Hybrid PCM-steam thermal energy storage for industrial processes – Link between thermal phenomena and techno-economic performance through dynamic modelling

•A dynamic model for HyTES is implemented to estimate the performance and optimise the design.•The surpassing efficiency of HyTES arises from PCM latent heat and the superior performance of the steam accumulator in the hybrid system.•HyTES stores up to 45% more energy than a conventional steam accum...

Full description

Saved in:
Bibliographic Details
Published inApplied energy Vol. 331; p. 120358
Main Authors Niknam, Pouriya H, Sciacovelli, Adriano
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.02.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •A dynamic model for HyTES is implemented to estimate the performance and optimise the design.•The surpassing efficiency of HyTES arises from PCM latent heat and the superior performance of the steam accumulator in the hybrid system.•HyTES stores up to 45% more energy than a conventional steam accumulator.•The incorporation of HyTES leads to 5% reductions in CAPEX and stream generation cost.•The dominant design parameter for HyTES are the PCM latent heat and the charging time. This study aims to assess the performance and economics of novel hybrid thermal energy storage (HyTES) for industrial applications, linking performance to thermal phenomena occurring within the system. The storage hybridisation concept is based on coupling latent heat storage modules containing high-temperature Phase Change Materials (PCMs) with a fast-response steam accumulator. Such hybrid storage, where heat is stored in both forms of steam and latent heat of PCMs, has the potential to capture excess heat produced by the steam generator of any industrial processes, which can then be used at peak times. HyTES performance is dynamically modelled during charging, idle, and discharging stages. The results show that the HyTES provides 14% extra energy storage capacity than the existing steam accumulator within an identical total volume. Furthermore, the study provides technical analysis of HyTES, and thorough comparison between configurations with different PCM volumes, PCM types and charging times. This is essential to ultimately quantify the whole range of benefit of hybrid energy storage. The sensitivity analysis reveals that Incorporating the HyTES significantly improves energy capacity, and the degree of improvement is mainly affected by the charge duration, approximately 15% after 1 h, and 45% after 4 h of charging. Furthermore, it is shown how the PCM properties affect the performance of HyTES. Finally, the CAPEX and O&M cost of the entire system are assessed in different scenarios and found to be 5% less when HyTES replaces the conventional SA.
AbstractList This study aims to assess the performance and economics of novel hybrid thermal energy storage (HyTES) for industrial applications, linking performance to thermal phenomena occurring within the system. The storage hybridisation concept is based on coupling latent heat storage modules containing high-temperature Phase Change Materials (PCMs) with a fast-response steam accumulator. Such hybrid storage, where heat is stored in both forms of steam and latent heat of PCMs, has the potential to capture excess heat produced by the steam generator of any industrial processes, which can then be used at peak times. HyTES performance is dynamically modelled during charging, idle, and discharging stages. The results show that the HyTES provides 14% extra energy storage capacity than the existing steam accumulator within an identical total volume. Furthermore, the study provides technical analysis of HyTES, and thorough comparison between configurations with different PCM volumes, PCM types and charging times. This is essential to ultimately quantify the whole range of benefit of hybrid energy storage. The sensitivity analysis reveals that Incorporating the HyTES significantly improves energy capacity, and the degree of improvement is mainly affected by the charge duration, approximately 15% after 1 h, and 45% after 4 h of charging. Furthermore, it is shown how the PCM properties affect the performance of HyTES. Finally, the CAPEX and O&M cost of the entire system are assessed in different scenarios and found to be 5% less when HyTES replaces the conventional SA.
•A dynamic model for HyTES is implemented to estimate the performance and optimise the design.•The surpassing efficiency of HyTES arises from PCM latent heat and the superior performance of the steam accumulator in the hybrid system.•HyTES stores up to 45% more energy than a conventional steam accumulator.•The incorporation of HyTES leads to 5% reductions in CAPEX and stream generation cost.•The dominant design parameter for HyTES are the PCM latent heat and the charging time. This study aims to assess the performance and economics of novel hybrid thermal energy storage (HyTES) for industrial applications, linking performance to thermal phenomena occurring within the system. The storage hybridisation concept is based on coupling latent heat storage modules containing high-temperature Phase Change Materials (PCMs) with a fast-response steam accumulator. Such hybrid storage, where heat is stored in both forms of steam and latent heat of PCMs, has the potential to capture excess heat produced by the steam generator of any industrial processes, which can then be used at peak times. HyTES performance is dynamically modelled during charging, idle, and discharging stages. The results show that the HyTES provides 14% extra energy storage capacity than the existing steam accumulator within an identical total volume. Furthermore, the study provides technical analysis of HyTES, and thorough comparison between configurations with different PCM volumes, PCM types and charging times. This is essential to ultimately quantify the whole range of benefit of hybrid energy storage. The sensitivity analysis reveals that Incorporating the HyTES significantly improves energy capacity, and the degree of improvement is mainly affected by the charge duration, approximately 15% after 1 h, and 45% after 4 h of charging. Furthermore, it is shown how the PCM properties affect the performance of HyTES. Finally, the CAPEX and O&M cost of the entire system are assessed in different scenarios and found to be 5% less when HyTES replaces the conventional SA.
