Hybrid PCM-steam thermal energy storage for industrial processes – Link between thermal phenomena and techno-economic performance through dynamic modelling
•A dynamic model for HyTES is implemented to estimate the performance and optimise the design.•The surpassing efficiency of HyTES arises from PCM latent heat and the superior performance of the steam accumulator in the hybrid system.•HyTES stores up to 45% more energy than a conventional steam accum...
Saved in:
Published in | Applied energy Vol. 331; p. 120358 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.02.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •A dynamic model for HyTES is implemented to estimate the performance and optimise the design.•The surpassing efficiency of HyTES arises from PCM latent heat and the superior performance of the steam accumulator in the hybrid system.•HyTES stores up to 45% more energy than a conventional steam accumulator.•The incorporation of HyTES leads to 5% reductions in CAPEX and stream generation cost.•The dominant design parameter for HyTES are the PCM latent heat and the charging time.
This study aims to assess the performance and economics of novel hybrid thermal energy storage (HyTES) for industrial applications, linking performance to thermal phenomena occurring within the system. The storage hybridisation concept is based on coupling latent heat storage modules containing high-temperature Phase Change Materials (PCMs) with a fast-response steam accumulator. Such hybrid storage, where heat is stored in both forms of steam and latent heat of PCMs, has the potential to capture excess heat produced by the steam generator of any industrial processes, which can then be used at peak times. HyTES performance is dynamically modelled during charging, idle, and discharging stages. The results show that the HyTES provides 14% extra energy storage capacity than the existing steam accumulator within an identical total volume. Furthermore, the study provides technical analysis of HyTES, and thorough comparison between configurations with different PCM volumes, PCM types and charging times. This is essential to ultimately quantify the whole range of benefit of hybrid energy storage. The sensitivity analysis reveals that Incorporating the HyTES significantly improves energy capacity, and the degree of improvement is mainly affected by the charge duration, approximately 15% after 1 h, and 45% after 4 h of charging. Furthermore, it is shown how the PCM properties affect the performance of HyTES. Finally, the CAPEX and O&M cost of the entire system are assessed in different scenarios and found to be 5% less when HyTES replaces the conventional SA. |
---|---|
AbstractList | This study aims to assess the performance and economics of novel hybrid thermal energy storage (HyTES) for industrial applications, linking performance to thermal phenomena occurring within the system. The storage hybridisation concept is based on coupling latent heat storage modules containing high-temperature Phase Change Materials (PCMs) with a fast-response steam accumulator. Such hybrid storage, where heat is stored in both forms of steam and latent heat of PCMs, has the potential to capture excess heat produced by the steam generator of any industrial processes, which can then be used at peak times. HyTES performance is dynamically modelled during charging, idle, and discharging stages. The results show that the HyTES provides 14% extra energy storage capacity than the existing steam accumulator within an identical total volume. Furthermore, the study provides technical analysis of HyTES, and thorough comparison between configurations with different PCM volumes, PCM types and charging times. This is essential to ultimately quantify the whole range of benefit of hybrid energy storage. The sensitivity analysis reveals that Incorporating the HyTES significantly improves energy capacity, and the degree of improvement is mainly affected by the charge duration, approximately 15% after 1 h, and 45% after 4 h of charging. Furthermore, it is shown how the PCM properties affect the performance of HyTES. Finally, the CAPEX and O&M cost of the entire system are assessed in different scenarios and found to be 5% less when HyTES replaces the conventional SA. •A dynamic model for HyTES is implemented to estimate the performance and optimise the design.•The surpassing efficiency of HyTES arises from PCM latent heat and the superior performance of the steam accumulator in the hybrid system.•HyTES stores up to 45% more energy than a conventional steam accumulator.•The incorporation of HyTES leads to 5% reductions in CAPEX and stream generation cost.