Integration of artificial intelligence and augmented reality for assisted detection of textile defects
The Fourth Industrial Revolution conceptualizes the rapid change of industries resulting from the convergence of technologies such as artificial intelligence, genetic editing, and advanced robotics that enable increasing interconnectivity and machines that can analyze and diagnosing problems without...
Saved in:
Published in | Journal of engineered fibers and fabrics Vol. 19 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
London, England
SAGE Publications
01.01.2024
SAGE Publishing |
Subjects | |
Online Access | Get full text |
ISSN | 1558-9250 1558-9250 |
DOI | 10.1177/15589250231206502 |
Cover
Loading…
Abstract | The Fourth Industrial Revolution conceptualizes the rapid change of industries resulting from the convergence of technologies such as artificial intelligence, genetic editing, and advanced robotics that enable increasing interconnectivity and machines that can analyze and diagnosing problems without human intervention, through intelligent automation. In this scenario, the use of augmented reality technologies is of great interest. The paper aims to explore the use of augmented reality in support of traditional inspections for assisting textile experts in fabric defect detection. The contribution of this study consists of three main phases, necessary for the future development of the system: (1) the analysis of possible automatic defect detection techniques; (2) the analysis of hardware solutions for the realization of a system based on important criteria such as operator comfort, system footprint, and so on; (3) the proposal of a possible comprehensive solution. Considering these aspects this paper identifies and investigate the best scenario for the introduction of artificial intelligence and augmented reality technologies to help the operator in the detection of textile defects. |
---|---|
AbstractList | The Fourth Industrial Revolution conceptualizes the rapid change of industries resulting from the convergence of technologies such as artificial intelligence, genetic editing, and advanced robotics that enable increasing interconnectivity and machines that can analyze and diagnosing problems without human intervention, through intelligent automation. In this scenario, the use of augmented reality technologies is of great interest. The paper aims to explore the use of augmented reality in support of traditional inspections for assisting textile experts in fabric defect detection. The contribution of this study consists of three main phases, necessary for the future development of the system: (1) the analysis of possible automatic defect detection techniques; (2) the analysis of hardware solutions for the realization of a system based on important criteria such as operator comfort, system footprint, and so on; (3) the proposal of a possible comprehensive solution. Considering these aspects this paper identifies and investigate the best scenario for the introduction of artificial intelligence and augmented reality technologies to help the operator in the detection of textile defects. |
Author | Furferi, Rocco Servi, Michaela Buonamici, Francesco Magherini, Roberto Volpe, Yary |
