Neural network method for lossless two-conductor transmission line equations based on the IELM algorithm
With the increasing demands for vast amounts of data and high-speed signal transmission, the use of multi-conductor transmission lines is becoming more common. The impact of transmission lines on signal transmission is thus a key issue affecting the performance of high-speed digital systems. To solv...
Saved in:
Published in | AIP advances Vol. 8; no. 6; pp. 065010 - 065010-14 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Melville
American Institute of Physics
01.06.2018
AIP Publishing LLC |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | With the increasing demands for vast amounts of data and high-speed signal transmission, the use of multi-conductor transmission lines is becoming more common. The impact of transmission lines on signal transmission is thus a key issue affecting the performance of high-speed digital systems. To solve the problem of lossless two-conductor transmission line equations (LTTLEs), a neural network model and algorithm are explored in this paper. By selecting the product of two triangular basis functions as the activation function of hidden layer neurons, we can guarantee the separation of time, space, and phase orthogonality. By adding the initial condition to the neural network, an improved extreme learning machine (IELM) algorithm for solving the network weight is obtained. This is different to the traditional method for converting the initial condition into the iterative constraint condition. Calculation software for solving the LTTLEs based on the IELM algorithm is developed. Numerical experiments show that the results are consistent with those of the traditional method. The proposed neural network algorithm can find the terminal voltage of the transmission line and also the voltage of any observation point. It is possible to calculate the value at any given point by using the neural network model to solve the transmission line equation. |
---|---|
AbstractList | With the increasing demands for vast amounts of data and high-speed signal transmission, the use of multi-conductor transmission lines is becoming more common. The impact of transmission lines on signal transmission is thus a key issue affecting the performance of high-speed digital systems. To solve the problem of lossless two-conductor transmission line equations (LTTLEs), a neural network model and algorithm are explored in this paper. By selecting the product of two triangular basis functions as the activation function of hidden layer neurons, we can guarantee the separation of time, space, and phase orthogonality. By adding the initial condition to the neural network, an improved extreme learning machine (IELM) algorithm for solving the network weight is obtained. This is different to the traditional method for converting the initial condition into the iterative constraint condition. Calculation software for solving the LTTLEs based on the IELM algorithm is developed. Numerical experiments show that the results are consistent with those of the traditional method. The proposed neural network algorithm can find the terminal voltage of the transmission line and also the voltage of any observation point. It is possible to calculate the value at any given point by using the neural network model to solve the transmission line equation. |