ArticleNumber 120358
Author Sciacovelli, Adriano
Niknam, Pouriya H
Author_xml – sequence: 1
  givenname: Pouriya H
  orcidid: 0000-0002-9804-5762
  surname: Niknam
  fullname: Niknam, Pouriya H
– sequence: 2
  givenname: Adriano
  orcidid: 0000-0001-9684-3122
  surname: Sciacovelli
  fullname: Sciacovelli, Adriano
  email: a.sciacovelli@bham.ac.uk
BookMark eNqFkc1uEzEUhS1UJNLCKyAvu5ngn8yMLbEoioAipYIFrC2PfSdxmLGntlOUHe_Aui_XJ8HRlC7YVF5cy_ecT773nKMzHzwg9JaSJSW0ebdf6gk8xO1xyQhjS8oIr8ULtKCiZZWkVJyhBeGkqVhD5St0ntKeEMKKboHur49ddBZ_W99UKYMecd5BHPWAZyROOUS9BdyHiJ23h5SjK90pBgMpQcIPv__gjfM_cQf5F4B_Akw78GEEr7H2FmcwOx8qMKE8OoMniAU5am-gOGI4bHfYHr0-9cZgYRic375GL3s9JHjzWC_Qj08fv6-vq83Xz1_WHzaV4ZLnqtWU1KLryKoljFhKGivYilMiTTmiMZ3UspZtU6-IXPWit7bcue163Qjet_wCXc7cMtbtAVJWo0um_EF7CIekOK25YFy2J-n7WWpiSClCr4zLOrvgc9RuUJSoUypqr_6lok6pqDmVYm_-s0_RjToenzdezUYoe7hzEFUyDsr2rItgsrLBPYf4C5cVsac
CitedBy_id crossref_primary_10_3390_app132413130
crossref_primary_10_1016_j_est_2024_112938
crossref_primary_10_1016_j_est_2023_108939
crossref_primary_10_1016_j_energy_2024_131988
crossref_primary_10_1016_j_est_2024_112633
crossref_primary_10_1016_j_apenergy_2024_123298
crossref_primary_10_1016_j_est_2024_113337
crossref_primary_10_1016_j_apenergy_2023_121300
crossref_primary_10_1016_j_est_2025_115938
crossref_primary_10_1155_2024_1050785
crossref_primary_10_3390_su15065511
crossref_primary_10_1016_j_est_2023_109840
crossref_primary_10_1016_j_energy_2023_129903
Cites_doi 10.3390/en12050898
10.2298/TSCI171230270D
10.1016/j.spc.2021.10.026
10.1016/j.apenergy.2019.113364
10.3390/en13102532
10.1016/j.applthermaleng.2022.118994
10.1080/00022470.1969.10466491
10.1021/es403715z
10.1016/j.applthermaleng.2020.115495
10.1016/j.pecs.2015.10.003
10.1016/j.applthermaleng.2020.116448
10.1016/j.est.2019.03.010
10.1016/j.rser.2021.111088
10.1016/j.applthermaleng.2012.01.007
10.3390/su132011265
10.1016/j.est.2020.101747
10.1080/00295450.2021.1906473
10.3390/en12061014
10.1080/01457632.2014.935226
10.1016/j.energy.2007.03.004
10.1007/s00502-013-0151-3
10.1016/j.enconman.2014.01.006
10.1016/j.apenergy.2016.12.079
ContentType Journal Article
Copyright 2022 The Author(s)
Copyright_xml – notice: 2022 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.apenergy.2022.120358
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
Economics
EISSN 1872-9118
ExternalDocumentID 10_1016_j_apenergy_2022_120358
S0306261922016154
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
JJJVA
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
~02
~G-
AAHBH
AAQXK
AATTM
AAXKI
AAYOK
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
RIG
SAC
SEW
SSH
WUQ
ZY4
7S9
L.6
ID FETCH-LOGICAL-c393t-7a1058bb047020d106d8243109c9c986cb9a9597654094f8fdd7653dbfa683f73
IEDL.DBID .~1
ISSN 0306-2619
IngestDate Fri Jul 11 03:26:09 EDT 2025
Tue Jul 01 04:01:11 EDT 2025
Thu Apr 24 23:10:13 EDT 2025
Fri Feb 23 02:39:44 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Industry
Thermal energy storage
Phase change materials (PCM)
Efficiency
Hybridisation
Steam accumulator
Language English
License This is an open access article under the CC BY license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c393t-7a1058bb047020d106d8243109c9c986cb9a9597654094f8fdd7653dbfa683f73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-9684-3122
0000-0002-9804-5762
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0306261922016154
PQID 3153823977
PQPubID 24069
ParticipantIDs proquest_miscellaneous_3153823977
crossref_citationtrail_10_1016_j_apenergy_2022_120358
crossref_primary_10_1016_j_apenergy_2022_120358
elsevier_sciencedirect_doi_10_1016_j_apenergy_2022_120358
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-02-01
2023-02-00
20230201
PublicationDateYYYYMMDD 2023-02-01
PublicationDate_xml – month: 02
  year: 2023
  text: 2023-02-01
  day: 01
PublicationDecade 2020
PublicationTitle Applied energy
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Kuznik, Opel, Osterland, Ruck (b0030) 2021
Fleiter T, Steinbach J, Ragwitz M. Mapping and analyses of the current and future (2020 - 2030) heating/cooling fuel deployment (fossil/renewables),” 2016. [Online]. Available: https://ec.europa.eu/energy/sites/ener/files/documents/mapping-hc-final_report-wp2.pdf.
