Emotion Assessment From Physiological Signals for Adaptation of Game Difficulty

This paper proposes to maintain player's engagement by adapting game difficulty according to player's emotions assessed from physiological signals. The validity of this approach was first tested by analyzing the questionnaire responses, electroencephalogram (EEG) signals, and peripheral si...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on systems, man and cybernetics. Part A, Systems and humans Vol. 41; no. 6; pp. 1052 - 1063
Main Authors Chanel, G., Rebetez, C., Bétrancourt, M., Pun, T.
Format Journal Article
LanguageEnglish
Published IEEE 01.11.2011
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper proposes to maintain player's engagement by adapting game difficulty according to player's emotions assessed from physiological signals. The validity of this approach was first tested by analyzing the questionnaire responses, electroencephalogram (EEG) signals, and peripheral signals of the players playing a Tetris game at three difficulty levels. This analysis confirms that the different difficulty levels correspond to distinguishable emotions, and that, playing several times at the same difficulty level gives rise to boredom. The next step was to train several classifiers to automatically detect the three emotional classes from EEG and peripheral signals in a player-independent framework. By using either type of signals, the emotional classes were successfully recovered, with EEG having a better accuracy than peripheral signals on short periods of time. After the fusion of the two signal categories, the accuracy raised up to 63%.
AbstractList This paper proposes to maintain player's engagement by adapting game difficulty according to player's emotions assessed from physiological signals. The validity of this approach was first tested by analyzing the questionnaire responses, electroencephalogram (EEG) signals, and peripheral signals of the players playing a Tetris game at three difficulty levels. This analysis confirms that the different difficulty levels correspond to distinguishable emotions, and that, playing several times at the same difficulty level gives rise to boredom. The next step was to train several classifiers to automatically detect the three emotional classes from EEG and peripheral signals in a player-independent framework. By using either type of signals, the emotional classes were successfully recovered, with EEG having a better accuracy than peripheral signals on short periods of time. After the fusion of the two signal categories, the accuracy raised up to 63%.
Author Chanel, G.
Pun, T.
Rebetez, C.
Bétrancourt, M.
Author_xml – sequence: 1
  givenname: G.
  surname: Chanel
  fullname: Chanel, G.
  email: guillaume.chanel@unige.ch
  organization: Comput. Sci. Dept., Univ. of Geneva, Carouge, Switzerland
– sequence: 2
  givenname: C.
  surname: Rebetez
  fullname: Rebetez, C.
  email: cyril.rebetez@unige.ch
  organization: Technol. de Formation et Apprentissage Lab., Univ. of Geneva, Geneva, Switzerland
– sequence: 3
  givenname: M.
  surname: Bétrancourt
  fullname: Bétrancourt, M.
  email: mireille.betrancourt@unige.ch
  organization: Technol. de Formation et Apprentissage Lab., Univ. of Geneva, Geneva, Switzerland
– sequence: 4
  givenname: T.
  surname: Pun
  fullname: Pun, T.
