Neural network method for lossless two-conductor transmission line equations based on the IELM algorithm

With the increasing demands for vast amounts of data and high-speed signal transmission, the use of multi-conductor transmission lines is becoming more common. The impact of transmission lines on signal transmission is thus a key issue affecting the performance of high-speed digital systems. To solv...

Full description

Saved in:
Bibliographic Details
Published inAIP advances Vol. 8; no. 6; pp. 065010 - 065010-14
Main Authors Yang, Yunlei, Hou, Muzhou, Luo, Jianshu, Liu, Taohua
Format Journal Article
LanguageEnglish
Published Melville American Institute of Physics 01.06.2018
AIP Publishing LLC
Subjects
Online AccessGet full text

Cover

Loading…
Abstract With the increasing demands for vast amounts of data and high-speed signal transmission, the use of multi-conductor transmission lines is becoming more common. The impact of transmission lines on signal transmission is thus a key issue affecting the performance of high-speed digital systems. To solve the problem of lossless two-conductor transmission line equations (LTTLEs), a neural network model and algorithm are explored in this paper. By selecting the product of two triangular basis functions as the activation function of hidden layer neurons, we can guarantee the separation of time, space, and phase orthogonality. By adding the initial condition to the neural network, an improved extreme learning machine (IELM) algorithm for solving the network weight is obtained. This is different to the traditional method for converting the initial condition into the iterative constraint condition. Calculation software for solving the LTTLEs based on the IELM algorithm is developed. Numerical experiments show that the results are consistent with those of the traditional method. The proposed neural network algorithm can find the terminal voltage of the transmission line and also the voltage of any observation point. It is possible to calculate the value at any given point by using the neural network model to solve the transmission line equation.
AbstractList With the increasing demands for vast amounts of data and high-speed signal transmission, the use of multi-conductor transmission lines is becoming more common. The impact of transmission lines on signal transmission is thus a key issue affecting the performance of high-speed digital systems. To solve the problem of lossless two-conductor transmission line equations (LTTLEs), a neural network model and algorithm are explored in this paper. By selecting the product of two triangular basis functions as the activation function of hidden layer neurons, we can guarantee the separation of time, space, and phase orthogonality. By adding the initial condition to the neural network, an improved extreme learning machine (IELM) algorithm for solving the network weight is obtained. This is different to the traditional method for converting the initial condition into the iterative constraint condition. Calculation software for solving the LTTLEs based on the IELM algorithm is developed. Numerical experiments show that the results are consistent with those of the traditional method. The proposed neural network algorithm can find the terminal voltage of the transmission line and also the voltage of any observation point. It is possible to calculate the value at any given point by using the neural network model to solve the transmission line equation.
Author Luo, Jianshu
Yang, Yunlei
Hou, Muzhou
Liu, Taohua
Author_xml – sequence: 1
  givenname: Yunlei
  surname: Yang
  fullname: Yang, Yunlei
  email: yunleiy@126.com
  organization: School of Mathematics and Statistics, Central South University
– sequence: 2
  givenname: Muzhou
  surname: Hou
  fullname: Hou, Muzhou
  organization: School of Mathematics and Statistics, Central South University
– sequence: 3
  givenname: Jianshu
  surname: Luo
  fullname: Luo, Jianshu
  organization: College of Science, National University of Defense Technology
– sequence: 4
  givenname: Taohua
  surname: Liu
  fullname: Liu, Taohua
  organization: School of Mathematics and Statistics, Central South University
BookMark eNp9kUFP3DAQha2KSgXKof_AEieQAvbYiZMjQrRdadte2rM1cSast9kYbEeo_74uSytUIXyx_fzNG-vNETuYw0yMfZDiQopGXcqLWkBdC_2GHYKs20oBNAfPzu_YSUpbUZbupGj1Idt8pSXixGfKDyH-5DvKmzDwMUQ-hZQmSomXl8qFeVhcLnKOOKedT8mHmU9-Jk73C-ZyS7zHRAMvet4QX92sv3CcbkP0ebN7z96OOCU6edqP2Y-PN9-vP1frb59W11fryqlO5cqYblDQG42qB0EtSK1VbwB76IxoRickUktSk2hbbGoEMNTW1AmQY2ucOmarve8QcGvvot9h_GUDevsohHhrMWbvJrLkhJOCtINBaoMdGtADEPXdCApMX7xO9153MdwvlLLdhiXO5fsWSnvVSFHrQp3tKRdLYpHGf12lsH_mYqV9mkthL_9jnc-P4ZVY_fRixfm-Iv0lX7H_Daf_nZE
CODEN AAIDBI
CitedBy_id crossref_primary_10_1007_s13042_021_01277_w
crossref_primary_10_3390_sym12060876
crossref_primary_10_1016_j_dsp_2022_103757
Cites_doi 10.1016/j.asoc.2013.10.013
10.1016/j.neucom.2007.10.008
10.1007/s00521-008-0194-2
10.1002/zamm.19800601221
10.1109/tmtt.1985.1133146
10.1080/02726349008908232
10.1016/s0893-6080(05)80131-5
10.1155/2016/8045749
10.1109/tap.1966.1138693
10.1109/tsmcb.2011.2168604
10.1016/j.neucom.2005.12.126
10.1016/j.neucom.2007.02.009
10.1109/tnn.2010.2055888
10.2528/pier00080103
10.1016/j.asoc.2010.07.016
10.1109/72.712178
10.1002/(sici)1099-1204(199607)9:4<295::aid-jnm240>3.0.co;2-8
10.1109/tnn.2006.875977
10.1109/31.7600
10.1007/s00521-011-0604-8
10.1049/piee.1971.0217
10.1016/s0893-6080(00)00095-2
10.1109/tnn.2005.857945
10.1109/22.491023
ContentType Journal Article
Copyright Author(s)
2018 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Copyright_xml – notice: Author(s)
– notice: 2018 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
DBID AJDQP
AAYXX
CITATION
8FD
H8D
L7M
DOA
DOI 10.1063/1.5025504
DatabaseName AIP Open Access Journals
CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitleList CrossRef
Technology Research Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: AJDQP
  name: AIP Open Access Journals
  url: https://publishing.aip.org/librarians/open-access-policy
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2158-3226
EndPage 065010-14
ExternalDocumentID oai_doaj_org_article_ec0c10e4c2d147a9a724d2eeb9f2327b
10_1063_1_5025504
adv
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 11271378; 11301549; 61375063; 61773404
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID 4.4
5VS
61.
AAFWJ
ABFTF
ACGFO
ADBBV
ADCTM
AEGXH
AENEX
AFPKN
AGKCL
AGLKD
AHSDT
AIAGR
AJDQP
ALMA_UNASSIGNED_HOLDINGS
BCNDV
EBS
EJD
FRP
GROUPED_DOAJ
HH5
IPNFZ
KQ8
M~E
OK1
RIG
RIP
RNS
ROL
RQS
AAYXX
ABJGX
ADMLS
AKSGC
CITATION
8FD
H8D
L7M
ID FETCH-LOGICAL-c393t-779d32b74a3b20e821443b72ab29706fc01ae8e14e088a65a227e85e9021f87c3
IEDL.DBID DOA
ISSN 2158-3226
IngestDate Wed Aug 27 01:32:13 EDT 2025
Mon Jun 30 05:45:36 EDT 2025
Thu Apr 24 23:10:13 EDT 2025
Thu Jul 03 08:46:09 EDT 2025
Fri Jun 21 00:14:54 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License 2158-3226/2018/8(6)/065010/14/$0.00
All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c393t-779d32b74a3b20e821443b72ab29706fc01ae8e14e088a65a227e85e9021f87c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6658-2187
OpenAccessLink https://doaj.org/article/ec0c10e4c2d147a9a724d2eeb9f2327b
PQID 2088361054
PQPubID 2050671
PageCount 14
ParticipantIDs crossref_primary_10_1063_1_5025504
proquest_journals_2088361054
scitation_primary_10_1063_1_5025504
doaj_primary_oai_doaj_org_article_ec0c10e4c2d147a9a724d2eeb9f2327b
crossref_citationtrail_10_1063_1_5025504
PublicationCentury 2000
PublicationDate 20180600
2018-06-01
20180601
PublicationDateYYYYMMDD 2018-06-01
PublicationDate_xml – month: 06
  year: 2018
  text: 20180600
PublicationDecade 2010
PublicationPlace Melville
PublicationPlace_xml – name: Melville
PublicationTitle AIP advances
PublicationYear 2018
Publisher American Institute of Physics
AIP Publishing LLC
Publisher_xml – name: American Institute of Physics
– name: AIP Publishing LLC
References Lippold, Mitchell, Griffiths (c4) 1980; 60
Muzhou, Xuli, Yixuan (c11) 2009; 18
Muzhou, Xuli (c13) 2011; 11
Krumpholz, Katehi (c37) 1996; 44
Hou, Han (c12) 2010; 21
Xi, Hou, Lee, Li, Wei, Hai, Wu (c15) 2014; 15
Hoefer (c30) 1985; 33
Huang, Zhu, Siew (c46) 2006; 70
Ramuhalli, Udpa, Udpa (c20) 2005; 16
Yee (c26) 1966; 14
Ciarlet (c6) 2002; 36
Tong, Sun, Li, Luo (c38) 2016; 12
Weiland (c32) 1996; 9
Feng, Tongke (c8) 2013; 26
Huang, Chen (c44) 2008; 71
Huang, Zhou, Ding, Zhang (c45) 2012; 42
Huazhong, Huamo (c7) 1999; 21
Clemens, Weiland (c33) 2001; 32
Huang, Chen, Siew (c42) 2006; 17
Huang, Chen (c43) 2007; 70
Johns, Beurle (c29) 1971; 118
Li, Ouyang, Li, Ren (c21) 2010; 2
Leshno, Lin, Pinkus (c41) 1991; 6
Shankar, Mohammadian, Hall (c34) 1990; 10
Hou, Han (c14) 2012; 21
Chua, Yang (c19) 1988; 35
Lagaris, Likas, Fotiadis (c16) 1998; 9
Weiland (c31) 1977; 31
Shuhong, Shuanghu (c9) 2016; 39
Mai-Duy, Tran-Cong (c18) 2001; 14
Liu, Zhao (c35) 2004; 22
(2023070123265343100_c40) 23–25 2007
(2023070123265343100_c32) 1996; 9
(2023070123265343100_c11) 2009; 18
(2023070123265343100_c14) 2012; 21
(2023070123265343100_c25) 1993
(2023070123265343100_c3) 1997
(2023070123265343100_c19) 1988; 35
(2023070123265343100_c36) 2000
(2023070123265343100_c30) 1985; 33
(2023070123265343100_c18) 2001; 14
(2023070123265343100_c34) 1990; 10
(2023070123265343100_c38) 2016; 12
(2023070123265343100_c8) 2013; 26
(2023070123265343100_c10) 1982
(2023070123265343100_c17) 2002
(2023070123265343100_c1) 2011
(2023070123265343100_c27) 2005
(2023070123265343100_c43) 2007; 70
(2023070123265343100_c22) 2008
(2023070123265343100_c37) 1996; 44
(2023070123265343100_c12) 2010; 21
(2023070123265343100_c2) 2003
(2023070123265343100_c35) 2004; 22
(2023070123265343100_c45) 2012; 42
(2023070123265343100_c44) 2008; 71
(2023070123265343100_c5) 1979
(2023070123265343100_c16) 1998; 9
(2023070123265343100_c15) 2014; 15
(2023070123265343100_c28) 2011
(2023070123265343100_c39) 2008
(2023070123265343100_c6) 2002; 36
(2023070123265343100_c47) 2001
(2023070123265343100_c24) 1998
(2023070123265343100_c4) 1980; 60
(2023070123265343100_c29) 1971; 118
(2023070123265343100_c21) 2010; 2
(2023070123265343100_c41) 1991; 6
(2023070123265343100_c42) 2006; 17
(2023070123265343100_c26) 1966; 14
(2023070123265343100_c46) 2006; 70
(2023070123265343100_c9) 2016; 39
(2023070123265343100_c13) 2011; 11
(2023070123265343100_c20) 2005; 16
(2023070123265343100_c7) 1999; 21
(2023070123265343100_c33) 2001; 32
(2023070123265343100_c31) 1977; 31
(2023070123265343100_c23) 2009
References_xml – volume: 26
  start-page: 900
  year: 2013
  ident: c8
  publication-title: Applied Mathematics
– volume: 36
  start-page: 530
  year: 2002
  ident: c6
  publication-title: Mathematics of Computation
– volume: 9
  start-page: 987
  year: 1998
  ident: c16
  publication-title: IEEE Transactions on Neural Networks
– volume: 31
  start-page: 116
  year: 1977
  ident: c31
  publication-title: Arch. Elek. Ubertragung
– volume: 42
  start-page: 513
  year: 2012
  ident: c45
  publication-title: IEEE Trans Syst Man Cybern B Cybern
– volume: 21
  start-page: 25
  year: 2012
  ident: c14
  publication-title: Neural Computing and Applications
– volume: 14
  start-page: 185
  year: 2001
  ident: c18
  publication-title: Neural Networks
– volume: 12
  start-page: 1
  year: 2016
  ident: c38
  publication-title: Mathematical Problems in Engineering
– volume: 44
  start-page: 555
  year: 1996
  ident: c37
  publication-title: IEEE Trans. Microw. Theory Techn
– volume: 15
  start-page: 57
  year: 2014
  ident: c15
  publication-title: Applied Soft Computing
– volume: 60
  start-page: 741
  year: 1980
  ident: c4
  publication-title: Journal of Applied Mathematics & Mechanics
– volume: 14
  start-page: 302
  year: 1966
  ident: c26
  publication-title: IEEE Trans. Antennas Propagat
– volume: 35
  start-page: 1257
  year: 1988
  ident: c19
  publication-title: IEEE Transactions on Circuits & Systems
– volume: 70
  start-page: 489
  year: 2006
  ident: c46
  publication-title: Neurocomputing
– volume: 11
  start-page: 2173
  year: 2011
  ident: c13
  publication-title: Elsevier Science Publishers B. V.
– volume: 16
  start-page: 1381
  year: 2005
  ident: c20
  publication-title: IEEE Transactions on Neural Networks
– volume: 32
  start-page: 65
  year: 2001
  ident: c33
  publication-title: Prog. Electromagn. Res
– volume: 17
  start-page: 879
  year: 2006
  ident: c42
  publication-title: IEEE Trans Neural Netw
– volume: 9
  start-page: 195
  year: 1996
  ident: c32
  publication-title: Int. J. Numer. Model. Electron. Network Dev. Field
– volume: 21
  start-page: 1517
  year: 2010
  ident: c12
  publication-title: IEEE Transactions on Neural Networks
– volume: 6
  start-page: 861
  year: 1991
  ident: c41
  publication-title: Neural Networks
– volume: 71
  start-page: 3460
  year: 2008
  ident: c44
  publication-title: Neurocomputing
– volume: 70
  start-page: 3056
  year: 2007
  ident: c43
  publication-title: Neurocomputing
– volume: 39
  start-page: 382
  year: 2016
  ident: c9
  publication-title: Journal of Applied Mathematics
– volume: 118
  start-page: 1203
  year: 1971
  ident: c29
  publication-title: Proc. Inst. Elec. Eng
– volume: 18
  start-page: 883
  year: 2009
  ident: c11
  publication-title: Neural Computing and Applications
– volume: 10
  start-page: 147
  year: 1990
  ident: c34
  publication-title: Electromagn
– volume: 2
  start-page: 109
  year: 2010
  ident: c21
  publication-title: IEEE Computer Society
– volume: 33
  start-page: 882
  year: 1985
  ident: c30
  publication-title: IEEE Trans. Microwave Theory Tech
– volume: 21
  start-page: 375
  year: 1999
  ident: c7
  publication-title: Computational Mathematics
– volume: 22
  start-page: 299
  year: 2004
  ident: c35
  publication-title: Int. J. Numer. Model. Eletron. Network. Dev. Field
– volume: 15
  start-page: 57
  year: 2014
  ident: 2023070123265343100_c15
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2013.10.013
– volume: 22
  start-page: 299
  year: 2004
  ident: 2023070123265343100_c35
  publication-title: Int. J. Numer. Model. Eletron. Network. Dev. Field
– volume: 39
  start-page: 382
  year: 2016
  ident: 2023070123265343100_c9
  publication-title: Journal of Applied Mathematics
– volume: 71
  start-page: 3460
  year: 2008
  ident: 2023070123265343100_c44
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2007.10.008
– volume: 18
  start-page: 883
  year: 2009
  ident: 2023070123265343100_c11
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-008-0194-2
– volume: 60
  start-page: 741
  year: 1980
  ident: 2023070123265343100_c4
  publication-title: Journal of Applied Mathematics & Mechanics
  doi: 10.1002/zamm.19800601221
– volume: 33
  start-page: 882
  year: 1985
  ident: 2023070123265343100_c30
  publication-title: IEEE Trans. Microwave Theory Tech
  doi: 10.1109/tmtt.1985.1133146
– volume-title: Field Computation by Moment Method
  year: 1993
  ident: 2023070123265343100_c25
– volume: 10
  start-page: 147
  year: 1990
  ident: 2023070123265343100_c34
  publication-title: Electromagn
  doi: 10.1080/02726349008908232
– volume: 6
  start-page: 861
  year: 1991
  ident: 2023070123265343100_c41
  publication-title: Neural Networks
  doi: 10.1016/s0893-6080(05)80131-5
– volume: 12
  start-page: 1
  year: 2016
  ident: 2023070123265343100_c38
  publication-title: Mathematical Problems in Engineering
  doi: 10.1155/2016/8045749
– volume-title: Numerical Partial Differential Equations: Finite Difference Methods
  year: 1997
  ident: 2023070123265343100_c3
– volume: 14
  start-page: 302
  year: 1966
  ident: 2023070123265343100_c26
  publication-title: IEEE Trans. Antennas Propagat
  doi: 10.1109/tap.1966.1138693
– volume: 31
  start-page: 116
  year: 1977
  ident: 2023070123265343100_c31
  publication-title: Arch. Elek. Ubertragung
– volume: 42
  start-page: 513
  year: 2012
  ident: 2023070123265343100_c45
  publication-title: IEEE Trans Syst Man Cybern B Cybern
  doi: 10.1109/tsmcb.2011.2168604
– start-page: 45
  volume-title: Analysis of Multiconductor Transmission Lines
  year: 2008
  ident: 2023070123265343100_c22
– volume: 70
  start-page: 489
  year: 2006
  ident: 2023070123265343100_c46
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2005.12.126
– volume-title: EMC analysis methods and computational models
  year: 2009
  ident: 2023070123265343100_c23
– volume-title: Computational Electrodynamics: The Finite-Difference Time-Domain Method
  year: 2005
  ident: 2023070123265343100_c27
– volume: 70
  start-page: 3056
  year: 2007
  ident: 2023070123265343100_c43
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2007.02.009
– volume: 21
  start-page: 1517
  year: 2010
  ident: 2023070123265343100_c12
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/tnn.2010.2055888
– start-page: 13
  volume-title: Numerical Solution of Partial Differential Equation
  year: 2003
  ident: 2023070123265343100_c2
– start-page: 35
  volume-title: Boundary Element Methods in Engineering
  year: 1982
  ident: 2023070123265343100_c10
– volume-title: Electromagnetic Time-domain Finite Difference Method
  year: 2011
  ident: 2023070123265343100_c28
– volume: 32
  start-page: 65
  year: 2001
  ident: 2023070123265343100_c33
  publication-title: Prog. Electromagn. Res
  doi: 10.2528/pier00080103
– volume: 11
  start-page: 2173
  year: 2011
  ident: 2023070123265343100_c13
  publication-title: Elsevier Science Publishers B. V.
  doi: 10.1016/j.asoc.2010.07.016
– volume-title: Discontinuous Galerkin Method: Theory, Computation and Applications
  year: 2000
  ident: 2023070123265343100_c36
– volume-title: Finite Element Method and Its Theoretical Basis
  year: 1979
  ident: 2023070123265343100_c5
– volume: 36
  start-page: 530
  year: 2002
  ident: 2023070123265343100_c6
  publication-title: Mathematics of Computation
– volume: 21
  start-page: 375
  year: 1999
  ident: 2023070123265343100_c7
  publication-title: Computational Mathematics
– volume: 9
  start-page: 987
  year: 1998
  ident: 2023070123265343100_c16
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/72.712178
– volume: 9
  start-page: 195
  year: 1996
  ident: 2023070123265343100_c32
  publication-title: Int. J. Numer. Model. Electron. Network Dev. Field
  doi: 10.1002/(sici)1099-1204(199607)9:4<295::aid-jnm240>3.0.co;2-8
– volume: 26
  start-page: 900
  year: 2013
  ident: 2023070123265343100_c8
  publication-title: Applied Mathematics
– volume: 17
  start-page: 879
  year: 2006
  ident: 2023070123265343100_c42
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/tnn.2006.875977
– volume-title: Analysis of Multiconductor Transmission Lines
  year: 2008
  ident: 2023070123265343100_c39
– volume: 35
  start-page: 1257
  year: 1988
  ident: 2023070123265343100_c19
  publication-title: IEEE Transactions on Circuits & Systems
  doi: 10.1109/31.7600
– start-page: 233
  volume-title: Matrix theory
  year: 2001
  ident: 2023070123265343100_c47
– start-page: 813
  year: 23–25 2007
  ident: 2023070123265343100_c40
– volume: 21
  start-page: 25
  year: 2012
  ident: 2023070123265343100_c14
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-011-0604-8
– volume: 118
  start-page: 1203
  year: 1971
  ident: 2023070123265343100_c29
  publication-title: Proc. Inst. Elec. Eng
  doi: 10.1049/piee.1971.0217
– start-page: 24
  volume-title: Electromagnetic Finite Element Method
  year: 1998
  ident: 2023070123265343100_c24
– volume: 14
  start-page: 185
  year: 2001
  ident: 2023070123265343100_c18
  publication-title: Neural Networks
  doi: 10.1016/s0893-6080(00)00095-2
– start-page: 235
  volume-title: Numerical Analysis
  year: 2011
  ident: 2023070123265343100_c1
– volume: 2
  start-page: 109
  year: 2010
  ident: 2023070123265343100_c21
  publication-title: IEEE Computer Society
– volume: 16
  start-page: 1381
  year: 2005
  ident: 2023070123265343100_c20
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/tnn.2005.857945
– start-page: 773
  year: 2002
  ident: 2023070123265343100_c17
– volume: 44
  start-page: 555
  year: 1996
  ident: 2023070123265343100_c37
  publication-title: IEEE Trans. Microw. Theory Techn
  doi: 10.1109/22.491023
SSID ssj0000491084
Score 2.1398165
Snippet With the increasing demands for vast amounts of data and high-speed signal transmission, the use of multi-conductor transmission lines is becoming more common....
SourceID doaj
proquest
crossref
scitation
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 065010
SubjectTerms Algorithms
Basis functions
Conductors
Digital systems
Electric potential
High speed
Iterative methods
Machine learning
Mathematical models
Neural networks
Orthogonality
