Mongolia Contributed More than 42% of the Dust Concentrations in Northern China in March and April 2023

Dust storms are one of the most frequent meteorological disasters in China, endangering agricultural production, transportation, air quality, and the safety of people’s lives and property. Against the backdrop of climate change, Mongolia’s contribution to China’s dust cannot be ignored in recent yea...

Full description

Saved in:
Bibliographic Details
Published inAdvances in atmospheric sciences Vol. 40; no. 9; pp. 1549 - 1557
Main Authors Chen, Siyu, Zhao, Dan, Huang, Jianping, He, Jiaqi, Chen, Yu, Chen, Junyan, Bi, Hongru, Lou, Gaotong, Du, Shikang, Zhang, Yue, Yang, Fan
Format Journal Article
LanguageEnglish
Published Heidelberg Science Press 01.09.2023
Springer Nature B.V
Key Laboratory for Semi-Arid Climate Change of the Ministry of Education,Lanzhou University,Lanzhou 730000,China%Institute of Desert Meteorology,China Meteorological Administration,Urumqi 830002,China
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Dust storms are one of the most frequent meteorological disasters in China, endangering agricultural production, transportation, air quality, and the safety of people’s lives and property. Against the backdrop of climate change, Mongolia’s contribution to China’s dust cannot be ignored in recent years. In this study, we used the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem), along with dynamic dust sources and the HYSPLIT model, to analyze the contributions of different dust sources to dust concentrations in northern China in March and April 2023. The results show that the frequency of dust storms in 2023 was the highest observed in the past decade. Mongolia and the Taklimakan Desert were identified as two main dust sources contributing to northern China. Specifically, Mongolia contributed more than 42% of dust, while the Taklimakan Desert accounted for 26%. A cold high-pressure center, a cold front, and a Mongolian cyclone resulted in the transport of dust aerosols from Mongolia and the Taklimakan Desert to northern China, where they affected most parts of the region. Moreover, two machine learning methods [the XGBoost algorithm and the Synthetic Minority Oversampling Technique (SMOTE)] were used to forecast the dust storms in March 2023, based on ground observations and WRF-Chem simulations over East Asia. XGBoost-SMOTE performed well in predicting hourly PM 10 concentrations in China in March 2023, with a mean absolute error of 33.8 µg m −3 and RMSE of 54.2 µg m −3 .
AbstractList Dust storms are one of the most frequent meteorological disasters in China,endangering agricultural production,transportation,air quality,and the safety of people's lives and property.Against the backdrop of climate change,Mongolia's contribution to China's dust cannot be ignored in recent years.In this study,we used the Weather Research and Forecasting model coupled with Chemistry(WRF-Chem),along with dynamic dust sources and the HYSPLIT model,to analyze the contributions of different dust sources to dust concentrations in northern China in March and April 2023.The results show that the frequency of dust storms in 2023 was the highest observed in the past decade.Mongolia and the Taklimakan Desert were identified as two main dust sources contributing to northern China.Specifically,Mongolia contributed more than 42%of dust,while the Taklimakan Desert accounted for 26%.A cold high-pressure center,a cold front,and a Mongolian cyclone resulted in the transport of dust aerosols from Mongolia and the Taklimakan Desert to northern China,where they affected most parts of the region.Moreover,two machine learning methods[the XGBoost algorithm and the Synthetic Minority Oversampling Technique(SMOTE)]were used to forecast the dust storms in March 2023,based on ground observations and WRF-Chem simulations over East Asia.XGBoost-SMOTE performed well in predicting hourly PM10 concentrations in China in March 2023,with a mean absolute error of 33.8μg m-3 and RMSE of 54.2μg m-3.