•The dominant design parameter for HyTES are the PCM latent heat and the charging time. This study aims to assess the performance and economics of novel hybrid thermal energy storage (HyTES) for industrial applications, linking performance to thermal phenomena occurring within the system. The storage hybridisation concept is based on coupling latent heat storage modules containing high-temperature Phase Change Materials (PCMs) with a fast-response steam accumulator. Such hybrid storage, where heat is stored in both forms of steam and latent heat of PCMs, has the potential to capture excess heat produced by the steam generator of any industrial processes, which can then be used at peak times. HyTES performance is dynamically modelled during charging, idle, and discharging stages. The results show that the HyTES provides 14% extra energy storage capacity than the existing steam accumulator within an identical total volume. Furthermore, the study provides technical analysis of HyTES, and thorough comparison between configurations with different PCM volumes, PCM types and charging times. This is essential to ultimately quantify the whole range of benefit of hybrid energy storage. The sensitivity analysis reveals that Incorporating the HyTES significantly improves energy capacity, and the degree of improvement is mainly affected by the charge duration, approximately 15% after 1 h, and 45% after 4 h of charging. Furthermore, it is shown how the PCM properties affect the performance of HyTES. Finally, the CAPEX and O&M cost of the entire system are assessed in different scenarios and found to be 5% less when HyTES replaces the conventional SA. |
ArticleNumber | 120358 |
Author | Sciacovelli, Adriano Niknam, Pouriya H |
Author_xml | – sequence: 1 givenname: Pouriya H orcidid: 0000-0002-9804-5762 surname: Niknam fullname: Niknam, Pouriya H – sequence: 2 givenname: Adriano orcidid: 0000-0001-9684-3122 surname: Sciacovelli fullname: Sciacovelli, Adriano email: a.sciacovelli@bham.ac.uk |
BookMark | eNqFkc1uEzEUhS1UJNLCKyAvu5ngn8yMLbEoioAipYIFrC2PfSdxmLGntlOUHe_Aui_XJ8HRlC7YVF5cy_ecT773nKMzHzwg9JaSJSW0ebdf6gk8xO1xyQhjS8oIr8ULtKCiZZWkVJyhBeGkqVhD5St0ntKeEMKKboHur49ddBZ_W99UKYMecd5BHPWAZyROOUS9BdyHiJ23h5SjK90pBgMpQcIPv__gjfM_cQf5F4B_Akw78GEEr7H2FmcwOx8qMKE8OoMniAU5am-gOGI4bHfYHr0-9cZgYRic375GL3s9JHjzWC_Qj08fv6-vq83Xz1_WHzaV4ZLnqtWU1KLryKoljFhKGivYilMiTTmiMZ3UspZtU6-IXPWit7bcue163Qjet_wCXc7cMtbtAVJWo0um_EF7CIekOK25YFy2J-n7WWpiSClCr4zLOrvgc9RuUJSoUypqr_6lok6pqDmVYm_-s0_RjToenzdezUYoe7hzEFUyDsr2rItgsrLBPYf4C5cVsac |
CitedBy_id | crossref_primary_10_3390_app132413130 crossref_primary_10_1016_j_est_2024_112938 crossref_primary_10_1016_j_est_2023_108939 crossref_primary_10_1016_j_energy_2024_131988 crossref_primary_10_1016_j_est_2024_112633 crossref_primary_10_1016_j_apenergy_2024_123298 crossref_primary_10_1016_j_est_2024_113337 crossref_primary_10_1016_j_apenergy_2023_121300 crossref_primary_10_1016_j_est_2025_115938 crossref_primary_10_1155_2024_1050785 crossref_primary_10_3390_su15065511 crossref_primary_10_1016_j_est_2023_109840 crossref_primary_10_1016_j_energy_2023_129903 |
Cites_doi | 10.3390/en12050898 10.2298/TSCI171230270D 10.1016/j.spc.2021.10.026 10.1016/j.apenergy.2019.113364 10.3390/en13102532 10.1016/j.applthermaleng.2022.118994 10.1080/00022470.1969.10466491 10.1021/es403715z 10.1016/j.applthermaleng.2020.115495 10.1016/j.pecs.2015.10.003 10.1016/j.applthermaleng.2020.116448 10.1016/j.est.2019.03.010 10.1016/j.rser.2021.111088 10.1016/j.applthermaleng.2012.01.007 10.3390/su132011265 10.1016/j.est.2020.101747 10.1080/00295450.2021.1906473 10.3390/en12061014 10.1080/01457632.2014.935226 10.1016/j.energy.2007.03.004 10.1007/s00502-013-0151-3 10.1016/j.enconman.2014.01.006 10.1016/j.apenergy.2016.12.079 |
ContentType | Journal Article |
Copyright | 2022 The Author(s) |
Copyright_xml | – notice: 2022 The Author(s) |
DBID | 6I. AAFTH AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.apenergy.2022.120358 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Environmental Sciences Economics |
EISSN | 1872-9118 |
ExternalDocumentID | 10_1016_j_apenergy_2022_120358 S0306261922016154 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAFTH AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE JJJVA KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SES SPC SPCBC SSR SST SSZ T5K TN5 ~02 ~G- AAHBH AAQXK AATTM AAXKI AAYOK AAYWO AAYXX ABEFU ABFNM ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- RIG SAC SEW SSH WUQ ZY4 7S9 L.6 |
ID | FETCH-LOGICAL-c393t-7a1058bb047020d106d8243109c9c986cb9a9597654094f8fdd7653dbfa683f73 |
IEDL.DBID | .~1 |
ISSN | 0306-2619 |
IngestDate | Fri Jul 11 03:26:09 EDT 2025 Tue Jul 01 04:01:11 EDT 2025 Thu Apr 24 23:10:13 EDT 2025 Fri Feb 23 02:39:44 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Industry Thermal energy storage Phase change materials (PCM) Efficiency Hybridisation Steam accumulator |