WSP and Parsons Brinckerhof. Industrial Decarbonisation & Energy Efficiency Roadmaps to 2050; Apr. 2015. Accessed: Feb. 25, 2022. [Online]. Available: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/416676/Ceramic_Report.pdf.
Humbert, Roosendaal, Swanepoel, Navarro, Le Roux, Sciacovelli (b0115) 2022; 216
Dusek, Hofmann (b0090) 2018; 22
Buseth ER. Renewable Energy in Longyearbyen. NTNU, 2020. [Online]. Available: https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/2778263.
EIA. Levelized Costs of New Generation Resources in the Annual Energy Outlook 2021; 2021.
Hofmann, Dusek, Gruber, Drexler-Schmid (b0065) 2019; 12
Committee on Climate Change. “Net Zero The UK’s contribution to stopping global warming, London, May 2019. Accessed: Feb. 25, 2022. [Online]. Available: https://www.theccc.org.uk/wp-content/uploads/2019/05/Net-Zero-The-UKs-contribution-to-stopping-global-warming.pdf.
PCMproducts. PlusICE Range - pcm products,” 2021. https://www.pcmproducts.net/files/PlusICE Range 2021-1.pdf.
“Gas prices for non-household consumers - bi-annual data (from 2007 onwards),” Eurostat, 2022. https://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=nrg_pc_203&lang=en (accessed Aug. 31, 2022).
Dusek, Hofmann, Gruber (b0050) 2019; 251
Pernsteiner, Kasper, Schirrer, Hofmann, Jakubek (b0055) 2020; 178
Yeh, Rubin (b0200) 2007; 32
Stevanovic, Maslovaric, Prica (b0100) 2012; 37
Towler, Sinnott (b0140) 2019
HM Government. Net Zero Strategy: Build Back Greener; 2021. Accessed: Feb. 25, 2022. [Online]. Available: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/1033990/net-zero-strategy-beis.pdf.
Eurostat. Natural gas price statistics; 2022. https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Natural_gas_price_statistics.
Zhang, Baeyens, Cáceres, Degrève, Lv (b0025) 2016; 53
.
BELTRAN H. MODERN PORTFOLIO THEORY APPLIED TO ELECTRICITY GENERATION PLANNING. University of Illinois at Urbana-Champaign; 2008. [Online]. Available: https://core.ac.uk/reader/4821190.
Lyons S. Industrial Fuel Switching Market Engagement Study. Cambridge CB5 8AQ.
Chikri YA. Hybrid boiler systems in the Dutch industry. Delft University of Technology. [Online]. Available: https://repository.tudelft.nl/islandora/object/uuid%3A138874fa-32d2-4319-80fa-c089c3feef72.
Mikkelson, Frick, Bragg-Sitton, Doster (b0155) 2022; 208
Haider, Werner (b0020) 2013; 130
Consortium M. MAGNITUDE D1.2 -Technology and case studies factsheets,” 2019. [Online]. Available: https://www.magnitude-project.eu/wp-content/uploads/2019/07/MAGNITUDE_D1.2_EIFER_Final_Submitted.pdf.
Zauner, Hengstberger, Mörzinger, Hofmann, Walter (b0040) 2017; 189
Dusek, Hofmann (b0045) 2019; 12
Radcliffe J, Li Y. Thermal energy storage in Scotland; 2015. [Online]. Available: https://www.climatexchange.org.uk/media/1393/thermal_energy_storage_in_scotland.pdf.
Stevanovic, Petrovic, Milivojevic, Maslovaric (b0120) 2015; 36
Wang, Yang, Dong, Morosuk, Tsatsaronis (b0145) 2014; 85
Kasper, Pernsteiner, Koller, Schirrer, Jakubek, Hofmann (b0060) 2021; 190
Al Siyabi, Khanna, Mallick, Sundaram (b0125) 2019; 23
Gibb D et al. Applications of Thermal Energy Storage in the Energy Transition – Benchmarks and Developments.” [Online]. Available: https://www.sintef.no/en/publications/publication/1646046/.
Kauko H, Sevault A, Og AB, Drexler-Schmid G. Thermal storage for improved utilization of renewable energy in steam production. 2019. [Online]. Available: https://app.cristin.no/results/show.jsf?id=1744103.
Walker, Lv, Masanet (b0085) 2013; 47
Fiorini industries. Fiorini industries catalogue – Price List 2016.
Ding, Wu, Leung (b0035) 2021; 145
Venettacci, Cozzolino, Ponticelli, Guarino (b0070) 2022; 29
Çam (b0130) 2020
IAE. Key World Energy Statistics 2021; 2021. [Online]. Available: https://www.iea.org/reports/key-world-energy-statistics-2021.
Chocontá Bernal D, Muñoz E, Manente G, Sciacovelli A, Ameli H, Gallego-Schmid A. Environmental assessment of latent heat thermal energy storage technology system with phase change material for domestic heating applications. Sustainability 13(20):11265. 2021, doi: 10.3390/su132011265.
ECB. Euro Foreign Exchange Reference Rates since 1999. European Central Bank Statistics, 2016. https://www.ecb.europa.eu/stats/exchange/eurofxref/html/index.en.html (accessed Sep. 20, 2022).
SINTEF. Cycles RA3, Fossil-free steam production for Nidar Orkla,” 2021. https://www.sintef.no/projectweb/higheff/results/cycles-ra3/ (accessed Aug. 31, 2022).