Dust storms are one of the most frequent meteorological disasters in China, endangering agricultural production, transportation, air quality, and the safety of people’s lives and property. Against the backdrop of climate change, Mongolia’s contribution to China’s dust cannot be ignored in recent years. In this study, we used the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem), along with dynamic dust sources and the HYSPLIT model, to analyze the contributions of different dust sources to dust concentrations in northern China in March and April 2023. The results show that the frequency of dust storms in 2023 was the highest observed in the past decade. Mongolia and the Taklimakan Desert were identified as two main dust sources contributing to northern China. Specifically, Mongolia contributed more than 42% of dust, while the Taklimakan Desert accounted for 26%. A cold high-pressure center, a cold front, and a Mongolian cyclone resulted in the transport of dust aerosols from Mongolia and the Taklimakan Desert to northern China, where they affected most parts of the region. Moreover, two machine learning methods [the XGBoost algorithm and the Synthetic Minority Oversampling Technique (SMOTE)] were used to forecast the dust storms in March 2023, based on ground observations and WRF-Chem simulations over East Asia. XGBoost-SMOTE performed well in predicting hourly PM10 concentrations in China in March 2023, with a mean absolute error of 33.8 µg m−3 and RMSE of 54.2 µg m−3.
Dust storms are one of the most frequent meteorological disasters in China, endangering agricultural production, transportation, air quality, and the safety of people’s lives and property. Against the backdrop of climate change, Mongolia’s contribution to China’s dust cannot be ignored in recent years. In this study, we used the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem), along with dynamic dust sources and the HYSPLIT model, to analyze the contributions of different dust sources to dust concentrations in northern China in March and April 2023. The results show that the frequency of dust storms in 2023 was the highest observed in the past decade. Mongolia and the Taklimakan Desert were identified as two main dust sources contributing to northern China. Specifically, Mongolia contributed more than 42% of dust, while the Taklimakan Desert accounted for 26%. A cold high-pressure center, a cold front, and a Mongolian cyclone resulted in the transport of dust aerosols from Mongolia and the Taklimakan Desert to northern China, where they affected most parts of the region. Moreover, two machine learning methods [the XGBoost algorithm and the Synthetic Minority Oversampling Technique (SMOTE)] were used to forecast the dust storms in March 2023, based on ground observations and WRF-Chem simulations over East Asia. XGBoost-SMOTE performed well in predicting hourly PM 10 concentrations in China in March 2023, with a mean absolute error of 33.8 µg m −3 and RMSE of 54.2 µg m −3 .
Author Lou, Gaotong
Du, Shikang
Huang, Jianping
Zhang, Yue
Bi, Hongru
Yang, Fan
Zhao, Dan
Chen, Junyan
Chen, Yu
Chen, Siyu
He, Jiaqi
AuthorAffiliation Key Laboratory for Semi-Arid Climate Change of the Ministry of Education,Lanzhou University,Lanzhou 730000,China%Institute of Desert Meteorology,China Meteorological Administration,Urumqi 830002,China
AuthorAffiliation_xml – name: Key Laboratory for Semi-Arid Climate Change of the Ministry of Education,Lanzhou University,Lanzhou 730000,China%Institute of Desert Meteorology,China Meteorological Administration,Urumqi 830002,China
Author_xml – sequence: 1
  givenname: Siyu
  surname: Chen
  fullname: Chen, Siyu
  organization: Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, Lanzhou University
– sequence: 2
  givenname: Dan
  surname: Zhao
  fullname: Zhao, Dan
  organization: Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, Lanzhou University
– sequence: 3
  givenname: Jianping
  surname: Huang
  fullname: Huang, Jianping
  email: hjp@lzu.edu.cn
  organization: Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, Lanzhou University
– sequence: 4
  givenname: Jiaqi
  surname: He
  fullname: He, Jiaqi