Language | English |
License | This is an open access article under the CC BY license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c393t-7a1058bb047020d106d8243109c9c986cb9a9597654094f8fdd7653dbfa683f73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-9684-3122 0000-0002-9804-5762 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0306261922016154 |
PQID | 3153823977 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_3153823977 crossref_citationtrail_10_1016_j_apenergy_2022_120358 crossref_primary_10_1016_j_apenergy_2022_120358 elsevier_sciencedirect_doi_10_1016_j_apenergy_2022_120358 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-02-01 2023-02-00 20230201 |
PublicationDateYYYYMMDD | 2023-02-01 |
PublicationDate_xml | – month: 02 year: 2023 text: 2023-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Applied energy |
PublicationYear | 2023 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Kuznik, Opel, Osterland, Ruck (b0030) 2021 Fleiter T, Steinbach J, Ragwitz M. Mapping and analyses of the current and future (2020 - 2030) heating/cooling fuel deployment (fossil/renewables),” 2016. [Online]. Available: https://ec.europa.eu/energy/sites/ener/files/documents/mapping-hc-final_report-wp2.pdf. WSP and Parsons Brinckerhof. Industrial Decarbonisation & Energy Efficiency Roadmaps to 2050; Apr. 2015. Accessed: Feb. 25, 2022. [Online]. Available: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/416676/Ceramic_Report.pdf. Humbert, Roosendaal, Swanepoel, Navarro, Le Roux, Sciacovelli (b0115) 2022; 216 Dusek, Hofmann (b0090) 2018; 22 Buseth ER. Renewable Energy in Longyearbyen. NTNU, 2020. [Online]. Available: https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/2778263. EIA. Levelized Costs of New Generation Resources in the Annual Energy Outlook 2021; 2021. Hofmann, Dusek, Gruber, Drexler-Schmid (b0065) 2019; 12 Committee on Climate Change. “Net Zero The UK’s contribution to stopping global warming, London, May 2019. Accessed: Feb. 25, 2022. [Online]. Available: https://www.theccc.org.uk/wp-content/uploads/2019/05/Net-Zero-The-UKs-contribution-to-stopping-global-warming.pdf. PCMproducts. PlusICE Range - pcm products,” 2021. https://www.pcmproducts.net/files/PlusICE Range 2021-1.pdf. “Gas prices for non-household consumers - bi-annual data (from 2007 onwards),” Eurostat, 2022. https://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=nrg_pc_203&lang=en (accessed Aug. 31, 2022). Dusek, Hofmann, Gruber (b0050) 2019; 251 Pernsteiner, Kasper, Schirrer, Hofmann, Jakubek (b0055) 2020; 178 Yeh, Rubin (b0200) 2007; 32 Stevanovic, Maslovaric, Prica (b0100) 2012; 37 Towler, Sinnott (b0140) 2019 HM Government. Net Zero Strategy: Build Back Greener; 2021. Accessed: Feb. 25, 2022. [Online]. Available: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/1033990/net-zero-strategy-beis.pdf. Eurostat. Natural gas price statistics; 2022. https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Natural_gas_price_statistics. Zhang, Baeyens, Cáceres, Degrève, Lv (b0025) 2016; 53 . BELTRAN H. MODERN PORTFOLIO THEORY APPLIED TO ELECTRICITY GENERATION PLANNING. University of Illinois at Urbana-Champaign; 2008. [Online]. Available: https://core.ac.uk/reader/4821190. Lyons S. Industrial Fuel Switching Market Engagement Study. Cambridge CB5 8AQ. Chikri YA. Hybrid boiler systems in the Dutch industry. Delft University of Technology. [Online]. Available: https://repository.tudelft.nl/islandora/object/uuid%3A138874fa-32d2-4319-80fa-c089c3feef72. Mikkelson, Frick, Bragg-Sitton, Doster (b0155) 2022; 208 Haider, Werner (b0020) 2013; 130 Consortium M. MAGNITUDE D1.2 -Technology and case studies factsheets,” 2019. [Online]. Available: https://www.magnitude-project.eu/wp-content/uploads/2019/07/MAGNITUDE_D1.2_EIFER_Final_Submitted.pdf. Zauner, Hengstberger, Mörzinger, Hofmann, Walter (b0040) 2017; 189 Dusek, Hofmann (b0045) 2019; 12 Radcliffe J, Li Y. Thermal energy storage in Scotland; 2015. [Online]. Available: https://www.climatexchange.org.uk/media/1393/thermal_energy_storage_in_scotland.pdf. Stevanovic, Petrovic, Milivojevic, Maslovaric (b0120) 2015; 36 Wang, Yang, Dong, Morosuk, Tsatsaronis (b0145) 2014; 85 Kasper, Pernsteiner, Koller, Schirrer, Jakubek, Hofmann (b0060) 2021; 190 Al Siyabi, Khanna, Mallick, Sundaram (b0125) 2019; 23 Gibb D et al. Applications of Thermal Energy Storage in the Energy Transition – Benchmarks and Developments.” [Online]. Available: https://www.sintef.no/en/publications/publication/1646046/. Kauko H, Sevault A, Og AB, Drexler-Schmid G. Thermal storage for improved utilization of renewable energy in steam production. 