  email: thierry.pun@unige.ch
  organization: Comput. Sci. Dept., Univ. of Geneva, Carouge, Switzerland
BookMark eNp9kE1LAzEQhoNUsK3-Ab3k6GXr5GO_jqW2VahUaD0v2WxSI7ubmmwP_fem3eLBgzAwA_M8w_CO0KC1rULonsCEEMiftpu32XRCgZAJJSQBgCs0JHGcRZTTZBBmyFjEOU1v0Mj7LwDCec6HaD1vbGdsi6feK-8b1XZ44WyD3z-P3tja7owUNd6YXStqj7V1eFqJfSfOktV4KRqFn43WRh7q7niLrnUA1d2lj9HHYr6dvUSr9fJ1Nl1FkuWsi1KShCorptM8kxADF1IQQUoKOpeUK9C8lDTWIiwZUVAqUeqAV1CSNKnYGD32d_fOfh-U74rGeKnqWrTKHnxBgNKcMAYQ0KxHpbPeO6ULafr_OydMHdDilGFxzrA4ZVhcMgwq_aPunWmEO_4vPfSSUUr9CnHKsiQH9gOBPH_k
CODEN ITSHFX
CitedBy_id crossref_primary_10_1016_j_eswa_2018_01_046
crossref_primary_10_1016_j_entcom_2024_100663
crossref_primary_10_3233_AAC_170015
crossref_primary_10_1016_j_ifacol_2017_08_1220
crossref_primary_10_3390_s19071738
crossref_primary_10_1007_s40593_016_0111_2
crossref_primary_10_1016_j_chb_2016_08_029
crossref_primary_10_1186_s12984_024_01519_2
crossref_primary_10_3390_electronics12030623
crossref_primary_10_1016_j_cmpb_2015_07_006
crossref_primary_10_1080_10447318_2021_2020008
crossref_primary_10_1109_ACCESS_2020_2964794
crossref_primary_10_3390_s19184014
crossref_primary_10_1109_TAFFC_2020_3045269
crossref_primary_10_1016_j_ijhcs_2018_07_001
crossref_primary_10_1145_3301498
crossref_primary_10_1007_s11257_022_09330_1
crossref_primary_10_1093_iwc_iwu013
crossref_primary_10_1109_THMS_2012_2234371
crossref_primary_10_3233_NRE_151266
crossref_primary_10_3390_s20205741
crossref_primary_10_1007_s12652_021_03367_7
crossref_primary_10_1109_JBHI_2020_2995767
crossref_primary_10_1080_2326263X_2014_912882
crossref_primary_10_3758_s13415_018_0606_4
crossref_primary_10_1016_j_inffus_2017_02_003
crossref_primary_10_1080_2326263X_2014_912881
crossref_primary_10_1109_T_AFFC_2011_37
crossref_primary_10_1109_TIM_2014_2342432
crossref_primary_10_1080_00140139_2020_1759699
crossref_primary_10_1007_s11042_016_3608_7
crossref_primary_10_1016_j_bica_2018_04_012
crossref_primary_10_3389_fnhum_2024_1334721
crossref_primary_10_1145_3474656
crossref_primary_10_1109_MPRV_2013_54
crossref_primary_10_3917_raised_021_0175
crossref_primary_10_1016_j_cogsys_2019_03_006
crossref_primary_10_1080_09639284_2019_1647859
crossref_primary_10_4103_EHP_EHP_4_20
crossref_primary_10_1093_iwc_iww026
crossref_primary_10_3389_fncom_2019_00053
crossref_primary_10_1007_s11571_021_09748_0
crossref_primary_10_1109_TAFFC_2024_3368703
crossref_primary_10_1109_TSMC_2020_2970905
crossref_primary_10_18178_ijiet_2020_10_9_1437
crossref_primary_10_3389_fnins_2018_00162
crossref_primary_10_1049_rsn2_12297
crossref_primary_10_1016_j_chb_2015_07_045
crossref_primary_10_1109_TAFFC_2023_3265008
crossref_primary_10_1007_s41870_024_01802_4
crossref_primary_10_1109_JSEN_2021_3078087
crossref_primary_10_1109_TVCG_2022_3203099
crossref_primary_10_1109_T_AFFC_2012_3
crossref_primary_10_1016_j_compbiomed_2022_105327
crossref_primary_10_1109_T_AFFC_2012_4
crossref_primary_10_1016_j_bspc_2022_103485
crossref_primary_10_1016_j_eswa_2022_117677
