Analytical and experimental investigations of the pulsed air–water jet
This paper describes a new way of generating pulsed air–water jet by entraining and mixing air into the cavity of a pulsed water jet nozzle. Based on the theory of hydro-acoustics and fluid dynamics, a theoretical model which describes the frequency characteristic of the pulsed air–water jet is outl...
Saved in:
Published in | Journal of fluids and structures Vol. 54; pp. 88 - 102 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.04.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper describes a new way of generating pulsed air–water jet by entraining and mixing air into the cavity of a pulsed water jet nozzle. Based on the theory of hydro-acoustics and fluid dynamics, a theoretical model which describes the frequency characteristic of the pulsed air–water jet is outlined aimed at gaining a better understanding of this nozzle for generating pulses. The calculated result indicates that as the air hold-up increases, the jet oscillation frequency has an abrupt decrease firstly, and then reaches a minimum gradually at α (air hold-up)=0.5, finally it gets increased slightly. Furthermore, a vibration test was conducted to validate the present theoretical result. By this way, the jet oscillation frequency can be obtained by analyzing the vibration acceleration of the equal strength beam affected by the jet impinging. Thereby, it is found that the experimental result shows similar trend with the prediction of the present model. Also, the relationship between vibration acceleration and cavity length for the pulsed water jet follows a similar tendency in accord with the pulsed air–water jet, i.e. there exists a maximum for each curve and the maximum occurs at the ratio of L/d1 (the ratio of cavity length and upstream nozzle diameter) =2.5 and 2.2, respectively. In addition, experimental results on specimens impinged by the pulsed water jet and pulsed air–water jet show that the erosion depth increases slightly with air addition within a certain range of cavity length. Further, this behavior is very close to the vibration test results. As for erosion volume, the air entrained into the cavity significantly affects the material removal rate. |
---|---|
AbstractList | This paper describes a new way of generating pulsed air–water jet by entraining and mixing air into the cavity of a pulsed water jet nozzle. Based on the theory of hydro-acoustics and fluid dynamics, a theoretical model which describes the frequency characteristic of the pulsed air–water jet is outlined aimed at gaining a better understanding of this nozzle for generating pulses. The calculated result indicates that as the air hold-up increases, the jet oscillation frequency has an abrupt decrease firstly, and then reaches a minimum gradually at α (air hold-up)=0.5, finally it gets increased slightly. Furthermore, a vibration test was conducted to validate the present theoretical result. By this way, the jet oscillation frequency can be obtained by analyzing the vibration acceleration of the equal strength beam affected by the jet impinging. Thereby, it is found that the experimental result shows similar trend with the prediction of the present model. Also, the relationship between vibration acceleration and cavity length for the pulsed water jet follows a similar tendency in accord with the pulsed air–water jet, i.e. there exists a maximum for each curve