2019. [Online]. Available: https://app.cristin.no/results/show.jsf?id=1744103. Walker, Lv, Masanet (b0085) 2013; 47 Fiorini industries. Fiorini industries catalogue – Price List 2016. Ding, Wu, Leung (b0035) 2021; 145 Venettacci, Cozzolino, Ponticelli, Guarino (b0070) 2022; 29 Çam (b0130) 2020 IAE. Key World Energy Statistics 2021; 2021. [Online]. Available: https://www.iea.org/reports/key-world-energy-statistics-2021. Chocontá Bernal D, Muñoz E, Manente G, Sciacovelli A, Ameli H, Gallego-Schmid A. Environmental assessment of latent heat thermal energy storage technology system with phase change material for domestic heating applications. Sustainability 13(20):11265. 2021, doi: 10.3390/su132011265. ECB. Euro Foreign Exchange Reference Rates since 1999. European Central Bank Statistics, 2016. https://www.ecb.europa.eu/stats/exchange/eurofxref/html/index.en.html (accessed Sep. 20, 2022). SINTEF. Cycles RA3, Fossil-free steam production for Nidar Orkla,” 2021. https://www.sintef.no/projectweb/higheff/results/cycles-ra3/ (accessed Aug. 31, 2022). Hechelmann, Seevers, Otte, Sponer, Stark (b0095) 2020; 13 Mohammed, Talebizadehsardari, Mahdi, Arshad, Sciacovelli, Giddings (b0105) 2020; 31 Capital Cost and Performance Characteristic Estimates for Utility Scale Electric Power Generating Technologies. Washington, DC 20585, 2020. [Online]. Available: https://www.eia.gov/analysis/studies/powerplants/capitalcost/. Hauer A. Storage Technology Issues and Opportunities,” CERT Energy Storage Workshop, Paris; 2011. [Online]. Available: https://iea.blob.core.windows.net/assets/imports/events/337/Hauer.pdf. Lund (b0075) 1969; 19 Walker (10.1016/j.apenergy.2022.120358_b0085) 2013; 47 10.1016/j.apenergy.2022.120358_b0170 10.1016/j.apenergy.2022.120358_b0150 Wang (10.1016/j.apenergy.2022.120358_b0145) 2014; 85 10.1016/j.apenergy.2022.120358_b0190 Humbert (10.1016/j.apenergy.2022.120358_b0115) 2022; 216 Hofmann (10.1016/j.apenergy.2022.120358_b0065) 2019; 12 Zauner (10.1016/j.apenergy.2022.120358_b0040) 2017; 189 Dusek (10.1016/j.apenergy.2022.120358_b0050) 2019; 251 10.1016/j.apenergy.2022.120358_b0185 10.1016/j.apenergy.2022.120358_b0240 10.1016/j.apenergy.2022.120358_b0165 10.1016/j.apenergy.2022.120358_b0220 Lund (10.1016/j.apenergy.2022.120358_b0075) 1969; 19 10.1016/j.apenergy.2022.120358_b0005 10.1016/j.apenergy.2022.120358_b0225 Mikkelson (10.1016/j.apenergy.2022.120358_b0155) 2022; 208 10.1016/j.apenergy.2022.120358_b0205 Kuznik (10.1016/j.apenergy.2022.120358_b0030) 2021 Dusek (10.1016/j.apenergy.2022.120358_b0090) 2018; 22 Stevanovic (10.1016/j.apenergy.2022.120358_b0100) 2012; 37 Haider (10.1016/j.apenergy.2022.120358_b0020) 2013; 130 Zhang (10.1016/j.apenergy.2022.120358_b0025) 2016; 53 10.1016/j.apenergy.2022.120358_b0180 10.1016/j.apenergy.2022.120358_b0160 Kasper (10.1016/j.apenergy.2022.120358_b0060) 2021; 190 10.1016/j.apenergy.2022.120358_b0080 Dusek (10.1016/j.apenergy.2022.120358_b0045) 2019; 12 Towler (10.1016/j.apenergy.2022.120358_b0140) 2019 Pernsteiner (10.1016/j.apenergy.2022.120358_b0055) 2020; 178 10.1016/j.apenergy.2022.120358_b0210 10.1016/j.apenergy.2022.120358_b0015 10.1016/j.apenergy.2022.120358_b0235 Ding (10.1016/j.apenergy.2022.120358_b0035) 2021; 145 Hechelmann (10.1016/j.apenergy.2022.120358_b0095) 2020; 13 10.1016/j.apenergy.2022.120358_b0135 10.1016/j.apenergy.2022.120358_b0195 Yeh (10.1016/j.apenergy.2022.120358_b0200) 2007; 32 Venettacci (10.1016/j.apenergy.2022.120358_b0070) 2022; 29 10.1016/j.apenergy.2022.120358_b0110 10.1016/j.apenergy.2022.120358_b0010 Stevanovic (10.1016/j.apenergy.2022.120358_b0120) 2015; 36 10.1016/j.apenergy.2022.120358_b0175 10.1016/j.apenergy.2022.120358_b0230 Al Siyabi (10.1016/j.apenergy.2022.120358_b0125) 2019; 23 Çam (10.1016/j.apenergy.2022.120358_b0130) 2020 Mohammed (10.1016/j.apenergy.2022.120358_b0105) 2020; 31 10.1016/j.apenergy.2022.120358_b0215 |
References_xml | – volume: 29 start-page: 387 year: 2022 end-page: 405 ident: b0070 article-title: Environmental and economic life cycle assessment of thermal energy storage based on organic phase change material embedded in open-cell copper foams publication-title: Sustain Prod Consum – reference: Hauer A. Storage Technology Issues and Opportunities,” CERT Energy Storage Workshop, Paris; 2011. [Online]. Available: https://iea.blob.core.windows.net/assets/imports/events/337/Hauer.pdf. – reference: Capital Cost and Performance Characteristic Estimates for Utility Scale Electric Power Generating Technologies. Washington, DC 20585, 2020. [Online]. Available: https://www.eia.gov/analysis/studies/powerplants/capitalcost/. – volume: 31 year: 2020 ident: b0105 article-title: Improved melting of latent heat storage via porous medium and uniform Joule heat generation publication-title: J Energy Storage – reference: ECB. Euro Foreign Exchange Reference Rates since 