Robust model predictive control for heat exchanger network
Optimal operation of heat exchangers represents a challenging task from the control viewpoint, due to the presence of system nonlinearities, varying process parameters, internal and external disturbances and measurement noise. Various robust control strategies were developed to overcome all these pr...
Saved in:
Published in | Applied thermal engineering Vol. 73; no. 1; pp. 924 - 930 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier Ltd
05.12.2014
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Optimal operation of heat exchangers represents a challenging task from the control viewpoint, due to the presence of system nonlinearities, varying process parameters, internal and external disturbances and measurement noise. Various robust control strategies were developed to overcome all these problems. The robust model predictive control (RMPC) represents one of suitable approaches. It enables to design effective control algorithms for optimization of the control performance subject to the process uncertainties and the input and output constraints. The possibility to implement the RMPC for control of a heat exchanger network is investigated in this paper, where three counter-current heat exchangers with uncertain parameters connected in series represent the controlled process. The efficiency of the advanced RMPC algorithm was verified by simulation experiments realized in the MATLAB/Simulink environment. The results confirmed that using the RMPC for the controlled process modelled as a system with uncertain parameters led to less consumption of cooling medium compared with the consumption achieved by using the optimal linear quadratic (LQ) control.
•The robust and the optimal controllers control the heat exchanger network.•The robust model predictive controller is a solution of linear matrix inequalities.•Robust control assures smaller offsets and lower coolant consumption. |
---|---|
AbstractList | Optimal operation of heat exchangers represents a challenging task from the control viewpoint, due to the presence of system nonlinearities, varying process parameters, internal and external disturbances and measurement noise. Various robust control strategies were developed to overcome all these problems. The robust model predictive control (RMPC) represents one of suitable approaches. It enables to design effective control algorithms for optimization of the control performance subject to the process uncertainties and the input and output constraints. The possibility to implement the RMPC for control of a heat exchanger network is investigated in this paper, where three counter-current heat exchangers with uncertain parameters connected in series represent the controlled process. The efficiency of the advanced RMPC algorithm was verified by simulation experiments realized in the MATLAB/Simulink environment. The results confirmed that using the RMPC for the controlled process modelled as a system with uncertain parameters led to less consumption of cooling medium compared with the consumption achieved by using the optimal linear quadratic (LQ) control. Optimal operation of heat exchangers represents a challenging task from the control viewpoint, due to the presence of system nonlinearities, varying process parameters, internal and external disturbances and measurement noise. Various robust control strategies were developed to overcome all these problems. The robust model predictive control (RMPC) represents one of suitable approaches. It enables to design effective control algorithms for optimization of the control performance subject to the process uncertainties and the input and output constraints. The possibility to implement the RMPC for control of a heat exchanger network is investigated in this paper, where three counter-current heat exchangers with uncertain parameters connected in series represent the controlled process. The efficiency of the advanced RMPC algorithm was verified by simulation experiments realized in the MATLAB/Simulink environment. The results confirmed that using the RMPC for the controlled process modelled as a system with uncertain parameters led to less consumption of cooling medium compared with the consumption achieved by using the optimal linear quadratic (LQ) control. •The robust and the optimal controllers control the heat exchanger network.•The robust model predictive controller is a solution of linear matrix inequalities.•Robust control assures smaller offsets and lower coolant consumption. |
Author | Bakošová, Monika Oravec, Juraj |
Author_xml | – sequence: 1 givenname: Monika surname: Bakošová fullname: Bakošová, Monika email: monika.bakosova@stuba.sk – sequence: 2 givenname: Juraj surname: Oravec fullname: Oravec, Juraj email: juraj.oravec@stuba.sk |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28996069$$DView record in Pascal Francis |
BookMark | eNqNkU1rGzEQhnVIIYmT_7CHFHrxVlpplVXppTX5AkMhJGehnR3FcmVpK8lJ-u-7xqGQnHwaGJ73HXjmlByFGJCQC0ZrRpn8uq7NOPqywrQxHsNT3VAmatrVtOFH5ITxVs0FZ-yYnOa8ppQ13aU4Id_uY7_NpdrEAX01JhwcFPeMFcRQUvSVjalaoSkVvsLKhCdMVcDyEtPvM_LJGp_x_G3OyOP11cPidr78dXO3-LGcA1e8zCVDELZTyGTTWka5sErJvhskFZz2fGCXloGQvR2A09ZC30_LVghQrbJW8Bn5su8dU_yzxVz0xmVA703AuM2aSam6jikpJ_TzG2oyGG-TCeCyHpPbmPRXN910mUo1cd_3HKSYc0L7H2FU73TqtX6vU-90atrpSecU__khDq6Y4nbKjPOHllzvS3By9-ww6QwOA0wfSAhFD9EdVvQPS96iDw |
CitedBy_id | crossref_primary_10_1016_j_applthermaleng_2021_116993 crossref_primary_10_1016_j_applthermaleng_2015_09_092 crossref_primary_10_1016_j_applthermaleng_2023_120554 crossref_primary_10_3390_app9050824 crossref_primary_10_1016_j_compchemeng_2017_06_008 crossref_primary_10_1016_j_rser_2019_05_046 crossref_primary_10_1016_j_applthermaleng_2015_11_082 crossref_primary_10_21597_jist_559806 crossref_primary_10_1016_j_conengprac_2020_104319 crossref_primary_10_1109_TIE_2020_2987272 crossref_primary_10_1016_j_robot_2021_103903 crossref_primary_10_3390_su142215128 crossref_primary_10_1016_j_applthermaleng_2016_01_004 crossref_primary_10_1016_j_jprocont_2023_103081 crossref_primary_10_1021_acs_iecr_0c02717 crossref_primary_10_1016_j_applthermaleng_2017_09_120 crossref_primary_10_1016_j_applthermaleng_2023_121441 crossref_primary_10_1016_j_applthermaleng_2014_10_080 crossref_primary_10_1016_j_applthermaleng_2017_03_033 crossref_primary_10_1016_j_applthermaleng_2016_05_046 crossref_primary_10_1016_j_heliyon_2023_e18445 crossref_primary_10_1016_j_rser_2019_109644 crossref_primary_10_1016_j_engappai_2023_106853 crossref_primary_10_1016_j_ins_2014_11_050 crossref_primary_10_1177_0142331219862978 crossref_primary_10_1016_j_applthermaleng_2016_11_150 crossref_primary_10_1016_j_applthermaleng_2017_10_056 crossref_primary_10_2478_pjct_2018_0003 crossref_primary_10_3390_en13051148 crossref_primary_10_1016_j_applthermaleng_2019_114384 crossref_primary_10_1016_j_measurement_2016_07_003 crossref_primary_10_1016_j_energy_2019_07_022 crossref_primary_10_1016_j_apenergy_2019_01_053 crossref_primary_10_1016_j_energy_2018_07_021 crossref_primary_10_1016_j_jprocont_2018_04_005 crossref_primary_10_3390_app13127132 crossref_primary_10_1016_j_jclepro_2022_132940 crossref_primary_10_1021_acs_iecr_9b00280 crossref_primary_10_3390_en12101877 crossref_primary_10_1007_s43153_020_00058_2 crossref_primary_10_1016_j_applthermaleng_2015_01_076 crossref_primary_10_1016_j_applthermaleng_2017_07_089 |
Cites_doi | 10.1016/j.applthermaleng.2011.01.026 10.1016/j.applthermaleng.2011.03.032 10.1080/10556789908805766 10.1016/j.applthermaleng.2006.12.027 10.1016/j.applthermaleng.2007.03.005 10.1016/j.applthermaleng.2009.12.021 10.1016/0005-1098(96)00063-5 10.1016/j.applthermaleng.2012.06.010 10.1016/j.applthermaleng.2012.03.044 10.1016/j.applthermaleng.2009.11.009 |
ContentType | Journal Article |
Copyright | 2014 Elsevier Ltd 2015 INIST-CNRS |
Copyright_xml | – notice: 2014 Elsevier Ltd – notice: 2015 INIST-CNRS |
DBID | AAYXX CITATION IQODW 7TB 8FD FR3 KR7 |
DOI | 10.1016/j.applthermaleng.2014.08.023 |
DatabaseName | CrossRef Pascal-Francis Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts |
DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Applied Sciences |
EndPage | 930 |
ExternalDocumentID | 28996069 10_1016_j_applthermaleng_2014_08_023 S1359431114006851 |
GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABFNM ABJNI ABMAC ABNUV ABXDB ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEWK ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHIDL AHJVU AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA HVGLF IHE J1W JARJE JJJVA KOM M41 MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SDP SES SPC SPCBC SSG SSR SST SSZ T5K TN5 ~G- AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FGOYB HZ~ R2- SEW SSH IQODW 7TB 8FD FR3 KR7 |
ID | FETCH-LOGICAL-c393t-61ec4f89e1625f1034f996b8d60430b3d17f1c46bfdc305fcbbb3d544c959ff43 |
IEDL.DBID | .~1 |
ISSN | 1359-4311 |
IngestDate | Fri Jul 11 07:29:23 EDT 2025 Wed Apr 02 07:08:27 EDT 2025 Tue Jul 01 02:27:06 EDT 2025 Thu Apr 24 23:08:19 EDT 2025 Fri Feb 23 02:33:17 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Robust model-based predictive control Uncertain system Linear matrix inequalities Energy saving Heat exchanger Energy conservation Network Models Modeling Energy savings Predictive control |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c393t-61ec4f89e1625f1034f996b8d60430b3d17f1c46bfdc305fcbbb3d544c959ff43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1669881966 |
PQPubID | 23500 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_1669881966 pascalfrancis_primary_28996069 crossref_primary_10_1016_j_applthermaleng_2014_08_023 crossref_citationtrail_10_1016_j_applthermaleng_2014_08_023 elsevier_sciencedirect_doi_10_1016_j_applthermaleng_2014_08_023 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-12-05 |
PublicationDateYYYYMMDD | 2014-12-05 |
PublicationDate_xml | – month: 12 year: 2014 text: 2014-12-05 day: 05 |
PublicationDecade | 2010 |
PublicationPlace | Kidlington |
PublicationPlace_xml | – name: Kidlington |
PublicationTitle | Applied thermal engineering |
PublicationYear | 2014 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Klemeš, Varbanov (bib1) 2012; 43 Oravec (bib20) 2014 Kothare, Balakrishnan, Morari (bib11) 1996; 32 Morrison, Atkins, Walmsle (bib2) 2012; 29 Vasičkaninová, Bakošová, Mészáros, Klemeš (bib7) 2011; 31 Bakošová, Oravec (bib15) 2013; 35 Wang, Gao, Sun, Xiao (bib10) 2013; 50 Bakošová, Oravec (bib14) 2014 Arbaoui, Vernières-Hassimi, Seguin, Abdelghani-Idrissi (bib3) 2007; 27 Bakošová, Oravec (bib12) 2011; 25 MathWorks Documentation Center (bib18) 2014 Aggelongiannaki, Sarimveis, Koubogiannis (bib6) 2007; 27 Mikleš, Fikar (bib4) 2007 Czeczot, Laszczyk, Metzger (bib9) 2010; 30 Löfberg (bib19) 2004 Keshavarz, Yazdi, Jahed-Motlagh (bib5) 2010; 30 Bakošová, Oravec (bib13) 2012; 29 Choi, Lee, Kim (bib8) 2011; 31 Ingham, Dunn, Heinzle, Přenosil, Snape (bib17) 2007 Sturm (bib16) 1999; 11 Oravec (10.1016/j.applthermaleng.2014.08.023_bib20) 2014 Klemeš (10.1016/j.applthermaleng.2014.08.023_bib1) 2012; 43 Arbaoui (10.1016/j.applthermaleng.2014.08.023_bib3) 2007; 27 Czeczot (10.1016/j.applthermaleng.2014.08.023_bib9) 2010; 30 Löfberg (10.1016/j.applthermaleng.2014.08.023_bib19) 2004 Aggelongiannaki (10.1016/j.applthermaleng.2014.08.023_bib6) 2007; 27 Wang (10.1016/j.applthermaleng.2014.08.023_bib10) 2013; 50 Bakošová (10.1016/j.applthermaleng.2014.08.023_bib15) 2013; 35 Sturm (10.1016/j.applthermaleng.2014.08.023_bib16) 1999; 11 Bakošová (10.1016/j.applthermaleng.2014.08.023_bib13) 2012; 29 Bakošová (10.1016/j.applthermaleng.2014.08.023_bib12) 2011; 25 Keshavarz (10.1016/j.applthermaleng.2014.08.023_bib5) 2010; 30 Vasičkaninová (10.1016/j.applthermaleng.2014.08.023_bib7) 2011; 31 Kothare (10.1016/j.applthermaleng.2014.08.023_bib11) 1996; 32 Ingham (10.1016/j.applthermaleng.2014.08.023_bib17) 2007 Choi (10.1016/j.applthermaleng.2014.08.023_bib8) 2011; 31 Morrison (10.1016/j.applthermaleng.2014.08.023_bib2) 2012; 29 MathWorks Documentation Center (10.1016/j.applthermaleng.2014.08.023_bib18) Bakošová (10.1016/j.applthermaleng.2014.08.023_bib14) 2014 Mikleš (10.1016/j.applthermaleng.2014.08.023_bib4) 2007 |
References_xml | – volume: 31 start-page: 2094 year: 2011 end-page: 2100 ident: bib7 article-title: Neural network predictive control of a heat exchanger publication-title: Appl. Therm. Eng. – year: 2014 ident: bib18 – volume: 25 start-page: 99 year: 2011 end-page: 104 ident: bib12 article-title: Comparison of robust and optimal approach to stabilization of CSTRs publication-title: Chem. Eng. Trans. – volume: 27 start-page: 2332 year: 2007 end-page: 2338 ident: bib3 article-title: Counter-current tubular heat exchanger: modeling and adaptive predictive functional control publication-title: Appl. Therm. Eng. – start-page: 5242 year: 2014 end-page: 5247 ident: bib14 article-title: Robust model predictive control of a laboratory two–tank system publication-title: Proc. Of the American Control Conference – volume: 50 start-page: 614 year: 2013 end-page: 628 ident: bib10 article-title: An online adaptive optimal control strategy for complex building chilled water systems involving intermediate heat exchangers publication-title: Appl. Therm. Eng. – volume: 29 start-page: 295 year: 2012 end-page: 300 ident: bib2 article-title: Ensuring cost-effective heat exchanger network design for non-continuous processes publication-title: Chem. Eng. Trans. – volume: 30 start-page: 879 year: 2010 end-page: 891 ident: bib9 article-title: Local balance-based adaptive control in the heat distribution system – practical validation publication-title: Appl. Therm. Eng. – volume: 31 start-page: 2332 year: 2011 end-page: 2339 ident: bib8 article-title: Capacity control of a heat pump system applying a fuzzy control method publication-title: Appl. Therm. Eng. – volume: 32 start-page: 1361 year: 1996 end-page: 1379 ident: bib11 article-title: Robust constrained model predictive control using linear matrix inequalities publication-title: Automatica – volume: 43 start-page: 1 year: 2012 end-page: 6 ident: bib1 article-title: Heat integration including heat exchangers, combined heat and power, heat pumps, separation processes and process control publication-title: Appl. Therm. Eng. – volume: 30 start-page: 781 year: 2010 end-page: 791 ident: bib5 article-title: Piecewise affine modeling and control of a boiler–turbine unit publication-title: Appl. Therm. Eng. – volume: 27 start-page: 2363 year: 2007 end-page: 2369 ident: bib6 article-title: Model predictive temperature control in long ducts by means of a neural network approximation tool publication-title: Appl. Therm. Eng. – year: 2014 ident: bib20 article-title: MUP Toolbox – year: 2007 ident: bib4 article-title: Process Modelling, Identification, and Control – volume: 29 start-page: 1465 year: 2012 end-page: 1470 ident: bib13 article-title: Robust model predictive control of heat exchangers publication-title: Chem. Eng. Trans. – volume: 35 start-page: 241 year: 2013 end-page: 246 ident: bib15 article-title: Robust model predictive control of heat exchanger network publication-title: Chem. Eng. Trans. – start-page: 284 year: 2004 end-page: 289 ident: bib19 article-title: Yalmip: a toolbox for modelling and optimization in MATLAB publication-title: Proc. of the CACSD Conference – volume: 11 start-page: 625 year: 1999 end-page: 653 ident: bib16 article-title: Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones publication-title: Optim. Methods Softw. – year: 2007 ident: bib17 article-title: Chemical Engineering Dynamics: An Introduction to Modelling and Computer Simulation – volume: 31 start-page: 2094 year: 2011 ident: 10.1016/j.applthermaleng.2014.08.023_bib7 article-title: Neural network predictive control of a heat exchanger publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2011.01.026 – volume: 29 start-page: 1465 year: 2012 ident: 10.1016/j.applthermaleng.2014.08.023_bib13 article-title: Robust model predictive control of heat exchangers publication-title: Chem. Eng. Trans. – volume: 31 start-page: 2332 year: 2011 ident: 10.1016/j.applthermaleng.2014.08.023_bib8 article-title: Capacity control of a heat pump system applying a fuzzy control method publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2011.03.032 – year: 2007 ident: 10.1016/j.applthermaleng.2014.08.023_bib17 – volume: 11 start-page: 625 year: 1999 ident: 10.1016/j.applthermaleng.2014.08.023_bib16 article-title: Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones publication-title: Optim. Methods Softw. doi: 10.1080/10556789908805766 – start-page: 284 year: 2004 ident: 10.1016/j.applthermaleng.2014.08.023_bib19 article-title: Yalmip: a toolbox for modelling and optimization in MATLAB – volume: 27 start-page: 2332 year: 2007 ident: 10.1016/j.applthermaleng.2014.08.023_bib3 article-title: Counter-current tubular heat exchanger: modeling and adaptive predictive functional control publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2006.12.027 – volume: 27 start-page: 2363 year: 2007 ident: 10.1016/j.applthermaleng.2014.08.023_bib6 article-title: Model predictive temperature control in long ducts by means of a neural network approximation tool publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2007.03.005 – volume: 30 start-page: 879 year: 2010 ident: 10.1016/j.applthermaleng.2014.08.023_bib9 article-title: Local balance-based adaptive control in the heat distribution system – practical validation publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2009.12.021 – start-page: 5242 year: 2014 ident: 10.1016/j.applthermaleng.2014.08.023_bib14 article-title: Robust model predictive control of a laboratory two–tank system – year: 2007 ident: 10.1016/j.applthermaleng.2014.08.023_bib4 – volume: 32 start-page: 1361 year: 1996 ident: 10.1016/j.applthermaleng.2014.08.023_bib11 article-title: Robust constrained model predictive control using linear matrix inequalities publication-title: Automatica doi: 10.1016/0005-1098(96)00063-5 – ident: 10.1016/j.applthermaleng.2014.08.023_bib18 – volume: 50 start-page: 614 year: 2013 ident: 10.1016/j.applthermaleng.2014.08.023_bib10 article-title: An online adaptive optimal control strategy for complex building chilled water systems involving intermediate heat exchangers publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2012.06.010 – volume: 29 start-page: 295 year: 2012 ident: 10.1016/j.applthermaleng.2014.08.023_bib2 article-title: Ensuring cost-effective heat exchanger network design for non-continuous processes publication-title: Chem. Eng. Trans. – volume: 25 start-page: 99 year: 2011 ident: 10.1016/j.applthermaleng.2014.08.023_bib12 article-title: Comparison of robust and optimal approach to stabilization of CSTRs publication-title: Chem. Eng. Trans. – volume: 43 start-page: 1 year: 2012 ident: 10.1016/j.applthermaleng.2014.08.023_bib1 article-title: Heat integration including heat exchangers, combined heat and power, heat pumps, separation processes and process control publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2012.03.044 – volume: 30 start-page: 781 year: 2010 ident: 10.1016/j.applthermaleng.2014.08.023_bib5 article-title: Piecewise affine modeling and control of a boiler–turbine unit publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2009.11.009 – volume: 35 start-page: 241 year: 2013 ident: 10.1016/j.applthermaleng.2014.08.023_bib15 article-title: Robust model predictive control of heat exchanger network publication-title: Chem. Eng. Trans. – year: 2014 ident: 10.1016/j.applthermaleng.2014.08.023_bib20 |
SSID | ssj0012874 |
Score | 2.347866 |
Snippet | Optimal operation of heat exchangers represents a challenging task from the control viewpoint, due to the presence of system nonlinearities, varying process... |
SourceID | proquest pascalfrancis crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 924 |
SubjectTerms | Applied sciences Consumption Control systems Devices using thermal energy Energy Energy saving Energy. Thermal use of fuels Exact sciences and technology Heat exchanger Heat exchangers Heat exchangers (included heat transformers, condensers, cooling towers) Heat transfer Linear matrix inequalities Mathematical models Matlab Networks Optimization Predictive control Robust model-based predictive control Theoretical studies. Data and constants. Metering Uncertain system |
Title | Robust model predictive control for heat exchanger network |
URI | https://dx.doi.org/10.1016/j.applthermaleng.2014.08.023 https://www.proquest.com/docview/1669881966 |
Volume | 73 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dSxwxEB9EQVpE1LZ4ao8UfN3e5fKxG30QEeWq1Ac_wLewySag6N7h3YFP_u3O7MfZoxSEPm7YfDBJZuZHfjMDsF9IdLJT2U9cljkEKE4nmYw-0S51IQYxSBUFCv--1MNbeX6n7pbgpI2FIVplo_trnV5p66al10izN76_711zoQyaP5yL4hyqMGopUzrlP1_nNA9O-dwr0KVMQn-vwv47x4seicnPesqpbAkRvWSV0HMg_mWm1sb5BIUX66oXfynwyiqdbcB6406y43rFm7AUyi34_EeSwS9wcDVys8mUVTVv2PiZXmZIx7GGpc7QbWWkkll4acKAWVmTw7_C7dnpzckwaSomJF4YMUUcGLyMmQkcYU3kfSEj4hmXFZpSezlR8DRyL7WLhceLHr1z2Kik9EaZGKX4BsvlqAzbwFLuM-mKWLjcSI3D5wikXT93iqfkBHXgsBWQ9U06capq8Whb3tiDXRSvJfFaKno5EB1Q897jOq3GB_sdtXthF46JRQvwwRG6C1s4n56QJ6I504Ef7Z5avGr0fpKXYTSbWK61ydCD0nrnv5exC5_oqyLGqD1Ynj7Pwnd0b6auW53fLqwc_7oYXr4B-7D9zA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swED9KCtvKKPuk2bpOg7yaxNGHrfZhlLKSrk0ethT6JixZgo7WCU0C-_N3Z8tZQxkE9iojyZyku_txv7sD6JUCnexMDBKb5xYBilVJLoJLlM2sD54PM0mJwuOJGl2L7zfyZgfO2lwYolVG3d_o9Fpbx5F-lGZ_fnvb_5lyqdH84V6U50Bp1LtUnUp2YPf04nI0WQcTqKR7jbukTmjCM-j9pXlRnJhcrfuCOpcQ10vUNT2H_F-W6uW8WKD8QtP44okOrw3T-SvYjx4lO21--jXs-OoN7D2qM_gWjn_M7GqxZHXbGzZ_oOAMqTkWieoMPVdGWpn53zETmFUNP_wdXJ9_m56Nktg0IXFc8yVCQe9EyLVPEdmEdMBFQEhj81JRdS_LyzQLqRPKhtLhWw_OWhyUQjgtdQiCv4dONav8AbAsdbmwZShtoYXC5QvE0nZQWJlm5Ad14aQVkHGxojg1trgzLXXsl9kUryHxGup7OeRdkOvZ86ayxpbzvrZnYTZuikEjsOUKRxtHuN6ewCcCOt2FL-2ZGnxtFEIpKj9bLUyqlM7RiVLqw3__xmd4PpqOr8zVxeTyI7ygLzVPRh5CZ_mw8p_Q21nao3ib_wCgyQCM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+model+predictive+control+for+heat+exchanger+network&rft.jtitle=Applied+thermal+engineering&rft.au=Bako%C5%A1ov%C3%A1%2C+Monika&rft.au=Oravec%2C+Juraj&rft.date=2014-12-05&rft.pub=Elsevier+Ltd&rft.issn=1359-4311&rft.volume=73&rft.issue=1&rft.spage=924&rft.epage=930&rft_id=info:doi/10.1016%2Fj.applthermaleng.2014.08.023&rft.externalDocID=S1359431114006851 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-4311&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-4311&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-4311&client=summon |