Author | Luo, Jianshu Yang, Yunlei Hou, Muzhou Liu, Taohua |
Author_xml | – sequence: 1 givenname: Yunlei surname: Yang fullname: Yang, Yunlei email: yunleiy@126.com organization: School of Mathematics and Statistics, Central South University – sequence: 2 givenname: Muzhou surname: Hou fullname: Hou, Muzhou organization: School of Mathematics and Statistics, Central South University – sequence: 3 givenname: Jianshu surname: Luo fullname: Luo, Jianshu organization: College of Science, National University of Defense Technology – sequence: 4 givenname: Taohua surname: Liu fullname: Liu, Taohua organization: School of Mathematics and Statistics, Central South University |
BookMark | eNp9kUFP3DAQha2KSgXKof_AEieQAvbYiZMjQrRdadte2rM1cSast9kYbEeo_74uSytUIXyx_fzNG-vNETuYw0yMfZDiQopGXcqLWkBdC_2GHYKs20oBNAfPzu_YSUpbUZbupGj1Idt8pSXixGfKDyH-5DvKmzDwMUQ-hZQmSomXl8qFeVhcLnKOOKedT8mHmU9-Jk73C-ZyS7zHRAMvet4QX92sv3CcbkP0ebN7z96OOCU6edqP2Y-PN9-vP1frb59W11fryqlO5cqYblDQG42qB0EtSK1VbwB76IxoRickUktSk2hbbGoEMNTW1AmQY2ucOmarve8QcGvvot9h_GUDevsohHhrMWbvJrLkhJOCtINBaoMdGtADEPXdCApMX7xO9153MdwvlLLdhiXO5fsWSnvVSFHrQp3tKRdLYpHGf12lsH_mYqV9mkthL_9jnc-P4ZVY_fRixfm-Iv0lX7H_Daf_nZE |
CODEN | AAIDBI |
CitedBy_id | crossref_primary_10_1007_s13042_021_01277_w crossref_primary_10_3390_sym12060876 crossref_primary_10_1016_j_dsp_2022_103757 |
Cites_doi | 10.1016/j.asoc.2013.10.013 10.1016/j.neucom.2007.10.008 10.1007/s00521-008-0194-2 10.1002/zamm.19800601221 10.1109/tmtt.1985.1133146 10.1080/02726349008908232 10.1016/s0893-6080(05)80131-5 10.1155/2016/8045749 10.1109/tap.1966.1138693 10.1109/tsmcb.2011.2168604 10.1016/j.neucom.2005.12.126 10.1016/j.neucom.2007.02.009 10.1109/tnn.2010.2055888 10.2528/pier00080103 10.1016/j.asoc.2010.07.016 10.1109/72.712178 10.1002/(sici)1099-1204(199607)9:4<295::aid-jnm240>3.0.co;2-8 10.1109/tnn.2006.875977 10.1109/31.7600 10.1007/s00521-011-0604-8 10.1049/piee.1971.0217 10.1016/s0893-6080(00)00095-2 10.1109/tnn.2005.857945 10.1109/22.491023 |
ContentType | Journal Article |
Copyright | Author(s) 2018 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
Copyright_xml | – notice: Author(s) – notice: 2018 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
DBID | AJDQP AAYXX CITATION 8FD H8D L7M DOA |
DOI | 10.1063/1.5025504 |
DatabaseName | AIP Open Access Journals CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | CrossRef Technology Research Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: AJDQP name: AIP Open Access Journals url: https://publishing.aip.org/librarians/open-access-policy sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2158-3226 |
EndPage | 065010-14 |
ExternalDocumentID | oai_doaj_org_article_ec0c10e4c2d147a9a724d2eeb9f2327b 10_1063_1_5025504 adv |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 11271378; 11301549; 61375063; 61773404 funderid: http://dx.doi.org/10.13039/501100001809 |
GroupedDBID | 4.4 5VS 61. AAFWJ ABFTF ACGFO ADBBV ADCTM AEGXH AENEX AFPKN AGKCL AGLKD AHSDT AIAGR AJDQP ALMA_UNASSIGNED_HOLDINGS BCNDV EBS EJD FRP GROUPED_DOAJ HH5 IPNFZ KQ8 M~E OK1 RIG RIP RNS ROL RQS AAYXX ABJGX ADMLS AKSGC CITATION 8FD H8D L7M |
ID | FETCH-LOGICAL-c393t-779d32b74a3b20e821443b72ab29706fc01ae8e14e088a65a227e85e9021f87c3 |
IEDL.DBID | DOA |
ISSN | 2158-3226 |