  organization: Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, Lanzhou University
– sequence: 5
  givenname: Yu
  surname: Chen
  fullname: Chen, Yu
  organization: Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, Lanzhou University
– sequence: 6
  givenname: Junyan
  surname: Chen
  fullname: Chen, Junyan
  organization: Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, Lanzhou University
– sequence: 7
  givenname: Hongru
  surname: Bi
  fullname: Bi, Hongru
  organization: Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, Lanzhou University
– sequence: 8
  givenname: Gaotong
  surname: Lou
  fullname: Lou, Gaotong
  organization: Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, Lanzhou University
– sequence: 9
  givenname: Shikang
  surname: Du
  fullname: Du, Shikang
  organization: Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, Lanzhou University
– sequence: 10
  givenname: Yue
  surname: Zhang
  fullname: Zhang, Yue
  organization: Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, Lanzhou University
– sequence: 11
  givenname: Fan
  surname: Yang
  fullname: Yang, Fan
  organization: Institute of Desert Meteorology, China Meteorological Administration
BookMark eNp9kUtPxCAUhYnRxHH0B7gjMS5cVC_Qoe3SjM_E0Y2uCaWXmY4jKHTi49dLrYmJia4g8J3D4Z4dsum8Q0L2GRwzgOIkAohCZsBFJkDyjG2QESsly6qJEJtkBHwiMzYRsE12YlwmuhIlG5H5zLu5X7WaTr3rQluvO2zozAek3UI7mvND6m3aIz1bx66nDCZQd613kbaO3vqQboOj00XrdH8y08EsqHYNPX0O7YrylGqXbFm9irj3vY7Jw8X5_fQqu7m7vJ6e3mQmBeqygokGy6ZkOsdcADOVrWxtsWJVISutec2tNmh0XWItseGQi5obhpM8zy2iGJOjwfdVO6vdXC39Orj0ompeHt-WHwr7NFABsMQeDOxz8C9rjN0PzEshc5AFyEQVA2WCjzGgVabtvr6fptCuFAPVN6CGBlRyV30Dqvdnv5RpHE86vP-r4YMmJtbNMfxk-lv0CcoWmPs
CitedBy_id crossref_primary_10_3390_atmos14111646
crossref_primary_10_3390_rs15174343
crossref_primary_10_1109_JSTARS_2024_3439014
crossref_primary_10_1016_j_atmosenv_2025_121152
crossref_primary_10_1016_j_atmosres_2024_107272
crossref_primary_10_5194_acp_25_1711_2025
crossref_primary_10_1016_j_atmosenv_2025_121177
crossref_primary_10_1109_JSTARS_2024_3521036
crossref_primary_10_1021_acsestair_4c00122
crossref_primary_10_1016_j_atmosenv_2024_120862
crossref_primary_10_1038_d41586_024_01076_7
crossref_primary_10_1016_j_gloplacha_2024_104509
crossref_primary_10_1016_j_atmosenv_2024_120842
crossref_primary_10_1111_ajae_12532
crossref_primary_10_1016_j_atmosenv_2024_120789
crossref_primary_10_1016_j_scitotenv_2024_176093
crossref_primary_10_1021_acsestair_4c00208
crossref_primary_10_1360_TB_2023_0311
crossref_primary_10_3390_rs16111883
crossref_primary_10_1038_s41612_024_00689_z
crossref_primary_10_1080_10095020_2024_2439390
crossref_primary_10_1007_s00376_024_4080_3
crossref_primary_10_5194_acp_24_10689_2024
crossref_primary_10_1016_j_atmosres_2024_107342
crossref_primary_10_1007_s11069_025_07177_4
crossref_primary_10_1016_j_atmosres_2025_107967
crossref_primary_10_3390_rs15143494
crossref_primary_10_3390_rs16234578
crossref_primary_10_1016_j_apr_2025_102451
crossref_primary_10_1039_D3EN00805C
crossref_primary_10_1016_j_atmosenv_2024_120492
crossref_primary_10_1016_j_scitotenv_2024_174086
crossref_primary_10_1016_j_eti_2024_103823
crossref_primary_10_1016_j_scitotenv_2024_177296
crossref_primary_10_1016_j_atmosres_2024_107765
crossref_primary_10_3390_atmos14091401
crossref_primary_10_1016_S2542_5196_24_00308_5
crossref_primary_10_3390_rs16122164
crossref_primary_10_1016_j_gloplacha_2025_104738
crossref_primary_10_1016_j_gloplacha_2024_104638
crossref_primary_10_1016_j_gloplacha_2024_104578
crossref_primary_10_3390_toxics12030202
crossref_primary_10_1002_qj_4975
crossref_primary_10_1007_s13351_023_2195_6
Cites_doi 10.1117/1.3180864
10.2151/sola.2021-026
10.1016/j.atmosenv.2004.05.038
10.1016/j.atmosenv.2007.08.007
10.1175/BAMS-D-14-00110.1
10.1093/nsr/nwab165
10.1016/j.jclepro.2018.01.233
10.1016/j.atmosenv.2005.04.027
10.1109/36.20292
10.1109/36.628795
10.25675/10217/181731
10.1145/2939672.2939785
ContentType Journal Article
Copyright Institute of Atmospheric Physics/Chinese Academy of Sciences, and Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2023
Institute of Atmospheric Physics/Chinese Academy of Sciences, and Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2023.
Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Institute of Atmospheric Physics/Chinese Academy of Sciences, and Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2023
– notice: Institute of Atmospheric Physics/Chinese Academy of Sciences, and Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2023.
– notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID AAYXX
CITATION
7TG
F1W
H96
KL.
L.G
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.1007/s00376-023-3062-1
DatabaseName CrossRef
Meteorological & Geoastrophysical Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
ASFA: Aquatic Sciences and Fisheries Abstracts
DatabaseTitleList
Aquatic Science & Fisheries Abstracts (ASFA) Professional

DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
EISSN 1861-9533
EndPage 1557
ExternalDocumentID dqkxjz_e202309001
10_1007_s00376_023_3062_1
Genre News
GeographicLocations Taklamakan Desert
Mongolia
China
GeographicLocations_xml – name: Mongolia
– name: China
– name: Taklamakan Desert
GroupedDBID -5A
-5G
-5~
-BR
-EM
-SA
-S~
-Y2
-~C
.86
.VR
06D
0R~
0VY
1N0
2.D
23M
2B.
2C.
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
3V.
4.4
406
408
40D
40E
5GY
5VR
5VS
5XA
5XB
67M
6J9
6NX
7XC
88I
8FE
8FH
8TC
8UJ
92E
92I
92Q
93N
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAXDM
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABDZT
ABECU
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACGOD
ACHSB
ACHXU
ACIHN
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEAQA
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFUIB
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATCPS
AVWKF
AXYYD
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BGNMA
BHPHI
BKSAR
BPHCQ
BSONS
C1A
CAG
CAJEA
CCEZO
CCPQU
CCVFK
CHBEP
COF
CS3
CSCUP
CW9
D1K
DDRTE
DNIVK
DPUIP
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FA0
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
H13
HCIFZ
HF~
HG6
HMJXF
HRMNR
HVGLF
HZ~
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
I~X
I~Z
J-C
JBSCW
JZLTJ
K6-
KOV
L8X
LAS
LK5
LLZTM
M1Q
M2P
M4Y
M7R
MA-
N2Q
NB0
NDZJH
NF0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
P19
P2P
PATMY
PCBAR
PF0
PQQKQ
PROAC
PT4
PT5
PYCSY
Q--
Q2X
QOK
QOS
R89
R9I
RHV
RNI
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCK
SCL
SCLPG
SDH
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TCJ
TGP
TSG
TUC
U1G
U2A
U5K
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK6
WK8
YLTOR
Z7R
Z8M
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7TG
ABRTQ
F1W
H96
KL.
L.G
4A8
PMFND
PSX
ID FETCH-LOGICAL-c393t-713de8d81a4e4301c9f9fbfe919769aa2b2facecab8eb6ed2043b2c1e5444fee3
IEDL.DBID U2A
ISSN 0256-1530
IngestDate Thu May 29 04:02:40 EDT 2025
Fri Jul 25 22:50:55 EDT 2025
Thu Apr 24 22:55:41 EDT 2025
Tue Jul 01 02:41:02 EDT 2025
Fri Feb 21 02:42:15 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Mongolian dust
dust aerosol
沙尘气溶胶
HYSPLIT model
蒙古沙尘
transboundary contribution
沙尘跨境贡献
HYSPLIT模型
WRF-Chem
Language English
License https://www.springernature.com/gp/researchers/text-and-data-mining
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c393t-713de8d81a4e4301c9f9fbfe919769aa2b2facecab8eb6ed2043b2c1e5444fee3
Notes SourceType-Scholarly Journals-1
ObjectType-News-1
content type line 14
