ACRLP ADBBV ADEWK ADEZE ADMUD AEBSH AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHPOS AI. AIDUJ AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA HLY HVGLF HZ~ IHE J1W KOM LX7 M41 MO0 N9A NDZJH O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SC5 SCE SDF SDG SDP SES SEW SPC SPCBC SSG SSZ T5K T9H VH1 WUQ XFK XPP Y6R ZMT ZY4 ~02 ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH EFKBS IQODW 8FD F28 FR3 |
ID | FETCH-LOGICAL-c393t-82631cedf6c7bebf9e00966d1c429dcf5caa90766de834c68b95d90ae968f1c83 |
IEDL.DBID | AIKHN |
ISSN | 0009-2509 |
IngestDate | Wed Jul 30 11:10:14 EDT 2025 Mon Jul 21 09:13:37 EDT 2025 Thu Apr 24 23:08:09 EDT 2025 Tue Jul 01 01:15:57 EDT 2025 Fri Feb 23 02:32:42 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Transesterification Kinetics Inhibition Ethyl butyrate Tetrahydrofurfuryl alcohol Esterification Tetrahydrofurfuryl butyrate Butyric acid Ping-pong bi–bi mechanism Enzymatic catalysis Kinetic parameter Reaction rate Immobilized enzyme Modeling Catalyst |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c393t-82631cedf6c7bebf9e00966d1c429dcf5caa90766de834c68b95d90ae968f1c83 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PQID | 28239814 |
PQPubID | 23500 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_28239814 pascalfrancis_primary_15431495 crossref_citationtrail_10_1016_j_ces_2003_09_034 crossref_primary_10_1016_j_ces_2003_09_034 elsevier_sciencedirect_doi_10_1016_j_ces_2003_09_034 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2004 2004-01-00 20040101 |
PublicationDateYYYYMMDD | 2004-01-01 |
PublicationDate_xml | – year: 2004 text: 2004 |
PublicationDecade | 2000 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Chemical engineering science |
PublicationYear | 2004 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Rizzi, Stylos, Riek (BIB11) 1992; 14 Fogler (BIB2) 1995 Hennipman, Romein, Straathof (BIB4) 1998 Yadav, Manjula Devi (BIB19) 2001; 78 Yadav, G.D., Trivedi, A.H., 2003. Kinetic modeling of immobilized-lipase catalyzed transesterification of octanol with vinyl acetate in non-aqueous media, Enzyme and Microbial Technology 32 (7), 783–789. Perry, R.H., Green, D.W. (Eds.), 1984. Perry's Chemical Engineers’ Hand Book, 6th Edition. McGraw-Hill, New York, pp. 3–287. Kostraby, Smallridge, Trewhella (BIB6) 2002; 77 Yadav, Krishnan (BIB17) 1999; 54 Segel, I.H., 1975. Enzyme Kinetics. John Wiley & Sons, New York, pp. 607–623. Heinsman, Valente, Smienk, van der Padt, Franssen, de Groot, van't Riet (BIB3) 2001; 76 Yadav, G.D., Manjula Devi, K., 2003. Kinetic of hydrolysis of tetrahydrofurfuryl butyrate in a three phase system containing immobilized lipase from Zaks, Klibanov (BIB23) 1988; 263 Valivety, Halling, Macrea (BIB15) 1992; 1118 Langrand, Triantaphylides, Baratti (BIB7) 1988; 10 Yadav, Manjula Devi (BIB20) 2002; 10 Santaniello, Ferraboschi, Grisenti (BIB12) 1993; 15 Yadav, G.D., Lathi, P.S., 2003. Kinetics and mechanism of synthesis of butyl isobutyrate over immobilised lipases. Biochemical Engineering Journal 16 (3), 245–252. Poole, Finney (BIB9) 1983; 5 Finney, J.L., Poole, P.L., 1984. Protein hydration and enzyme activity: the role of hydration induced conformation & dynamic change in the activity of lysozome, Comments. Molecular