crossref_primary_10_1142_S0129065716500416
crossref_primary_10_1016_j_entcom_2018_10_003
crossref_primary_10_1145_3335815
crossref_primary_10_1007_s10209_019_00678_7
crossref_primary_10_1109_TAFFC_2020_3023966
crossref_primary_10_1016_j_ijdrr_2019_101393
crossref_primary_10_1016_j_entcom_2017_10_004
crossref_primary_10_1109_ACCESS_2019_2926751
crossref_primary_10_3389_fnins_2021_757381
crossref_primary_10_3389_fnhum_2022_819834
crossref_primary_10_1088_0967_3334_34_4_449
crossref_primary_10_1109_TAFFC_2017_2714671
crossref_primary_10_1109_TCDS_2017_2726083
crossref_primary_10_1007_s11042_020_09576_0
crossref_primary_10_3390_computation10080130
crossref_primary_10_3390_e18060221
crossref_primary_10_1016_j_cmpb_2016_12_005
crossref_primary_10_1109_TAFFC_2016_2582490
crossref_primary_10_1016_j_physrep_2021_03_002
crossref_primary_10_1109_ACCESS_2022_3186318
crossref_primary_10_1016_j_irbm_2021_06_001
crossref_primary_10_1155_2013_618649
crossref_primary_10_1007_s40692_024_00337_8
crossref_primary_10_2196_games_8908
crossref_primary_10_1007_s10758_021_09569_4
crossref_primary_10_1093_iwc_iwu021
crossref_primary_10_1016_j_bspc_2021_103349
crossref_primary_10_1016_j_autcon_2024_105608
crossref_primary_10_1016_j_measurement_2017_06_006
crossref_primary_10_1016_j_asoc_2024_111338
crossref_primary_10_1109_TCIAIG_2017_2743341
crossref_primary_10_1109_TMM_2016_2614880
crossref_primary_10_3390_math9060593
crossref_primary_10_1109_TSMCA_2012_2187184
crossref_primary_10_1016_j_ijinfomgt_2016_09_004
crossref_primary_10_1109_TAFFC_2018_2884461
crossref_primary_10_1080_10447318_2024_2356403
crossref_primary_10_1109_ACCESS_2020_3034770
crossref_primary_10_3390_s24227377
crossref_primary_10_1016_j_engappai_2016_09_006
crossref_primary_10_1016_j_knosys_2022_110219
crossref_primary_10_1109_TIM_2024_3369130
crossref_primary_10_1109_JSEN_2021_3107429
crossref_primary_10_1109_T_AFFC_2013_19
crossref_primary_10_1016_j_jbi_2020_103501
crossref_primary_10_1016_j_entcom_2021_100468
crossref_primary_10_3389_fict_2017_00001
crossref_primary_10_1016_j_intcom_2012_04_003
crossref_primary_10_1155_2014_627892
crossref_primary_10_3389_fnins_2019_01278
crossref_primary_10_1016_j_neucom_2021_03_105
crossref_primary_10_1016_j_eswa_2020_114011
crossref_primary_10_1109_TAFFC_2018_2820049
crossref_primary_10_1016_j_measen_2022_100554
crossref_primary_10_1177_1729881418806433
crossref_primary_10_1109_TG_2023_3238163
crossref_primary_10_1371_journal_pone_0242857
crossref_primary_10_3390_app12094236
crossref_primary_10_1109_JIOT_2020_3010853
crossref_primary_10_1145_3474685
crossref_primary_10_1038_s41598_024_67812_1
crossref_primary_10_1109_T_AFFC_2013_12
crossref_primary_10_1109_TBCAS_2021_3089132
crossref_primary_10_3389_fpsyg_2023_1217178
crossref_primary_10_1109_TAFFC_2014_2326870
crossref_primary_10_1049_iet_smt_2018_5237
crossref_primary_10_3390_electronics12102232
crossref_primary_10_3390_buildings15060846
crossref_primary_10_1109_TG_2019_2928795