1999. European Central Bank Statistics, 2016. https://www.ecb.europa.eu/stats/exchange/eurofxref/html/index.en.html (accessed Sep. 20, 2022). – volume: 145 start-page: 111088 year: 2021 ident: b0035 article-title: Advanced/hybrid thermal energy storage technology: material, cycle, system and perspective publication-title: Renew Sustain Energy Rev – reference: Fiorini industries. Fiorini industries catalogue – Price List 2016. – volume: 36 start-page: 498 year: 2015 end-page: 510 ident: b0120 article-title: Prediction and control of steam accumulation publication-title: Heat Transf Eng – volume: 190 start-page: 116448 year: 2021 ident: b0060 article-title: Numerical studies on the influence of natural convection under inclination on optimal aluminium proportions and fin spacings in a rectangular aluminium finned latent-heat thermal energy storage publication-title: Appl Therm Eng – volume: 13 start-page: 2532 year: 2020 ident: b0095 article-title: Renewable energy integration for steam supply of industrial processes—a food processing case study publication-title: Energies – volume: 32 start-page: 1996 year: 2007 end-page: 2005 ident: b0200 article-title: A centurial history of technological change and learning curves for pulverized coal-fired utility boilers publication-title: Energy – volume: 189 start-page: 506 year: 2017 end-page: 519 ident: b0040 article-title: Experimental characterization and simulation of a hybrid sensible-latent heat storage publication-title: Appl Energy – reference: BELTRAN H. MODERN PORTFOLIO THEORY APPLIED TO ELECTRICITY GENERATION PLANNING. University of Illinois at Urbana-Champaign; 2008. [Online]. Available: https://core.ac.uk/reader/4821190. – volume: 53 start-page: 1 year: 2016 end-page: 40 ident: b0025 article-title: Thermal energy storage: Recent developments and practical aspects publication-title: Prog Energy Combust Sci – volume: 19 start-page: 315 year: 1969 end-page: 321 ident: b0075 article-title: operating costs and procedures publication-title: J Air Pollut Control Assoc – volume: 22 start-page: 2235 year: 2018 end-page: 2242 ident: b0090 article-title: A hybrid energy storage concept for future application in industrial processes publication-title: Therm Sci – reference: Fleiter T, Steinbach J, Ragwitz M. Mapping and analyses of the current and future (2020 - 2030) heating/cooling fuel deployment (fossil/renewables),” 2016. [Online]. Available: https://ec.europa.eu/energy/sites/ener/files/documents/mapping-hc-final_report-wp2.pdf. – reference: Consortium M. MAGNITUDE D1.2 -Technology and case studies factsheets,” 2019. [Online]. Available: https://www.magnitude-project.eu/wp-content/uploads/2019/07/MAGNITUDE_D1.2_EIFER_Final_Submitted.pdf. – reference: “Gas prices for non-household consumers - bi-annual data (from 2007 onwards),” Eurostat, 2022. https://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=nrg_pc_203&lang=en (accessed Aug. 31, 2022). – reference: SINTEF. Cycles RA3, Fossil-free steam production for Nidar Orkla,” 2021. https://www.sintef.no/projectweb/higheff/results/cycles-ra3/ (accessed Aug. 31, 2022). – volume: 85 start-page: 828 year: 2014 end-page: 838 ident: b0145 article-title: Parametric optimization of supercritical coal-fired power plants by MINLP and differential evolution publication-title: Energy Convers Manag – reference: WSP and Parsons Brinckerhof. Industrial Decarbonisation & Energy Efficiency Roadmaps to 2050; Apr. 2015. Accessed: Feb. 25, 2022. [Online]. Available: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/416676/Ceramic_Report.pdf. – volume: 12 start-page: 1 year: 2019 end-page: 21 ident: b0045 article-title: Modeling of a hybrid steam storage and validation with an industrial ruths steam storage line publication-title: Energies – volume: 251 start-page: 113364 year: 2019 ident: b0050 article-title: Design analysis of a hybrid storage concept combining Ruths steam storage and latent thermal energy storage publication-title: Appl Energy – reference: EIA. Levelized Costs of New Generation Resources in the Annual Energy Outlook 2021; 2021. – reference: IAE. Key World Energy Statistics 2021; 2021. [Online]. Available: https://www.iea.org/reports/key-world-energy-statistics-2021. – year: 2020 ident: b0130 article-title: Optimal dispatch of a coal-fired power plant with integrated thermal energy storage publication-title: Cologne – reference: Eurostat. Natural gas price statistics; 2022. https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Natural_gas_price_statistics. – volume: 216 year: 2022 ident: b0115 article-title: Development of a latent heat thermal energy storage unit for the exhaust of a recuperated solar-dish Brayton cycle publication-title: Appl Therm Eng – reference: Radcliffe J, Li