and Cellular Biophysics 2, 129–151. Tramper, L.C.J., Lilly, M.D. (Eds.), 1987. Biocatalysis in Organic Solvents. Elsevier Publications, Amsterdam, pp. 147–153. Weber, Klein, Mukherjee (BIB16) 1999; 51 Karplus, McCammon (BIB5) 1983; 52 Reslow, Adlercreutz, Mattiasson (BIB10) 1987; 26 Biochemical Engineering Journal, in press. Hennipman (10.1016/j.ces.2003.09.034_BIB4) 1998 Yadav (10.1016/j.ces.2003.09.034_BIB17) 1999; 54 Karplus (10.1016/j.ces.2003.09.034_BIB5) 1983; 52 Langrand (10.1016/j.ces.2003.09.034_BIB7) 1988; 10 Valivety (10.1016/j.ces.2003.09.034_BIB15) 1992; 1118 10.1016/j.ces.2003.09.034_BIB1 Santaniello (10.1016/j.ces.2003.09.034_BIB12) 1993; 15 Yadav (10.1016/j.ces.2003.09.034_BIB19) 2001; 78 Weber (10.1016/j.ces.2003.09.034_BIB16) 1999; 51 Fogler (10.1016/j.ces.2003.09.034_BIB2) 1995 10.1016/j.ces.2003.09.034_BIB14 10.1016/j.ces.2003.09.034_BIB8 10.1016/j.ces.2003.09.034_BIB13 Heinsman (10.1016/j.ces.2003.09.034_BIB3) 2001; 76 10.1016/j.ces.2003.09.034_BIB22 10.1016/j.ces.2003.09.034_BIB18 Reslow (10.1016/j.ces.2003.09.034_BIB10) 1987; 26 Rizzi (10.1016/j.ces.2003.09.034_BIB11) 1992; 14 Poole (10.1016/j.ces.2003.09.034_BIB9) 1983; 5 Yadav (10.1016/j.ces.2003.09.034_BIB20) 2002; 10 10.1016/j.ces.2003.09.034_BIB21 Zaks (10.1016/j.ces.2003.09.034_BIB23) 1988; 263 Kostraby (10.1016/j.ces.2003.09.034_BIB6) 2002; 77 |
References_xml | – volume: 54 start-page: 4189 year: 1999 end-page: 4197 ident: BIB17 article-title: Acylation of 2-Methoxynaphthalene publication-title: Chemical Engineering Science – volume: 52 start-page: 263 year: 1983 end-page: 300 ident: BIB5 article-title: Dynamics of proteins—elements and function publication-title: Annual Reviews in Biochemistry – year: 1998 ident: BIB4 publication-title: ENCORA version 1.1b – reference: Yadav, G.D., Manjula Devi, K., 2003. Kinetic of hydrolysis of tetrahydrofurfuryl butyrate in a three phase system containing immobilized lipase from – volume: 10 start-page: 93 year: 2002 end-page: 101 ident: BIB20 article-title: Enzymatic synthesis of perlauric acid using Novozym 435 publication-title: Biochemical Engineering Journal – volume: 14 start-page: 709 year: 1992 ident: BIB11 article-title: A kinetic-study of immobilized lipase catalyzing the synthesis of isoamyl acetate by transesterification in normal-hexane publication-title: Enzyme and Microbial Technology – volume: 76 start-page: 193 year: 2001 ident: BIB3 article-title: The effect of ethanol on the kinetics of lipase-mediated enantioselective esterification of 4-methyloctanoic acid and the hydrolysis of its ethyl ester publication-title: Biotechnology and Bioengineering – reference: Segel, I.H., 1975. Enzyme Kinetics. John Wiley & Sons, New York, pp. 607–623. – volume: 5 start-page: 308 year: 1983 ident: BIB9 article-title: Hydration-induced conformational and flexibility changes in lysozyme at low water-content publication-title: International Journal of Biological Macromolecules – volume: 15 start-page: 367 year: 1993 end-page: 382 ident: BIB12 article-title: Lipase-catalyzed transesterification in organic solvents. Applications to the preparation of enantiomerically pure compounds publication-title: Enzyme and Microbial Technology – volume: 1118 start-page: 218 year: 1992 end-page: 222 ident: BIB15 article-title: Reaction rate with suspended lipase catalyst shows similar dependence on water activity in different organic solvents publication-title: Biochimica et Biophysica Acta – year: 1995 ident: BIB2 publication-title: Elements of Chemical Reaction Engineering – reference: . Biochemical Engineering Journal, in press. – volume: 10 start-page: 549 year: 1988 end-page: 554 ident: BIB7 article-title: Lipase-catalyzed formation of flavour esters publication-title: Biotechnology Letters – volume: 78 start-page: 347 year: 2001 end-page: 351 ident: BIB19 article-title: A kinetic model for the enzyme-catalysed self epoxidation of oleic acid publication-title: Journal of American Oil Chemists Society – volume: 77 start-page: 827 year: 2002 ident: BIB6 article-title: Yeast-mediated preparation of I-PAC in an organic solvent publication-title: Biotechnology and Bioengineering – reference: Yadav, G.D., Trivedi, A.H., 2003. Kinetic modeling of immobilized-lipase catalyzed transesterification of – reference: Tramper, L.C.J., Lilly, M.D. (Eds.), 1987. Biocatalysis in Organic Solvents. Elsevier Publications, Amsterdam, pp. 147–153. – volume: 51 start-page: 401 year: 1999 ident: BIB16 article-title: Long-chain acyl thioesters prepared by solvent-free thioesterification and transthioesterification catalysed by microbial lipases publication-title: Applied Microbiology and Biotechnology – reference: Perry, R.H., Green, D.W. (Eds.), 1984. Perry's Chemical Engineers’ Hand Book, 6th Edition. McGraw-Hill, New York, pp. 3–287. – reference: Finney, J.L., Poole, P.L., 1984. Protein hydration and enzyme activity: the role of hydration induced conformation & dynamic change in the activity of lysozome, Comments. Molecular and Cellular Biophysics 2, 129–151. – reference: Yadav, G.D., Lathi, P.S., 2003. Kinetics and mechanism of synthesis of butyl isobutyrate over immobilised lipases. Biochemical Engineering Journal 16 (3), 245–252. – reference: -octanol with vinyl acetate in non-aqueous media, Enzyme and Microbial Technology 32 (7), 783–789. – volume: 26 start-page: 1 year: 1987 end-page: 12 ident: BIB10 article-title: Organic-solvents for bioorganic synthesis. 1. Optimization of parameters for a chymotrypsin catalyzed process publication-title: Applied Microbiology and Biotechnology – volume: 263 start-page: 8017 year: 1988 end-page: 8021 ident: BIB23 article-title: The effect of water on enzyme action in organic media publication-title: Journal of Biological Chemistry – volume: 26 start-page: 1 year: 1987 ident: 10.1016/j.ces.2003.09.034_BIB10 article-title: Organic-solvents for bioorganic synthesis. 1. Optimization of parameters for a chymotrypsin catalyzed process publication-title: Applied Microbiology and Biotechnology doi: 10.1007/BF00282141 – ident: 10.1016/j.ces.2003.09.034_BIB14 – volume: 263 start-page: 8017 year: 1988 ident: 10.1016/j.ces.2003.09.034_BIB23 article-title: The effect of water on enzyme action in organic media publication-title: Journal of Biological Chemistry doi: 10.1016/S0021-9258(18)68435-2 – ident: 10.1016/j.ces.2003.09.034_BIB13 – volume: 5 start-page: 308 issue: 5 year: 1983 ident: 10.1016/j.ces.2003.09.034_BIB9 article-title: Hydration-induced conformational and flexibility changes in lysozyme