crossref_primary_10_3389_fict_2017_00011
crossref_primary_10_1016_j_cmpb_2014_01_016
crossref_primary_10_1109_TCIAIG_2013_2260340
crossref_primary_10_1016_j_jksuci_2019_11_003
crossref_primary_10_1016_j_intcom_2012_04_012
crossref_primary_10_1109_TNNLS_2023_3238519
crossref_primary_10_1109_TLT_2019_2913408
crossref_primary_10_1016_j_displa_2015_01_002
crossref_primary_10_1093_iwc_iwv013
crossref_primary_10_3390_app7121239
crossref_primary_10_1007_s11042_016_3637_2
crossref_primary_10_1007_s11042_018_6907_3
crossref_primary_10_1111_coin_12480
crossref_primary_10_1007_s10462_023_10690_2
crossref_primary_10_1016_j_neucom_2015_07_112
crossref_primary_10_1016_j_apacoust_2020_107840
crossref_primary_10_1109_TSMC_2020_2969686
crossref_primary_10_1109_JSAC_2020_3020677
crossref_primary_10_3390_s20082308
crossref_primary_10_3390_s21051777
crossref_primary_10_1016_j_future_2017_12_056
crossref_primary_10_1109_TG_2022_3182901
crossref_primary_10_3390_s19132877
crossref_primary_10_3390_electronics13122324
crossref_primary_10_1109_TSMCC_2012_2215852
crossref_primary_10_1016_j_jnca_2019_102447
crossref_primary_10_1109_ACCESS_2019_2955637
crossref_primary_10_1109_TG_2018_2883661
crossref_primary_10_1080_2326263X_2014_913829
crossref_primary_10_7717_peerj_10520
crossref_primary_10_3390_app13126896
crossref_primary_10_1109_TAFFC_2017_2764896
crossref_primary_10_3389_fpsyg_2023_1141801
crossref_primary_10_1145_2682899
crossref_primary_10_3389_feduc_2024_1439879
crossref_primary_10_3390_s20020496
crossref_primary_10_1177_1046878113513936
crossref_primary_10_1109_MSMC_2020_2968638
crossref_primary_10_3390_brainsci11111392
crossref_primary_10_1371_journal_pone_0246913
crossref_primary_10_1007_s11042_018_5618_0
crossref_primary_10_3390_brainsci11030378
crossref_primary_10_1063_1_5023857
crossref_primary_10_1016_j_chb_2023_108021
crossref_primary_10_1016_j_neucom_2019_10_096
crossref_primary_10_1109_THMS_2020_2968411
crossref_primary_10_1109_TAFFC_2017_2705088
crossref_primary_10_1109_MSMC_2018_2806565
crossref_primary_10_3390_electronics12102216
crossref_primary_10_18178_ijiet_2019_9_10_1287
crossref_primary_10_1016_j_inffus_2020_01_011
crossref_primary_10_1007_s11042_022_13845_5
crossref_primary_10_1109_TSMCA_2012_2183588
crossref_primary_10_3389_fnhum_2018_00525
crossref_primary_10_1016_j_compbiomed_2020_104188
crossref_primary_10_1371_journal_pone_0242946
crossref_primary_10_1007_s40692_019_00134_8
crossref_primary_10_1109_THMS_2020_3038339
Cites_doi 10.1109/ICSMC.2007.4413638
10.1109/TSMCA.2008.918624
10.1016/j.ijhcs.2009.03.005
10.1007/s10044-006-0025-y
10.1023/B:NEAB.0000038139.39812.eb
10.1111/1469-8986.3820275
10.1109/ICPR.1994.576920
10.1016/j.biopsycho.2004.01.002
10.1109/79.911197
10.1016/j.dsp.2004.05.001
10.1016/j.ijhcs.2006.11.011
10.1016/0301-0511(95)05116-3
10.1016/S0013-4694(97)00022-2
10.1016/j.clinph.2007.12.003
10.1111/1469-8986.00067
10.1007/BF00999346
10.1016/j.neunet.2005.03.001
10.1126/science.6612338