IngestDate | Wed Aug 27 01:32:13 EDT 2025 Mon Jun 30 05:45:36 EDT 2025 Thu Apr 24 23:10:13 EDT 2025 Thu Jul 03 08:46:09 EDT 2025 Fri Jun 21 00:14:54 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | 2158-3226/2018/8(6)/065010/14/$0.00 All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c393t-779d32b74a3b20e821443b72ab29706fc01ae8e14e088a65a227e85e9021f87c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-6658-2187 |
OpenAccessLink | https://doaj.org/article/ec0c10e4c2d147a9a724d2eeb9f2327b |
PQID | 2088361054 |
PQPubID | 2050671 |
PageCount | 14 |
ParticipantIDs | crossref_primary_10_1063_1_5025504 proquest_journals_2088361054 scitation_primary_10_1063_1_5025504 doaj_primary_oai_doaj_org_article_ec0c10e4c2d147a9a724d2eeb9f2327b crossref_citationtrail_10_1063_1_5025504 |
PublicationCentury | 2000 |
PublicationDate | 20180600 2018-06-01 20180601 |
PublicationDateYYYYMMDD | 2018-06-01 |
PublicationDate_xml | – month: 06 year: 2018 text: 20180600 |
PublicationDecade | 2010 |
PublicationPlace | Melville |
PublicationPlace_xml | – name: Melville |
PublicationTitle | AIP advances |
PublicationYear | 2018 |
Publisher | American Institute of Physics AIP Publishing LLC |
Publisher_xml | – name: American Institute of Physics – name: AIP Publishing LLC |
References | Lippold, Mitchell, Griffiths (c4) 1980; 60 Muzhou, Xuli, Yixuan (c11) 2009; 18 Muzhou, Xuli (c13) 2011; 11 Krumpholz, Katehi (c37) 1996; 44 Hou, Han (c12) 2010; 21 Xi, Hou, Lee, Li, Wei, Hai, Wu (c15) 2014; 15 Hoefer (c30) 1985; 33 Huang, Zhu, Siew (c46) 2006; 70 Ramuhalli, Udpa, Udpa (c20) 2005; 16 Yee (c26) 1966; 14 Ciarlet (c6) 2002; 36 Tong, Sun, Li, Luo (c38) 2016; 12 Weiland (c32) 1996; 9 Feng, Tongke (c8) 2013; 26 Huang, Chen (c44) 2008; 71 Huang, Zhou, Ding, Zhang (c45) 2012; 42 Huazhong, Huamo (c7) 1999; 21 Clemens, Weiland (c33) 2001; 32 Huang, Chen, Siew (c42) 2006; 17 Huang, Chen (c43) 2007; 70 Johns, Beurle (c29) 1971; 118 Li, Ouyang, Li, Ren (c21) 2010; 2 Leshno, Lin, Pinkus (c41) 1991; 6 Shankar, Mohammadian, Hall (c34) 1990; 10 Hou, Han (c14) 2012; 21 Chua, Yang (c19) 1988; 35 Lagaris, Likas, Fotiadis (c16) 1998; 9 Weiland (c31) 1977; 31 Shuhong, Shuanghu (c9) 2016; 39 Mai-Duy, Tran-Cong (c18) 2001; 14 Liu, Zhao (c35) 2004; 22 (2023070123265343100_c40) 23–25 2007 (2023070123265343100_c32) 1996; 9 (2023070123265343100_c11) 2009; 18 (2023070123265343100_c14) 2012; 21 (2023070123265343100_c25) 1993 (2023070123265343100_c3) 1997 (2023070123265343100_c19) 1988; 35 (2023070123265343100_c36) 2000 (2023070123265343100_c30) 1985; 33 (2023070123265343100_c18) 2001; 14 (2023070123265343100_c34) 1990; 10 (2023070123265343100_c38) 2016; 12 (2023070123265343100_c8) 2013; 26 (2023070123265343100_c10) 1982 (2023070123265343100_c17) 2002 (2023070123265343100_c1) 2011 (2023070123265343100_c27) 2005 (2023070123265343100_c43) 2007; 70 (2023070123265343100_c22) 2008 (2023070123265343100_c37) 1996; 44 (2023070123265343100_c12) 2010; 21 (2023070123265343100_c2) 2003 (2023070123265343100_c35) 2004; 22 (2023070123265343100_c45) 2012; 42 (2023070123265343100_c44) 2008; 71 (2023070123265343100_c5) 1979 (2023070123265343100_c16) 1998; 9 (2023070123265343100_c15) 2014; 15 (2023070123265343100_c28) 2011 (2023070123265343100_c39) 2008 (2023070123265343100_c6) 2002; 36 (2023070123265343100_c47) 2001 (2023070123265343100_c24) 1998 (2023070123265343100_c4) 1980; 60 (2023070123265343100_c29) 1971; 118 (2023070123265343100_c21) 2010; 2 (2023070123265343100_c41) 1991; 6 (2023070123265343100_c42) 2006; 17 (2023070123265343100_c26) 1966; 14 (2023070123265343100_c46) 2006; 70 (2023070123265343100_c9) 2016; 39 (2023070123265343100_c13) 2011; 11 (2023070123265343100_c20) 2005; 16 (2023070123265343100_c7) 1999; 21 (2023070123265343100_c33) 2001; 32 (2023070123265343100_c31) 1977; 31 (2023070123265343100_c23) 2009 |