Y. Thermal energy storage in Scotland; 2015. [Online]. Available: https://www.climatexchange.org.uk/media/1393/thermal_energy_storage_in_scotland.pdf. – reference: PCMproducts. PlusICE Range - pcm products,” 2021. https://www.pcmproducts.net/files/PlusICE Range 2021-1.pdf. – volume: 208 start-page: 437 year: 2022 end-page: 454 ident: b0155 article-title: Phenomenon identification and ranking table development for future application figure-of-merit studies on thermal energy storage integrations with light water reactors publication-title: Nucl Technol – start-page: 567 year: 2021 end-page: 594 ident: b0030 article-title: Thermal energy storage for space heating and domestic hot water in individual residential buildings publication-title: Advances in Thermal Energy Storage Systems Advances in Thermal Energy Storage Systems – volume: 130 start-page: 153 year: 2013 end-page: 160 ident: b0020 article-title: “An overview of state of the art and research in the fields of sensible, latent and thermo-chemical thermal energy storage”, e iEin Überblick zum Stand der Technik und Forschung im Bereich sensibler, latenter und thermochemischer Wärmespeicherung publication-title: Elektrotechnik und Informationstechnik – volume: 12 start-page: 1 year: 2019 end-page: 25 ident: b0065 article-title: Design optimization of a hybrid steam-PCM thermal energy storage for industrial applications publication-title: Energies – reference: Kauko H, Sevault A, Og AB, Drexler-Schmid G. Thermal storage for improved utilization of renewable energy in steam production. 2019. [Online]. Available: https://app.cristin.no/results/show.jsf?id=1744103. – year: 2019 ident: b0140 article-title: Chemical Engineering Design: SI Edition (Chemical Engineering Series) – reference: Buseth ER. Renewable Energy in Longyearbyen. NTNU, 2020. [Online]. Available: https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/2778263. – volume: 37 start-page: 73 year: 2012 end-page: 79 ident: b0100 article-title: Dynamics of steam accumulation publication-title: Appl Therm Eng – reference: Chocontá Bernal D, Muñoz E, Manente G, Sciacovelli A, Ameli H, Gallego-Schmid A. Environmental assessment of latent heat thermal energy storage technology system with phase change material for domestic heating applications. Sustainability 13(20):11265. 2021, doi: 10.3390/su132011265. – reference: . – reference: Chikri YA. Hybrid boiler systems in the Dutch industry. Delft University of Technology. [Online]. Available: https://repository.tudelft.nl/islandora/object/uuid%3A138874fa-32d2-4319-80fa-c089c3feef72. – reference: Lyons S. Industrial Fuel Switching Market Engagement Study. Cambridge CB5 8AQ. – volume: 23 start-page: 57 year: 2019 end-page: 68 ident: b0125 article-title: An experimental and numerical study on the effect of inclination angle of phase change materials thermal energy storage system publication-title: J Energy Storage – reference: HM Government. Net Zero Strategy: Build Back Greener; 2021. Accessed: Feb. 25, 2022. [Online]. Available: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/1033990/net-zero-strategy-beis.pdf. – volume: 178 year: 2020 ident: b0055 article-title: Co-simulation methodology of a hybrid latent-heat thermal energy storage unit publication-title: Appl Therm Eng – volume: 47 start-page: 13060 year: 2013 end-page: 13067 ident: b0085 article-title: Industrial steam systems and the energy-water nexus publication-title: Environ Sci Technol – reference: Committee on Climate Change. “Net Zero The UK’s contribution to stopping global warming, London, May 2019. Accessed: Feb. 25, 2022. [Online]. Available: https://www.theccc.org.uk/wp-content/uploads/2019/05/Net-Zero-The-UKs-contribution-to-stopping-global-warming.pdf. – reference: Gibb D et al. Applications of Thermal Energy Storage in the Energy Transition – Benchmarks and Developments.” [Online]. Available: https://www.sintef.no/en/publications/publication/1646046/. – ident: 10.1016/j.apenergy.2022.120358_b0195 – volume: 12 start-page: 1 issue: 5 year: 2019 ident: 10.1016/j.apenergy.2022.120358_b0065 article-title: Design optimization of a hybrid steam-PCM thermal energy storage for industrial applications publication-title: Energies doi: 10.3390/en12050898 – volume: 22 start-page: 2235 issue: 5 year: 2018 ident: 10.1016/j.apenergy.2022.120358_b0090 article-title: A hybrid energy storage concept for future application in industrial processes publication-title: Therm Sci doi: 10.2298/TSCI171230270D – ident: 10.1016/j.apenergy.2022.120358_b0225 – volume: 29 start-page: 387 year: 2022 ident: 10.1016/j.apenergy.2022.120358_b0070 article-title: Environmental and economic life cycle assessment of thermal energy storage based on organic phase change material embedded in