Hechelmann, Seevers, Otte, Sponer, Stark (b0095) 2020; 13
Mohammed, Talebizadehsardari, Mahdi, Arshad, Sciacovelli, Giddings (b0105) 2020; 31
Capital Cost and Performance Characteristic Estimates for Utility Scale Electric Power Generating Technologies. Washington, DC 20585, 2020. [Online]. Available: https://www.eia.gov/analysis/studies/powerplants/capitalcost/.
Hauer A. Storage Technology Issues and Opportunities,” CERT Energy Storage Workshop, Paris; 2011. [Online]. Available: https://iea.blob.core.windows.net/assets/imports/events/337/Hauer.pdf.
Lund (b0075) 1969; 19
Walker (10.1016/j.apenergy.2022.120358_b0085) 2013; 47
10.1016/j.apenergy.2022.120358_b0170
10.1016/j.apenergy.2022.120358_b0150
Wang (10.1016/j.apenergy.2022.120358_b0145) 2014; 85
10.1016/j.apenergy.2022.120358_b0190
Humbert (10.1016/j.apenergy.2022.120358_b0115) 2022; 216
Hofmann (10.1016/j.apenergy.2022.120358_b0065) 2019; 12
Zauner (10.1016/j.apenergy.2022.120358_b0040) 2017; 189
Dusek (10.1016/j.apenergy.2022.120358_b0050) 2019; 251
10.1016/j.apenergy.2022.120358_b0185
10.1016/j.apenergy.2022.120358_b0240
10.1016/j.apenergy.2022.120358_b0165
10.1016/j.apenergy.2022.120358_b0220
Lund (10.1016/j.apenergy.2022.120358_b0075) 1969; 19
10.1016/j.apenergy.2022.120358_b0005
10.1016/j.apenergy.2022.120358_b0225
Mikkelson (10.1016/j.apenergy.2022.120358_b0155) 2022; 208
10.1016/j.apenergy.2022.120358_b0205
Kuznik (10.1016/j.apenergy.2022.120358_b0030) 2021
Dusek (10.1016/j.apenergy.2022.120358_b0090) 2018; 22
Stevanovic (10.1016/j.apenergy.2022.120358_b0100) 2012; 37
Haider (10.1016/j.apenergy.2022.120358_b0020) 2013; 130
Zhang (10.1016/j.apenergy.2022.120358_b0025) 2016; 53
10.1016/j.apenergy.2022.120358_b0180
10.1016/j.apenergy.2022.120358_b0160
Kasper (10.1016/j.apenergy.2022.120358_b0060) 2021; 190
10.1016/j.apenergy.2022.120358_b0080
Dusek (10.1016/j.apenergy.2022.120358_b0045) 2019; 12
Towler (10.1016/j.apenergy.2022.120358_b0140) 2019
Pernsteiner (10.1016/j.apenergy.2022.120358_b0055) 2020; 178
10.1016/j.apenergy.2022.120358_b0210
10.1016/j.apenergy.2022.120358_b0015
10.1016/j.apenergy.2022.120358_b0235
Ding (10.1016/j.apenergy.2022.120358_b0035) 2021; 145
Hechelmann (10.1016/j.apenergy.2022.120358_b0095) 2020; 13
10.1016/j.apenergy.2022.120358_b0135
10.1016/j.apenergy.2022.120358_b0195
Yeh (10.1016/j.apenergy.2022.120358_b0200) 2007; 32
Venettacci (10.1016/j.apenergy.2022.120358_b0070) 2022; 29
10.1016/j.apenergy.2022.120358_b0110
10.1016/j.apenergy.2022.120358_b0010
Stevanovic (10.1016/j.apenergy.2022.120358_b0120) 2015; 36
10.1016/j.apenergy.2022.120358_b0175
10.1016/j.apenergy.2022.120358_b0230
Al Siyabi (10.1016/j.apenergy.2022.120358_b0125) 2019; 23
Çam (10.1016/j.apenergy.2022.120358_b0130) 2020
Mohammed (10.1016/j.apenergy.2022.120358_b0105) 2020; 31
10.1016/j.apenergy.2022.120358_b0215
References_xml – volume: 29
  start-page: 387
  year: 2022
  end-page: 405
  ident: b0070
  article-title: Environmental and economic life cycle assessment of thermal energy storage based on organic phase change material embedded in open-cell copper foams
  publication-title: Sustain Prod Consum
– reference: Hauer A. Storage Technology Issues and Opportunities,” CERT Energy Storage Workshop, Paris; 2011. [Online]. Available: https://iea.blob.core.windows.net/assets/imports/events/337/Hauer.pdf.
– reference: Capital Cost and Performance Characteristic Estimates for Utility Scale Electric Power Generating Technologies. Washington, DC 20585, 2020. [Online]. Available: https://www.eia.gov/analysis/studies/powerplants/capitalcost/.
– volume: 31
  year: 2020
  ident: b0105
  article-title: Improved melting of latent heat storage via porous medium and uniform Joule heat generation
  publication-title: J Energy Storage
– reference: ECB. Euro Foreign Exchange Reference Rates since 1999. European Central Bank Statistics, 2016. https://www.ecb.europa.eu/stats/exchange/eurofxref/html/index.en.html (accessed Sep. 20, 2022).
– volume: 145
  start-page: 111088
  year: 2021
  ident: b0035
  article-title: Advanced/hybrid thermal energy storage technology: material, cycle, system and perspective
  publication-title: Renew Sustain Energy Rev
– reference: Fiorini industries. Fiorini industries catalogue – Price List 2016.