and the maximum occurs at the ratio of L/d1 (the ratio of cavity length and upstream nozzle diameter) =2.5 and 2.2, respectively. In addition, experimental results on specimens impinged by the pulsed water jet and pulsed air–water jet show that the erosion depth increases slightly with air addition within a certain range of cavity length. Further, this behavior is very close to the vibration test results. As for erosion volume, the air entrained into the cavity significantly affects the material removal rate. This paper describes a new way of generating pulsed air-water jet by entraining and mixing air into the cavity of a pulsed water jet nozzle. Based on the theory of hydroacoustics and fluid dynamics, a theoretical model which describes the frequency characteristic of the pulsed air-water jet is outlined aimed at gaining a better understanding of this nozzle for generating pulses. The calculated result indicates that as the air hold-up increases, the jet oscillation frequency has an abrupt decrease firstly, and then reaches a minimum gradually at alpha (air hold-up) = 0.5, finally it gets increased slightly. Furthermore, a vibration test was conducted to validate the present theoretical result. By this way, the jet oscillation frequency can be obtained by analyzing the vibration acceleration of the equal strength beam affected by the jet impinging. Thereby, it is found that the experimental result shows similar trend with the prediction of the present model. Also, the relationship between vibration acceleration and cavity length for the pulsed water jet follows a similar tendency in accord with the pulsed air-water jet, i.e. there exists a maximum for each curve and the maximum occurs at the ratio of L/d sub(1) (the ratio of cavity length and upstream nozzle diameter) = 2.5 and 2.2, respectively. In addition, experimental results on specimens impinged by the pulsed water jet and pulsed air-water jet show that the erosion depth increases slightly with air addition within a certain range of cavity length. Further, this behavior is very dose to the vibration test results. As for erosion volume, the air entrained into the cavity significantly affects the material removal rate. |
Author | Hu, Dong Kang, Yong Tang, Chuan-Lin Li, Xiao-hong |
Author_xml | – sequence: 1 givenname: Dong surname: Hu fullname: Hu, Dong email: hudong_9@126.com organization: Key Laboratory of Hubei Province for Water Jet Theory &New Technology, Wuhan University, Wuhan City 430072, Hubei Province, China – sequence: 2 givenname: Xiao-hong surname: Li fullname: Li, Xiao-hong email: Xhli@cqu.edu.cn organization: Key Laboratory of Hubei Province for Water Jet Theory &New Technology, Wuhan University, Wuhan City 430072, Hubei Province, China – sequence: 3 givenname: Chuan-Lin surname: Tang fullname: Tang, Chuan-Lin email: TCL5608@126.com organization: Modern Jetting Department, Hunan University of Technology, Zhuzhou City, Hunan Province, China – sequence: 4 givenname: Yong surname: Kang fullname: Kang, Yong email: kangyong@whu.edu.cn organization: Key Laboratory of Hubei Province for Water Jet Theory &New Technology, Wuhan University, Wuhan City 430072, Hubei Province, China |
BookMark | eNqNkMtKxDAUhoMoODP6DgU3bjrm0qQNrkS8geBG1yFNTjWlpjVJ1dn5Dr6hT2LLuHGlqwPn_8_l_5Zo1_ceEDoieE0wESftum260dmYwmhSXFNMiklZY4J30IJgyfNKULqLFriqZC7LQuyjZYwtxlgWjCzQ9ZnX3SY5o7tMe5vB-wDBPYNPU8P5V4jJPerkeh-zvsnSE2TD2EWwmXbh6-PzTScIWQvpAO01ehIOf-oKPVxe3J9f57d3VzfnZ7e5YZKlnDcYjCiqgtWkllZyai2ujWW8YJWlotS2sYWpS6a5EIJbywnVtC65KbEklq3Q8XbvEPqXcXpPPbtooOu0h36MipRTeEZYUf1tFZJQSXk5W0-3VhP6GAM0apgo6LBRBKsZtWrVL9RqRj2L87UVuthOwxT81UFQ0TjwBqwLYJKyvfvXnm-zP5MQ |
CitedBy_id | crossref_primary_10_1177_1687814017720081 crossref_primary_10_1016_j_apm_2019_10_050 crossref_primary_10_1142_S0218001418580065 crossref_primary_10_3390_app7060606 crossref_primary_10_1007_s12206_017_0219_9 crossref_primary_10_3390_app9163235 crossref_primary_10_1007_s40430_020_02717_4 crossref_primary_10_1016_j_expthermflusci_2021_110371 crossref_primary_10_1016_j_tust_2019_103179 crossref_primary_10_1007_s40996_017_0065_0 crossref_primary_10_1002_ese3_1423 crossref_primary_10_1016_j_expthermflusci_2016_11_029 crossref_primary_10_1016_j_ijheatfluidflow_2017_10_004 crossref_primary_10_1016_j_oceaneng_2018_01_019 crossref_primary_10_1016_j_ijmultiphaseflow_2020_103253 crossref_primary_10_3390_pr9081423 crossref_primary_10_1007_s40571_023_00555_4 crossref_primary_10_1016_j_powtec_2017_02_047 crossref_primary_10_1016_j_powtec_2023_119054 crossref_primary_10_1016_j_applthermaleng_2023_120198 crossref_primary_10_1155_2020_4386259 crossref_primary_10_1016_j_oceaneng_2023_114546 crossref_primary_10_1016_j_oceaneng_2023_114108 crossref_primary_10_3390_en13020367 crossref_primary_10_3901_CJME_2016_0426_060 crossref_primary_10_1177_09544062241231160 crossref_primary_10_1155_2019_1496594 crossref_primary_10_1177_09544062211058608 crossref_primary_10_1177_0954406220925837 crossref_primary_10_3390_app7090932 crossref_primary_10_3390_pr11082460 crossref_primary_10_1016_j_expthermflusci_2018_02_015 crossref_primary_10_1016_j_surfcoat_2022_128477 crossref_primary_10_1016_j_powtec_2020_08_028 crossref_primary_10_1007_s40430_023_04166_1 crossref_primary_10_1016_j_petrol_2021_109120 crossref_primary_10_1016_j_petrol_2022_110928 crossref_primary_10_1007_s12206_016_1019_3 crossref_primary_10_1186_s10033_022_00713_4 crossref_primary_10_1016_j_applthermaleng_2018_05_014 crossref_primary_10_1007_s12206_018_0820_6 crossref_primary_10_1016_j_expthermflusci_2016_07_013 crossref_primary_10_1063_5_0052853 |
Cites_doi | 10.1007/s10494-012-9393-0 10.1016/j.colsurfa.2010.01.005 10.1016/j.ijheatfluidflow.2013.01.008 10.1115/1.3448983 10.1016/j.ijrmms.2013.08.013 10.1023/A:1004782716707 10.1016/j.jfluidstructs.2005.07.012 10.1016/j.apm.2006.10.010 10.1016/0045-7930(75)90018-3 10.1080/01457630802053876 10.1016/S0045-7930(99)00014-6 10.1016/j.ultsonch.2004.01.008 10.1016/j.ast.2010.09.011 10.1063/1.3587069 10.1016/j.cemconres.2011.04.005 10.1016/S0894-1777(02)00269-8 |
ContentType | Journal Article |
Copyright | 2014 Elsevier Ltd |
Copyright_xml | – notice: 2014 Elsevier Ltd |
DBID | AAYXX CITATION 7UA C1K F1W H96 L.G 7TB 8FD FR3 KR7 |
DOI | 10.1016/j.jfluidstructs.2014.10.010 |
DatabaseName | CrossRef Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1095-8622 |
EndPage | 102 |
ExternalDocumentID | 10_1016_j_jfluidstructs_2014_10_010 S0889974614002254 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29K 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADFGL ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AI. AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CAG COF CS3 D-I DM4 DU5 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LG5 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SES SET SEW SPC SPCBC SPD SST SSZ T5K TN5 VH1 WUQ XPP ZMT ~A~ ~G- AAXKI AAYXX AFJKZ AKRWK CITATION 7UA C1K F1W H96 L.G 7TB 8FD FR3 KR7 |
ID | FETCH-LOGICAL-c393t-5f0ec64843b1b9d952dd0bcd35438d267adfd4cb73a56665dd512a2b75c7091d3 |
IEDL.DBID | AIKHN |
ISSN | 0889-9746 |
IngestDate | Fri Oct 25 07:00:33 EDT 2024 Fri Oct 25 23:29:32 EDT 2024 Thu Sep 26 19:53:09 EDT 2024 Fri Feb 23 02:35:24 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Frequency Erosion experiment Pulsed air–water jet Vibration analysis |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c393t-5f0ec64843b1b9d952dd0bcd35438d267adfd4cb73a56665dd512a2b75c7091d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1691292578 |
PQPubID | 23462 |
PageCount | 15 |
ParticipantIDs | proquest_miscellaneous_1701031348 proquest_miscellaneous_1691292578 crossref_primary_10_1016_j_jfluidstructs_2014_10_010 elsevier_sciencedirect_doi_10_1016_j_jfluidstructs_2014_10_010 |
PublicationCentury | 2000 |
PublicationDate | April 2015 2015-04-00 20150401 |
PublicationDateYYYYMMDD | 2015-04-01 |
PublicationDate_xml | – month: 04 year: 2015 text: April 2015 |
PublicationDecade | 2010 |
PublicationTitle | Journal of fluids and structures |
PublicationYear | 2015 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Lee, Lanspeary, Nathan, Kelso, Mi (bib15) 2003; 27 Chuanlin, T., Xiaoting, H., Shuo, S., 2013. Improving the dynamic characteristics of self-excited oscillation pulsed jet by introducing gas. In: Proceedings of 10th Pacific Rim International Conference on Water Jet Technology, Korea, pp. 261–267. Momber (bib17) 2000; 35 Yanzhong, Cui, Erfeng, Yuanyuan (bib23) 2011; 15 Seto, Yamamoto, Takayama, Nakagawa, Tominaga (bib20) 2011; 82 Yahiro, T., Yoshida, H., 1977. High-velocity get digging method. US patent, 4047580. Jinying, Kee, Han, Tsai (bib11) 2011; 41 Gumkowski (bib9) 2008; 29 Mi, Nathan, Wong (bib18) 2006; 22 Kolle, J.J., 2002. Coiled tubing drilling with supercritical carbon dioxide. US patent, 6347675. Kolsek, Jelic, Duhovnik (bib13) 2007; 31 Vijay, M. M., Foldyna, J., Remisz, J., 1993. Ultrasonic modulation of high-speed water jets. In: Proceeding of International Conference on Geomechanics, Netherlands, pp. 327–332. Grinspan, Gnanamoorthy (bib10) 2010; 356 Morel (bib16) 1979; 101 Eddingfield, D.L., Albrecht, M., 1979. Effect of an Air-Injected Shroud on the Breakup Length of a High-Velocity Water Jet. ASTM Paper no. STP35812S. Kuczynski (bib14) 2013; 40 Foldyna, Sitek, Svehla, Svehla (bib6) 2004; 11 Chuanlin, Dong, Fenghua (bib1) 2011; 317–319 Glenn (bib7) 1975; 3 Gumkowski (bib8) 2003; 24 Dehkhoda, Hood (bib4) 2013; 63 Dehkhoda, Hood, Alehossein, Buttsworth (bib3) 2012; 89 Schreck, Schaefer (bib19) 2000; 29 Yanzhong (10.1016/j.jfluidstructs.2014.10.010_bib23) 2011; 15 Lee (10.1016/j.jfluidstructs.2014.10.010_bib15) 2003; 27 Gumkowski (10.1016/j.jfluidstructs.2014.10.010_bib8) 2003; 24 Seto (10.1016/j.jfluidstructs.2014.10.010_bib20) 2011; 82 Dehkhoda (10.1016/j.jfluidstructs.2014.10.010_bib3) 2012; 89 Grinspan (10.1016/j.jfluidstructs.2014.10.010_bib10) 2010; 356 10.1016/j.jfluidstructs.2014.10.010_bib2 Foldyna (10.1016/j.jfluidstructs.2014.10.010_bib6) 2004; 11 Morel (10.1016/j.jfluidstructs.2014.10.010_bib16) 1979; 101 Kolsek (10.1016/j.jfluidstructs.2014.10.010_bib13) 2007; 31 10.1016/j.jfluidstructs.2014.10.010_bib5 Momber (10.1016/j.jfluidstructs.2014.10.010_bib17) 2000; 35 Schreck (10.1016/j.jfluidstructs.2014.10.010_bib19) 2000; 29 Chuanlin (10.1016/j.jfluidstructs.2014.10.010_bib1) 2011; 317–319 Mi (10.1016/j.jfluidstructs.2014.10.010_bib18) 2006; 22 Kuczynski (10.1016/j.jfluidstructs.2014.10.010_bib14) 2013; 40 Dehkhoda (10.1016/j.jfluidstructs.2014.10.010_bib4) 2013; 63 Jinying (10.1016/j.jfluidstructs.2014.10.010_bib11) 2011; 41 10.1016/j.jfluidstructs.2014.10.010_bib12 10.1016/j.jfluidstructs.2014.10.010_bib22 Glenn (10.1016/j.jfluidstructs.2014.10.010_bib7) 1975; 3 Gumkowski (10.1016/j.jfluidstructs.2014.10.010_bib9) 2008; 29 10.1016/j.jfluidstructs.2014.10.010_bib21 |
References_xml | – volume: 29 start-page: 816 year: 2008 end-page: 821 ident: bib9 article-title: Modeling and experimental investigation of the hydraulic jump in liquid film formed by an impinging two-phase air–water jet publication-title: Heat Transfer Engineering contributor: fullname: Gumkowski – volume: 356 start-page: 162 year: 2010 end-page: 168 ident: bib10 article-title: Impact force of low velocity liquid droplets measured using piezoelectric PVDF film publication-title: Colloids and Surfaces A contributor: fullname: Gnanamoorthy – volume: 101 start-page: 383 year: 1979 end-page: 390 ident: bib16 article-title: Experimental study of a jet-driven helmholtz oscillator publication-title: ASME Journal of Fluids Engineering contributor: fullname: Morel – volume: 24 start-page: 183 year: 2003 end-page: 191 ident: bib8 article-title: Investigations of hydraulic jump configured by a two-phase air–water jet impinging on a flat plate publication-title: Inzynieria Chemiczna I Procesowa contributor: fullname: Gumkowski – volume: 89 start-page: 97 year: 2012 end-page: 119 ident: bib3 article-title: Analytical and experimental study of pressure dynamics in a pulsed water jet device publication-title: Flow, Turbulence and Combustion contributor: fullname: Buttsworth – volume: 41 start-page: 872 year: 2011 end-page: 881 ident: bib11 article-title: Effects of air voids on ultrasonic wave propagation in early age cement pastes publication-title: Cement and Concrete Research contributor: fullname: Tsai – volume: 63 start-page: 138 year: 2013 end-page: 147 ident: bib4 article-title: An experimental study of surface and sub-surface damage in pulsed water-jet breakage of rocks publication-title: International Journal of Rock Mechanics and Mining Sciences contributor: fullname: Hood – volume: 35 start-page: 2785 year: 2000 end-page: 2789 ident: bib17 article-title: Concrete failure due to air–water jet impingement publication-title: Journal of Materials Science contributor: fullname: Momber – volume: 15 start-page: 453 year: 2011 end-page: 464 ident: bib23 article-title: Pressure wave propagation characteristics in a two-phase flow pipeline for liquid-propellant rocket publication-title: Aerospace Science and Technology contributor: fullname: Yuanyuan – volume: 82 start-page: 1 year: 2011 end-page: 9 ident: bib20 article-title: Characteristics of an actuator-driven pulsed water jet generator to dissecting soft tissue publication-title: Review of Scientific Instruments contributor: fullname: Tominaga – volume: 29 start-page: 583 year: 2000 end-page: 593 ident: bib19 article-title: Numerical study or bifurcation in three-dimensional sudden channel expansions publication-title: Computers & Fluids contributor: fullname: Schaefer – volume: 317–319 start-page: 1456 year: 2011 end-page: 1461 ident: bib1 article-title: Study on the frequency characteristic of self-excited oscillation pulsed water jet publication-title: Advanced Materials Research contributor: fullname: Fenghua – volume: 11 start-page: 131 year: 2004 end-page: 137 ident: bib6 article-title: Utilization of ultrasound to enhance high-speed water jet effects publication-title: Ultrasonics Sonochemistry contributor: fullname: Svehla – volume: 3 start-page: 197 year: 1975 end-page: 215 ident: bib7 article-title: The mechanics of the impulsive water cannon publication-title: Computers & Fluids contributor: fullname: Glenn – volume: 31 start-page: 2355 year: 2007 end-page: 2373 ident: bib13 article-title: Numerical study of flow asymmetry and self-sustained jet oscillations in geometrically symmetric cavities publication-title: Applied Mathematical Modelling contributor: fullname: Duhovnik – volume: 40 start-page: 135 year: 2013 end-page: 150 ident: bib14 article-title: Characterization of pressure-wave propagation during the condensation of R404A and R134a refrigerants in pipe mini-channels that undergo periodic hydrodynamic disturbances publication-title: International Journal of Heat and Fluid Flow contributor: fullname: Kuczynski – volume: 27 start-page: 553 year: 2003 end-page: 561 ident: bib15 article-title: Low kinetic-energy loss oscillating-triangular-jet nozzles publication-title: Experimental Thermal and Fluid Science contributor: fullname: Mi – volume: 22 start-page: 129 year: 2006 end-page: 133 ident: bib18 article-title: The influence of inlet flow condition on the frequency of self-excited jet precession publication-title: Journal of Fluids and Structures contributor: fullname: Wong – volume: 89 start-page: 97 issue: 1 year: 2012 ident: 10.1016/j.jfluidstructs.2014.10.010_bib3 article-title: Analytical and experimental study of pressure dynamics in a pulsed water jet device publication-title: Flow, Turbulence and Combustion doi: 10.1007/s10494-012-9393-0 contributor: fullname: Dehkhoda – volume: 356 start-page: 162 issue: 1–3 year: 2010 ident: 10.1016/j.jfluidstructs.2014.10.010_bib10 article-title: Impact force of low velocity liquid droplets measured using piezoelectric PVDF film publication-title: Colloids and Surfaces A doi: 10.1016/j.colsurfa.2010.01.005 contributor: fullname: Grinspan – ident: 10.1016/j.jfluidstructs.2014.10.010_bib21 – ident: 10.1016/j.jfluidstructs.2014.10.010_bib22 – volume: 40 start-page: 135 issue: 4 year: 2013 ident: 10.1016/j.jfluidstructs.2014.10.010_bib14 article-title: Characterization of pressure-wave propagation during the condensation of R404A and R134a refrigerants in pipe mini-channels that undergo periodic hydrodynamic disturbances publication-title: International Journal of Heat and Fluid Flow doi: 10.1016/j.ijheatfluidflow.2013.01.008 contributor: fullname: Kuczynski – ident: 10.1016/j.jfluidstructs.2014.10.010_bib5 – ident: 10.1016/j.jfluidstructs.2014.10.010_bib2 – volume: 101 start-page: 383 issue: 4 year: 1979 ident: 10.1016/j.jfluidstructs.2014.10.010_bib16 article-title: Experimental study of a jet-driven helmholtz oscillator publication-title: ASME Journal of Fluids Engineering doi: 10.1115/1.3448983 contributor: fullname: Morel – volume: 63 start-page: 138 issue: 9 year: 2013 ident: 10.1016/j.jfluidstructs.2014.10.010_bib4 article-title: An experimental study of surface and sub-surface damage in pulsed water-jet breakage of rocks publication-title: International Journal of Rock Mechanics and Mining Sciences doi: 10.1016/j.ijrmms.2013.08.013 contributor: fullname: Dehkhoda – volume: 35 start-page: 2785 issue: 11 year: 2000 ident: 10.1016/j.jfluidstructs.2014.10.010_bib17 article-title: Concrete failure due to air–water jet impingement publication-title: Journal of Materials Science doi: 10.1023/A:1004782716707 contributor: fullname: Momber – volume: 22 start-page: 129 issue: 1 year: 2006 ident: 10.1016/j.jfluidstructs.2014.10.010_bib18 article-title: The influence of inlet flow condition on the frequency of self-excited jet precession publication-title: Journal of Fluids and Structures doi: 10.1016/j.jfluidstructs.2005.07.012 contributor: fullname: Mi – volume: 31 start-page: 2355 issue: 10 year: 2007 ident: 10.1016/j.jfluidstructs.2014.10.010_bib13 article-title: Numerical study of flow asymmetry and self-sustained jet oscillations in geometrically symmetric cavities publication-title: Applied Mathematical Modelling doi: 10.1016/j.apm.2006.10.010 contributor: fullname: Kolsek – volume: 3 start-page: 197 issue: 2–3 year: 1975 ident: 10.1016/j.jfluidstructs.2014.10.010_bib7 article-title: The mechanics of the impulsive water cannon publication-title: Computers & Fluids doi: 10.1016/0045-7930(75)90018-3 contributor: fullname: Glenn – ident: 10.1016/j.jfluidstructs.2014.10.010_bib12 – volume: 29 start-page: 816 issue: 9 year: 2008 ident: 10.1016/j.jfluidstructs.2014.10.010_bib9 article-title: Modeling and experimental investigation of the hydraulic jump in liquid film formed by an impinging two-phase air–water jet publication-title: Heat Transfer Engineering doi: 10.1080/01457630802053876 contributor: fullname: Gumkowski – volume: 29 start-page: 583 issue: 5 year: 2000 ident: 10.1016/j.jfluidstructs.2014.10.010_bib19 article-title: Numerical study or bifurcation in three-dimensional sudden channel expansions publication-title: Computers & Fluids doi: 10.1016/S0045-7930(99)00014-6 contributor: fullname: Schreck – volume: 11 start-page: 131 issue: 1 year: 2004 ident: 10.1016/j.jfluidstructs.2014.10.010_bib6 article-title: Utilization of ultrasound to enhance high-speed water jet effects publication-title: Ultrasonics Sonochemistry doi: 10.1016/j.ultsonch.2004.01.008 contributor: fullname: Foldyna – volume: 15 start-page: 453 issue: 6 year: 2011 ident: 10.1016/j.jfluidstructs.2014.10.010_bib23 article-title: Pressure wave propagation characteristics in a two-phase flow pipeline for liquid-propellant rocket publication-title: Aerospace Science and Technology doi: 10.1016/j.ast.2010.09.011 contributor: fullname: Yanzhong – volume: 317–319 start-page: 1456 issue: 8 year: 2011 ident: 10.1016/j.jfluidstructs.2014.10.010_bib1 article-title: Study on the frequency characteristic of self-excited oscillation pulsed water jet publication-title: Advanced Materials Research contributor: fullname: Chuanlin – volume: 82 start-page: 1 issue: 5 year: 2011 ident: 10.1016/j.jfluidstructs.2014.10.010_bib20 article-title: Characteristics of an actuator-driven pulsed water jet generator to dissecting soft tissue publication-title: Review of Scientific Instruments doi: 10.1063/1.3587069 contributor: fullname: Seto – volume: 24 start-page: 183 issue: 2 year: 2003 ident: 10.1016/j.jfluidstructs.2014.10.010_bib8 article-title: Investigations of hydraulic jump configured by a two-phase air–water jet impinging on a flat plate publication-title: Inzynieria Chemiczna I Procesowa contributor: fullname: Gumkowski – volume: 41 start-page: 872 issue: 8 year: 2011 ident: 10.1016/j.jfluidstructs.2014.10.010_bib11 article-title: Effects of air voids on ultrasonic wave propagation in early age cement pastes publication-title: Cement and Concrete Research doi: 10.1016/j.cemconres.2011.04.005 contributor: fullname: Jinying – volume: 27 start-page: 553 issue: 5 year: 2003 ident: 10.1016/j.jfluidstructs.2014.10.010_bib15 article-title: Low kinetic-energy loss oscillating-triangular-jet nozzles publication-title: Experimental Thermal and Fluid Science doi: 10.1016/S0894-1777(02)00269-8 contributor: fullname: Lee |
SSID | ssj0009431 |
Score | 2.3522108 |
Snippet | This paper describes a new way of generating pulsed air–water jet by entraining and mixing air into the cavity of a pulsed water jet nozzle. Based on the... This paper describes a new way of generating pulsed air-water jet by entraining and mixing air into the cavity of a pulsed water jet nozzle. Based on the... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Publisher |
StartPage | 88 |
SubjectTerms | Acceleration Computational fluid dynamics Erosion experiment Frequency Holes Mathematical models Nozzles Oscillations Pulsed air–water jet Vibration Vibration analysis Vibration tests |
Title | Analytical and experimental investigations of the pulsed air–water jet |
URI | https://dx.doi.org/10.1016/j.jfluidstructs.2014.10.010 https://search.proquest.com/docview/1691292578 https://search.proquest.com/docview/1701031348 |
Volume | 54 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LSsQwFL3oCKIL8YlvIrqtM20enW4EEWVUdKOCu5LkptBBOoPO4E78B__QL_GmD0ZFRHDZNm3DTXruaXtyLsABZkbxkBtibqgDYWPCQelUIE2mrAs7VpVlOq-uVe9OXNzL-yk4adbCeFlljf0VppdoXe9p19FsD_O8feMFOsSGKb_4RCTFNMxQOoq6LZg5Pr_sXU-8d0VVltALevwJs7A_kXn1s4dxjpVZq7fvDsWhV3v5FbU_J6pvkF3mobNFWKgJJDuu-rgEU65YhvlPtoIr0CudRsqP1EwXyD67-LN8YqxBE44NMkYUkA3HdGdkOn98f317Jv75yPputAp3Z6e3J72grpgQWJ7wUSCzjrNKdAU3oUkwkRFix1jkUvAuRirWmKGwJuaaaJySiJTvdWRiaWMiDsjXoFUMCrcOTHtyEHICyxAFV2hCp5MkS-h9JHNG2Q0QTXjSYWWMkTaKsX76Jaqpj6o_SFHdgKMmlOmXcU4Jwv92gb1mAFJ6EvzvDV24wfgp9bY_UeIh6Jc2cVnXgovu5n87sgVztCUrFc82tKiF2yGCMjK7MH34Eu7W0_AD-Mnp0A |
link.rule.ids | 315,783,787,4509,24128,27936,27937,45597,45691 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LTtwwFL2ig9SWBYJSBOVl1G7TmYwfmWyQRggUXrMpSOws29eRMkKZEZ0RW_6BP-RLep2HBlCFKnUb52Fd2-eeJMfnAvzA3Coec0vMDU0kXEI4KL2KpM2V83HPqapM59VIZTfi_FbeLsFxuxcmyCob7K8xvULr5ki3iWZ3WhTdX0GgQ2yY8ktIRFJ8gGViAymtzuXh2UU2WnjvirosYRD0hAs-wveFzGuc380LrM1ag313LH4GtVfYUfv3RPUGsqs8dLoGqw2BZMO6j-uw5MsvsPLCVnADsspppPpIzUyJ7KWLPysWxho04dgkZ0QB2XROT0Zmivvnx6cH4p_3bOxnX-Hm9OT6OIuaigmR4ymfRTLveafEQHAb2xRT2UfsWYdcCj7AvkoM5iicTbghGqckIuV707eJdAkRB-Sb0Cknpd8CZgI5iDmBZYyCK7SxN2map_Q-knur3DaINjx6Whtj6FYxNtavoqpDVEMjRXUbjtpQ6lfjrAnC_-0Gh-0AaFoJ4feGKf1k_lsH259-GiDonXOSqq4FF4Nv_9uRA_iUXV9d6suz0cUOfKYWWSt6dqFDZ_s9Iiszu99Mxj-hxuvE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analytical+and+experimental+investigations+of+the+pulsed+air%E2%80%93water+jet&rft.jtitle=Journal+of+fluids+and+structures&rft.au=Hu%2C+Dong&rft.au=Li%2C+Xiao-hong&rft.au=Tang%2C+Chuan-Lin&rft.au=Kang%2C+Yong&rft.date=2015-04-01&rft.pub=Elsevier+Ltd&rft.issn=0889-9746&rft.eissn=1095-8622&rft.volume=54&rft.spage=88&rft.epage=102&rft_id=info:doi/10.1016%2Fj.jfluidstructs.2014.10.010&rft.externalDocID=S0889974614002254 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0889-9746&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0889-9746&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0889-9746&client=summon |