Relating soil C and organic matter fractions to soil structural stability
Soil organic matter (SOM) is important for maintaining soil structural stability (SSS). This study quantified the influence of soil organic carbon (SOC) and different organic matter components on various SSS measures. We used a silt loam soil with a wide range of SOC (8.0–42.7 g kg−1 minerals) sampl...
Saved in:
Published in | Geoderma Vol. 337; pp. 834 - 843 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.03.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Soil organic matter (SOM) is important for maintaining soil structural stability (SSS). This study quantified the influence of soil organic carbon (SOC) and different organic matter components on various SSS measures. We used a silt loam soil with a wide range of SOC (8.0–42.7 g kg−1 minerals) sampled in spring 2015 from the Highfield Ley-Arable Long-Term Experiment at Rothamsted Research. Four treatments were sampled: Bare fallow, continuous arable rotation, ley-arable rotation, and grass. Soils were tested for clay dispersibility (DispClay), clay-SOM disintegration (DI, the ratio between clay content without and with SOM removal) and dispersion of particles <20 μm. The SSS tests were related to SOC, permanganate oxidizable carbon (POXC), hot water-extractable carbon (HWC), mid-infrared photoacoustic spectroscopy (FTIR-PAS) and mineral fines/SOC ratio. SSS increased with increasing content of SOM components. The relationships between SOM components and SSS followed a broken-stick regression with a change point at ~23.0 g SOC kg−1 minerals (clay/SOC~10) coinciding with a change from the tilled treatments to the grass treatment. We found a greater influence of SOC, POXC and HWC on SSS at contents below the change point than above. A stronger linear relation between POXC and DispClay compared to SOC and HWC suggests that POXC was a better predictor of the variation in DispClay. POXC and HWC were less related to DI than SOC. The grass treatment had a very stable structure, shown in all SSS tests, probably due to the absence of tillage and large annual inputs of stabilizing agents. This suggests that a change in management from arable rotation to permanent grass is one effective tool for improving SSS.
•Soil structural stability increased with an increase in SOM components.•The effect of increasing SOM components was greater at low contents.•The change point for soil structural stability was at a clay/SOC ratio close to 10.•Grassland soil has a very stable structure compared to tilled soil. |
---|---|
AbstractList | Soil organic matter (SOM) is important for maintaining soil structural stability (SSS). This study quantified the influence of soil organic carbon (SOC) and different organic matter components on various SSS measures. We used a silt loam soil with a wide range of SOC (8.0–42.7 g kg⁻¹ minerals) sampled in spring 2015 from the Highfield Ley-Arable Long-Term Experiment at Rothamsted Research. Four treatments were sampled: Bare fallow, continuous arable rotation, ley-arable rotation, and grass. Soils were tested for clay dispersibility (DispClay), clay-SOM disintegration (DI, the ratio between clay content without and with SOM removal) and dispersion of particles <20 μm. The SSS tests were related to SOC, permanganate oxidizable carbon (POXC), hot water-extractable carbon (HWC), mid-infrared photoacoustic spectroscopy (FTIR-PAS) and mineral fines/SOC ratio. SSS increased with increasing content of SOM components. The relationships between SOM components and SSS followed a broken-stick regression with a change point at ~23.0 g SOC kg⁻¹ minerals (clay/SOC~10) coinciding with a change from the tilled treatments to the grass treatment. We found a greater influence of SOC, POXC and HWC on SSS at contents below the change point than above. A stronger linear relation between POXC and DispClay compared to SOC and HWC suggests that POXC was a better predictor of the variation in DispClay. POXC and HWC were less related to DI than SOC. The grass treatment had a very stable structure, shown in all SSS tests, probably due to the absence of tillage and large annual inputs of stabilizing agents. This suggests that a change in management from arable rotation to permanent grass is one effective tool for improving SSS. Soil organic matter (SOM) is important for maintaining soil structural stability (SSS). This study quantified the influence of soil organic carbon (SOC) and different organic matter components on various SSS measures. We used a silt loam soil with a wide range of SOC (8.0–42.7 g kg−1 minerals) sampled in spring 2015 from the Highfield Ley-Arable Long-Term Experiment at Rothamsted Research. Four treatments were sampled: Bare fallow, continuous arable rotation, ley-arable rotation, and grass. Soils were tested for clay dispersibility (DispClay), clay-SOM disintegration (DI, the ratio between clay content without and with SOM removal) and dispersion of particles <20 μm. The SSS tests were related to SOC, permanganate oxidizable carbon (POXC), hot water-extractable carbon (HWC), mid-infrared photoacoustic spectroscopy (FTIR-PAS) and mineral fines/SOC ratio. SSS increased with increasing content of SOM components. The relationships between SOM components and SSS followed a broken-stick regression with a change point at ~23.0 g SOC kg−1 minerals (clay/SOC~10) coinciding with a change from the tilled treatments to the grass treatment. We found a greater influence of SOC, POXC and HWC on SSS at contents below the change point than above. A stronger linear relation between POXC and DispClay compared to SOC and HWC suggests that POXC was a better predictor of the variation in DispClay. POXC and HWC were less related to DI than SOC. The grass treatment had a very stable structure, shown in all SSS tests, probably due to the absence of tillage and large annual inputs of stabilizing agents. This suggests that a change in management from arable rotation to permanent grass is one effective tool for improving SSS. •Soil structural stability increased with an increase in SOM components.•The effect of increasing SOM components was greater at low contents.•The change point for soil structural stability was at a clay/SOC ratio close to 10.•Grassland soil has a very stable structure compared to tilled soil. |
Author | Schjønning, Per Jensen, Johannes L. Christensen, Bent T. Peltre, Clément Watts, Christopher W. Munkholm, Lars J. |
Author_xml | – sequence: 1 givenname: Johannes L. orcidid: 0000-0002-0415-6665 surname: Jensen fullname: Jensen, Johannes L. email: jlj@agro.au.dk organization: Department of Agroecology, Aarhus University, Blichers Allé 20, 8830 Tjele, Denmark – sequence: 2 givenname: Per surname: Schjønning fullname: Schjønning, Per organization: Department of Agroecology, Aarhus University, Blichers Allé 20, 8830 Tjele, Denmark – sequence: 3 givenname: Christopher W. surname: Watts fullname: Watts, Christopher W. organization: Department of Sustainable Agriculture Sciences, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, United Kingdom – sequence: 4 givenname: Bent T. surname: Christensen fullname: Christensen, Bent T. organization: Department of Agroecology, Aarhus University, Blichers Allé 20, 8830 Tjele, Denmark – sequence: 5 givenname: Clément surname: Peltre fullname: Peltre, Clément organization: Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1821 Frederiksberg, Denmark – sequence: 6 givenname: Lars J. surname: Munkholm fullname: Munkholm, Lars J. organization: Department of Agroecology, Aarhus University, Blichers Allé 20, 8830 Tjele, Denmark |
BookMark | eNqFkM1LwzAYxnOY4Db9F6RHL61JuzUteFCGH4OBIHoOb5M3I6NNZpIK--9tqV687PR-Pc8D729BZtZZJOSG0YxRVt4dsj06hb6DLKesGpYZLVYzMqfDNeW0ZJdkEcJhGDnN6Zxs37GFaOw-Cc60ySYBqxLn92CNTDqIEX2iPchonA1JdJMsRN_L2HsYW2hMa-LpilxoaANe_9Yl-Xx--ti8pru3l-3mcZfKoi5iula80XXZ1GvAApjmVVPpGqmGoWV8JalqCuDQ6FLqeqV5wZscFW1UXnHOimJJbqfco3dfPYYoOhMkti1YdH0QeZ7TqqzW5Si9n6TSuxA8aiFNhPGV6MG0glExUhMH8UdNjNTG_UBtsJf_7EdvOvCn88aHyYgDh2-DXgRp0EpUxqOMQjlzLuIHDqeRAg |
CitedBy_id | crossref_primary_10_1016_j_geoderma_2025_117204 crossref_primary_10_1016_j_geodrs_2023_e00727 crossref_primary_10_1111_ejss_13173 crossref_primary_10_1590_1983_21252022v35n321rc crossref_primary_10_1111_ejss_13212 crossref_primary_10_1016_j_geoderma_2019_113901 crossref_primary_10_1016_j_still_2020_104734 crossref_primary_10_1016_j_geoderma_2021_115383 crossref_primary_10_1016_j_geoderma_2025_117166 crossref_primary_10_1007_s11356_021_13186_0 crossref_primary_10_1016_j_eti_2021_102248 crossref_primary_10_1016_j_ecolind_2022_108958 crossref_primary_10_1016_j_foreco_2022_120423 crossref_primary_10_1016_j_still_2024_106129 crossref_primary_10_1016_j_geodrs_2023_e00730 crossref_primary_10_1016_j_geoderma_2021_115370 crossref_primary_10_1016_j_geoderma_2020_114181 crossref_primary_10_1016_j_orggeochem_2024_104877 crossref_primary_10_1016_j_geoderma_2019_114143 crossref_primary_10_1111_sum_12658 crossref_primary_10_1111_sum_12838 crossref_primary_10_1016_j_ecolind_2021_107364 crossref_primary_10_1002_saj2_20569 crossref_primary_10_1016_j_envsoft_2022_105437 crossref_primary_10_3390_plants13213064 crossref_primary_10_1134_S1064229320040079 crossref_primary_10_15446_acag_v71n1_101342 crossref_primary_10_3390_soilsystems6040093 crossref_primary_10_1007_s11356_022_21345_0 crossref_primary_10_1002_saj2_20699 crossref_primary_10_3390_su12176796 crossref_primary_10_1016_j_jhazmat_2019_03_135 crossref_primary_10_1016_j_seta_2020_100744 crossref_primary_10_1016_j_geoderma_2019_114124 crossref_primary_10_1016_j_still_2024_106399 crossref_primary_10_1016_j_catena_2023_107760 crossref_primary_10_1002_agj2_20669 crossref_primary_10_1002_ldr_5049 crossref_primary_10_1016_j_ecoleng_2024_107413 crossref_primary_10_3390_plants12223790 crossref_primary_10_1016_j_geoderma_2024_116868 crossref_primary_10_3390_molecules29215049 crossref_primary_10_4236_ojss_2024_144012 crossref_primary_10_1111_ejss_13134 crossref_primary_10_1111_ejss_13012 crossref_primary_10_20961_stjssa_v18i1_50489 crossref_primary_10_1016_j_geoderma_2021_115463 crossref_primary_10_1016_j_geoderma_2022_116314 crossref_primary_10_1071_SR23213 crossref_primary_10_1111_sum_13150 crossref_primary_10_34172_ajehe_2019_05 crossref_primary_10_1016_j_catena_2023_107176 crossref_primary_10_1016_j_jenvman_2022_115603 crossref_primary_10_1016_j_scitotenv_2023_165125 crossref_primary_10_1007_s10653_023_01833_z crossref_primary_10_2136_sssaj2018_06_0238 crossref_primary_10_3390_agriculture12030401 crossref_primary_10_1007_s10973_022_11709_6 crossref_primary_10_1016_j_catena_2022_106126 crossref_primary_10_1002_jpln_201900308 crossref_primary_10_1080_00103624_2022_2028818 crossref_primary_10_1007_s40808_023_01762_x crossref_primary_10_1016_j_conbuildmat_2022_127233 crossref_primary_10_3390_en16165876 crossref_primary_10_2139_ssrn_4069694 crossref_primary_10_1016_j_still_2020_104763 crossref_primary_10_1134_S1064229323603384 crossref_primary_10_1016_j_still_2021_105226 crossref_primary_10_1016_j_soildyn_2020_106067 crossref_primary_10_1016_j_fcr_2021_108228 crossref_primary_10_3390_su152216042 crossref_primary_10_1016_j_pedsph_2023_12_002 crossref_primary_10_1016_j_ecoleng_2020_106143 crossref_primary_10_1016_j_ecolind_2024_112624 crossref_primary_10_1016_j_ecolind_2023_110149 crossref_primary_10_1002_agj2_20051 crossref_primary_10_1007_s40808_024_01980_x crossref_primary_10_1007_s11368_020_02589_0 crossref_primary_10_1016_j_geoderma_2023_116533 crossref_primary_10_1016_j_geodrs_2021_e00425 crossref_primary_10_1007_s44246_024_00139_8 crossref_primary_10_1016_j_still_2019_104384 crossref_primary_10_1002_ldr_3635 crossref_primary_10_1016_j_fcr_2023_109228 crossref_primary_10_1016_j_geoderma_2020_114235 crossref_primary_10_1016_j_geoderma_2021_115529 crossref_primary_10_1016_j_rhisph_2023_100771 crossref_primary_10_3390_agronomy14102207 crossref_primary_10_1111_gcbb_12733 crossref_primary_10_1016_j_catena_2025_108968 crossref_primary_10_1016_j_jenvman_2023_119945 crossref_primary_10_1016_j_jsames_2022_104120 crossref_primary_10_1016_j_geoderma_2022_116062 crossref_primary_10_3390_f15020353 crossref_primary_10_1016_j_catena_2020_104508 crossref_primary_10_3390_agronomy14112482 crossref_primary_10_3390_biology14030316 crossref_primary_10_3390_su142114609 crossref_primary_10_1016_j_geoderma_2021_115632 crossref_primary_10_1016_j_agee_2020_106886 crossref_primary_10_1111_sum_13047 crossref_primary_10_1016_j_geoderma_2023_116646 crossref_primary_10_1111_sum_12754 |
Cites_doi | 10.1371/journal.pone.0178039 10.1111/j.1365-2389.2008.01039.x 10.1111/j.1365-2389.1982.tb01755.x 10.1071/S96016 10.1016/S0065-2113(08)00801-8 10.1016/0167-1987(88)90002-5 10.1890/02-0472 10.1016/S0167-1987(97)00009-3 10.1016/j.geoderma.2015.11.003 10.1016/j.geoderma.2004.03.005 10.2136/sssaj2016.09.0286 10.1016/S0167-8809(01)00145-1 10.1016/j.soilbio.2016.10.016 10.1126/science.1261071 10.1023/A:1016125726789 10.2136/sssaj2011.0286 10.1111/gcb.13720 10.1097/00010694-199601000-00003 10.1016/0016-7061(93)90123-3 10.1016/j.soilbio.2009.07.011 10.1079/AJAA2003003 10.1071/SR16218 10.1111/j.1365-2389.2005.00776.x 10.1016/j.geoderma.2008.01.022 10.1007/s11104-016-3068-x 10.2136/vzj2011.0067 10.1016/S0065-2113(04)85005-3 10.1016/bs.agron.2014.10.005 10.1111/j.1365-2389.1996.tb01843.x 10.4141/cjss90-004 10.2136/sssaj2016.04.0106 10.1016/j.geoderma.2015.10.002 10.1023/A:1004213929699 10.2136/sssaj2001.6541121x 10.1016/j.csda.2008.12.013 10.1111/ejss.12558 10.1007/s10533-007-9140-0 10.2136/sssaj2005.0116 10.1016/j.geoderma.2007.12.016 10.1111/j.1365-2389.1990.tb00046.x 10.1007/s11104-007-9521-0 10.1002/ldr.2225 10.2136/vzj2004.0321 10.1016/j.soilbio.2014.06.022 10.1007/s10533-016-0246-0 10.1016/S0038-0717(03)00186-X |
ContentType | Journal Article |
Copyright | 2018 The Authors |
Copyright_xml | – notice: 2018 The Authors |
DBID | 6I. AAFTH AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.geoderma.2018.10.034 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EndPage | 843 |
ExternalDocumentID | 10_1016_j_geoderma_2018_10_034 S0016706118300582 |
GroupedDBID | --K --M -DZ -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAFTH AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AATLK AAXKI AAXUO ABFRF ABGRD ABJNI ABMAC ABQEM ABQYD ACDAQ ACGFO ACGFS ACIUM ACLVX ACRLP ACSBN ADBBV ADEZE ADQTV AEBSH AEFWE AEKER AENEX AEQOU AFJKZ AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IMUCA J1W KOM LW9 LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SAB SDF SDG SES SPC SPCBC SSA SSE SSZ T5K ~02 ~G- 29H AALCJ AAQXK AATTM AAYWO AAYXX ABEFU ABFNM ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEGFY AEIPS AEUPX AFFNX AFPUW AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 GROUPED_DOAJ HLV HMA HMC HVGLF HZ~ H~9 K-O OHT R2- SEN SEP SEW SSH VH1 WUQ XPP Y6R ZMT 7S9 L.6 |
ID | FETCH-LOGICAL-c393t-5d7bf96b95ae3a1f78b8f9e0faf78174c0db3a7abf6cf94f737b2ed0bd2877133 |
IEDL.DBID | .~1 |
ISSN | 0016-7061 |
IngestDate | Fri Jul 11 02:09:30 EDT 2025 Tue Jul 01 04:04:48 EDT 2025 Thu Apr 24 23:02:23 EDT 2025 Tue Oct 01 07:16:35 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | CEC SSA A Permanganate oxidizable carbon BF FTIR-PAS DI DispClay G LF-free-SOC Hot water-extractable carbon Fines20 DispFines20 NTU Soil management PCA POXC SSS Soil structural stability HWC LA LFSOC Soil organic carbon |
Language | English |
License | This is an open access article under the CC BY license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c393t-5d7bf96b95ae3a1f78b8f9e0faf78174c0db3a7abf6cf94f737b2ed0bd2877133 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-0415-6665 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0016706118300582 |
PQID | 2220868563 |
PQPubID | 24069 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2220868563 crossref_citationtrail_10_1016_j_geoderma_2018_10_034 crossref_primary_10_1016_j_geoderma_2018_10_034 elsevier_sciencedirect_doi_10_1016_j_geoderma_2018_10_034 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-03-01 2019-03-00 20190301 |
PublicationDateYYYYMMDD | 2019-03-01 |
PublicationDate_xml | – month: 03 year: 2019 text: 2019-03-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Geoderma |
PublicationYear | 2019 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Leifeld (bb0170) 2006; 57 Six, Conant, Paul, Paustian (bb0225) 2002; 241 Barré, Plante, Cécillon, Lutfalla, Baudin, Bernard, Christensen, Eglin, Fernandez, Houot, Kätterer, Le Guillou, Macdonald, van Oort, Chenu (bb0015) 2016; 130 Peltre, Gregorich, Bruun, Jensen, Magid (bb0195) 2017; 104 Oades (bb0185) 1993; 56 Jensen, Christensen, Schjønning, Watts, Munkholm (bb0130) 2018 Haynes (bb0085) 2005; 85 Ingram, Fernandes (bb0115) 2001; 87 Dexter, Richard, Arrouays, Czyż, Jolivet, Duval (bb0045) 2008; 144 Villada, Vanguelova, Verhoef, Shaw (bb0250) 2016; 265 Kay, Munkholm (bb0150) 2004 Weil, Islam, Stine, Gruver, Samson-Liebig (bb0260) 2003; 18 Pulido Moncada, Gabriels, Cornelis, Lobo (bb0210) 2015; 26 Dexter (bb0040) 1988; 11 Gee, Or (bb0060) 2002 Matthews, Watts, Powlson, Price, Whalley (bb0175) 2008; 59 Jensen, Schjønning, Watts, Christensen, Munkholm (bb0125) 2017; 12 Kalra, Maynard (bb0145) 1991 Idowu, van Es, Abawi, Wolfe, Ball, Gugino, Moebius, Schindelbeck, Bilgili (bb0110) 2008; 307 Toms, Lesperance (bb0245) 2003; 84 Haynes, Swift (bb0090) 1990; 41 Kleber, Eusterhues, Keiluweit, Mikutta, Mikutta, Nico (bb0160) 2015; 130 Johnston, Poulton, Coleman (bb0140) 2009; 101 Hassink (bb0080) 1997; 191 Peltre, Bruun, Du, Thomsen, Jensen (bb0190) 2014; 77 Bronick, Lal (bb0020) 2005; 124 Hurisso, Culman, Horwath, Wade, Cass, Beniston, Bowles, Grandy, Franzluebbers, Schipanski, Lucas, Ugarte (bb0105) 2016; 80 Hirsch, Gilliam, Sohi, Williams, Clark, Murray (bb0095) 2009; 41 Schjønning, de Jonge, Munkholm, Moldrup, Christensen, Olesen (bb0215) 2012; 11 Tisdall, Oades (bb0240) 1982; 33 Jensen, Schjønning, Christensen, Munkholm (bb0120) 2017; 55 Hirsch, Jhurreea, Williams, Murray, Scott, Misselbrook, Goulding, Clark (bb0100) 2017; 412 Pojasok, Kay (bb0205) 1990; 70 de Jonge, Kjaergaard, Moldrup (bb0030) 2004; 3 Johnston (bb0135) 1972 Culman, Snapp, Freeman, Schipanski, Beniston, Lal, Drinkwater, Franzluebbers, Glover, Grandy, Lee, Six, Maul, Mirksy, Spargo, Wander (bb0025) 2012; 76 Getahun, Munkholm, Schjønning (bb0065) 2016; 264 Watts, Dexter (bb0255) 1997; 42 Amundson, Berhe, Hopmans, Olson, Sztein, Sparks (bb0005) 2015; 348 Avery, Catt (bb0010) 1995 Stewart, Paustian, Conant, Plante, Six (bb0235) 2007; 86 Gregorich, Beare, McKim, Skjemstad (bb0075) 2006; 70 Ghani, Dexter, Perrott (bb0070) 2003; 35 McNally, Beare, Curtin, Meenken, Kelliher, Calvelo Pereira, Shen, Baldock (bb0180) 2017; 23 Le Bissonnais (bb0165) 1996; 47 Sohi, Mahieu, Arah, Powlson, Madari, Gaunt (bb0230) 2001; 65 Fine, van Es, Schindelbeck (bb0055) 2017; 81 Degens (bb0035) 1997; 35 Kenward, Roger (bb0155) 2009; 53 Scott, Macdonald, Goulding (bb0220) 2014 Elmholt, Schjønning, Munkholm, Debosz (bb0050) 2008; 144 Petersen, Moldrup, Jacobsen, Rolston (bb0200) 1996; 161 Hurisso (10.1016/j.geoderma.2018.10.034_bb0105) 2016; 80 Barré (10.1016/j.geoderma.2018.10.034_bb0015) 2016; 130 Toms (10.1016/j.geoderma.2018.10.034_bb0245) 2003; 84 Elmholt (10.1016/j.geoderma.2018.10.034_bb0050) 2008; 144 Sohi (10.1016/j.geoderma.2018.10.034_bb0230) 2001; 65 Oades (10.1016/j.geoderma.2018.10.034_bb0185) 1993; 56 Amundson (10.1016/j.geoderma.2018.10.034_bb0005) 2015; 348 Haynes (10.1016/j.geoderma.2018.10.034_bb0090) 1990; 41 Haynes (10.1016/j.geoderma.2018.10.034_bb0085) 2005; 85 Peltre (10.1016/j.geoderma.2018.10.034_bb0190) 2014; 77 Six (10.1016/j.geoderma.2018.10.034_bb0225) 2002; 241 Idowu (10.1016/j.geoderma.2018.10.034_bb0110) 2008; 307 Pojasok (10.1016/j.geoderma.2018.10.034_bb0205) 1990; 70 de Jonge (10.1016/j.geoderma.2018.10.034_bb0030) 2004; 3 Villada (10.1016/j.geoderma.2018.10.034_bb0250) 2016; 265 Scott (10.1016/j.geoderma.2018.10.034_bb0220) 2014 Degens (10.1016/j.geoderma.2018.10.034_bb0035) 1997; 35 Jensen (10.1016/j.geoderma.2018.10.034_bb0125) 2017; 12 Gee (10.1016/j.geoderma.2018.10.034_bb0060) 2002 Kleber (10.1016/j.geoderma.2018.10.034_bb0160) 2015; 130 Kay (10.1016/j.geoderma.2018.10.034_bb0150) 2004 Pulido Moncada (10.1016/j.geoderma.2018.10.034_bb0210) 2015; 26 Culman (10.1016/j.geoderma.2018.10.034_bb0025) 2012; 76 Dexter (10.1016/j.geoderma.2018.10.034_bb0040) 1988; 11 Leifeld (10.1016/j.geoderma.2018.10.034_bb0170) 2006; 57 Jensen (10.1016/j.geoderma.2018.10.034_bb0120) 2017; 55 Johnston (10.1016/j.geoderma.2018.10.034_bb0135) 1972 McNally (10.1016/j.geoderma.2018.10.034_bb0180) 2017; 23 Hassink (10.1016/j.geoderma.2018.10.034_bb0080) 1997; 191 Tisdall (10.1016/j.geoderma.2018.10.034_bb0240) 1982; 33 Watts (10.1016/j.geoderma.2018.10.034_bb0255) 1997; 42 Kenward (10.1016/j.geoderma.2018.10.034_bb0155) 2009; 53 Kalra (10.1016/j.geoderma.2018.10.034_bb0145) 1991 Hirsch (10.1016/j.geoderma.2018.10.034_bb0095) 2009; 41 Weil (10.1016/j.geoderma.2018.10.034_bb0260) 2003; 18 Matthews (10.1016/j.geoderma.2018.10.034_bb0175) 2008; 59 Petersen (10.1016/j.geoderma.2018.10.034_bb0200) 1996; 161 Hirsch (10.1016/j.geoderma.2018.10.034_bb0100) 2017; 412 Fine (10.1016/j.geoderma.2018.10.034_bb0055) 2017; 81 Gregorich (10.1016/j.geoderma.2018.10.034_bb0075) 2006; 70 Dexter (10.1016/j.geoderma.2018.10.034_bb0045) 2008; 144 Ghani (10.1016/j.geoderma.2018.10.034_bb0070) 2003; 35 Le Bissonnais (10.1016/j.geoderma.2018.10.034_bb0165) 1996; 47 Avery (10.1016/j.geoderma.2018.10.034_bb0010) 1995 Jensen (10.1016/j.geoderma.2018.10.034_bb0130) 2018 Bronick (10.1016/j.geoderma.2018.10.034_bb0020) 2005; 124 Johnston (10.1016/j.geoderma.2018.10.034_bb0140) 2009; 101 Getahun (10.1016/j.geoderma.2018.10.034_bb0065) 2016; 264 Ingram (10.1016/j.geoderma.2018.10.034_bb0115) 2001; 87 Peltre (10.1016/j.geoderma.2018.10.034_bb0195) 2017; 104 Schjønning (10.1016/j.geoderma.2018.10.034_bb0215) 2012; 11 Stewart (10.1016/j.geoderma.2018.10.034_bb0235) 2007; 86 |
References_xml | – volume: 53 start-page: 2583 year: 2009 end-page: 2595 ident: bb0155 article-title: An improved approximation to the precision of fixed effects from restricted maximum likelihood publication-title: Comput. Stat. Data Anal. – volume: 57 start-page: 846 year: 2006 end-page: 857 ident: bb0170 article-title: Application of diffuse reflectance FT-IR spectroscopy and partial least-squares regression to predict NMR properties of soil organic matter publication-title: Eur. J. Soil Sci. – volume: 12 year: 2017 ident: bb0125 article-title: Soil texture analysis revisited: removal of organic matter matters more than ever publication-title: PLoS One – volume: 144 start-page: 455 year: 2008 end-page: 467 ident: bb0050 article-title: Soil management effects on aggregate stability and biological binding publication-title: Geoderma – volume: 35 start-page: 1231 year: 2003 end-page: 1243 ident: bb0070 article-title: Hot-water extractable carbon in soils: a sensitive measurement for determining impacts of fertilisation, grazing and cultivation publication-title: Soil Biol. Biochem. – volume: 104 start-page: 117 year: 2017 end-page: 127 ident: bb0195 article-title: Repeated application of organic waste affects soil organic matter composition: evidence from thermal analysis, FTIR-PAS, amino sugars and lignin biomarkers publication-title: Soil Biol. Biochem. – volume: 348 start-page: 1261071 year: 2015 ident: bb0005 article-title: Soil and human security in the 21st century publication-title: Science – volume: 11 start-page: 199 year: 1988 end-page: 238 ident: bb0040 article-title: Advances in characterization of soil structure publication-title: Soil Tillage Res. – volume: 265 start-page: 53 year: 2016 end-page: 61 ident: bb0250 article-title: Effect of air-drying pre-treatment on the characterization of forest soil carbon pools publication-title: Geoderma – volume: 26 start-page: 843 year: 2015 end-page: 852 ident: bb0210 article-title: Comparing aggregate stability tests for soil physical quality indicators publication-title: Land Degrad. Dev. – volume: 80 start-page: 1352 year: 2016 end-page: 1364 ident: bb0105 article-title: Comparison of permanganate-oxidizable carbon and mineralizable carbon for assessment of organic matter stabilization and mineralization publication-title: Soil Sci. Soc. Am. J. – volume: 161 start-page: 9 year: 1996 end-page: 21 ident: bb0200 article-title: Relations between specific surface area and soil physical and chemical properties publication-title: Soil Sci. – volume: 3 start-page: 321 year: 2004 end-page: 325 ident: bb0030 article-title: Colloids and colloid-facilitated transport of contaminants in soils publication-title: Vadose Zone J. – volume: 144 start-page: 620 year: 2008 end-page: 627 ident: bb0045 article-title: Complexed organic matter controls soil physical properties publication-title: Geoderma – volume: 130 start-page: 1 year: 2015 end-page: 140 ident: bb0160 article-title: Mineral–organic associations: formation, properties and relevance in soil environments publication-title: Adv. Agron. – volume: 101 start-page: 1 year: 2009 end-page: 57 ident: bb0140 article-title: Chapter 1 soil organic matter: its importance in sustainable agriculture and carbon dioxide fluxes publication-title: Adv. Agron. – volume: 70 start-page: 33 year: 1990 end-page: 42 ident: bb0205 article-title: Assessment of a combination of wet sieving and turbidimetry to characterize the structural stability of moist aggregates publication-title: Can. J. Soil Sci. – volume: 35 start-page: 431 year: 1997 end-page: 460 ident: bb0035 article-title: Macro-aggregation of soils by biological bonding and binding mechanisms and the factors affecting these: a review publication-title: Aust. J. Soil Res. – volume: 191 start-page: 77 year: 1997 end-page: 87 ident: bb0080 article-title: The capacity of soils to preserve organic C and N by their association with clay and silt particles publication-title: Plant Soil – volume: 412 start-page: 283 year: 2017 end-page: 297 ident: bb0100 article-title: Soil resilience and recovery: rapid community responses to management changes publication-title: Plant Soil – volume: 41 start-page: 2021 year: 2009 end-page: 2024 ident: bb0095 article-title: Starving the soil of plant inputs for 50 years reduces abundance but not diversity of soil bacterial communities publication-title: Soil Biol. Biochem. – volume: 55 start-page: 332 year: 2017 end-page: 340 ident: bb0120 article-title: Suboptimal fertilisation compromises soil physical properties of a hard-setting sandy loam publication-title: Soil Res. – start-page: 131 year: 1972 end-page: 152 ident: bb0135 article-title: The effect of ley and arable cropping systems on the amount of soil organic matter in Rothamsted and Woburn Ley-Arable experiments publication-title: Report Rothamsted Experimental Station for 1972, Part 2 – volume: 76 start-page: 494 year: 2012 end-page: 504 ident: bb0025 article-title: Permanganate oxidizable carbon reflects a processed soil fraction that is sensitive to management publication-title: Soil Sci. Soc. Am. J. – volume: 47 start-page: 425 year: 1996 end-page: 437 ident: bb0165 article-title: Aggregate stability and assessment of soil crustability and erodibility: I theory and methodology publication-title: Eur. J. Soil Sci. – volume: 11 start-page: 174 year: 2012 end-page: 187 ident: bb0215 article-title: Clay dispersibility and soil friability—testing the soil clay-to-carbon saturation concept publication-title: Vadose Zone J. – volume: 87 start-page: 111 year: 2001 end-page: 117 ident: bb0115 article-title: Managing carbon sequestration in soils: concepts and terminology publication-title: Agric. Ecosyst. Environ. – volume: 307 start-page: 243 year: 2008 end-page: 253 ident: bb0110 article-title: Farmer-oriented assessment of soil quality using field, laboratory, and VNIR spectroscopy methods publication-title: Plant Soil – volume: 86 start-page: 19 year: 2007 end-page: 31 ident: bb0235 article-title: Soil carbon saturation: concept, evidence and evaluation publication-title: Biogeochemistry – volume: 84 start-page: 2034 year: 2003 end-page: 2041 ident: bb0245 article-title: Piecewise regression: a tool for identifying ecological thresholds publication-title: Ecology – volume: 56 start-page: 377 year: 1993 end-page: 400 ident: bb0185 article-title: The role of biology in the formation, stabilization and degradation of soil structure publication-title: Geoderma – year: 2018 ident: bb0130 article-title: Converting loss-on-ignition to organic carbon content in arable topsoil: pitfalls and proposed procedure publication-title: Eur. J. Soil Sci. – year: 1991 ident: bb0145 article-title: Methods Manual for Forest Soil and Plant Analysis – volume: 81 start-page: 589 year: 2017 end-page: 601 ident: bb0055 article-title: Statistics, scoring functions, and regional analysis of a comprehensive soil health database publication-title: Soil Sci. Soc. Am. J. – volume: 33 start-page: 141 year: 1982 end-page: 163 ident: bb0240 article-title: Organic matter and water-stable aggregates in soils publication-title: J. Soil Sci. – start-page: 185 year: 2004 end-page: 197 ident: bb0150 article-title: Management-induced soil structure degradation - organic matter depletion and tillage publication-title: Managing Soil Quality: Challenges in Modern Agriculture – start-page: 1 year: 1995 end-page: 44 ident: bb0010 article-title: The Soils at Rothamsted – volume: 264 start-page: 94 year: 2016 end-page: 102 ident: bb0065 article-title: The influence of clay-to-carbon ratio on soil physical properties in a humid sandy loam soil with contrasting tillage and residue management publication-title: Geoderma – volume: 85 start-page: 221 year: 2005 end-page: 268 ident: bb0085 article-title: Labile organic matter fractions as central components of the quality of agricultural soils: an overview publication-title: Adv. Agron. – volume: 59 start-page: 817 year: 2008 end-page: 823 ident: bb0175 article-title: Wetting of agricultural soil measured by a simplified capillary rise technique publication-title: Eur. J. Soil Sci. – year: 2014 ident: bb0220 article-title: The UK Environmental Change Network, Rothamsted. Physical and Atmospheric Measurements: The First 20 Years – volume: 241 start-page: 155 year: 2002 end-page: 176 ident: bb0225 article-title: Stabilization mechanisms of soil organic matter: implications for C-saturation of soils publication-title: Plant Soil – volume: 41 start-page: 73 year: 1990 end-page: 83 ident: bb0090 article-title: Stability of soil aggregates in relation to organic constituents and soil water content publication-title: J. Soil Sci. – volume: 65 start-page: 1121 year: 2001 end-page: 1128 ident: bb0230 article-title: A procedure for isolating soil organic matter fractions suitable for modeling publication-title: Soil Sci. Soc. Am. J. – volume: 70 start-page: 975 year: 2006 end-page: 985 ident: bb0075 article-title: Chemical and biological characteristics of physically uncomplexed organic matter publication-title: Soil Sci. Soc. Am. J. – volume: 77 start-page: 41 year: 2014 end-page: 50 ident: bb0190 article-title: Assessing soil constituents and labile soil organic carbon by mid-infrared photoacoustic spectroscopy publication-title: Soil Biol. Biochem. – volume: 130 start-page: 1 year: 2016 end-page: 12 ident: bb0015 article-title: The energetic and chemical signatures of persistent soil organic matter publication-title: Biogeochemistry – volume: 42 start-page: 253 year: 1997 end-page: 275 ident: bb0255 article-title: The influence of organic matter in reducing the destabilization of soil by simulated tillage publication-title: Soil Tillage Res. – volume: 124 start-page: 3 year: 2005 end-page: 22 ident: bb0020 article-title: Soil structure and management: a review publication-title: Geoderma – volume: 18 start-page: 3 year: 2003 end-page: 17 ident: bb0260 article-title: Estimating active carbon for soil quality assessment: a simplified method for laboratory and field use publication-title: Am. J. Altern. Agric. – start-page: 255 year: 2002 end-page: 294 ident: bb0060 article-title: Particle-size analysis publication-title: Methods of Soil Analysis. Part 4 - Physical Methods – volume: 23 start-page: 4544 year: 2017 end-page: 4555 ident: bb0180 article-title: Soil carbon sequestration potential of permanent pasture and continuous cropping soils in New Zealand publication-title: Glob. Chang. Biol. – volume: 12 year: 2017 ident: 10.1016/j.geoderma.2018.10.034_bb0125 article-title: Soil texture analysis revisited: removal of organic matter matters more than ever publication-title: PLoS One doi: 10.1371/journal.pone.0178039 – start-page: 255 year: 2002 ident: 10.1016/j.geoderma.2018.10.034_bb0060 article-title: Particle-size analysis – volume: 59 start-page: 817 year: 2008 ident: 10.1016/j.geoderma.2018.10.034_bb0175 article-title: Wetting of agricultural soil measured by a simplified capillary rise technique publication-title: Eur. J. Soil Sci. doi: 10.1111/j.1365-2389.2008.01039.x – volume: 33 start-page: 141 year: 1982 ident: 10.1016/j.geoderma.2018.10.034_bb0240 article-title: Organic matter and water-stable aggregates in soils publication-title: J. Soil Sci. doi: 10.1111/j.1365-2389.1982.tb01755.x – volume: 35 start-page: 431 year: 1997 ident: 10.1016/j.geoderma.2018.10.034_bb0035 article-title: Macro-aggregation of soils by biological bonding and binding mechanisms and the factors affecting these: a review publication-title: Aust. J. Soil Res. doi: 10.1071/S96016 – volume: 101 start-page: 1 year: 2009 ident: 10.1016/j.geoderma.2018.10.034_bb0140 article-title: Chapter 1 soil organic matter: its importance in sustainable agriculture and carbon dioxide fluxes publication-title: Adv. Agron. doi: 10.1016/S0065-2113(08)00801-8 – volume: 11 start-page: 199 year: 1988 ident: 10.1016/j.geoderma.2018.10.034_bb0040 article-title: Advances in characterization of soil structure publication-title: Soil Tillage Res. doi: 10.1016/0167-1987(88)90002-5 – volume: 84 start-page: 2034 year: 2003 ident: 10.1016/j.geoderma.2018.10.034_bb0245 article-title: Piecewise regression: a tool for identifying ecological thresholds publication-title: Ecology doi: 10.1890/02-0472 – volume: 42 start-page: 253 year: 1997 ident: 10.1016/j.geoderma.2018.10.034_bb0255 article-title: The influence of organic matter in reducing the destabilization of soil by simulated tillage publication-title: Soil Tillage Res. doi: 10.1016/S0167-1987(97)00009-3 – year: 2014 ident: 10.1016/j.geoderma.2018.10.034_bb0220 – volume: 265 start-page: 53 issue: Supplement C year: 2016 ident: 10.1016/j.geoderma.2018.10.034_bb0250 article-title: Effect of air-drying pre-treatment on the characterization of forest soil carbon pools publication-title: Geoderma doi: 10.1016/j.geoderma.2015.11.003 – volume: 124 start-page: 3 year: 2005 ident: 10.1016/j.geoderma.2018.10.034_bb0020 article-title: Soil structure and management: a review publication-title: Geoderma doi: 10.1016/j.geoderma.2004.03.005 – volume: 81 start-page: 589 year: 2017 ident: 10.1016/j.geoderma.2018.10.034_bb0055 article-title: Statistics, scoring functions, and regional analysis of a comprehensive soil health database publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2016.09.0286 – volume: 87 start-page: 111 year: 2001 ident: 10.1016/j.geoderma.2018.10.034_bb0115 article-title: Managing carbon sequestration in soils: concepts and terminology publication-title: Agric. Ecosyst. Environ. doi: 10.1016/S0167-8809(01)00145-1 – volume: 104 start-page: 117 year: 2017 ident: 10.1016/j.geoderma.2018.10.034_bb0195 article-title: Repeated application of organic waste affects soil organic matter composition: evidence from thermal analysis, FTIR-PAS, amino sugars and lignin biomarkers publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2016.10.016 – start-page: 131 year: 1972 ident: 10.1016/j.geoderma.2018.10.034_bb0135 article-title: The effect of ley and arable cropping systems on the amount of soil organic matter in Rothamsted and Woburn Ley-Arable experiments – volume: 348 start-page: 1261071 year: 2015 ident: 10.1016/j.geoderma.2018.10.034_bb0005 article-title: Soil and human security in the 21st century publication-title: Science doi: 10.1126/science.1261071 – volume: 241 start-page: 155 year: 2002 ident: 10.1016/j.geoderma.2018.10.034_bb0225 article-title: Stabilization mechanisms of soil organic matter: implications for C-saturation of soils publication-title: Plant Soil doi: 10.1023/A:1016125726789 – volume: 76 start-page: 494 year: 2012 ident: 10.1016/j.geoderma.2018.10.034_bb0025 article-title: Permanganate oxidizable carbon reflects a processed soil fraction that is sensitive to management publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2011.0286 – volume: 23 start-page: 4544 year: 2017 ident: 10.1016/j.geoderma.2018.10.034_bb0180 article-title: Soil carbon sequestration potential of permanent pasture and continuous cropping soils in New Zealand publication-title: Glob. Chang. Biol. doi: 10.1111/gcb.13720 – volume: 161 start-page: 9 year: 1996 ident: 10.1016/j.geoderma.2018.10.034_bb0200 article-title: Relations between specific surface area and soil physical and chemical properties publication-title: Soil Sci. doi: 10.1097/00010694-199601000-00003 – volume: 56 start-page: 377 year: 1993 ident: 10.1016/j.geoderma.2018.10.034_bb0185 article-title: The role of biology in the formation, stabilization and degradation of soil structure publication-title: Geoderma doi: 10.1016/0016-7061(93)90123-3 – volume: 41 start-page: 2021 year: 2009 ident: 10.1016/j.geoderma.2018.10.034_bb0095 article-title: Starving the soil of plant inputs for 50 years reduces abundance but not diversity of soil bacterial communities publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2009.07.011 – volume: 18 start-page: 3 year: 2003 ident: 10.1016/j.geoderma.2018.10.034_bb0260 article-title: Estimating active carbon for soil quality assessment: a simplified method for laboratory and field use publication-title: Am. J. Altern. Agric. doi: 10.1079/AJAA2003003 – volume: 55 start-page: 332 year: 2017 ident: 10.1016/j.geoderma.2018.10.034_bb0120 article-title: Suboptimal fertilisation compromises soil physical properties of a hard-setting sandy loam publication-title: Soil Res. doi: 10.1071/SR16218 – volume: 57 start-page: 846 year: 2006 ident: 10.1016/j.geoderma.2018.10.034_bb0170 article-title: Application of diffuse reflectance FT-IR spectroscopy and partial least-squares regression to predict NMR properties of soil organic matter publication-title: Eur. J. Soil Sci. doi: 10.1111/j.1365-2389.2005.00776.x – start-page: 185 year: 2004 ident: 10.1016/j.geoderma.2018.10.034_bb0150 article-title: Management-induced soil structure degradation - organic matter depletion and tillage – volume: 144 start-page: 620 year: 2008 ident: 10.1016/j.geoderma.2018.10.034_bb0045 article-title: Complexed organic matter controls soil physical properties publication-title: Geoderma doi: 10.1016/j.geoderma.2008.01.022 – volume: 412 start-page: 283 year: 2017 ident: 10.1016/j.geoderma.2018.10.034_bb0100 article-title: Soil resilience and recovery: rapid community responses to management changes publication-title: Plant Soil doi: 10.1007/s11104-016-3068-x – volume: 11 start-page: 174 year: 2012 ident: 10.1016/j.geoderma.2018.10.034_bb0215 article-title: Clay dispersibility and soil friability—testing the soil clay-to-carbon saturation concept publication-title: Vadose Zone J. doi: 10.2136/vzj2011.0067 – year: 1991 ident: 10.1016/j.geoderma.2018.10.034_bb0145 – volume: 85 start-page: 221 year: 2005 ident: 10.1016/j.geoderma.2018.10.034_bb0085 article-title: Labile organic matter fractions as central components of the quality of agricultural soils: an overview publication-title: Adv. Agron. doi: 10.1016/S0065-2113(04)85005-3 – volume: 130 start-page: 1 year: 2015 ident: 10.1016/j.geoderma.2018.10.034_bb0160 article-title: Mineral–organic associations: formation, properties and relevance in soil environments publication-title: Adv. Agron. doi: 10.1016/bs.agron.2014.10.005 – volume: 47 start-page: 425 year: 1996 ident: 10.1016/j.geoderma.2018.10.034_bb0165 article-title: Aggregate stability and assessment of soil crustability and erodibility: I theory and methodology publication-title: Eur. J. Soil Sci. doi: 10.1111/j.1365-2389.1996.tb01843.x – volume: 70 start-page: 33 year: 1990 ident: 10.1016/j.geoderma.2018.10.034_bb0205 article-title: Assessment of a combination of wet sieving and turbidimetry to characterize the structural stability of moist aggregates publication-title: Can. J. Soil Sci. doi: 10.4141/cjss90-004 – volume: 80 start-page: 1352 year: 2016 ident: 10.1016/j.geoderma.2018.10.034_bb0105 article-title: Comparison of permanganate-oxidizable carbon and mineralizable carbon for assessment of organic matter stabilization and mineralization publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2016.04.0106 – volume: 264 start-page: 94 issue: Part A year: 2016 ident: 10.1016/j.geoderma.2018.10.034_bb0065 article-title: The influence of clay-to-carbon ratio on soil physical properties in a humid sandy loam soil with contrasting tillage and residue management publication-title: Geoderma doi: 10.1016/j.geoderma.2015.10.002 – volume: 191 start-page: 77 year: 1997 ident: 10.1016/j.geoderma.2018.10.034_bb0080 article-title: The capacity of soils to preserve organic C and N by their association with clay and silt particles publication-title: Plant Soil doi: 10.1023/A:1004213929699 – volume: 65 start-page: 1121 year: 2001 ident: 10.1016/j.geoderma.2018.10.034_bb0230 article-title: A procedure for isolating soil organic matter fractions suitable for modeling publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2001.6541121x – volume: 53 start-page: 2583 year: 2009 ident: 10.1016/j.geoderma.2018.10.034_bb0155 article-title: An improved approximation to the precision of fixed effects from restricted maximum likelihood publication-title: Comput. Stat. Data Anal. doi: 10.1016/j.csda.2008.12.013 – year: 2018 ident: 10.1016/j.geoderma.2018.10.034_bb0130 article-title: Converting loss-on-ignition to organic carbon content in arable topsoil: pitfalls and proposed procedure publication-title: Eur. J. Soil Sci. doi: 10.1111/ejss.12558 – volume: 86 start-page: 19 year: 2007 ident: 10.1016/j.geoderma.2018.10.034_bb0235 article-title: Soil carbon saturation: concept, evidence and evaluation publication-title: Biogeochemistry doi: 10.1007/s10533-007-9140-0 – volume: 70 start-page: 975 year: 2006 ident: 10.1016/j.geoderma.2018.10.034_bb0075 article-title: Chemical and biological characteristics of physically uncomplexed organic matter publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2005.0116 – volume: 144 start-page: 455 year: 2008 ident: 10.1016/j.geoderma.2018.10.034_bb0050 article-title: Soil management effects on aggregate stability and biological binding publication-title: Geoderma doi: 10.1016/j.geoderma.2007.12.016 – volume: 41 start-page: 73 year: 1990 ident: 10.1016/j.geoderma.2018.10.034_bb0090 article-title: Stability of soil aggregates in relation to organic constituents and soil water content publication-title: J. Soil Sci. doi: 10.1111/j.1365-2389.1990.tb00046.x – start-page: 1 year: 1995 ident: 10.1016/j.geoderma.2018.10.034_bb0010 – volume: 307 start-page: 243 year: 2008 ident: 10.1016/j.geoderma.2018.10.034_bb0110 article-title: Farmer-oriented assessment of soil quality using field, laboratory, and VNIR spectroscopy methods publication-title: Plant Soil doi: 10.1007/s11104-007-9521-0 – volume: 26 start-page: 843 year: 2015 ident: 10.1016/j.geoderma.2018.10.034_bb0210 article-title: Comparing aggregate stability tests for soil physical quality indicators publication-title: Land Degrad. Dev. doi: 10.1002/ldr.2225 – volume: 3 start-page: 321 year: 2004 ident: 10.1016/j.geoderma.2018.10.034_bb0030 article-title: Colloids and colloid-facilitated transport of contaminants in soils publication-title: Vadose Zone J. doi: 10.2136/vzj2004.0321 – volume: 77 start-page: 41 year: 2014 ident: 10.1016/j.geoderma.2018.10.034_bb0190 article-title: Assessing soil constituents and labile soil organic carbon by mid-infrared photoacoustic spectroscopy publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2014.06.022 – volume: 130 start-page: 1 year: 2016 ident: 10.1016/j.geoderma.2018.10.034_bb0015 article-title: The energetic and chemical signatures of persistent soil organic matter publication-title: Biogeochemistry doi: 10.1007/s10533-016-0246-0 – volume: 35 start-page: 1231 year: 2003 ident: 10.1016/j.geoderma.2018.10.034_bb0070 article-title: Hot-water extractable carbon in soils: a sensitive measurement for determining impacts of fertilisation, grazing and cultivation publication-title: Soil Biol. Biochem. doi: 10.1016/S0038-0717(03)00186-X |
SSID | ssj0017020 |
Score | 2.5665216 |
Snippet | Soil organic matter (SOM) is important for maintaining soil structural stability (SSS). This study quantified the influence of soil organic carbon (SOC) and... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 834 |
SubjectTerms | clay clay fraction crop rotation dispersibility fallow grasses Hot water-extractable carbon long term experiments minerals Permanganate oxidizable carbon photoacoustic spectroscopy silt loam soils Soil management Soil organic carbon Soil structural stability spring stabilizers tillage |
Title | Relating soil C and organic matter fractions to soil structural stability |
URI | https://dx.doi.org/10.1016/j.geoderma.2018.10.034 https://www.proquest.com/docview/2220868563 |
Volume | 337 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA9jXvQgfuL8GBG8dmuXtGmOYyibwk4OditJk4yN2Q03D178232vaUUF2cFbGpJSXl7fB_m93yPkLoytdFGIsIrYBpz3dKBDmwbMSs1TFQvuSpTvOBlO-OM0njbIoK6FQVhlZfu9TS-tdTXTraTZXc_nWOMbJQLcESglNsdDO8y5QC3vfHzBPCIRVtSMURLg6m9Vwgs4I2w4VvIPRWkHUV6M_-Wgfpnq0v88HJHDKnCkff9tx6RhixNy0J-9VuQZ9pSMPLKtmNHNar6kA6oKQ33bppy-lESa1L36SoYN3a78Ms8gi-wbMPSs3e9nZPJw_zwYBlWrhCBnkm2D2AjtZKJlrCxTkROpTp20oVMwhKQjD41mSijtktxJ7gQTumdNqA1kTJinnpNmsSrsBaEQL_SMiHKTgOdX2IiDGZtwxY3i2Kq4ReJaPlle8YhjO4tlVgPGFlkt1wzlivMg1xbpfu1beyaNnTtkLf7sh05kYO537r2tzyuDHwZvQVRhV2-bDAIiSOPSOGGX_3j_FdmHJ-nRaNekCUdlbyA82ep2qX9tstcfPQ3Hn3RA5ac |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9wwEB3xcSgcKqAgaAsYqT2GTWInjg89ID60C5QTSNxcO7ZXiyCL2K0qLv1T_EHGsYNoJcQBcYuc2IqeJzNj5c0bgG9pYYXLUk-rKGzCWK4TndoqoVZoVqmCM9eyfM_K_gU7viwuZ-Chq4XxtMro-4NPb711HOlFNHu3o5Gv8c1KjuEIjdI3x8sjs_LE3v_Bc9vkx-AAN_l7nh8dnu_3k9haIKmpoNOkMFw7UWpRKEtV5nilKyds6hReYpJep0ZTxZV2Ze0Ec5xynVuTaoMnDH-uw3VnYZ6hu_BtE3b_PvFKMp5GLcisTPzrPStLvkKj8B3OWsGjrNr1tDLKXoqI_8WGNuAdLcHHmKmSvQDGMszYZgUW94Z3Ua3DfoJBoNI1QzIZj67JPlGNIaFPVE1uWuVO4u5C6cSETMfhsSBZ6-U-8DLIhN-vwsW7ALgGc824setAMEHJDc9qU2KqoXznD2psyRQzivneyBtQdPjIOgqX-_4Z17JjqF3JDlfpcfXjiOsG9J7m3QbpjldniA5--Y8RSowvr87d6fZL4hfqf7uoxo5_TyRmYHhurIqSfn7D-tvwoX_-81SeDs5OvsAC3hGBCvcV5nDb7CbmRlO91doigV_vbfyPQnkjMA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Relating+soil+C+and+organic+matter+fractions+to+soil+structural+stability&rft.jtitle=Geoderma&rft.au=Jensen%2C+Johannes+L&rft.au=Schj%C3%B8nning%2C+P&rft.au=Watts%2C+Christopher+W&rft.au=Christensen%2C+Bent+T&rft.date=2019-03-01&rft.issn=0016-7061&rft.volume=337+p.834-843&rft.spage=834&rft.epage=843&rft_id=info:doi/10.1016%2Fj.geoderma.2018.10.034&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7061&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7061&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7061&client=summon |