– volume: 36
  start-page: 498
  year: 2015
  end-page: 510
  ident: b0120
  article-title: Prediction and control of steam accumulation
  publication-title: Heat Transf Eng
– volume: 190
  start-page: 116448
  year: 2021
  ident: b0060
  article-title: Numerical studies on the influence of natural convection under inclination on optimal aluminium proportions and fin spacings in a rectangular aluminium finned latent-heat thermal energy storage
  publication-title: Appl Therm Eng
– volume: 13
  start-page: 2532
  year: 2020
  ident: b0095
  article-title: Renewable energy integration for steam supply of industrial processes—a food processing case study
  publication-title: Energies
– volume: 32
  start-page: 1996
  year: 2007
  end-page: 2005
  ident: b0200
  article-title: A centurial history of technological change and learning curves for pulverized coal-fired utility boilers
  publication-title: Energy
– volume: 189
  start-page: 506
  year: 2017
  end-page: 519
  ident: b0040
  article-title: Experimental characterization and simulation of a hybrid sensible-latent heat storage
  publication-title: Appl Energy
– reference: BELTRAN H. MODERN PORTFOLIO THEORY APPLIED TO ELECTRICITY GENERATION PLANNING. University of Illinois at Urbana-Champaign; 2008. [Online]. Available: https://core.ac.uk/reader/4821190.
– volume: 53
  start-page: 1
  year: 2016
  end-page: 40
  ident: b0025
  article-title: Thermal energy storage: Recent developments and practical aspects
  publication-title: Prog Energy Combust Sci
– volume: 19
  start-page: 315
  year: 1969
  end-page: 321
  ident: b0075
  article-title: operating costs and procedures
  publication-title: J Air Pollut Control Assoc
– volume: 22
  start-page: 2235
  year: 2018
  end-page: 2242
  ident: b0090
  article-title: A hybrid energy storage concept for future application in industrial processes
  publication-title: Therm Sci
– reference: Fleiter T, Steinbach J, Ragwitz M. Mapping and analyses of the current and future (2020 - 2030) heating/cooling fuel deployment (fossil/renewables),” 2016. [Online]. Available: https://ec.europa.eu/energy/sites/ener/files/documents/mapping-hc-final_report-wp2.pdf.
– reference: Consortium M. MAGNITUDE D1.2 -Technology and case studies factsheets,” 2019. [Online]. Available: https://www.magnitude-project.eu/wp-content/uploads/2019/07/MAGNITUDE_D1.2_EIFER_Final_Submitted.pdf.
– reference: “Gas prices for non-household consumers - bi-annual data (from 2007 onwards),” Eurostat, 2022. https://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=nrg_pc_203&lang=en (accessed Aug. 31, 2022).
– reference: SINTEF. Cycles RA3, Fossil-free steam production for Nidar Orkla,” 2021. https://www.sintef.no/projectweb/higheff/results/cycles-ra3/ (accessed Aug. 31, 2022).
– volume: 85
  start-page: 828
  year: 2014
  end-page: 838
  ident: b0145
  article-title: Parametric optimization of supercritical coal-fired power plants by MINLP and differential evolution
  publication-title: Energy Convers Manag
– reference: WSP and Parsons Brinckerhof. Industrial Decarbonisation & Energy Efficiency Roadmaps to 2050; Apr. 2015. Accessed: Feb. 25, 2022. [Online]. Available: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/416676/Ceramic_Report.pdf.
– volume: 12
  start-page: 1
  year: 2019
  end-page: 21
  ident: b0045
  article-title: Modeling of a hybrid steam storage and validation with an industrial ruths steam storage line
  publication-title: Energies
– volume: 251
  start-page: 113364
  year: 2019
  ident: b0050
  article-title: Design analysis of a hybrid storage concept combining Ruths steam storage and latent thermal energy storage
  publication-title: Appl Energy
– reference: EIA. Levelized Costs of New Generation Resources in the Annual Energy Outlook 2021; 2021.
– reference: IAE. Key World Energy Statistics 2021; 2021. [Online]. Available: https://www.iea.org/reports/key-world-energy-statistics-2021.
– year: 2020
  ident: b0130
  article-title: Optimal dispatch of a coal-fired power plant with integrated thermal energy storage
  publication-title: Cologne
– reference: Eurostat. Natural gas price statistics; 2022. https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Natural_gas_price_statistics.
– volume: 216
  year: 2022
  ident: b0115
  article-title: Development of a latent heat thermal energy storage unit for the exhaust of a recuperated solar-dish Brayton cycle
  publication-title: Appl Therm Eng
– reference: Radcliffe J, Li Y. Thermal energy storage in Scotland; 2015. [Online]. Available: https://www.climatexchange.org.uk/media/1393/thermal_energy_storage_in_scotland.pdf.
– reference: PCMproducts. PlusICE Range - pcm products,” 2021. https://www.pcmproducts.net/files/PlusICE Range 2021-1.pdf.