OpenAccessLink https://link.springer.com/content/pdf/10.1007/s00376-023-3062-1.pdf
PQID 2836406706
PQPubID 54452
PageCount 9
ParticipantIDs wanfang_journals_dqkxjz_e202309001
proquest_journals_2836406706
crossref_citationtrail_10_1007_s00376_023_3062_1
crossref_primary_10_1007_s00376_023_3062_1
springer_journals_10_1007_s00376_023_3062_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-09-01
PublicationDateYYYYMMDD 2023-09-01
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Heidelberg
PublicationPlace_xml – name: Heidelberg
– name: Dordrecht
PublicationTitle Advances in atmospheric sciences
PublicationTitleAbbrev Adv. Atmos. Sci
PublicationTitle_FL Advances in Atmospheric Sciences
PublicationYear 2023
Publisher Science Press
Springer Nature B.V
Key Laboratory for Semi-Arid Climate Change of the Ministry of Education,Lanzhou University,Lanzhou 730000,China%Institute of Desert Meteorology,China Meteorological Administration,Urumqi 830002,China
Publisher_xml – name: Science Press
– name: Springer Nature B.V
– name: Key Laboratory for Semi-Arid Climate Change of the Ministry of Education,Lanzhou University,Lanzhou 730000,China%Institute of Desert Meteorology,China Meteorological Administration,Urumqi 830002,China
References Zhang, Huisingh (CR13) 2018; 182
CR2
Qian, Tang, Quan (CR6) 2004; 38
CR5
CR9
Zhang, Gao (CR12) 2007; 41
Yin, Wan, Zhang, Wang (CR11) 2022; 9
Kaufman, Wald, Remer, Gao, Li, Flynn (CR4) 1997; 35
Xiong, Wenny, Barnes (CR10) 2009; 3
Bao, Gao, Nandintsetseg, Yong, Jin (CR1) 2021; 17
Grell, Peckham, Schmitz, McKeen, Frost, Skamarock, Eder (CR3) 2005; 39
Salomonson, Barnes, Maymon, Montgomery, Ostrow (CR7) 1989; 27
Stein, Draxler, Rolph, Stunder, Cohen, Ngan (CR8) 2015; 96
T N Bao (3062_CR1) 2021; 17
X X Xiong (3062_CR10) 2009; 3
3062_CR2
Z H Zhang (3062_CR13) 2018; 182
K Zhang (3062_CR12) 2007; 41
Z C Yin (3062_CR11) 2022; 9
A F Stein (3062_CR8) 2015; 96
Y J Kaufman (3062_CR4) 1997; 35
V V Salomonson (3062_CR7) 1989; 27
W H Qian (3062_CR6) 2004; 38
G A Grell (3062_CR3) 2005; 39
3062_CR5
3062_CR9
References_xml – volume: 3
  start-page: 032501
  year: 2009
  ident: CR10
  article-title: Overview of NASA Earth Observing Systems Terra and Aqua moderate resolution imaging spectroradiometer instrument calibration algorithms and on-orbit performance
  publication-title: Journal of Applied Remote Sensing
  doi: 10.1117/1.3180864
– volume: 17
  start-page: 145
  year: 2021
  end-page: 150
  ident: CR1
  article-title: Variations in frequency and intensity of dust events crossing the Mongolia-China border
  publication-title: SOLA
  doi: 10.2151/sola.2021-026
– volume: 38
  start-page: 4895
  year: 2004
  end-page: 4907
  ident: CR6
  article-title: Regional characteristics of dust storms in China
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2004.05.038
– volume: 41
  start-page: 9136
  year: 2007
  end-page: 9145
  ident: CR12
  article-title: The characteristics of Asian-dust storms during 2000–2002: From the source to the sea
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2007.08.007
– volume: 96
  start-page: 2059
  issue: 12
  year: 2015
  end-page: 2077
  ident: CR8
  article-title: NOAA’s HYSPLIT atmospheric transport and dispersion modeling system
  publication-title: Bull. Amer. Meteor. Soc.