References_xml | – volume: 26 start-page: 900 year: 2013 ident: c8 publication-title: Applied Mathematics – volume: 36 start-page: 530 year: 2002 ident: c6 publication-title: Mathematics of Computation – volume: 9 start-page: 987 year: 1998 ident: c16 publication-title: IEEE Transactions on Neural Networks – volume: 31 start-page: 116 year: 1977 ident: c31 publication-title: Arch. Elek. Ubertragung – volume: 42 start-page: 513 year: 2012 ident: c45 publication-title: IEEE Trans Syst Man Cybern B Cybern – volume: 21 start-page: 25 year: 2012 ident: c14 publication-title: Neural Computing and Applications – volume: 14 start-page: 185 year: 2001 ident: c18 publication-title: Neural Networks – volume: 12 start-page: 1 year: 2016 ident: c38 publication-title: Mathematical Problems in Engineering – volume: 44 start-page: 555 year: 1996 ident: c37 publication-title: IEEE Trans. Microw. Theory Techn – volume: 15 start-page: 57 year: 2014 ident: c15 publication-title: Applied Soft Computing – volume: 60 start-page: 741 year: 1980 ident: c4 publication-title: Journal of Applied Mathematics & Mechanics – volume: 14 start-page: 302 year: 1966 ident: c26 publication-title: IEEE Trans. Antennas Propagat – volume: 35 start-page: 1257 year: 1988 ident: c19 publication-title: IEEE Transactions on Circuits & Systems – volume: 70 start-page: 489 year: 2006 ident: c46 publication-title: Neurocomputing – volume: 11 start-page: 2173 year: 2011 ident: c13 publication-title: Elsevier Science Publishers B. V. – volume: 16 start-page: 1381 year: 2005 ident: c20 publication-title: IEEE Transactions on Neural Networks – volume: 32 start-page: 65 year: 2001 ident: c33 publication-title: Prog. Electromagn. Res – volume: 17 start-page: 879 year: 2006 ident: c42 publication-title: IEEE Trans Neural Netw – volume: 9 start-page: 195 year: 1996 ident: c32 publication-title: Int. J. Numer. Model. Electron. Network Dev. Field – volume: 21 start-page: 1517 year: 2010 ident: c12 publication-title: IEEE Transactions on Neural Networks – volume: 6 start-page: 861 year: 1991 ident: c41 publication-title: Neural Networks – volume: 71 start-page: 3460 year: 2008 ident: c44 publication-title: Neurocomputing – volume: 70 start-page: 3056 year: 2007 ident: c43 publication-title: Neurocomputing – volume: 39 start-page: 382 year: 2016 ident: c9 publication-title: Journal of Applied Mathematics – volume: 118 start-page: 1203 year: 1971 ident: c29 publication-title: Proc. Inst. Elec. Eng – volume: 18 start-page: 883 year: 2009 ident: c11 publication-title: Neural Computing and Applications – volume: 10 start-page: 147 year: 1990 ident: c34 publication-title: Electromagn – volume: 2 start-page: 109 year: 2010 ident: c21 publication-title: IEEE Computer Society – volume: 33 start-page: 882 year: 1985 ident: c30 publication-title: IEEE Trans. Microwave Theory Tech – volume: 21 start-page: 375 year: 1999 ident: c7 publication-title: Computational Mathematics – volume: 22 start-page: 299 year: 2004 ident: c35 publication-title: Int. J. Numer. Model. Eletron. Network. Dev. Field – volume: 15 start-page: 57 year: 2014 ident: 2023070123265343100_c15 publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2013.10.013 – volume: 22 start-page: 299 year: 2004 ident: 2023070123265343100_c35 publication-title: Int. J. Numer. Model. Eletron. Network. Dev. Field – volume: 39 start-page: 382 year: 2016 ident: 2023070123265343100_c9 publication-title: Journal of Applied Mathematics – volume: 71 start-page: 3460 year: 2008 ident: 2023070123265343100_c44 publication-title: Neurocomputing doi: 10.1016/j.neucom.2007.10.008 – volume: 18 start-page: 883 year: 2009 ident: 2023070123265343100_c11 publication-title: Neural Computing and Applications doi: 10.1007/s00521-008-0194-2 – volume: 60 start-page: 741 year: 1980 ident: 2023070123265343100_c4 publication-title: Journal of Applied Mathematics & Mechanics doi: 10.1002/zamm.19800601221 – volume: 33 start-page: 882 year: 1985 ident: 2023070123265343100_c30 publication-title: IEEE Trans. Microwave Theory Tech doi: 10.1109/tmtt.1985.1133146 – volume-title: Field Computation by Moment Method year: 1993 ident: 2023070123265343100_c25 – volume: 10 start-page: 147 year: 1990 ident: 2023070123265343100_c34 publication-title: Electromagn doi: 10.1080/02726349008908232 – volume: 6 start-page: 861 year: 1991 ident: 2023070123265343100_c41 publication-title: Neural Networks doi: 10.1016/s0893-6080(05)80131-5 – volume: 12 start-page: 1 year: 2016 ident: 2023070123265343100_c38 publication-title: Mathematical Problems in Engineering doi: 10.1155/2016/8045749 – volume-title: Numerical Partial Differential Equations: Finite Difference Methods year: 1997 ident: 2023070123265343100_c3 – volume: 14 start-page: 302 year: 1966 ident: 2023070123265343100_c26 publication-title: IEEE Trans. Antennas Propagat doi: 10.1109/tap.1966.1138693 – volume: 31 start-page: 116 year: 1977 ident: 2023070123265343100_c31 publication-title: Arch. Elek. Ubertragung – volume: 42 start-page: 513 year: 2012 ident: 2023070123265343100_c45 publication-title: IEEE Trans Syst Man Cybern B Cybern doi: 10.1109/tsmcb.2011.2168604 – start-page: 45 volume-title: Analysis of Multiconductor Transmission Lines year: 2008 ident: 2023070123265343100_c22 – volume: 70 start-page: 489 year: 2006 ident: 2023070123265343100_c46 publication-title: Neurocomputing doi: 10.1016/j.neucom.2005.12.126 – volume-title: EMC analysis methods and computational models year: 2009 ident: 2023070123265343100_c23 – volume-title: Computational Electrodynamics: The Finite-Difference Time-Domain Method year: 2005 ident: 2023070123265343100_c27 – volume: 70 start-page: 3056 year: 2007 ident: 2023070123265343100_c43 publication-title: Neurocomputing doi: 10.1016/j.neucom.2007.02.009 – volume: 21 start-page: 1517 year: 2010 ident: 2023070123265343100_c12 publication-title: IEEE Transactions on Neural Networks doi: 10.1109/tnn.2010.2055888 – start-page: 13 volume-title: Numerical Solution of Partial Differential Equation year: 2003 ident: 2023070123265343100_c2 – start-page: 35 volume-title: Boundary Element Methods in Engineering year: 1982 ident: 2023070123265343100_c10 – volume-title: Electromagnetic Time-domain Finite Difference Method year: 2011 ident: 2023070123265343100_c28 – volume: 32 start-page: 65 year: 2001 ident: 2023070123265343100_c33 publication-title: Prog. Electromagn. Res doi: 10.2528/pier00080103 – volume: 11 start-page: 2173 year: 2011 ident: 2023070123265343100_c13 publication-title: Elsevier Science Publishers B. V. doi: 10.1016/j.asoc.2010.07.016 – volume-title: Discontinuous Galerkin Method: Theory, Computation and Applications year: 2000 ident: 2023070123265343100_c36 – volume-title: Finite Element Method and Its Theoretical Basis year: 1979 ident: 2023070123265343100_c5 – volume: 36 start-page: 530 year: 2002 ident: 2023070123265343100_c6 publication-title: Mathematics of Computation – volume: 21 start-page: 375 year: 1999 ident: 2023070123265343100_c7 publication-title: Computational Mathematics – volume: 9 start-page: 987 year: 1998 ident: 2023070123265343100_c16 publication-title: IEEE Transactions on Neural Networks doi: 10.1109/72.712178 – volume: 9 start-page: 195 year: 1996 ident: 2023070123265343100_c32 publication-title: Int. J. Numer. Model. Electron. Network Dev. Field doi: 10.1002/(sici)1099-1204(199607)9:4<295::aid-jnm240>3.0.co;2-8 – volume: 26 start-page: 900 year: 2013 ident: 2023070123265343100_c8 publication-title: Applied Mathematics – volume: 17 start-page: 879 year: 2006 ident: 2023070123265343100_c42 publication-title: IEEE Trans Neural Netw doi: 10.1109/tnn.2006.875977 – volume-title: Analysis of Multiconductor Transmission Lines year: 2008 ident: 2023070123265343100_c39 – volume: 35 start-page: 1257 year: 1988 ident: 2023070123265343100_c19 publication-title: IEEE Transactions on Circuits & Systems doi: 10.1109/31.7600 – start-page: 233 volume-title: Matrix theory year: 2001 ident: 2023070123265343100_c47 – start-page: 813 year: 23–25 2007 ident: 2023070123265343100_c40 – volume: 21 start-page: 25 year: 2012 ident: 2023070123265343100_c14 publication-title: Neural Computing and Applications doi: 10.1007/s00521-011-0604-8 – volume: 118 start-page: 1203 year: 1971 ident: 2023070123265343100_c29 publication-title: Proc. Inst. Elec. Eng doi: 10.1049/piee.1971.0217 – start-page: 24 volume-title: Electromagnetic Finite Element Method year: 1998 ident: 2023070123265343100_c24 – volume: 14 start-page: 185 year: 2001 ident: 2023070123265343100_c18 publication-title: Neural Networks doi: 10.1016/s0893-6080(00)00095-2 – start-page: 235 volume-title: Numerical Analysis year: 2011 ident: 2023070123265343100_c1 – volume: 2 start-page: 109 year: 2010 ident: 2023070123265343100_c21 publication-title: IEEE Computer Society – volume: 16 start-page: 1381 year: 2005 ident: 2023070123265343100_c20 publication-title: IEEE Transactions on Neural Networks doi: 10.1109/tnn.2005.857945 – start-page: 773 year: 2002 ident: 2023070123265343100_c17 – volume: 44 start-page: 555 year: 1996 ident: 2023070123265343100_c37 publication-title: IEEE Trans. Microw. Theory Techn doi: 10.1109/22.491023 |
SSID | ssj0000491084 |
Score | 2.1398165 |
Snippet | With the increasing demands for vast amounts of data and high-speed signal transmission, the use of multi-conductor transmission lines is becoming more common.... |
SourceID | doaj proquest crossref scitation |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 065010 |
SubjectTerms | Algorithms Basis functions Conductors Digital systems Electric potential High speed Iterative methods Machine learning Mathematical models Neural networks Orthogonality Signal transmission Transmission lines Weight |
SummonAdditionalLinks | – databaseName: AIP Open Access Journals dbid: AJDQP link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ3PS8MwFMfDcIhexJ84nRLUg5dq86NNcpy6MYeKgoK3kqSpE2anW_3_fWm7oqDgNUlJ-16S92kSvg-hk1gRo2JjgkiLOOAQAwJp0ywwxkrGmRGmTNN5excPn_joOXpuoeM_TvBjdk7OIs-9XvOzTQGOYei2e6Orh_tmKwUgl4SSL3SDvj_zI9qUovw_SHIFwkx14v0tqAzW0VpNg7hXuW8DtVy-iZbLW5l2voXGXjoD6vPqrjau0j1j4Ew8ge4msEphqAngn9bLtkJx4UMPuM7vgWFPkNh9VGLec-wDVoqhHJgPX_dvbrGevExnr8X4bRs9DfqPl8OgTo0QWKZYAUysUkaN4JoZGjrphc_AsFQbqkQYZzYk2klHuINVRMeRplQ4GTkFIT2TwrIdtJRPc7eLMDCW9NCQZcLxCICQMKkVz7igPNWp6KDThQmThbV8-opJUp5fxywhSW3tDjpqmr5XYhm_NbrwfmgaeH3rsgCcntTTJXE2tCR03NKUcKGV9i9DnTMqAwQUpoO6Cy8m9aSbJxS-lQEORtDHcePZv99k71-t9tEqQJKsrod10VIx-3QHACKFOawH4hfUJdfa priority: 102 providerName: American Institute of Physics |
Title | Neural network method for lossless two-conductor transmission line equations based on the IELM algorithm |
URI | http://dx.doi.org/10.1063/1.5025504 https://www.proquest.com/docview/2088361054 https://doaj.org/article/ec0c10e4c2d147a9a724d2eeb9f2327b |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1JS8QwFA6iiF7EFceNoB68VJulWY6uqDiiqOCtJGnqwjguU_-_L007jKB48VRIAknfe833pXl8D6FtoYnVwtokM1IkHDAgUa4oE2udYpxZaesynd1LcXrHz--z-5FSXyEnLMoDR8PteZc6knruaEG4NNpIygvqvdUlkAFpw-4LmDdymHqOvJekdblhgDSVQNSKVlZIsD2ymwUq3RRna8Go1uz_RjSnAIXihfgI5pzMopmGLOL9uMg5NOb782iyTtp0gwX0GJQ1oL8fU7lxrAaNgYbiHkzXg00MQ08CR96g6grNVUAm8Gz4RYYDwcT-PWp9D3DAswJDO1BCfHZ80cWm9_D68VQ9viyiu5Pj28PTpKmckDimWQWUWReMWskNszT1Kuiigd2psVTLVJQuJcYrT7iHTcaIzFAqvcq8BsQvlXRsCY33X_t-GWGgYCpwirKUnmfAFwlTRvOSBz-YQnbQTmvCvLVWqG7Ry-vrbcFykjfW7qDN4dC3qKXx06CD4IfhgCB_XTdAUORNUOR_BUUHrbVezJtvcpBTeFcGbDGDObaGnv19JSv_sZJVNA0US8XksjU0Xn18-nWgMZXdQBP7R92Lm_A8P7q-2qgj-AvFXu-3 |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwELYoqKIX1KdYoK3Vh9RLIH7Ej0MPtIB2YRe1EkjcXNtxClJYFhKo-qP6HzvOYwtSK_XC1R7FkxlP5vMj3yD0TmjitHAuyawUCYcckCifF4lzXjHOnHRNmc7JoRge8_2T7GQB_er_hQElqk17NmspgvObrc6ASQmY83r2h3BAsC2ymUVEnPLuTuVB-PkDVmzVx9EOuPc9pXu7R5-HSVdUIPFMsxrQpM4ZdZJb5mgaVKQMA5WodVTLVBQ-JTaoQHiA-LMis5TKoLKgIRkWSnoGz32AlmD1LyCIlrb3d75-mW_qANwmqeI9g9FtHe_kvaY8wB1MuwwJrz17v5Xe9h6jlQ6X4u3WDk_QQpg-RQ-b-6G-eoZOI4kH9E_bW-O4LTyNAfHiEoYr4XuJoSeB1XUkkIXmOiZBmERxNw5HLIvDZUsrXuGYOnMM7YA-8Wh3PMG2_H5xdVafnj9Hx_dizxdocXoxDasIA9pTEb4UhQw8A2hKmLKaF1xSnttcDtCH3oSmt1YspFGa5iRdMENMZ-0BejMXnbW0HX8T-hT9MBeITNtNA8w90807E3zqSRq4pznh0moblaEhOF0AGJVugDZ6L5ou_CtD4V0ZANMMxng79-y_NVn7L6nXaHl4NBmb8ejwYB09Auim2ktrG2ixvroOLwEe1e5VNykx-nbfcfAbuDYdPA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neural+network+method+for+lossless+two-conductor+transmission+line+equations+based+on+the+IELM+algorithm&rft.jtitle=AIP+advances&rft.au=Yunlei+Yang&rft.au=Muzhou+Hou&rft.au=Jianshu+Luo&rft.au=Taohua+Liu&rft.date=2018-06-01&rft.pub=AIP+Publishing+LLC&rft.issn=2158-3226&rft.eissn=2158-3226&rft.volume=8&rft.issue=6&rft.spage=065010&rft.epage=065010-14&rft_id=info:doi/10.1063%2F1.5025504&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_ec0c10e4c2d147a9a724d2eeb9f2327b |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2158-3226&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2158-3226&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2158-3226&client=summon |