– volume: 208
  start-page: 437
  year: 2022
  end-page: 454
  ident: b0155
  article-title: Phenomenon identification and ranking table development for future application figure-of-merit studies on thermal energy storage integrations with light water reactors
  publication-title: Nucl Technol
– start-page: 567
  year: 2021
  end-page: 594
  ident: b0030
  article-title: Thermal energy storage for space heating and domestic hot water in individual residential buildings
  publication-title: Advances in Thermal Energy Storage Systems Advances in Thermal Energy Storage Systems
– volume: 130
  start-page: 153
  year: 2013
  end-page: 160
  ident: b0020
  article-title: “An overview of state of the art and research in the fields of sensible, latent and thermo-chemical thermal energy storage”, e iEin Überblick zum Stand der Technik und Forschung im Bereich sensibler, latenter und thermochemischer Wärmespeicherung
  publication-title: Elektrotechnik und Informationstechnik
– volume: 12
  start-page: 1
  year: 2019
  end-page: 25
  ident: b0065
  article-title: Design optimization of a hybrid steam-PCM thermal energy storage for industrial applications
  publication-title: Energies
– reference: Kauko H, Sevault A, Og AB, Drexler-Schmid G. Thermal storage for improved utilization of renewable energy in steam production. 2019. [Online]. Available: https://app.cristin.no/results/show.jsf?id=1744103.
– year: 2019
  ident: b0140
  article-title: Chemical Engineering Design: SI Edition (Chemical Engineering Series)
– reference: Buseth ER. Renewable Energy in Longyearbyen. NTNU, 2020. [Online]. Available: https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/2778263.
– volume: 37
  start-page: 73
  year: 2012
  end-page: 79
  ident: b0100
  article-title: Dynamics of steam accumulation
  publication-title: Appl Therm Eng
– reference: Chocontá Bernal D, Muñoz E, Manente G, Sciacovelli A, Ameli H, Gallego-Schmid A. Environmental assessment of latent heat thermal energy storage technology system with phase change material for domestic heating applications. Sustainability 13(20):11265. 2021, doi: 10.3390/su132011265.
– reference: .
– reference: Chikri YA. Hybrid boiler systems in the Dutch industry. Delft University of Technology. [Online]. Available: https://repository.tudelft.nl/islandora/object/uuid%3A138874fa-32d2-4319-80fa-c089c3feef72.
– reference: Lyons S. Industrial Fuel Switching Market Engagement Study. Cambridge CB5 8AQ.
– volume: 23
  start-page: 57
  year: 2019
  end-page: 68
  ident: b0125
  article-title: An experimental and numerical study on the effect of inclination angle of phase change materials thermal energy storage system
  publication-title: J Energy Storage
– reference: HM Government. Net Zero Strategy: Build Back Greener; 2021. Accessed: Feb. 25, 2022. [Online]. Available: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/1033990/net-zero-strategy-beis.pdf.
– volume: 178
  year: 2020
  ident: b0055
  article-title: Co-simulation methodology of a hybrid latent-heat thermal energy storage unit
  publication-title: Appl Therm Eng
– volume: 47
  start-page: 13060
  year: 2013
  end-page: 13067
  ident: b0085
  article-title: Industrial steam systems and the energy-water nexus
  publication-title: Environ Sci Technol
– reference: Committee on Climate Change. “Net Zero The UK’s contribution to stopping global warming, London, May 2019. Accessed: Feb. 25, 2022. [Online]. Available: https://www.theccc.org.uk/wp-content/uploads/2019/05/Net-Zero-The-UKs-contribution-to-stopping-global-warming.pdf.
– reference: Gibb D et al. Applications of Thermal Energy Storage in the Energy Transition – Benchmarks and Developments.” [Online]. Available: https://www.sintef.no/en/publications/publication/1646046/.
– ident: 10.1016/j.apenergy.2022.120358_b0195
– volume: 12
  start-page: 1
  issue: 5
  year: 2019
  ident: 10.1016/j.apenergy.2022.120358_b0065
  article-title: Design optimization of a hybrid steam-PCM thermal energy storage for industrial applications
  publication-title: Energies
  doi: 10.3390/en12050898
– volume: 22
  start-page: 2235
  issue: 5
  year: 2018
  ident: 10.1016/j.apenergy.2022.120358_b0090
  article-title: A hybrid energy storage concept for future application in industrial processes
  publication-title: Therm Sci
  doi: 10.2298/TSCI171230270D
– ident: 10.1016/j.apenergy.2022.120358_b0225
– volume: 29
  start-page: 387
  year: 2022
  ident: 10.1016/j.apenergy.2022.120358_b0070
  article-title: Environmental and economic life cycle assessment of thermal energy storage based on organic phase change material embedded in open-cell copper foams
  publication-title: Sustain Prod Consum
  doi: 10.1016/j.spc.2021.10.026
– ident: 10.1016/j.apenergy.2022.120358_b0210
– ident: 10.1016/j.apenergy.2022.120358_b0235
– volume: 251
  start-page: 113364
  year: 2019
  ident: 10.1016/j.apenergy.2022.120358_b0050
  article-title: Design analysis of a hybrid storage concept combining Ruths steam storage and latent thermal energy storage
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2019.113364
– volume: 13
  start-page: 2532
  issue: 10
  year: 2020
  ident: 10.1016/j.apenergy.2022.120358_b0095
  article-title: Renewable energy integration for steam supply of industrial processes—a food processing case study
  publication-title: Energies
  doi: 10.3390/en13102532
– volume: 216
  year: 2022
  ident: 10.1016/j.apenergy.2022.120358_b0115
  article-title: Development of a latent heat thermal energy storage unit for the exhaust of a recuperated solar-dish Brayton cycle
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2022.118994
– start-page: 567
  year: 2021
  ident: 10.1016/j.apenergy.2022.120358_b0030
  article-title: Thermal energy storage for space heating and domestic hot water in individual residential buildings