open-cell copper foams publication-title: Sustain Prod Consum doi: 10.1016/j.spc.2021.10.026 – ident: 10.1016/j.apenergy.2022.120358_b0210 – ident: 10.1016/j.apenergy.2022.120358_b0235 – volume: 251 start-page: 113364 year: 2019 ident: 10.1016/j.apenergy.2022.120358_b0050 article-title: Design analysis of a hybrid storage concept combining Ruths steam storage and latent thermal energy storage publication-title: Appl Energy doi: 10.1016/j.apenergy.2019.113364 – volume: 13 start-page: 2532 issue: 10 year: 2020 ident: 10.1016/j.apenergy.2022.120358_b0095 article-title: Renewable energy integration for steam supply of industrial processes—a food processing case study publication-title: Energies doi: 10.3390/en13102532 – volume: 216 year: 2022 ident: 10.1016/j.apenergy.2022.120358_b0115 article-title: Development of a latent heat thermal energy storage unit for the exhaust of a recuperated solar-dish Brayton cycle publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2022.118994 – start-page: 567 year: 2021 ident: 10.1016/j.apenergy.2022.120358_b0030 article-title: Thermal energy storage for space heating and domestic hot water in individual residential buildings – ident: 10.1016/j.apenergy.2022.120358_b0180 – ident: 10.1016/j.apenergy.2022.120358_b0015 – ident: 10.1016/j.apenergy.2022.120358_b0160 – volume: 19 start-page: 315 issue: 5 year: 1969 ident: 10.1016/j.apenergy.2022.120358_b0075 article-title: operating costs and procedures publication-title: J Air Pollut Control Assoc doi: 10.1080/00022470.1969.10466491 – year: 2019 ident: 10.1016/j.apenergy.2022.120358_b0140 – volume: 47 start-page: 13060 issue: 22 year: 2013 ident: 10.1016/j.apenergy.2022.120358_b0085 article-title: Industrial steam systems and the energy-water nexus publication-title: Environ Sci Technol doi: 10.1021/es403715z – volume: 178 year: 2020 ident: 10.1016/j.apenergy.2022.120358_b0055 article-title: Co-simulation methodology of a hybrid latent-heat thermal energy storage unit publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2020.115495 – ident: 10.1016/j.apenergy.2022.120358_b0220 – volume: 53 start-page: 1 year: 2016 ident: 10.1016/j.apenergy.2022.120358_b0025 article-title: Thermal energy storage: Recent developments and practical aspects publication-title: Prog Energy Combust Sci doi: 10.1016/j.pecs.2015.10.003 – ident: 10.1016/j.apenergy.2022.120358_b0080 – volume: 190 start-page: 116448 year: 2021 ident: 10.1016/j.apenergy.2022.120358_b0060 article-title: Numerical studies on the influence of natural convection under inclination on optimal aluminium proportions and fin spacings in a rectangular aluminium finned latent-heat thermal energy storage publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2020.116448 – volume: 23 start-page: 57 year: 2019 ident: 10.1016/j.apenergy.2022.120358_b0125 article-title: An experimental and numerical study on the effect of inclination angle of phase change materials thermal energy storage system publication-title: J Energy Storage doi: 10.1016/j.est.2019.03.010 – ident: 10.1016/j.apenergy.2022.120358_b0170 – ident: 10.1016/j.apenergy.2022.120358_b0205 – volume: 145 start-page: 111088 year: 2021 ident: 10.1016/j.apenergy.2022.120358_b0035 article-title: Advanced/hybrid thermal energy storage technology: material, cycle, system and perspective publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2021.111088 – volume: 37 start-page: 73 year: 2012 ident: 10.1016/j.apenergy.2022.120358_b0100 article-title: Dynamics of steam accumulation publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2012.01.007 – ident: 10.1016/j.apenergy.2022.120358_b0230 – ident: 10.1016/j.apenergy.2022.120358_b0165 – ident: 10.1016/j.apenergy.2022.120358_b0240 doi: 10.3390/su132011265 – volume: 31 year: 2020 ident: 10.1016/j.apenergy.2022.120358_b0105 article-title: Improved melting of latent heat storage via porous medium and uniform Joule heat generation publication-title: J Energy Storage doi: 10.1016/j.est.2020.101747 – ident: 10.1016/j.apenergy.2022.120358_b0010 – volume: 208 start-page: 437 issue: 3 year: 2022 ident: 10.1016/j.apenergy.2022.120358_b0155 article-title: Phenomenon identification and ranking table development for future application figure-of-merit studies on thermal energy storage integrations with light water reactors publication-title: Nucl Technol doi: 10.1080/00295450.2021.1906473 – ident: 10.1016/j.apenergy.2022.120358_b0110 – ident: 10.1016/j.apenergy.2022.120358_b0185 – volume: 12 start-page: 1 issue: 6 year: 2019 ident: 10.1016/j.apenergy.2022.120358_b0045 article-title: Modeling of a hybrid steam storage and validation with an industrial ruths steam storage line publication-title: Energies doi: 10.3390/en12061014 – volume: 36 start-page: 498 issue: 5 year: 