at low water-content publication-title: International Journal of Biological Macromolecules doi: 10.1016/0141-8130(83)90047-8 – volume: 54 start-page: 4189 year: 1999 ident: 10.1016/j.ces.2003.09.034_BIB17 article-title: Acylation of 2-Methoxynaphthalene publication-title: Chemical Engineering Science doi: 10.1016/S0009-2509(99)00092-5 – ident: 10.1016/j.ces.2003.09.034_BIB18 doi: 10.1016/S1369-703X(03)00026-3 – volume: 14 start-page: 709 year: 1992 ident: 10.1016/j.ces.2003.09.034_BIB11 article-title: A kinetic-study of immobilized lipase catalyzing the synthesis of isoamyl acetate by transesterification in normal-hexane publication-title: Enzyme and Microbial Technology doi: 10.1016/0141-0229(92)90110-A – ident: 10.1016/j.ces.2003.09.034_BIB1 – volume: 10 start-page: 549 issue: 8 year: 1988 ident: 10.1016/j.ces.2003.09.034_BIB7 article-title: Lipase-catalyzed formation of flavour esters publication-title: Biotechnology Letters doi: 10.1007/BF01027127 – volume: 76 start-page: 193 year: 2001 ident: 10.1016/j.ces.2003.09.034_BIB3 article-title: The effect of ethanol on the kinetics of lipase-mediated enantioselective esterification of 4-methyloctanoic acid and the hydrolysis of its ethyl ester publication-title: Biotechnology and Bioengineering doi: 10.1002/bit.10008 – volume: 77 start-page: 827 year: 2002 ident: 10.1016/j.ces.2003.09.034_BIB6 article-title: Yeast-mediated preparation of I-PAC in an organic solvent publication-title: Biotechnology and Bioengineering doi: 10.1002/bit.10117 – volume: 51 start-page: 401 year: 1999 ident: 10.1016/j.ces.2003.09.034_BIB16 article-title: Long-chain acyl thioesters prepared by solvent-free thioesterification and transthioesterification catalysed by microbial lipases publication-title: Applied Microbiology and Biotechnology doi: 10.1007/s002530051410 – ident: 10.1016/j.ces.2003.09.034_BIB8 – year: 1995 ident: 10.1016/j.ces.2003.09.034_BIB2 – ident: 10.1016/j.ces.2003.09.034_BIB22 doi: 10.1016/S0141-0229(03)00064-4 – volume: 1118 start-page: 218 year: 1992 ident: 10.1016/j.ces.2003.09.034_BIB15 article-title: Reaction rate with suspended lipase catalyst shows similar dependence on water activity in different organic solvents publication-title: Biochimica et Biophysica Acta doi: 10.1016/0167-4838(92)90278-L – volume: 15 start-page: 367 year: 1993 ident: 10.1016/j.ces.2003.09.034_BIB12 article-title: Lipase-catalyzed transesterification in organic solvents. Applications to the preparation of enantiomerically pure compounds publication-title: Enzyme and Microbial Technology doi: 10.1016/0141-0229(93)90123-J – ident: 10.1016/j.ces.2003.09.034_BIB21 doi: 10.1016/S1369-703X(03)00125-6 – volume: 10 start-page: 93 issue: 2 year: 2002 ident: 10.1016/j.ces.2003.09.034_BIB20 article-title: Enzymatic synthesis of perlauric acid using Novozym 435 publication-title: Biochemical Engineering Journal doi: 10.1016/S1369-703X(01)00164-4 – volume: 52 start-page: 263 year: 1983 ident: 10.1016/j.ces.2003.09.034_BIB5 article-title: Dynamics of proteins—elements and function publication-title: Annual Reviews in Biochemistry doi: 10.1146/annurev.bi.52.070183.001403 – year: 1998 ident: 10.1016/j.ces.2003.09.034_BIB4 – volume: 78 start-page: 347 year: 2001 ident: 10.1016/j.ces.2003.09.034_BIB19 article-title: A kinetic model for the enzyme-catalysed self epoxidation of oleic acid publication-title: Journal of American Oil Chemists Society doi: 10.1007/s11746-001-0267-2 |