Author_xml | – sequence: 1 givenname: Michaela orcidid: 0000-0002-4071-6615 surname: Servi fullname: Servi, Michaela email: michaela.servi@unifi.it organization: Department of Industrial Engineering, University of Florence, Florence, Italy – sequence: 2 givenname: Roberto surname: Magherini fullname: Magherini, Roberto organization: Department of Industrial Engineering, University of Florence, Florence, Italy – sequence: 3 givenname: Francesco surname: Buonamici fullname: Buonamici, Francesco organization: Department of Industrial Engineering, University of Florence, Florence, Italy – sequence: 4 givenname: Yary surname: Volpe fullname: Volpe, Yary organization: Department of Industrial Engineering, University of Florence, Florence, Italy – sequence: 5 givenname: Rocco surname: Furferi fullname: Furferi, Rocco organization: Department of Industrial Engineering, University of Florence, Florence, Italy |
BookMark | eNp9kN1KAzEQRoNUsK0-gHf7AluTTbNJLqX4Uyh4o9dLNpksKduNJCnYtzfbqohCr2Y4w_lgvhmaDH4AhG4JXhDC-R1hTMiK4YqSCtd5XqDpyMoRTn7tV2gW4xZjJinDU2TXQ4IuqOT8UHhbqJCcddqpvnD50veug0FDoQZTqH23gwxNEUD1Lh0K60OhYnRxhAYS6O-cBB_J9ZChzTBeo0ur-gg3X3OO3h4fXlfP5eblab2635SaSppKTmQtJJeWC44N0KVoGdWWtyAkpUaYmkuQgpOa17TWla4Nryq5BIkZw5jTOVqfco1X2-Y9uJ0Kh8Yr1xyBD10zfqh7aARTWBoQ1pB2iY2RkkpDbMvaVraa1TmLnLJ08DEGsD95BDdj6c2_0rPD_zjapWO5KSjXnzUXJzOqDpqt34chF3VG-AS0oJTx |
CitedBy_id | crossref_primary_10_1007_s11740_024_01324_9 |
Cites_doi | 10.1088/1742-6596/2224/1/012010 10.1007/978-3-319-99695-0_6 10.1016/j.compind.2021.103459 10.1016/j.ijpe.2018.08.019 10.1109/ACCESS.2018.2802699 10.2478/aut-2019-0035 10.1111/cote.12394 10.1006/jmps.1999.1279 10.1109/ISEMANTIC.2019.8884329 10.1049/iet-cim.2020.0062 10.3390/app10072511 10.1007/s10845-019-01476-x 10.1109/TASE.2017.2696748 10.1016/j.patcog.2004.07.009 10.1016/j.rcim.2018.10.001 10.1016/j.ijleo.2013.05.004 10.1080/00405000.2014.929790 10.1016/j.jclepro.2019.119869 10.3390/app10238434 10.1016/j.ifacol.2015.06.451 10.1109/ICPR48806.2021.9412092 10.1016/j.ijpe.2020.107776 10.1515/aut-2015-0001 10.1177/00405175211034241 10.1109/TIP.2019.2959741 |
ContentType | Journal Article |
Copyright | The Author(s) 2024 |
Copyright_xml | – notice: The Author(s) 2024 |
DBID | AFRWT AAYXX CITATION DOA |
DOI | 10.1177/15589250231206502 |
DatabaseName | Sage Journals GOLD Open Access 2024 CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: AFRWT name: SAGE Open Access Journals url: http://journals.sagepub.com/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-9250 |
ExternalDocumentID | oai_doaj_org_article_85a09de8fd1b40dd9939d1fb5bb9bc56 10_1177_15589250231206502 10.1177_15589250231206502 |
GroupedDBID | 0R~ 29K 2WC 54M 5GY 5VS AASGM ABQXT ACDXX ACROE ADBBV ADEBD ADMLS ADOGD AEDFJ AENEX AEWDL AFCOW AFKRG AFRWT AJUZI ALMA_UNASSIGNED_HOLDINGS ARTOV BCNDV BDDNI C1A D-I E3Z EBS EJD GROUPED_DOAJ H13 HH5 J8X KQ8 ML~ M~E OK1 RNS ROL SAFTQ SAUOL SCDPB SCNPE SFC TR2 TTC AAYXX ACHEB CITATION OVT |
ID | FETCH-LOGICAL-c393t-71968979f7870de348b53cf7be8933d8d679e987167636c2c6d72294e90550073 |
IEDL.DBID | AFRWT |
ISSN | 1558-9250 |
IngestDate | Wed Aug 27 01:34:46 EDT 2025 Thu Apr 24 23:11:56 EDT 2025 Tue Jul 01 05:16:40 EDT 2025 Tue Jun 17 22:31:13 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | augmented reality Artificial intelligence textile defect detection machine vision |
Language | English |
License | This article is distributed under the terms of the Creative Commons Attribution 4.0 License (https://creativecommons.org/licenses/by/4.0/) which permits any use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c393t-71968979f7870de348b53cf7be8933d8d679e987167636c2c6d72294e90550073 |
ORCID | 0000-0002-4071-6615 |
OpenAccessLink | https://journals.sagepub.com/doi/full/10.1177/15589250231206502?utm_source=summon&utm_medium=discovery-provider |
ParticipantIDs | doaj_primary_oai_doaj_org_article_85a09de8fd1b40dd9939d1fb5bb9bc56 crossref_primary_10_1177_15589250231206502 crossref_citationtrail_10_1177_15589250231206502 sage_journals_10_1177_15589250231206502 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-01-01 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London, England |
PublicationPlace_xml | – name: London, England |
PublicationTitle | Journal of engineered fibers and fabrics |
PublicationYear | 2024 |
Publisher | SAGE Publications SAGE Publishing |
Publisher_xml | – name: SAGE Publications – name: SAGE Publishing |
References | Liu, Wang, Su 2019; 29 Silvestre-Blanes, Albero-Albero, Miralles 2019; 19 Wei, Hao, Tang 2019; 849 Ghobakhloo 2020; 252 Tabernik, Šela, Skvarč 2020; 31 Jing, Ma, Zhang 2019; 135 Dalenogare, Benitez, Ayala 2018; 204 Bai, Dallasega, Orzes 2020; 229 Li, Li, Li 2021; 2021 Zhao, Yin, Zhang 2020; 2 Raheja, Kumar, Chaudhary 2013; 124 Blanco-Novoa, Fernandez-Carames, Fraga-Lamas 2018; 6 Browne 2000; 44 Zhu, Pan, Gao 2015; 15 Li, Zhang, Jing 2015; 106 Yapi, Allili, Baaziz 2018; 15 Yapi, Mejri, Allili 2015; 48 Peng, Wang, Hao 2020; 10 Božič, Tabernik, Skočaj 2021; 129 Ngan, Pang, Yung 2005; 38 Ben Salem, Abdelkrim 2020; 10 Han, Yu 2020; 10 Shahrabadi, Castilla, Guevara 2022; 2224 Gattullo, Scurati, Fiorentino 2019; 56 Dlamini, Kao, Su 2022; 92 bibr28-15589250231206502 Ben Salem Y (bibr7-15589250231206502) 2020; 10 Li C (bibr9-15589250231206502) 2021; 2021 bibr15-15589250231206502 bibr2-15589250231206502 bibr25-15589250231206502 bibr5-15589250231206502 bibr18-15589250231206502 bibr30-15589250231206502 bibr33-15589250231206502 bibr20-15589250231206502 bibr23-15589250231206502 bibr4-15589250231206502 bibr10-15589250231206502 bibr1-15589250231206502 bibr14-15589250231206502 bibr27-15589250231206502 bibr24-15589250231206502 bibr17-15589250231206502 bibr21-15589250231206502 bibr31-15589250231206502 bibr34-15589250231206502 bibr11-15589250231206502 bibr3-15589250231206502 bibr29-15589250231206502 bibr19-15589250231206502 bibr6-15589250231206502 bibr16-15589250231206502 bibr13-15589250231206502 bibr26-15589250231206502 bibr32-15589250231206502 bibr8-15589250231206502 bibr22-15589250231206502 bibr12-15589250231206502 |
References_xml | – volume: 129 start-page: 103459 year: 2021 article-title: Mixed supervision for surface-defect detection: from weakly to fully supervised learning publication-title: Comput Ind – volume: 204 start-page: 383 year: 2018 end-page: 394 article-title: The expected contribution of Industry 4.0 technologies for industrial performance publication-title: Int J Prod Econ – volume: 38 start-page: 559 year: 2005 end-page: 576 article-title: Wavelet based methods on patterned fabric defect detection publication-title: Pattern Recognit – volume: 6 start-page: 8201 year: 2018 end-page: 8218 article-title: A practical evaluation of commercial industrial augmented reality systems in an industry 4.0 Shipyard publication-title: IEEE Access – volume: 15 start-page: 1014 year: 2018 end-page: 1026 article-title: Automatic fabric defect detection using learning-based local textural distributions in the contourlet domain publication-title: IEEE Trans. Autom. Sci. Eng – volume: 15 start-page: 226 year: 2015 end-page: 232 article-title: Yarn-dyed fabric defect detection based on autocorrelation function and GLCM publication-title: Autex Res J – volume: 252 start-page: 119869 year: 2020 article-title: Industry 4.0, digitization, and opportunities for sustainability publication-title: J Clean Prod – volume: 19 start-page: 363 issue: 4 year: 2019 end-page: 374 article-title: A public fabric database for defect detection methods and results publication-title: Autex Res J – volume: 229 start-page: 107776 year: 2020 article-title: Industry 4.0 technologies assessment: a sustainability perspective publication-title: Int J Prod Econ – volume: 92 start-page: 675 year: 2022 end-page: 690 article-title: Development of a real-time machine vision system for functional textile fabric defect detection using a deep YOLOv4 model publication-title: Text Res J – volume: 10 start-page: 8434 year: 2020 article-title: Automatic fabric defect detection method using PRAN-Net publication-title: Appl Sci – volume: 849 start-page: 45 year: 2019 end-page: 51 article-title: Fabric defect detection based on faster RCNN publication-title: Adv Intell Syst comput – volume: 48 start-page: 2423 year: 2015 end-page: 2428 article-title: A learning-based approach for automatic defect detection in textile images publication-title: IFAC-PapersOnLine – volume: 10 start-page: 4390 year: 2020 end-page: 4399 article-title: Texture classification of fabric defects using machine learning publication-title: Int J Electr Comput Eng – volume: 124 start-page: 6469 year: 2013 end-page: 6474 article-title: Fabric defect detection based on GLCM and Gabor filter: a comparison publication-title: Optik – volume: 29 start-page: 3388 year: 2019 end-page: 3400 article-title: Multistage GAN for fabric defect detection publication-title: IEEE Trans Image Process – volume: 2 start-page: 189 year: 2020 end-page: 196 article-title: Real-time fabric defect detection based on multi-scale convolutional neural network publication-title: IET collab Intell Manuf – volume: 10 start-page: 2511 year: 2020 article-title: Fabric defect detection system using stacked convolutional denoising auto-encoders trained with synthetic defect data publication-title: Appl Sci – volume: 56 start-page: 276 year: 2019 end-page: 286 article-title: Towards augmented reality manuals for industry 4.0: a methodology publication-title: Robot Comput Integr Manuf – volume: 2224 year: 2022 article-title: Defect detection in the textile industry using image-based machine learning methods: a brief review publication-title: J Phys Conf Ser – volume: 44 start-page: 108 year: 2000 end-page: 132 article-title: Cross-validation methods publication-title: J Math Psychol – volume: 2021 start-page: 1 year: 2021 end-page: 13 article-title: Fabric defect detection in textile manufacturing: a survey of the state of the art publication-title: Secur Commun Netw – volume: 31 start-page: 759 year: 2020 end-page: 776 article-title: Segmentation-based deep-learning approach for surface-defect detection publication-title: J Intell Manuf – volume: 106 start-page: 587 year: 2015 end-page: 592 article-title: Fabric defect detection based on multi-scale wavelet transform and Gaussian mixture model method publication-title: J Text Inst – volume: 135 start-page: 213 year: 2019 end-page: 223 article-title: Automatic fabric defect detection using a deep convolutional neural network publication-title: Coloration Technol – ident: bibr6-15589250231206502 doi: 10.1088/1742-6596/2224/1/012010 – volume: 10 start-page: 4390 year: 2020 ident: bibr7-15589250231206502 publication-title: Int J Electr Comput Eng – ident: bibr18-15589250231206502 doi: 10.1007/978-3-319-99695-0_6 – ident: bibr27-15589250231206502 doi: 10.1016/j.compind.2021.103459 – volume: 2021 start-page: 1 year: 2021 ident: bibr9-15589250231206502 publication-title: Secur Commun Netw – ident: bibr2-15589250231206502 doi: 10.1016/j.ijpe.2018.08.019 – ident: bibr4-15589250231206502 doi: 10.1109/ACCESS.2018.2802699 – ident: bibr31-15589250231206502 – ident: bibr25-15589250231206502 doi: 10.2478/aut-2019-0035 – ident: bibr16-15589250231206502 doi: 10.1111/cote.12394 – ident: bibr24-15589250231206502 – ident: bibr26-15589250231206502 doi: 10.1006/jmps.1999.1279 – ident: bibr32-15589250231206502 – ident: bibr12-15589250231206502 doi: 10.1109/ISEMANTIC.2019.8884329 – ident: bibr21-15589250231206502 doi: 10.1049/iet-cim.2020.0062 – ident: bibr34-15589250231206502 – ident: bibr20-15589250231206502 doi: 10.3390/app10072511 – ident: bibr29-15589250231206502 doi: 10.1007/s10845-019-01476-x – ident: bibr15-15589250231206502 doi: 10.1109/TASE.2017.2696748 – ident: bibr13-15589250231206502 doi: 10.1016/j.patcog.2004.07.009 – ident: bibr33-15589250231206502 – ident: bibr5-15589250231206502 doi: 10.1016/j.rcim.2018.10.001 – ident: bibr11-15589250231206502 doi: 10.1016/j.ijleo.2013.05.004 – ident: bibr14-15589250231206502 doi: 10.1080/00405000.2014.929790 – ident: bibr1-15589250231206502 doi: 10.1016/j.jclepro.2019.119869 – ident: bibr30-15589250231206502 – ident: bibr17-15589250231206502 doi: 10.3390/app10238434 – ident: bibr8-15589250231206502 doi: 10.1016/j.ifacol.2015.06.451 – ident: bibr23-15589250231206502 doi: 10.1109/ICPR48806.2021.9412092 – ident: bibr3-15589250231206502 doi: 10.1016/j.ijpe.2020.107776 – ident: bibr10-15589250231206502 doi: 10.1515/aut-2015-0001 – ident: bibr22-15589250231206502 doi: 10.1177/00405175211034241 – ident: bibr19-15589250231206502 doi: 10.1109/TIP.2019.2959741 – ident: bibr28-15589250231206502 |
SSID | ssj0059350 |
Score | 2.2961652 |
Snippet | The Fourth Industrial Revolution conceptualizes the rapid change of industries resulting from the convergence of technologies such as artificial intelligence,... |
SourceID | doaj crossref sage |
SourceType | Open Website Enrichment Source Index Database Publisher |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8QwEA2yJz2In7h-kYMgCMU2SdvkqOKyCnpyYW-lySQiSFe0-_-dSbuyi6gXryVtwmRm3ks7fcPYWaDW0sEUSXB4VlU2QFKnWZ1QTxSEX5P6QD8nPzwW44m6n-bTpVZfVBPWyQN3hrvUeZ0a8DpAZlUKgHhqIAs2t9ZYl0exbcS8xWGqy8G5kfniGybJKyFoaoNgj2RGECcRKygUxfpXKrkiuIy22GbPCvlVt5pttuabHbaxpBW4y8JdL-yAhuSzwGnlnfoDf1mS1eR1A7yeP0etTeBICYlnc6SmHGky7Slw8G0swIrPocoPzAx4MRZ27LHJ6PbpZpz0TRISJ41skxJDSJvSBIo88FJpm0sXSuuRiUjQUJTGGzoWYSYpnHAFlEIY5U2KhxMM8H02aGaNP2BcSAvalmgf5VTIJKY-YaVWzmeIpDYbsnRhtMr1CuLUyOK1ynrR8G92HrKLr1veOvmM3wZf0058DSTl63gB_aHq_aH6yx-G7Jz2sepD8ePn6Q7_Y7ojti6Q5nQvZY7ZoH2f-xOkKa09jR75CXU44UU priority: 102 providerName: Directory of Open Access Journals |
Title | Integration of artificial intelligence and augmented reality for assisted detection of textile defects |
URI | https://journals.sagepub.com/doi/full/10.1177/15589250231206502 https://doaj.org/article/85a09de8fd1b40dd9939d1fb5bb9bc56 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB50vehBfOL6IgdBEKpt0ldOouKigh5E0VtpXiK4u6Ldg__emTQVxQdeQ9Ipk8nMl2TyDcCOo9LSTuaR07hXTZUzUR0ndUQ1UTD8ytg6epx8eZWf3aYX99n9FIy7tzBBg6_7lFaFf-SdNa1uOo0-CJeMBxgES4nBG8EJJ4zBDyfNsGqPu7uqGtRC99OTIV1ta0qIfIu6523TMMMLHNiDmaPB9d1N57wzKXxRVxIQkYRwEfqj0C-hzDP-f0kH8xFqsADzAVqyo9YWFmHKjpZg7hPh4DK488AOgbPBxo6R3bQUEuzxEzcnq0eG1ZMHT9hpGOJKAusM8S1DrE2GYZixjc_i8t-h9BF0L9jos0NW4HZwenNyFoVKC5EWUjRRgeuwlIV0tHyNFWmpMqFdoSzCGWFKkxfSStpboTvKNde5KTiXqZUx7nDQS6xCbzQe2TVgXChTKtJtqlOXCPSfXIky1TbBcKySPsSd0iodaMipGsZTlQTm8W967sPex5DnloPjr87HNBMfHYk-2zeMXx6qsBqrMqtjaWzpTKLS2BgEadIkTmVKSaWzvA-7NI9VZ42_i1v_d88NmOUIiNrjm03oNS8Tu4WAplHbwQi3_YHAO1z07c8 |
linkProvider | SAGE Publications |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA6yPagP4hXnNQ-CIFTaJm2TxymOTbc9yIZ7K81NBNlE6__3nCwbihd8DUlazvVLe_IdQs4ctpZ2Mo-chrMqV85EVZxUEfZEgfQrY-vwcvJgmHfH_HaSTUJVJd6FCRJ8u8SyKngjH6yX3o33xLNMSMjbgEtShBcQfpscspZokGa7c_8wWsThTDLfnxUXRLgi_NP8cZMvWcmT93-p7PLJprNJNgJKpO25WrfIip1uk_VP3IE7xPUC0QMIls4cRROYs0HQp080m7SaGlq9P3ruTUMBIiLupgBVKcBm1LGhxta-IMvvg5UgEClg0Bd67JJx52Z03Y1C04RIM8nqqACXErKQDj3RWMaFyph2hbKATJgRJi-klXhMgsiS61TnpkhTya2M4bACDr9HGtPZ1O4TmjJlhCpAPlxzlzAIhaligmubQGZVSYvEC6GVOjCKY2OL5zIJJOLf5NwiF8slL3M6jb8mX6EmlhORCdsPzF4fy-BYpciqWBornEkUj40BvCVN4lSmlFQ6y1vkHPVYLgzr98cd_HvmKVntjgb9st8b3h2StRRwzvyrzBFp1K_v9hhwSq1OgkF-AN992kM |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ZSwMxEA7SguiDeGI98yAIwuruJnvksR6l9ULEom_L5iqCbEtt_78zaVpaPPA1JNllJjPzJZl8Q8iJxdLSVqSBVbBX5dLqoAyjMsCaKBB-RWgsPk5-eEzbXX77lrz5Azd8C-Ml-HmOaVXwR85Zo3UPtL3wd4wXEANzAbEbsEmMEANccJ3zjIc1Um-2nl9fpr44EczVaMUBAY7w95o_TrIQmRyB_0J2lws4rXWy5pEibU5Uu0GWTLVJVuf4A7eI7XiyBxAu7VuKy2DCCEHf56g2aVlpWo57jn9TU4CJiL0pwFUK0Bn1rKk2I5eU5ebBbBDwFtDokj22Sbd183LVDnzhhEAxwUZBBmaVi0xYtEZtGM9lwpTNpAF0wnSu00wYgVsl8C6pilWqszgW3IgQNixg9DukVvUrs0tozKTOZQby4YrbiIE7jCXLuTIRRFcZNUg4FVqhPKs4Frf4KCJPJP5Nzg1yNhsymFBq_NX5EjUx64hs2K6hP-wV3riKPClDoU1udSR5qDVgLqEjKxMphVRJ2iCnqMdiurh-_9zev3sek-Wn61Zx33m82ycrMUCdycHMAamNhmNzCFBlJI_8evwCR6HbUw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integration+of+artificial+intelligence+and+augmented+reality+for+assisted+detection+of+textile+defects&rft.jtitle=Journal+of+engineered+fibers+and+fabrics&rft.au=Servi%2C+Michaela&rft.au=Magherini%2C+Roberto&rft.au=Buonamici%2C+Francesco&rft.au=Volpe%2C+Yary&rft.date=2024-01-01&rft.pub=SAGE+Publications&rft.issn=1558-9250&rft.eissn=1558-9250&rft.volume=19&rft_id=info:doi/10.1177%2F15589250231206502&rft.externalDocID=10.1177_15589250231206502 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1558-9250&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1558-9250&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1558-9250&client=summon |