2015 ident: 10.1016/j.apenergy.2022.120358_b0120 article-title: Prediction and control of steam accumulation publication-title: Heat Transf Eng doi: 10.1080/01457632.2014.935226 – ident: 10.1016/j.apenergy.2022.120358_b0215 – year: 2020 ident: 10.1016/j.apenergy.2022.120358_b0130 article-title: Optimal dispatch of a coal-fired power plant with integrated thermal energy storage publication-title: Cologne – volume: 32 start-page: 1996 issue: 10 year: 2007 ident: 10.1016/j.apenergy.2022.120358_b0200 article-title: A centurial history of technological change and learning curves for pulverized coal-fired utility boilers publication-title: Energy doi: 10.1016/j.energy.2007.03.004 – ident: 10.1016/j.apenergy.2022.120358_b0190 – volume: 130 start-page: 153 issue: 6 year: 2013 ident: 10.1016/j.apenergy.2022.120358_b0020 article-title: “An overview of state of the art and research in the fields of sensible, latent and thermo-chemical thermal energy storage”, e iEin Überblick zum Stand der Technik und Forschung im Bereich sensibler, latenter und thermochemischer Wärmespeicherung publication-title: Elektrotechnik und Informationstechnik doi: 10.1007/s00502-013-0151-3 – volume: 85 start-page: 828 year: 2014 ident: 10.1016/j.apenergy.2022.120358_b0145 article-title: Parametric optimization of supercritical coal-fired power plants by MINLP and differential evolution publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2014.01.006 – ident: 10.1016/j.apenergy.2022.120358_b0175 – volume: 189 start-page: 506 year: 2017 ident: 10.1016/j.apenergy.2022.120358_b0040 article-title: Experimental characterization and simulation of a hybrid sensible-latent heat storage publication-title: Appl Energy doi: 10.1016/j.apenergy.2016.12.079 – ident: 10.1016/j.apenergy.2022.120358_b0150 – ident: 10.1016/j.apenergy.2022.120358_b0135 – ident: 10.1016/j.apenergy.2022.120358_b0005 |
SSID | ssj0002120 |
Score | 2.4869034 |
Snippet | •A dynamic model for HyTES is implemented to estimate the performance and optimise the design.•The surpassing efficiency of HyTES arises from PCM latent heat... This study aims to assess the performance and economics of novel hybrid thermal energy storage (HyTES) for industrial applications, linking performance to... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 120358 |
SubjectTerms | economics Efficiency generators (equipment) heat Hybridisation hybridization Industry latent heat Phase change materials (PCM) phase transition steam Steam accumulator thermal energy Thermal energy storage |
Title | Hybrid PCM-steam thermal energy storage for industrial processes – Link between thermal phenomena and techno-economic performance through dynamic modelling |
URI | https://dx.doi.org/10.1016/j.apenergy.2022.120358 https://www.proquest.com/docview/3153823977 |
Volume | 331 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NSgMxEA5SL3oQ_4q_JYLXtOsm3e4epbRURRFU8BayTQItul1se_AivoNnX84ncSabbasIPchelt1JCDvJzDfsfDOEnILZtSpILIuFtUwom7I0smcsMdwkSgdWaJdtcRP1HsTlY_NxhbRLLgymVXrbX9h0Z639k4b_mo18MGjcIdp1-D90sAVrggrRwl1ef5uneYS-NCMIM5ReYAkP6yo3jmEHcWIY1kGSY-v3vx3UL1Pt_E93k2x44EjPi7VtkRWTbZP1hXKC26TambPWQNQf2_EO-ey9IjGL3ravGWr1mSLsewaZYmEUUyTBsFBAsHQwa-ZB84JFYMb06_2DYthKfV7XbAJMEcMiDoqqTFNXEXbEjGc703xOS6C-IxDVr5nCd64HD5Lhd8lDt3Pf7jHfl4H1ecInrKUAlMVpGogWgE0NQaWOQ4ElRvtwxVE_TVQCgUrUxODRxlZruOc6tSqKuW3xKqlko8zsEarAPHANNkeDm-Q6ArgaBrFIgiA1nFu-T5qlMmTfFy3H3hlPssxOG8pSiRKVKAsl7pPGbFxelO1YOiIpdS1_bEAJvmXp2JNyc0g4nfjLRWVmNB1Ljg4lRJB98I_5D8kadrkvksWPSGXyMjXHgIUmac1t9hpZPb-46t18AzfsDn4 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB50PagH8YlvI3iNW5tutz3KolT3gaCCt5BuEljRbnHXgzf_g2f_nL_EmTZdVxE8SC-lTUropN98Q-ebAThC2LXKiy2PAmt5oGzK09Ce8NgIEyvt2UAX2Ra9MLkNLu8adzPQqrQwlFbpsL_E9AKt3ZW6e5v1fDCoXxPbLfi_X9CWYBbmqDpVowZzpxftpDcBZN9VZ8TxnCZMCYXvj1VuCpEdhoq-f4wjBXV__91H_UDrwgWdL8OS447stFzeCsyYbBUWpyoKrsLG2ZdwDYe6L3e0Bu_JC2mz2FWry8mwj4yY3yOOKRfGKEsSsYUhiWWDST8PlpdCAjNiH69vjCJX5lK7Jg-gLDGq46CYyjQrisIOuXGCZ5Z_KROYawrE9Eum6F7Rhof08Otwe35200q4a83A-yIWY95UyMuiNPWCJvJNjXGljvyAqoz28YjCfhqrGGOVsEHxo42s1ngudGpVGAnbFBtQy4aZ2QSmECGERtjR6CmFDpGx-l4UxJ6XGiGs2IJGZQzZd3XLqX3Gg6wS1O5lZURJRpSlEbegPpmXl5U7_pwRV7aW3_agRPfy59zDanNI_EDpr4vKzPB5JAX5FJ949vY_nn8A88lNtyM7F732DixQ0_syd3wXauOnZ7OH1Gic7rut_wlnpxEv |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hybrid+PCM-steam+thermal+energy+storage+for+industrial+processes+%E2%80%93+Link+between+thermal+phenomena+and+techno-economic+performance+through+dynamic+modelling&rft.jtitle=Applied+energy&rft.au=Niknam%2C+Pouriya+H&rft.au=Sciacovelli%2C+Adriano&rft.date=2023-02-01&rft.pub=Elsevier+Ltd&rft.issn=0306-2619&rft.eissn=1872-9118&rft.volume=331&rft_id=info:doi/10.1016%2Fj.apenergy.2022.120358&rft.externalDocID=S0306261922016154 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon |