Robust model predictive control for heat exchanger network

Optimal operation of heat exchangers represents a challenging task from the control viewpoint, due to the presence of system nonlinearities, varying process parameters, internal and external disturbances and measurement noise. Various robust control strategies were developed to overcome all these pr...

Full description

Saved in:
Bibliographic Details
Published inApplied thermal engineering Vol. 73; no. 1; pp. 924 - 930
Main Authors Bakošová, Monika, Oravec, Juraj
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 05.12.2014
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Optimal operation of heat exchangers represents a challenging task from the control viewpoint, due to the presence of system nonlinearities, varying process parameters, internal and external disturbances and measurement noise. Various robust control strategies were developed to overcome all these problems. The robust model predictive control (RMPC) represents one of suitable approaches. It enables to design effective control algorithms for optimization of the control performance subject to the process uncertainties and the input and output constraints. The possibility to implement the RMPC for control of a heat exchanger network is investigated in this paper, where three counter-current heat exchangers with uncertain parameters connected in series represent the controlled process. The efficiency of the advanced RMPC algorithm was verified by simulation experiments realized in the MATLAB/Simulink environment. The results confirmed that using the RMPC for the controlled process modelled as a system with uncertain parameters led to less consumption of cooling medium compared with the consumption achieved by using the optimal linear quadratic (LQ) control. •The robust and the optimal controllers control the heat exchanger network.•The robust model predictive controller is a solution of linear matrix inequalities.•Robust control assures smaller offsets and lower coolant consumption.
AbstractList Optimal operation of heat exchangers represents a challenging task from the control viewpoint, due to the presence of system nonlinearities, varying process parameters, internal and external disturbances and measurement noise. Various robust control strategies were developed to overcome all these problems. The robust model predictive control (RMPC) represents one of suitable approaches. It enables to design effective control algorithms for optimization of the control performance subject to the process uncertainties and the input and output constraints. The possibility to implement the RMPC for control of a heat exchanger network is investigated in this paper, where three counter-current heat exchangers with uncertain parameters connected in series represent the controlled process. The efficiency of the advanced RMPC algorithm was verified by simulation experiments realized in the MATLAB/Simulink environment. The results confirmed that using the RMPC for the controlled process modelled as a system with uncertain parameters led to less consumption of cooling medium compared with the consumption achieved by using the optimal linear quadratic (LQ) control.
Optimal operation of heat exchangers represents a challenging task from the control viewpoint, due to the presence of system nonlinearities, varying process parameters, internal and external disturbances and measurement noise. Various robust control strategies were developed to overcome all these problems. The robust model predictive control (RMPC) represents one of suitable approaches. It enables to design effective control algorithms for optimization of the control performance subject to the process uncertainties and the input and output constraints. The possibility to implement the RMPC for control of a heat exchanger network is investigated in this paper, where three counter-current heat exchangers with uncertain parameters connected in series represent the controlled process. The efficiency of the advanced RMPC algorithm was verified by simulation experiments realized in the MATLAB/Simulink environment. The results confirmed that using the RMPC for the controlled process modelled as a system with uncertain parameters led to less consumption of cooling medium compared with the consumption achieved by using the optimal linear quadratic (LQ) control. •The robust and the optimal controllers control the heat exchanger network.•The robust model predictive controller is a solution of linear matrix inequalities.•Robust control assures smaller offsets and lower coolant consumption.
Author Bakošová, Monika
Oravec, Juraj
Author_xml – sequence: 1
  givenname: Monika
  surname: Bakošová
  fullname: Bakošová, Monika
  email: monika.bakosova@stuba.sk
– sequence: 2
  givenname: Juraj
  surname: Oravec
  fullname: Oravec, Juraj
  email: juraj.oravec@stuba.sk
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28996069$$DView record in Pascal Francis
BookMark eNqNkU1rGzEQhnVIIYmT_7CHFHrxVlpplVXppTX5AkMhJGehnR3FcmVpK8lJ-u-7xqGQnHwaGJ73HXjmlByFGJCQC0ZrRpn8uq7NOPqywrQxHsNT3VAmatrVtOFH5ITxVs0FZ-yYnOa8ppQ13aU4Id_uY7_NpdrEAX01JhwcFPeMFcRQUvSVjalaoSkVvsLKhCdMVcDyEtPvM_LJGp_x_G3OyOP11cPidr78dXO3-LGcA1e8zCVDELZTyGTTWka5sErJvhskFZz2fGCXloGQvR2A09ZC30_LVghQrbJW8Bn5su8dU_yzxVz0xmVA703AuM2aSam6jikpJ_TzG2oyGG-TCeCyHpPbmPRXN910mUo1cd_3HKSYc0L7H2FU73TqtX6vU-90atrpSecU__khDq6Y4nbKjPOHllzvS3By9-ww6QwOA0wfSAhFD9EdVvQPS96iDw
CitedBy_id crossref_primary_10_1016_j_applthermaleng_2021_116993
crossref_primary_10_1016_j_applthermaleng_2015_09_092
crossref_primary_10_1016_j_applthermaleng_2023_120554
crossref_primary_10_3390_app9050824
crossref_primary_10_1016_j_compchemeng_2017_06_008
crossref_primary_10_1016_j_rser_2019_05_046
crossref_primary_10_1016_j_applthermaleng_2015_11_082
crossref_primary_10_21597_jist_559806
crossref_primary_10_1016_j_conengprac_2020_104319
crossref_primary_10_1109_TIE_2020_2987272
crossref_primary_10_1016_j_robot_2021_103903
crossref_primary_10_3390_su142215128
crossref_primary_10_1016_j_applthermaleng_2016_01_004
crossref_primary_10_1016_j_jprocont_2023_103081
crossref_primary_10_1021_acs_iecr_0c02717
crossref_primary_10_1016_j_applthermaleng_2017_09_120
crossref_primary_10_1016_j_applthermaleng_2023_121441
crossref_primary_10_1016_j_applthermaleng_2014_10_080
crossref_primary_10_1016_j_applthermaleng_2017_03_033
crossref_primary_10_1016_j_applthermaleng_2016_05_046
crossref_primary_10_1016_j_heliyon_2023_e18445
crossref_primary_10_1016_j_rser_2019_109644
crossref_primary_10_1016_j_engappai_2023_106853
crossref_primary_10_1016_j_ins_2014_11_050
crossref_primary_10_1177_0142331219862978
crossref_primary_10_1016_j_applthermaleng_2016_11_150
crossref_primary_10_1016_j_applthermaleng_2017_10_056
crossref_primary_10_2478_pjct_2018_0003
crossref_primary_10_3390_en13051148
crossref_primary_10_1016_j_applthermaleng_2019_114384
crossref_primary_10_1016_j_measurement_2016_07_003
crossref_primary_10_1016_j_energy_2019_07_022
crossref_primary_10_1016_j_apenergy_2019_01_053
crossref_primary_10_1016_j_energy_2018_07_021
crossref_primary_10_1016_j_jprocont_2018_04_005
crossref_primary_10_3390_app13127132
crossref_primary_10_1016_j_jclepro_2022_132940
crossref_primary_10_1021_acs_iecr_9b00280
crossref_primary_10_3390_en12101877
crossref_primary_10_1007_s43153_020_00058_2
crossref_primary_10_1016_j_applthermaleng_2015_01_076
crossref_primary_10_1016_j_applthermaleng_2017_07_089
Cites_doi 10.1016/j.applthermaleng.2011.01.026
10.1016/j.applthermaleng.2011.03.032
10.1080/10556789908805766
10.1016/j.applthermaleng.2006.12.027
10.1016/j.applthermaleng.2007.03.005
10.1016/j.applthermaleng.2009.12.021
10.1016/0005-1098(96)00063-5
10.1016/j.applthermaleng.2012.06.010
10.1016/j.applthermaleng.2012.03.044
10.1016/j.applthermaleng.2009.11.009
ContentType Journal Article
Copyright 2014 Elsevier Ltd
2015 INIST-CNRS
Copyright_xml – notice: 2014 Elsevier Ltd
– notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7TB
8FD
FR3
KR7
DOI 10.1016/j.applthermaleng.2014.08.023
DatabaseName CrossRef
Pascal-Francis
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
DatabaseTitleList Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
EndPage 930
ExternalDocumentID 28996069
10_1016_j_applthermaleng_2014_08_023
S1359431114006851
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABFNM
ABJNI
ABMAC
ABNUV
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEWK
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AHJVU
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
IHE
J1W
JARJE
JJJVA
KOM
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSG
SSR
SST
SSZ
T5K
TN5
~G-
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FGOYB
HZ~
R2-
SEW
SSH
IQODW
7TB
8FD
FR3
KR7
ID FETCH-LOGICAL-c393t-61ec4f89e1625f1034f996b8d60430b3d17f1c46bfdc305fcbbb3d544c959ff43
IEDL.DBID .~1
ISSN 1359-4311
IngestDate Fri Jul 11 07:29:23 EDT 2025
Wed Apr 02 07:08:27 EDT 2025
Tue Jul 01 02:27:06 EDT 2025
Thu Apr 24 23:08:19 EDT 2025
Fri Feb 23 02:33:17 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Robust model-based predictive control
Uncertain system
Linear matrix inequalities
Energy saving
Heat exchanger
Energy conservation
Network
Models
Modeling
Energy savings
Predictive control
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c393t-61ec4f89e1625f1034f996b8d60430b3d17f1c46bfdc305fcbbb3d544c959ff43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1669881966
PQPubID 23500
PageCount 7
ParticipantIDs proquest_miscellaneous_1669881966
pascalfrancis_primary_28996069
crossref_primary_10_1016_j_applthermaleng_2014_08_023
crossref_citationtrail_10_1016_j_applthermaleng_2014_08_023
elsevier_sciencedirect_doi_10_1016_j_applthermaleng_2014_08_023
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-12-05
PublicationDateYYYYMMDD 2014-12-05
PublicationDate_xml – month: 12
  year: 2014
  text: 2014-12-05
  day: 05
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle Applied thermal engineering
PublicationYear 2014
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Klemeš, Varbanov (bib1) 2012; 43
Oravec (bib20) 2014
Kothare, Balakrishnan, Morari (bib11) 1996; 32
Morrison, Atkins, Walmsle (bib2) 2012; 29
Vasičkaninová, Bakošová, Mészáros, Klemeš (bib7) 2011; 31
Bakošová, Oravec (bib15) 2013; 35
Wang, Gao, Sun, Xiao (bib10) 2013; 50
Bakošová, Oravec (bib14) 2014
Arbaoui, Vernières-Hassimi, Seguin, Abdelghani-Idrissi (bib3) 2007; 27
Bakošová, Oravec (bib12) 2011; 25
MathWorks Documentation Center (bib18) 2014
Aggelongiannaki, Sarimveis, Koubogiannis (bib6) 2007; 27
Mikleš, Fikar (bib4) 2007
Czeczot, Laszczyk, Metzger (bib9) 2010; 30
Löfberg (bib19) 2004
Keshavarz, Yazdi, Jahed-Motlagh (bib5) 2010; 30
Bakošová, Oravec (bib13) 2012; 29
Choi, Lee, Kim (bib8) 2011; 31
Ingham, Dunn, Heinzle, Přenosil, Snape (bib17) 2007
Sturm (bib16) 1999; 11
Oravec (10.1016/j.applthermaleng.2014.08.023_bib20) 2014
Klemeš (10.1016/j.applthermaleng.2014.08.023_bib1) 2012; 43
Arbaoui (10.1016/j.applthermaleng.2014.08.023_bib3) 2007; 27
Czeczot (10.1016/j.applthermaleng.2014.08.023_bib9) 2010; 30
Löfberg (10.1016/j.applthermaleng.2014.08.023_bib19) 2004
Aggelongiannaki (10.1016/j.applthermaleng.2014.08.023_bib6) 2007; 27
Wang (10.1016/j.applthermaleng.2014.08.023_bib10) 2013; 50
Bakošová (10.1016/j.applthermaleng.2014.08.023_bib15) 2013; 35
Sturm (10.1016/j.applthermaleng.2014.08.023_bib16) 1999; 11
Bakošová (10.1016/j.applthermaleng.2014.08.023_bib13) 2012; 29
Bakošová (10.1016/j.applthermaleng.2014.08.023_bib12) 2011; 25
Keshavarz (10.1016/j.applthermaleng.2014.08.023_bib5) 2010; 30
Vasičkaninová (10.1016/j.applthermaleng.2014.08.023_bib7) 2011; 31
Kothare (10.1016/j.applthermaleng.2014.08.023_bib11) 1996; 32
Ingham (10.1016/j.applthermaleng.2014.08.023_bib17) 2007
Choi (10.1016/j.applthermaleng.2014.08.023_bib8) 2011; 31
Morrison (10.1016/j.applthermaleng.2014.08.023_bib2) 2012; 29
MathWorks Documentation Center (10.1016/j.applthermaleng.2014.08.023_bib18)
Bakošová (10.1016/j.applthermaleng.2014.08.023_bib14) 2014
Mikleš (10.1016/j.applthermaleng.2014.08.023_bib4) 2007
References_xml – volume: 31
  start-page: 2094
  year: 2011
  end-page: 2100
  ident: bib7
  article-title: Neural network predictive control of a heat exchanger
  publication-title: Appl. Therm. Eng.