– ident: 10.1016/j.apenergy.2022.120358_b0180
– ident: 10.1016/j.apenergy.2022.120358_b0015
– ident: 10.1016/j.apenergy.2022.120358_b0160
– volume: 19
  start-page: 315
  issue: 5
  year: 1969
  ident: 10.1016/j.apenergy.2022.120358_b0075
  article-title: operating costs and procedures
  publication-title: J Air Pollut Control Assoc
  doi: 10.1080/00022470.1969.10466491
– year: 2019
  ident: 10.1016/j.apenergy.2022.120358_b0140
– volume: 47
  start-page: 13060
  issue: 22
  year: 2013
  ident: 10.1016/j.apenergy.2022.120358_b0085
  article-title: Industrial steam systems and the energy-water nexus
  publication-title: Environ Sci Technol
  doi: 10.1021/es403715z
– volume: 178
  year: 2020
  ident: 10.1016/j.apenergy.2022.120358_b0055
  article-title: Co-simulation methodology of a hybrid latent-heat thermal energy storage unit
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2020.115495
– ident: 10.1016/j.apenergy.2022.120358_b0220
– volume: 53
  start-page: 1
  year: 2016
  ident: 10.1016/j.apenergy.2022.120358_b0025
  article-title: Thermal energy storage: Recent developments and practical aspects
  publication-title: Prog Energy Combust Sci
  doi: 10.1016/j.pecs.2015.10.003
– ident: 10.1016/j.apenergy.2022.120358_b0080
– volume: 190
  start-page: 116448
  year: 2021
  ident: 10.1016/j.apenergy.2022.120358_b0060
  article-title: Numerical studies on the influence of natural convection under inclination on optimal aluminium proportions and fin spacings in a rectangular aluminium finned latent-heat thermal energy storage
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2020.116448
– volume: 23
  start-page: 57
  year: 2019
  ident: 10.1016/j.apenergy.2022.120358_b0125
  article-title: An experimental and numerical study on the effect of inclination angle of phase change materials thermal energy storage system
  publication-title: J Energy Storage
  doi: 10.1016/j.est.2019.03.010
– ident: 10.1016/j.apenergy.2022.120358_b0170
– ident: 10.1016/j.apenergy.2022.120358_b0205
– volume: 145
  start-page: 111088
  year: 2021
  ident: 10.1016/j.apenergy.2022.120358_b0035
  article-title: Advanced/hybrid thermal energy storage technology: material, cycle, system and perspective
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2021.111088
– volume: 37
  start-page: 73
  year: 2012
  ident: 10.1016/j.apenergy.2022.120358_b0100
  article-title: Dynamics of steam accumulation
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2012.01.007
– ident: 10.1016/j.apenergy.2022.120358_b0230
– ident: 10.1016/j.apenergy.2022.120358_b0165
– ident: 10.1016/j.apenergy.2022.120358_b0240
  doi: 10.3390/su132011265
– volume: 31
  year: 2020
  ident: 10.1016/j.apenergy.2022.120358_b0105
  article-title: Improved melting of latent heat storage via porous medium and uniform Joule heat generation
  publication-title: J Energy Storage
  doi: 10.1016/j.est.2020.101747
– ident: 10.1016/j.apenergy.2022.120358_b0010
– volume: 208
  start-page: 437
  issue: 3
  year: 2022
  ident: 10.1016/j.apenergy.2022.120358_b0155
  article-title: Phenomenon identification and ranking table development for future application figure-of-merit studies on thermal energy storage integrations with light water reactors
  publication-title: Nucl Technol
  doi: 10.1080/00295450.2021.1906473
– ident: 10.1016/j.apenergy.2022.120358_b0110
– ident: 10.1016/j.apenergy.2022.120358_b0185
– volume: 12
  start-page: 1
  issue: 6
  year: 2019
  ident: 10.1016/j.apenergy.2022.120358_b0045
  article-title: Modeling of a hybrid steam storage and validation with an industrial ruths steam storage line
  publication-title: Energies
  doi: 10.3390/en12061014
– volume: 36
  start-page: 498
  issue: 5
  year: 2015
  ident: 10.1016/j.apenergy.2022.120358_b0120
  article-title: Prediction and control of steam accumulation
  publication-title: Heat Transf Eng
  doi: 10.1080/01457632.2014.935226
– ident: 10.1016/j.apenergy.2022.120358_b0215
– year: 2020
  ident: 10.1016/j.apenergy.2022.120358_b0130
  article-title: Optimal dispatch of a coal-fired power plant with integrated thermal energy storage
  publication-title: Cologne
– volume: 32
  start-page: 1996
  issue: 10
  year: 2007
  ident: 10.1016/j.apenergy.2022.120358_b0200
  article-title: A centurial history of technological change and learning curves for pulverized coal-fired utility boilers
  publication-title: Energy
  doi: 10.1016/j.energy.2007.03.004
– ident: 10.1016/j.apenergy.2022.120358_b0190
– volume: 130
  start-page: 153
  issue: 6
  year: 2013
  ident: 10.1016/j.apenergy.2022.120358_b0020
  article-title: “An overview of state of the art and research in the fields of sensible, latent and thermo-chemical thermal energy storage”, e iEin Überblick zum Stand der Technik und Forschung im Bereich sensibler, latenter und thermochemischer Wärmespeicherung
  publication-title: Elektrotechnik und Informationstechnik
  doi: 10.1007/s00502-013-0151-3
– volume: 85
  start-page: 828
  year: 2014
  ident: 10.1016/j.apenergy.2022.120358_b0145
  article-title: Parametric optimization of supercritical coal-fired power plants by MINLP and differential evolution
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2014.01.006
– ident: 10.1016/j.apenergy.2022.120358_b0175
– volume: 189
  start-page: 506
  year: 2017
  ident: 10.1016/j.apenergy.2022.120358_b0040
  article-title: Experimental characterization and simulation of a hybrid sensible-latent heat storage
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2016.12.079
– ident: 10.1016/j.apenergy.2022.120358_b0150
– ident: 10.1016/j.apenergy.2022.120358_b0135
– ident: 10.1016/j.apenergy.2022.120358_b0005
SSID ssj0002120
Score 2.4869034
Snippet •A dynamic model for HyTES is implemented to estimate the performance and optimise the design.•The surpassing efficiency of HyTES arises from PCM latent heat...