  doi: 10.1175/BAMS-D-14-00110.1
– ident: CR2
– volume: 9
  start-page: nwab165
  year: 2022
  ident: CR11
  article-title: Why super sandstorm 2021 in North China
  publication-title: National Science Review
  doi: 10.1093/nsr/nwab165
– volume: 182
  start-page: 765
  year: 2018
  end-page: 775
  ident: CR13
  article-title: Combating desertification in China: Monitoring, control, management and revegetation
  publication-title: Journal of Cleaner Production
  doi: 10.1016/j.jclepro.2018.01.233
– ident: CR9
– ident: CR5
– volume: 39
  start-page: 6957
  year: 2005
  end-page: 6975
  ident: CR3
  article-title: Fully coupled “online” chemistry within the WRF model
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2005.04.027
– volume: 27
  start-page: 145
  year: 1989
  end-page: 153
  ident: CR7
  article-title: MODIS: Advanced facility instrument for studies of the Earth as a system
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/36.20292
– volume: 35
  start-page: 1286
  year: 1997
  end-page: 1298
  ident: CR4
  article-title: The MODIS 2.1-µm channel-correlation with visible reflectance for use in remote sensing of aerosol
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/36.628795
– volume: 39
  start-page: 6957
  year: 2005
  ident: 3062_CR3
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2005.04.027
– volume: 182
  start-page: 765
  year: 2018
  ident: 3062_CR13
  publication-title: Journal of Cleaner Production
  doi: 10.1016/j.jclepro.2018.01.233
– volume: 35
  start-page: 1286
  year: 1997
  ident: 3062_CR4
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/36.628795
– volume: 3
  start-page: 032501
  year: 2009
  ident: 3062_CR10
  publication-title: Journal of Applied Remote Sensing
  doi: 10.1117/1.3180864
– ident: 3062_CR5
– ident: 3062_CR9
  doi: 10.25675/10217/181731
– ident: 3062_CR2
  doi: 10.1145/2939672.2939785
– volume: 38
  start-page: 4895
  year: 2004
  ident: 3062_CR6
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2004.05.038
– volume: 41
  start-page: 9136
  year: 2007
  ident: 3062_CR12
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2007.08.007
– volume: 9
  start-page: nwab165
  year: 2022
  ident: 3062_CR11
  publication-title: National Science Review
  doi: 10.1093/nsr/nwab165
– volume: 96
  start-page: 2059
  issue: 12
  year: 2015
  ident: 3062_CR8
  publication-title: Bull. Amer. Meteor. Soc.
  doi: 10.1175/BAMS-D-14-00110.1
– volume: 27
  start-page: 145
  year: 1989
  ident: 3062_CR7
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/36.20292
– volume: 17
  start-page: 145
  year: 2021
  ident: 3062_CR1
  publication-title: SOLA
  doi: 10.2151/sola.2021-026
SSID ssj0039381
Score 2.5565617
Snippet Dust storms are one of the most frequent meteorological disasters in China, endangering agricultural production, transportation, air quality, and the safety of...
Dust storms are one of the most frequent meteorological disasters in China,endangering agricultural production,transportation,air quality,and the safety of...
SourceID wanfang
proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1549
SubjectTerms Agricultural production
Air quality
Algorithms
Atmospheric particulates
Atmospheric Sciences
Climate change
Cold front
Cold fronts
Deserts
Disasters
Dust
Dust storms
Earth and Environmental Science
Earth Sciences
Geophysics/Geodesy
Machine learning
Mathematical models
Meteorology
News & Views
Particulate matter
Performance prediction
Root-mean-square errors
Storm forecasting
Storms
Weather forecasting
Title Mongolia Contributed More than 42% of the Dust Concentrations in Northern China in March and April 2023
URI https://link.springer.com/article/10.1007/s00376-023-3062-1
https://www.proquest.com/docview/2836406706
https://d.wanfangdata.com.cn/periodical/dqkxjz-e202309001
Volume 40
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA6iFy_iE6tVgqgHJdDNpmtzLD5R6smCnpY8Zku17GpbQfz1zqS7WwURvO0jCSGTyXyTeTF2qBCDgrNexJltCQXSC6u1E1Z52TozViYhKq13n9z01e1j-7GM455U3u6VSTKc1HWwG6VKIYfZWCDMlQJVnqU2qu7kx9WX3er4jXUcKpOSLBfIzrUp87chfgqjOcKsjaIhlCfPTD74JnWuVtlKCRd5d0bfNbYA-Tpr9BDpFuNwIc6P-floiLAzvG2wATLpoBgNDae8U6GaFXjeK8bA6ZKcK3nEiwyfgV-8T6bUauafGfYfH-Y8WHJgnPNQWpu-9IgZuMk97-KER5xqoW-y_tXlw_mNKIspCIdLMhWojHro-E5kFCjkaqczndkMdISARBsjrcyMA2dsB2wCnmJmrXQRtJVSGUC8xRbzIodtxnGYxMcQO01pzhNrUQWKEKm1wVgbg2ywVrWqqSszjVPBi1Fa50gOhEhxtikRIo0a7KTu8jpLs_FX42ZFqrTkuEmKMClRFHSUNNhpRb757z8GOygpPG_s314-nj9ToOVsaRTkO_8acpctU8-ZJ1qTLU7H77CH0GVq99lS9_rp7nI_bNkvfWrlXg
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6V9gAXBAVE2gIWohxAlrJeZ4kPHKKWKqXdnhqpN-PHbJQ22qVJKh5_p3-0Y2d3A1JVqYfe9uEdWTPj8eedF8AHSRgUnfU8LWyXSxSeW6Uct9KL7hdjRRaz0vKTbDiS3896Z2tw3eTCxGj3xiUZLXWb7BZKpYSA2ZQTzBU8qSMpj_DPLzqnzb8e7pNQd4U4-Ha6N-R1KwHuUpUuOB3FPPZ9PzESJem0U4UqbIEqoe1YGSOsKIxDZ2wfbYY-ZIxa4RLsSSkLxJToPoINwh79sHRGYtCYeyIfO6EG7MDJfLSu09um_P_mt0K0rRM2pg6VhSnH_-xyB8_gaQ1P2WCpT89hDctN6OSErKtZ_AHPPrK96YRgbrx7AWMyCuNqOjEs1LmK3bPQs7yaIQs_5ZkUu6wq6BrZ_tV8EUYt40GjvrNJyaLnCGcli628w5M8MJyZ0rMBTXjKQu_1lzB6EI6_gvWyKvE1MCKT-RRTp0JZ9cxaOnIlhAx7aKxNUXSg23BVu7qyeWiwMdVtTeYoCE2z1UEQOunAp_aTn8uyHncN3mlEpesVPtcEyzIZkpyyDnxuxLd6fQex97WEV4P95cXv878aAzu7ioDD1r1IvoPHw9P8WB8fnhxtw5NAZRkFtwPri9kVviHYtLBvo9oy-PHQ6-QG1GAjSA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKkRAXxFOEFrAQ5QCymvU62_jAIWqIWkoqDkTqzfgxjlIib0m24vGn-IuMvY-AhCpx6G0f3pE1M7Y_r-ebIeSlQAwK1jiWe9NnArhjRkrLjHC8f6ANLxIrbXpaHM3E-7PB2Rb51XJhUrR7eyRZcxpilqZQ7V84v98R32LalBg8mzOEvJxlTVTlCfz4hnu29dvjMRp4j_PJu0-HR6wpK8BsLvOK4bbMwdANMy1AoH9b6aU3HmSGS7PUmhvutQWrzRBMAS6yRw23GQyEEB4gR7k3yE0Rycc4gGZ81E79KD5VRY04guFU0h2j_qvLfy-EG3TbHcgmGlHwOsz_WPEmd8mdBqrSUe1b98gWhPukN0WUXa7Sz3j6ih4uFwh5090DMscJYl4uF5rGnFepkhY4Oi1XQOMPeir4Hi09XgMdX66r2KqODU2-TxeBplMkWAWaynrHJ9OocKqDoyPs8JLGOuwPyexaNP6IbIcywGNCUUzhcsitjCnWC2Nw-5UhShyANiYH3iP9VqvKNlnOY7GNperyMydDKOytioZQWY-87j65qFN8XNV4tzWVakb7WiFEK0QkPBU98qY13-b1FcJeNBbeNHZfv3w__6kgqrMvEUQ8-S-Rz8mtj-OJ-nB8erJDbkchdUDcLtmuVpfwFBFUZZ4lr6Xk83UPk9-zwSd7
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mongolia+Contributed+More+than+42%25+of+the+Dust+Concentrations+in+Northern+China+in+March+and+April+2023&rft.jtitle=Advances+in+atmospheric+sciences&rft.au=Chen%2C+Siyu&rft.au=Zhao%2C+Dan&rft.au=Huang%2C+Jianping&rft.au=He%2C+Jiaqi&rft.date=2023-09-01&rft.pub=Science+Press&rft.issn=0256-1530&rft.eissn=1861-9533&rft.volume=40&rft.issue=9&rft.spage=1549&rft.epage=1557&rft_id=info:doi/10.1007%2Fs00376-023-3062-1&rft.externalDocID=10_1007_s00376_023_3062_1
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fdqkxjz-e%2Fdqkxjz-e.jpg