Signal transmission
Transmission lines
Weight
SummonAdditionalLinks – databaseName: AIP Open Access Journals
  dbid: AJDQP
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ3PS8MwFMfDcIhexJ84nRLUg5dq86NNcpy6MYeKgoK3kqSpE2anW_3_fWm7oqDgNUlJ-16S92kSvg-hk1gRo2JjgkiLOOAQAwJp0ywwxkrGmRGmTNN5excPn_joOXpuoeM_TvBjdk7OIs-9XvOzTQGOYei2e6Orh_tmKwUgl4SSL3SDvj_zI9qUovw_SHIFwkx14v0tqAzW0VpNg7hXuW8DtVy-iZbLW5l2voXGXjoD6vPqrjau0j1j4Ew8ge4msEphqAngn9bLtkJx4UMPuM7vgWFPkNh9VGLec-wDVoqhHJgPX_dvbrGevExnr8X4bRs9DfqPl8OgTo0QWKZYAUysUkaN4JoZGjrphc_AsFQbqkQYZzYk2klHuINVRMeRplQ4GTkFIT2TwrIdtJRPc7eLMDCW9NCQZcLxCICQMKkVz7igPNWp6KDThQmThbV8-opJUp5fxywhSW3tDjpqmr5XYhm_NbrwfmgaeH3rsgCcntTTJXE2tCR03NKUcKGV9i9DnTMqAwQUpoO6Cy8m9aSbJxS-lQEORtDHcePZv99k71-t9tEqQJKsrod10VIx-3QHACKFOawH4hfUJdfa
  priority: 102
  providerName: American Institute of Physics
Title Neural network method for lossless two-conductor transmission line equations based on the IELM algorithm
URI http://dx.doi.org/10.1063/1.5025504
https://www.proquest.com/docview/2088361054
https://doaj.org/article/ec0c10e4c2d147a9a724d2eeb9f2327b
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1JS8QwFA6iiF7EFceNoB68VJulWY6uqDiiqOCtJGnqwjguU_-_L007jKB48VRIAknfe833pXl8D6FtoYnVwtokM1IkHDAgUa4oE2udYpxZaesynd1LcXrHz--z-5FSXyEnLMoDR8PteZc6knruaEG4NNpIygvqvdUlkAFpw-4LmDdymHqOvJekdblhgDSVQNSKVlZIsD2ymwUq3RRna8Go1uz_RjSnAIXihfgI5pzMopmGLOL9uMg5NOb782iyTtp0gwX0GJQ1oL8fU7lxrAaNgYbiHkzXg00MQ08CR96g6grNVUAm8Gz4RYYDwcT-PWp9D3DAswJDO1BCfHZ80cWm9_D68VQ9viyiu5Pj28PTpKmckDimWQWUWReMWskNszT1Kuiigd2psVTLVJQuJcYrT7iHTcaIzFAqvcq8BsQvlXRsCY33X_t-GWGgYCpwirKUnmfAFwlTRvOSBz-YQnbQTmvCvLVWqG7Ry-vrbcFykjfW7qDN4dC3qKXx06CD4IfhgCB_XTdAUORNUOR_BUUHrbVezJtvcpBTeFcGbDGDObaGnv19JSv_sZJVNA0US8XksjU0Xn18-nWgMZXdQBP7R92Lm_A8P7q-2qgj-AvFXu-3
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwELYoqKIX1KdYoK3Vh9RLIH7Ej0MPtIB2YRe1EkjcXNtxClJYFhKo-qP6HzvOYwtSK_XC1R7FkxlP5vMj3yD0TmjitHAuyawUCYcckCifF4lzXjHOnHRNmc7JoRge8_2T7GQB_er_hQElqk17NmspgvObrc6ASQmY83r2h3BAsC2ymUVEnPLuTuVB-PkDVmzVx9EOuPc9pXu7R5-HSVdUIPFMsxrQpM4ZdZJb5mgaVKQMA5WodVTLVBQ-JTaoQHiA-LMis5TKoLKgIRkWSnoGz32AlmD1LyCIlrb3d75-mW_qANwmqeI9g9FtHe_kvaY8wB1MuwwJrz17v5Xe9h6jlQ6X4u3WDk_QQpg-RQ-b-6G-eoZOI4kH9E_bW-O4LTyNAfHiEoYr4XuJoSeB1XUkkIXmOiZBmERxNw5HLIvDZUsrXuGYOnMM7YA-8Wh3PMG2_H5xdVafnj9Hx_dizxdocXoxDasIA9pTEb4UhQw8A2hKmLKaF1xSnttcDtCH3oSmt1YspFGa5iRdMENMZ-0BejMXnbW0HX8T-hT9MBeITNtNA8w90807E3zqSRq4pznh0moblaEhOF0AGJVugDZ6L5ou_CtD4V0ZANMMxng79-y_NVn7L6nXaHl4NBmb8ejwYB09Auim2ktrG2ixvroOLwEe1e5VNykx-nbfcfAbuDYdPA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neural+network+method+for+lossless+two-conductor+transmission+line+equations+based+on+the+IELM+algorithm&rft.jtitle=AIP+advances&rft.au=Yunlei+Yang&rft.au=Muzhou+Hou&rft.au=Jianshu+Luo&rft.au=Taohua+Liu&rft.date=2018-06-01&rft.pub=AIP+Publishing+LLC&rft.issn=2158-3226&rft.eissn=2158-3226&rft.volume=8&rft.issue=6&rft.spage=065010&rft.epage=065010-14&rft_id=info:doi/10.1063%2F1.5025504&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_ec0c10e4c2d147a9a724d2eeb9f2327b
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2158-3226&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2158-3226&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2158-3226&client=summon