SSID | ssj0007710 |
Score | 2.1057765 |
Snippet | Immobilized lipase-catalyzed synthesis of tetrahydrofurfuryl butyrate is reported in this paper. Esterification and transesterification of tetrahydrofurfuryl... |
SourceID | proquest pascalfrancis crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 373 |
SubjectTerms | Applied sciences Butyric acid Chemical engineering Esterification Ethyl butyrate Exact sciences and technology Inhibition Kinetics Miscellaneous Ping-pong bi–bi mechanism Tetrahydrofurfuryl alcohol Tetrahydrofurfuryl butyrate Transesterification |
Title | Immobilized lipase-catalysed esterification and transesterification reactions in non-aqueous media for the synthesis of tetrahydrofurfuryl butyrate: comparison and kinetic modeling |
URI | https://dx.doi.org/10.1016/j.ces.2003.09.034 https://www.proquest.com/docview/28239814 |
Volume | 59 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKewEhxFMsj8UHTkihzjrrjblVFdUWRE9U6s1ybEeErrKrJnsIB34VP5BvnGShIHpAihTJiuNJZjyPZOYbxl5TlyMtS0Sqi9k8yeBxJxYxWyKyQnnldfAFFQp_OlPL8-zDxfxijx2PtTCUVjno_l6nR209jBwOb_NwU1VU4ys0DLgWhLguqIbrYCa1gmgfHJ1-XJ7tFPJikYqxoRpNGH9uxjQv7MaICtqjnWb_Mk93N7bBSyv7bhd_Ke5ojU7us3uDG8mPekofsL1QP2R3fgMXfMR-nELEKPX1W_B8VeHOIYkfa7oGAxEggdKEIme4rT1vyWz9MQ6XMhY-NLyqeb2uEwty1tuGx4oTDo-Xw4PkTVfj1FQNX5e8DbjTl85Dw2-vcHQrXmzbjjAp3nG363sY17wEvXgEHhvygOzH7Pzk_efjZTL0aEic1LJNEJ3IFLwqlVsUoSh1oKBI-dTB0HlXzp21iL8xEnKZOZUXeu61sEGrvExdLp-wfVAfnjKurM1lkNrOnMy8ElbnhCWjch1USAs9YWJkjXEDgDn10ViZMVPtqwE3qbGmNEIbcHPC3uymbHr0jpsuzkZ-m2siaGBdbpo2vSYbvxYimAHEnxP2ahQWg71LP2RsTawyCHelztPs2f-t_Jzd7vOI6IPQC7bfXm3DS7hIbTFlt95-T6fDRvgJYtEWnQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqcgCEEE-xBVofOCGFJrXXG3NDFdUW2p5aqTfLsR2RssqumuwhHPqr-IF84yQtBdEDUqRIVhJPMp6XM_MNY--oy5EWJSLV2d40kfC4E4uYLUllobzyOviCCoWPT9T8TH45n55vsP2xFobSKgfd3-v0qK2Hkd3ha-6uqopqfFMNA65TQlxPqYbrnoT4knR-uLrJ85jNsnRsp0aXj782Y5IXZDFigvZYp_JfxunRyjb4ZGXf6-IvtR1t0cET9nhwIvmnns6nbCPUz9jD36AFn7Ofh1hglPj6I3i-qPDkkMStmq7BQIRHoCShyBdua89bMlp_jMOhjGUPDa9qXi_rxIKc5brhsd6Ew9_l8B9509U4NVXDlyVvA570rfPQ7-tLHN2CF-u2I0SKj9xddz2Mc34HvXgFHtvxgOwX7Ozg8-n-PBk6NCROaNEmiE1EBk6Vys2KUJQ6UEikfOZg5rwrp85aRN8YCbmQTuWFnnqd2qBVXmYuFy_ZJqgPrxhX1uYiCG33nJBepVbnhCSjch1UyAo9YenIGuMG-HLqorEwY57ahQE3qa2mMKk24OaEvb--ZdVjd9x1sRz5bW4tQAPbctdt27fWxs1EBDKA6HPCdsbFYiC59DvG1sQqg2BX6DyTW_838w67Pz89PjJHhydfX7MHfUYRbQ29YZvt5Tq8hbPUFttRGH4BuHwXYQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Immobilized+lipase-catalysed+esterification+and+transesterification+reactions+in+non-aqueous+media+for+the+synthesis+of+tetrahydrofurfuryl+butyrate%3A+comparison+and+kinetic+modeling&rft.jtitle=Chemical+engineering+science&rft.au=YADAV%2C+Ganapati+D&rft.au=DEVI%2C+K.+Manjula&rft.date=2004&rft.pub=Elsevier&rft.issn=0009-2509&rft.volume=59&rft.issue=2&rft.spage=373&rft.epage=383&rft_id=info:doi/10.1016%2Fj.ces.2003.09.034&rft.externalDBID=n%2Fa&rft.externalDocID=15431495 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0009-2509&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0009-2509&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0009-2509&client=summon |