– year: 2014
  ident: bib18
– volume: 25
  start-page: 99
  year: 2011
  end-page: 104
  ident: bib12
  article-title: Comparison of robust and optimal approach to stabilization of CSTRs
  publication-title: Chem. Eng. Trans.
– volume: 27
  start-page: 2332
  year: 2007
  end-page: 2338
  ident: bib3
  article-title: Counter-current tubular heat exchanger: modeling and adaptive predictive functional control
  publication-title: Appl. Therm. Eng.
– start-page: 5242
  year: 2014
  end-page: 5247
  ident: bib14
  article-title: Robust model predictive control of a laboratory two–tank system
  publication-title: Proc. Of the American Control Conference
– volume: 50
  start-page: 614
  year: 2013
  end-page: 628
  ident: bib10
  article-title: An online adaptive optimal control strategy for complex building chilled water systems involving intermediate heat exchangers
  publication-title: Appl. Therm. Eng.
– volume: 29
  start-page: 295
  year: 2012
  end-page: 300
  ident: bib2
  article-title: Ensuring cost-effective heat exchanger network design for non-continuous processes
  publication-title: Chem. Eng. Trans.
– volume: 30
  start-page: 879
  year: 2010
  end-page: 891
  ident: bib9
  article-title: Local balance-based adaptive control in the heat distribution system – practical validation
  publication-title: Appl. Therm. Eng.
– volume: 31
  start-page: 2332
  year: 2011
  end-page: 2339
  ident: bib8
  article-title: Capacity control of a heat pump system applying a fuzzy control method
  publication-title: Appl. Therm. Eng.
– volume: 32
  start-page: 1361
  year: 1996
  end-page: 1379
  ident: bib11
  article-title: Robust constrained model predictive control using linear matrix inequalities
  publication-title: Automatica
– volume: 43
  start-page: 1
  year: 2012
  end-page: 6
  ident: bib1
  article-title: Heat integration including heat exchangers, combined heat and power, heat pumps, separation processes and process control
  publication-title: Appl. Therm. Eng.
– volume: 30
  start-page: 781
  year: 2010
  end-page: 791
  ident: bib5
  article-title: Piecewise affine modeling and control of a boiler–turbine unit
  publication-title: Appl. Therm. Eng.
– volume: 27
  start-page: 2363
  year: 2007
  end-page: 2369
  ident: bib6
  article-title: Model predictive temperature control in long ducts by means of a neural network approximation tool
  publication-title: Appl. Therm. Eng.
– year: 2014
  ident: bib20
  article-title: MUP Toolbox
– year: 2007
  ident: bib4
  article-title: Process Modelling, Identification, and Control
– volume: 29
  start-page: 1465
  year: 2012
  end-page: 1470
  ident: bib13
  article-title: Robust model predictive control of heat exchangers
  publication-title: Chem. Eng. Trans.
– volume: 35
  start-page: 241
  year: 2013
  end-page: 246
  ident: bib15
  article-title: Robust model predictive control of heat exchanger network
  publication-title: Chem. Eng. Trans.
– start-page: 284
  year: 2004
  end-page: 289
  ident: bib19
  article-title: Yalmip: a toolbox for modelling and optimization in MATLAB
  publication-title: Proc. of the CACSD Conference
– volume: 11
  start-page: 625
  year: 1999
  end-page: 653
  ident: bib16
  article-title: Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones
  publication-title: Optim. Methods Softw.
– year: 2007
  ident: bib17
  article-title: Chemical Engineering Dynamics: An Introduction to Modelling and Computer Simulation
– volume: 31
  start-page: 2094
  year: 2011
  ident: 10.1016/j.applthermaleng.2014.08.023_bib7
  article-title: Neural network predictive control of a heat exchanger
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2011.01.026
– volume: 29
  start-page: 1465
  year: 2012
  ident: 10.1016/j.applthermaleng.2014.08.023_bib13
  article-title: Robust model predictive control of heat exchangers
  publication-title: Chem. Eng. Trans.
– volume: 31
  start-page: 2332
  year: 2011
  ident: 10.1016/j.applthermaleng.2014.08.023_bib8
  article-title: Capacity control of a heat pump system applying a fuzzy control method
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2011.03.032
– year: 2007
  ident: 10.1016/j.applthermaleng.2014.08.023_bib17
– volume: 11
  start-page: 625
  year: 1999
  ident: 10.1016/j.applthermaleng.2014.08.023_bib16
  article-title: Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones
  publication-title: Optim. Methods Softw.
  doi: 10.1080/10556789908805766
– start-page: 284
  year: 2004
  ident: 10.1016/j.applthermaleng.2014.08.023_bib19
  article-title: Yalmip: a toolbox for modelling and optimization in MATLAB
– volume: 27
  start-page: 2332
  year: 2007
  ident: 10.1016/j.applthermaleng.2014.08.023_bib3
  article-title: Counter-current tubular heat exchanger: modeling and adaptive predictive functional control
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2006.12.027
– volume: 27
  start-page: 2363
  year: 2007
  ident: 10.1016/j.applthermaleng.2014.08.023_bib6
  article-title: Model predictive temperature control in long ducts by means of a neural network approximation tool
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2007.03.005
– volume: 30
  start-page: 879
  year: 2010
  ident: 10.1016/j.applthermaleng.2014.08.023_bib9
  article-title: Local balance-based adaptive control in the heat distribution system – practical validation
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2009.12.021
– start-page: 5242
  year: 2014
  ident: 10.1016/j.applthermaleng.2014.08.023_bib14
  article-title: Robust model predictive control of a laboratory two–tank system
– year: 2007
  ident: 10.1016/j.applthermaleng.2014.08.023_bib4
– volume: 32
  start-page: 1361
  year: 1996
  ident: 10.1016/j.applthermaleng.2014.08.023_bib11
  article-title: Robust constrained model predictive control using linear matrix inequalities
  publication-title: Automatica
  doi: 10.1016/0005-1098(96)00063-5
– ident: 10.1016/j.applthermaleng.2014.08.023_bib18
– volume: 50
  start-page: 614
  year: 2013
  ident: 10.1016/j.applthermaleng.2014.08.023_bib10
  article-title: An online adaptive optimal control strategy for complex building chilled water systems involving intermediate heat exchangers
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2012.06.010
– volume: 29
  start-page: 295
  year: 2012
  ident: 10.1016/j.applthermaleng.2014.08.023_bib2
  article-title: Ensuring cost-effective heat exchanger network design for non-continuous processes
  publication-title: Chem. Eng. Trans.
– volume: 25
  start-page: 99
  year: 2011
  ident: 10.1016/j.applthermaleng.2014.08.023_bib12
  article-title: Comparison of robust and optimal approach to stabilization of CSTRs
  publication-title: Chem. Eng. Trans.
– volume: 43
  start-page: 1
  year: 2012
  ident: 10.1016/j.applthermaleng.2014.08.023_bib1
  article-title: Heat integration including heat exchangers, combined heat and power, heat pumps, separation processes and process control
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2012.03.044
– volume: 30
  start-page: 781
  year: 2010
  ident: 10.1016/j.applthermaleng.2014.08.023_bib5
  article-title: Piecewise affine modeling and control of a boiler–turbine unit
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2009.11.009
– volume: 35
  start-page: 241
  year: 2013
  ident: 10.1016/j.applthermaleng.2014.08.023_bib15
  article-title: Robust model predictive control of heat exchanger network
  publication-title: Chem. Eng. Trans.
– year: 2014
  ident: 10.1016/j.applthermaleng.2014.08.023_bib20
SSID ssj0012874
Score 2.347866
Snippet Optimal operation of heat exchangers represents a challenging task from the control viewpoint, due to the presence of system nonlinearities, varying process...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 924
SubjectTerms Applied sciences
Consumption
Control systems
Devices using thermal energy
Energy
Energy saving
Energy. Thermal use of fuels
Exact sciences and technology
Heat exchanger
Heat exchangers
Heat exchangers (included heat transformers, condensers, cooling towers)
Heat transfer
Linear matrix inequalities
Mathematical models
Matlab
Networks
Optimization
Predictive control
Robust model-based predictive control
Theoretical studies. Data and constants. Metering
Uncertain system
Title Robust model predictive control for heat exchanger network
URI https://dx.doi.org/10.1016/j.applthermaleng.2014.08.023
https://www.proquest.com/docview/1669881966
Volume 73
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dSxwxEB9EQVpE1LZ4ao8UfN3e5fKxG30QEeWq1Ac_wLewySag6N7h3YFP_u3O7MfZoxSEPm7YfDBJZuZHfjMDsF9IdLJT2U9cljkEKE4nmYw-0S51IQYxSBUFCv--1MNbeX6n7pbgpI2FIVplo_trnV5p66al10izN76_711zoQyaP5yL4hyqMGopUzrlP1_nNA9O-dwr0KVMQn-vwv47x4seicnPesqpbAkRvWSV0HMg_mWm1sb5BIUX66oXfynwyiqdbcB6406y43rFm7AUyi34_EeSwS9wcDVys8mUVTVv2PiZXmZIx7GGpc7QbWWkkll4acKAWVmTw7_C7dnpzckwaSomJF4YMUUcGLyMmQkcYU3kfSEj4hmXFZpSezlR8DRyL7WLhceLHr1z2Kik9EaZGKX4BsvlqAzbwFLuM-mKWLjcSI3D5wikXT93iqfkBHXgsBWQ9U06capq8Whb3tiDXRSvJfFaKno5EB1Q897jOq3GB_sdtXthF46JRQvwwRG6C1s4n56QJ6I504Ef7Z5avGr0fpKXYTSbWK61ydCD0nrnv5exC5_oqyLGqD1Ynj7Pwnd0b6auW53fLqwc_7oYXr4B-7D9zA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swED9KCtvKKPuk2bpOg7yaxNGHrfZhlLKSrk0ethT6JixZgo7WCU0C-_N3Z8tZQxkE9iojyZyku_txv7sD6JUCnexMDBKb5xYBilVJLoJLlM2sD54PM0mJwuOJGl2L7zfyZgfO2lwYolVG3d_o9Fpbx5F-lGZ_fnvb_5lyqdH84V6U50Bp1LtUnUp2YPf04nI0WQcTqKR7jbukTmjCM-j9pXlRnJhcrfuCOpcQ10vUNT2H_F-W6uW8WKD8QtP44okOrw3T-SvYjx4lO21--jXs-OoN7D2qM_gWjn_M7GqxZHXbGzZ_oOAMqTkWieoMPVdGWpn53zETmFUNP_wdXJ9_m56Nktg0IXFc8yVCQe9EyLVPEdmEdMBFQEhj81JRdS_LyzQLqRPKhtLhWw_OWhyUQjgtdQiCv4dONav8AbAsdbmwZShtoYXC5QvE0nZQWJlm5Ad14aQVkHGxojg1trgzLXXsl9kUryHxGup7OeRdkOvZ86ayxpbzvrZnYTZuikEjsOUKRxtHuN6ewCcCOt2FL-2ZGnxtFEIpKj9bLUyqlM7RiVLqw3__xmd4PpqOr8zVxeTyI7ygLzVPRh5CZ_mw8p_Q21nao3ib_wCgyQCM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+model+predictive+control+for+heat+exchanger+network&rft.jtitle=Applied+thermal+engineering&rft.au=Bako%C5%A1ov%C3%A1%2C+Monika&rft.au=Oravec%2C+Juraj&rft.date=2014-12-05&rft.pub=Elsevier+Ltd&rft.issn=1359-4311&rft.volume=73&rft.issue=1&rft.spage=924&rft.epage=930&rft_id=info:doi/10.1016%2Fj.applthermaleng.2014.08.023&rft.externalDocID=S1359431114006851
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-4311&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-4311&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-4311&client=summon