10.1080/10447310902963944
10.1207/s15327590ijhc1702_3
10.1111/j.1469-8986.1997.tb02140.x
10.1155/S1110865704406192
10.1016/j.ijpsycho.2005.10.024
10.1111/j.1469-8986.1993.tb03352.x
10.1109/34.954607
10.1518/hfes.45.4.635.27088
10.1016/S1388-2457(00)00527-7
10.1145/1457199.1457203
10.1016/j.neuron.2005.12.025
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TB
8FD
F28
FR3
JQ2
L7M
L~C
L~D
DOI 10.1109/TSMCA.2011.2116000
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 1558-2426
EndPage 1063
ExternalDocumentID 10_1109_TSMCA_2011_2116000
5738690
Genre orig-research
GroupedDBID -~X
0R~
29I
4.4
5VS
6IK
85S
97E
AAJGR
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
F5P
HZ~
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
PZZ
RIA
RIE
RNS
VH1
VJK
AAYOK
AAYXX
CITATION
7SC
7SP
7TB
8FD
F28
FR3
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c393t-716716bd3f798c0504aca1a1b20f9c24e0f4bc25fac0531e0beabfd3fd0b176d3
IEDL.DBID RIE
ISSN 1083-4427
IngestDate Fri Jul 11 05:06:47 EDT 2025
Tue Jul 01 04:13:44 EDT 2025
Thu Apr 24 22:52:04 EDT 2025
Tue Aug 26 17:18:00 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c393t-716716bd3f798c0504aca1a1b20f9c24e0f4bc25fac0531e0beabfd3fd0b176d3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 1022913300
PQPubID 23500
PageCount 12
ParticipantIDs ieee_primary_5738690
proquest_miscellaneous_1022913300
crossref_citationtrail_10_1109_TSMCA_2011_2116000
crossref_primary_10_1109_TSMCA_2011_2116000
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-Nov.
2011-11-00
20111101
PublicationDateYYYYMMDD 2011-11-01
PublicationDate_xml – month: 11
  year: 2011
  text: 2011-Nov.
PublicationDecade 2010
PublicationTitle IEEE transactions on systems, man and cybernetics. Part A, Systems and humans
PublicationTitleAbbrev TSMCA
PublicationYear 2011
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
takahashi (ref15) 2004
ref12
ref36
ref14
ref30
ref33
ref11
ref32
ref10
fairclough (ref22) 2007
bishop (ref37) 2006
ref17
ref16
ref19
ref18
picard (ref2) 1997
ekman (ref35) 1983; 221
scherer (ref4) 2001
prensky (ref1) 2005
yu (ref39) 2004; 5
kim (ref34) 2004
csikszentmihalyi (ref24) 1991
ref26
ref20
ref42
ref41
ref44
lisetti (ref6) 2004
ref21
healey (ref31) 2000
ref28
ref29
ref8
ref7
ref9
ref3
ruta (ref43) 2000; 7
morris (ref27) 1995; 35
ref5
rani (ref23) 2005
ref40
salen (ref25) 2004
duda (ref38) 2001
References_xml – ident: ref40
  doi: 10.1109/ICSMC.2007.4413638
– start-page: 184
  year: 2005
  ident: ref23
  article-title: Maintaining optimal challenge in computer games through real-time physiological feedback
  publication-title: Proc 11th HCI Int
– year: 2001
  ident: ref38
  publication-title: Pattern Classification
– year: 2004
  ident: ref34
  article-title: Emotion recognition from physiological measurement
  publication-title: Proc Humaine Eur Netw Excellence Workshop
– ident: ref44
  doi: 10.1109/TSMCA.2008.918624
– ident: ref16
  doi: 10.1016/j.ijhcs.2009.03.005
– ident: ref7
  doi: 10.1007/s10044-006-0025-y
– year: 2007
  ident: ref22
  article-title: Psychophysiological inference and physiological computer games
  publication-title: Proc Brainplay Brain-Comput Interfaces Games Workshop Int Conf Adv Comput Entertainment
– ident: ref13
  doi: 10.1023/B:NEAB.0000038139.39812.eb
– year: 2001
  ident: ref4
  publication-title: Appraisal Considered as a Process of Multi-Level Sequential Checking
– ident: ref28
  doi: 10.1111/1469-8986.3820275
– year: 2006
  ident: ref37
  publication-title: Pattern Recognition and Machine Learning
– ident: ref41
  doi: 10.1109/ICPR.1994.576920
– ident: ref17
  doi: 10.1016/j.biopsycho.2004.01.002
– ident: ref10
  doi: 10.1109/79.911197
– ident: ref42
  doi: 10.1016/j.dsp.2004.05.001
– ident: ref8
  doi: 10.1016/j.ijhcs.2006.11.011
– ident: ref18
  doi: 10.1016/0301-0511(95)05116-3
– volume: 5
  start-page: 1205
  year: 2004
  ident: ref39
  article-title: Efficient feature selection via analysis of relevance and redundancy
  publication-title: J Mach Learn Res
– year: 2004
  ident: ref15
  article-title: Remarks on emotion recognition from bio-potential signals
  publication-title: Proc 2nd Int Conf Auton Robots Agents
– ident: ref29
  doi: 10.1016/S0013-4694(97)00022-2
– ident: ref19
  doi: 10.1016/j.clinph.2007.12.003
– ident: ref12
  doi: 10.1111/1469-8986.00067
– ident: ref36
  doi: 10.1007/BF00999346
– year: 2004
  ident: ref25
  publication-title: Rules of Play Game Design Fundamentals
– ident: ref11
  doi: 10.1016/j.neunet.2005.03.001
– volume: 221
  start-page: 1208
  year: 1983
  ident: ref35
  article-title: Autonomic nervous-system activity distinguishes among emotions
  publication-title: Science
  doi: 10.1126/science.6612338
– ident: ref3
  doi: 10.1080/10447310902963944
– ident: ref20
  doi: 10.1207/s15327590ijhc1702_3
– year: 1991
  ident: ref24
  publication-title: Flow The Psychology of Optimal Experience
– ident: ref33
  doi: 10.1111/j.1469-8986.1997.tb02140.x
– start-page: 1672
  year: 2004
  ident: ref6
  article-title: Using noninvasive wearable computers to recognize human emotions from physiological signals
  publication-title: J Appl Signal Process
  doi: 10.1155/S1110865704406192
– year: 2000
  ident: ref31
  publication-title: Wearable and automotive systems for affect recognition from physiology
– ident: ref32
  doi: 10.1016/j.ijpsycho.2005.10.024
– ident: ref30
  doi: 10.1111/j.1469-8986.1993.tb03352.x
– ident: ref5
  doi: 10.1109/34.954607
– year: 1997
  ident: ref2
  publication-title: Affective Computing
– ident: ref21
  doi: 10.1518/hfes.45.4.635.27088
– ident: ref26
  doi: 10.1016/S1388-2457(00)00527-7
– year: 2005
  ident: ref1
  publication-title: Handbook of Computer Games Studies
– ident: ref9
  doi: 10.1145/1457199.1457203
– volume: 7
  start-page: 1
  year: 2000
  ident: ref43
  article-title: An overview of classifier fusion methods
  publication-title: Comput Inf Syst
– volume: 35
  start-page: 63
  year: 1995
  ident: ref27
  article-title: SAM: The self-assessment manikin, an efficient cross-cultural measurement of emotional response
  publication-title: J Advertising Res
– ident: ref14
  doi: 10.1016/j.neuron.2005.12.025
SSID ssj0014494
Score 2.4978876
Snippet This paper proposes to maintain player's engagement by adapting game difficulty according to player's emotions assessed from physiological signals. The...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1052
SubjectTerms Adaptation
Assessments
Categories
Cybernetics
Electroencephalography
emotion assessment
Emotion recognition
Emotions
Games
Human
Pattern classification
Physiology
signal analysis
Trains
Title Emotion Assessment From Physiological Signals for Adaptation of Game Difficulty
URI https://ieeexplore.ieee.org/document/5738690
https://www.proquest.com/docview/1022913300
Volume 41
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LS8MwGP_YdtKDuk1xvojgQdHOtE3X5TimcwjTwzbYrSRpIqJbxx4H_etN0ge-EKGHHpJS-OVLvke-3w_gjHqBthoiHKWMhJkvsMOkJxxOsWq3qXJDm9AfPLT6Y3I_CSYluCp6YaSU9vKZbJpXW8uPE7E2qTIdvPtGQKkMZR24pb1aRcWAECt66GqXwiHEC_MGGUyvR8NBt5OydepwR5_w-MshZFVVfmzF9nzpbcMg_7P0WslLc73iTfH-jbTxv7--A1uZo4k66cqoQknOarD5iX6wBtXMsJfoPGOfvqjD420q7IM6BWcn6i2SKbJ3RfOtEg2fnwzzMtI-L-rEbJ5W9FGi0B2bSnRjUkGG1eNtF8a921G372SqC47wqb9ydAClHx77KqRtgQNMmGAuc7mHFRUekVgRLrxAMWEMWGIuGVd6eIy5G7Zifw8qs2Qm9wF5PhOhUqH-miQBjSmjblv7yZTHqtWiqgFuDkMkMkpyo4zxGtnQBNPIQhcZ6KIMugZcFnPmKSHHn6PrBotiZAZDA05ztCNtTqZGwmYyWS8jEwBTHbdjfPD71EPYsGll2454BJXVYi2PtV-y4id2QX4AJyve8Q
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV05T8MwFH4qMAADV0GU00gMIEhxEqepxwpaylEY2krdItuxEQIa1GOAX4_tHOISQsqQwbYsfX5-l9_3AA6pF2ipIcJRyrQw8wV2mPSEwylW9TpVbmgD-p27WrtPrgfBoASnRS2MlNI-PpNV82tz-XEipiZUpp133zRQmoE5rfcDN63WKnIGhNi2h642KhxCvDAvkcH0rNftnDdSvk7t8Ggdj7-oIdtX5cdlbDVMaxk6-d7ShyVP1emEV8X7N9rG_25-BZYyUxM10rOxCiU5XIPFTwSEa7CaifYYHWX808dluG-mrX1Qo2DtRK1R8oLsa9H8skTdxwfDvYy01YsaMXtNc_ooUeiSvUh0YYJBhtfjbR36rWbvvO1kfRcc4VN_4mgXSn889lVI6wIHmDDBXOZyDysqPCKxIlx4gWLCiLDEXDKu9PAYczesxf4GzA6TodwE5PlMhEqFejVJAhpTRt26tpQpj1WtRlUF3ByGSGSk5KY3xnNknRNMIwtdZKCLMugqcFLMeU0pOf4cXTZYFCMzGCpwkKMdaYEyWRI2lMl0HBkXmGrPHeOt36fuw3y717mNbq_ubrZhwQaZbXHiDsxORlO5q62UCd-zh_MD8QviOg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Emotion+Assessment+From+Physiological+Signals+for+Adaptation+of+Game+Difficulty&rft.jtitle=IEEE+transactions+on+systems%2C+man+and+cybernetics.+Part+A%2C+Systems+and+humans&rft.au=Chanel%2C+G.&rft.au=Rebetez%2C+C.&rft.au=B%C3%A9trancourt%2C+M.&rft.au=Pun%2C+T.&rft.date=2011-11-01&rft.issn=1083-4427&rft.eissn=1558-2426&rft.volume=41&rft.issue=6&rft.spage=1052&rft.epage=1063&rft_id=info:doi/10.1109%2FTSMCA.2011.2116000&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TSMCA_2011_2116000
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1083-4427&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1083-4427&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1083-4427&client=summon