This study aims to assess the performance and economics of novel hybrid thermal energy storage (HyTES) for industrial applications, linking performance to...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 120358
SubjectTerms economics
Efficiency
generators (equipment)
heat
Hybridisation
hybridization
Industry
latent heat
Phase change materials (PCM)
phase transition
steam
Steam accumulator
thermal energy
Thermal energy storage
Title Hybrid PCM-steam thermal energy storage for industrial processes – Link between thermal phenomena and techno-economic performance through dynamic modelling
URI https://dx.doi.org/10.1016/j.apenergy.2022.120358
https://www.proquest.com/docview/3153823977
Volume 331
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NSgMxEA5SL3oQ_4q_JYLXtOsm3e4epbRURRFU8BayTQItul1se_AivoNnX84ncSabbasIPchelt1JCDvJzDfsfDOEnILZtSpILIuFtUwom7I0smcsMdwkSgdWaJdtcRP1HsTlY_NxhbRLLgymVXrbX9h0Z639k4b_mo18MGjcIdp1-D90sAVrggrRwl1ef5uneYS-NCMIM5ReYAkP6yo3jmEHcWIY1kGSY-v3vx3UL1Pt_E93k2x44EjPi7VtkRWTbZP1hXKC26TambPWQNQf2_EO-ey9IjGL3ravGWr1mSLsewaZYmEUUyTBsFBAsHQwa-ZB84JFYMb06_2DYthKfV7XbAJMEcMiDoqqTFNXEXbEjGc703xOS6C-IxDVr5nCd64HD5Lhd8lDt3Pf7jHfl4H1ecInrKUAlMVpGogWgE0NQaWOQ4ElRvtwxVE_TVQCgUrUxODRxlZruOc6tSqKuW3xKqlko8zsEarAPHANNkeDm-Q6ArgaBrFIgiA1nFu-T5qlMmTfFy3H3hlPssxOG8pSiRKVKAsl7pPGbFxelO1YOiIpdS1_bEAJvmXp2JNyc0g4nfjLRWVmNB1Ljg4lRJB98I_5D8kadrkvksWPSGXyMjXHgIUmac1t9hpZPb-46t18AzfsDn4
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB50PagH8YlvI3iNW5tutz3KolT3gaCCt5BuEljRbnHXgzf_g2f_nL_EmTZdVxE8SC-lTUropN98Q-ebAThC2LXKiy2PAmt5oGzK09Ce8NgIEyvt2UAX2Ra9MLkNLu8adzPQqrQwlFbpsL_E9AKt3ZW6e5v1fDCoXxPbLfi_X9CWYBbmqDpVowZzpxftpDcBZN9VZ8TxnCZMCYXvj1VuCpEdhoq-f4wjBXV__91H_UDrwgWdL8OS447stFzeCsyYbBUWpyoKrsLG2ZdwDYe6L3e0Bu_JC2mz2FWry8mwj4yY3yOOKRfGKEsSsYUhiWWDST8PlpdCAjNiH69vjCJX5lK7Jg-gLDGq46CYyjQrisIOuXGCZ5Z_KROYawrE9Eum6F7Rhof08Otwe35200q4a83A-yIWY95UyMuiNPWCJvJNjXGljvyAqoz28YjCfhqrGGOVsEHxo42s1ngudGpVGAnbFBtQy4aZ2QSmECGERtjR6CmFDpGx-l4UxJ6XGiGs2IJGZQzZd3XLqX3Gg6wS1O5lZURJRpSlEbegPpmXl5U7_pwRV7aW3_agRPfy59zDanNI_EDpr4vKzPB5JAX5FJ949vY_nn8A88lNtyM7F732DixQ0_syd3wXauOnZ7OH1Gic7rut_wlnpxEv
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hybrid+PCM-steam+thermal+energy+storage+for+industrial+processes+%E2%80%93+Link+between+thermal+phenomena+and+techno-economic+performance+through+dynamic+modelling&rft.jtitle=Applied+energy&rft.au=Niknam%2C+Pouriya+H&rft.au=Sciacovelli%2C+Adriano&rft.date=2023-02-01&rft.pub=Elsevier+Ltd&rft.issn=0306-2619&rft.eissn=1872-9118&rft.volume=331&rft_id=info:doi/10.1016%2Fj.apenergy.2022.120358&rft.externalDocID=S0306261922016154
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon