Field experiment testing of a low-cost model predictive controller (MPC) for building heating systems and analysis of phase change material (PCM) integration

Model Predictive Control (MPC) emerges as a promising solution to address the substantial greenhouse gas emissions from the building sector. By employing advanced control strategies, such as MPC, for peak energy shifting, there is a significant potential to enhance energy efficiency and reduce emiss...

Full description

Saved in:
Bibliographic Details
Published inApplied energy Vol. 360; p. 122750
Main Authors Wei, Zhichen, Calautit, John Kaiser
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 15.04.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Model Predictive Control (MPC) emerges as a promising solution to address the substantial greenhouse gas emissions from the building sector. By employing advanced control strategies, such as MPC, for peak energy shifting, there is a significant potential to enhance energy efficiency and reduce emissions through effective demand response within a smart grid. Although MPC has been the subject of extensive research, the practical implementation of cost-effective and easily deployable solutions in buildings remains limited. This study proposes a cost-effective MPC approach, employing the Internet of Things (IoT) and dynamic pricing. The control strategy, developed in MATLAB, is locally deployed on Raspberry Pi hardware via WiFi. The proposed MPC was tested in a controlled environment at the University of Nottingham, UK, where it regulated a radiator heating device to maintain indoor comfort in response to dynamic hourly electricity prices, using real-time indoor temperature feedback. The results confirmed the proposed MPC's accuracy in predicting indoor temperature responses and controlling indoor temperature within setpoints over a typical winter week. Performance analysis further revealed that the proposed MPC strategy resulted in a 20% electricity cost reduction compared to a conventional control strategy. Additionally, alongside the proposed MPC strategy, a Phase Change Material (PCM) wallboard system was integrated into a co-simulation platform. The developed PCM wallboard model underwent a verification and validation process, utilizing both numerical simulations and experimental data. The results demonstrate that the proposed MPC-controlled PCM wallboard system saved 35% on electricity cost compared with the original case study room. This study provides valuable insights into the development of intelligent localized demand response control for the built environment, offering a range of choices for IoT equipment. [Display omitted] •Proposed low-cost, IoT-based model predictive control (MPC) strategy for buildings.•MPC strategy implemented in real-world settings using Raspberry Pi hardware.•Integrated PCM wallboard system, achieving 35% electricity cost savings.•Co-simulation platform for interactive modelling of MPC and PCM-integrated buildings.•Peak energy shifting using MPC in PCM-integrated buildings.
AbstractList Model Predictive Control (MPC) emerges as a promising solution to address the substantial greenhouse gas emissions from the building sector. By employing advanced control strategies, such as MPC, for peak energy shifting, there is a significant potential to enhance energy efficiency and reduce emissions through effective demand response within a smart grid. Although MPC has been the subject of extensive research, the practical implementation of cost-effective and easily deployable solutions in buildings remains limited. This study proposes a cost-effective MPC approach, employing the Internet of Things (IoT) and dynamic pricing. The control strategy, developed in MATLAB, is locally deployed on Raspberry Pi hardware via WiFi. The proposed MPC was tested in a controlled environment at the University of Nottingham, UK, where it regulated a radiator heating device to maintain indoor comfort in response to dynamic hourly electricity prices, using real-time indoor temperature feedback. The results confirmed the proposed MPC's accuracy in predicting indoor temperature responses and controlling indoor temperature within setpoints over a typical winter week. Performance analysis further revealed that the proposed MPC strategy resulted in a 20% electricity cost reduction compared to a conventional control strategy. Additionally, alongside the proposed MPC strategy, a Phase Change Material (PCM) wallboard system was integrated into a co-simulation platform. The developed PCM wallboard model underwent a verification and validation process, utilizing both numerical simulations and experimental data. The results demonstrate that the proposed MPC-controlled PCM wallboard system saved 35% on electricity cost compared with the original case study room. This study provides valuable insights into the development of intelligent localized demand response control for the built environment, offering a range of choices for IoT equipment.
Model Predictive Control (MPC) emerges as a promising solution to address the substantial greenhouse gas emissions from the building sector. By employing advanced control strategies, such as MPC, for peak energy shifting, there is a significant potential to enhance energy efficiency and reduce emissions through effective demand response within a smart grid. Although MPC has been the subject of extensive research, the practical implementation of cost-effective and easily deployable solutions in buildings remains limited. This study proposes a cost-effective MPC approach, employing the Internet of Things (IoT) and dynamic pricing. The control strategy, developed in MATLAB, is locally deployed on Raspberry Pi hardware via WiFi. The proposed MPC was tested in a controlled environment at the University of Nottingham, UK, where it regulated a radiator heating device to maintain indoor comfort in response to dynamic hourly electricity prices, using real-time indoor temperature feedback. The results confirmed the proposed MPC's accuracy in predicting indoor temperature responses and controlling indoor temperature within setpoints over a typical winter week. Performance analysis further revealed that the proposed MPC strategy resulted in a 20% electricity cost reduction compared to a conventional control strategy. Additionally, alongside the proposed MPC strategy, a Phase Change Material (PCM) wallboard system was integrated into a co-simulation platform. The developed PCM wallboard model underwent a verification and validation process, utilizing both numerical simulations and experimental data. The results demonstrate that the proposed MPC-controlled PCM wallboard system saved 35% on electricity cost compared with the original case study room. This study provides valuable insights into the development of intelligent localized demand response control for the built environment, offering a range of choices for IoT equipment. [Display omitted] •Proposed low-cost, IoT-based model predictive control (MPC) strategy for buildings.•MPC strategy implemented in real-world settings using Raspberry Pi hardware.•Integrated PCM wallboard system, achieving 35% electricity cost savings.•Co-simulation platform for interactive modelling of MPC and PCM-integrated buildings.•Peak energy shifting using MPC in PCM-integrated buildings.
ArticleNumber 122750
Author Wei, Zhichen
Calautit, John Kaiser
Author_xml – sequence: 1
  givenname: Zhichen
  surname: Wei
  fullname: Wei, Zhichen
  email: zhichen.wei@nottingham.ac.uk
– sequence: 2
  givenname: John Kaiser
  surname: Calautit
  fullname: Calautit, John Kaiser
BookMark eNqFkc1uGyEURlGVSHWSvkLF0lmMy8_MeJC6aGU1baVEyaJdIwIXG4uBKeCkfpi-a3GcbLLJAsHino-r75yhkxADIPSRkgUltP-0XagJAqT1fsEIaxeUsWVH3qEZHZasEZQOJ2hGOOkb1lPxHp3lvCWEMMrIDP27cuANhr8TJDdCKLhALi6scbRYYR8fGx1zwWM04PGUwDhd3ANgHUNJ0XtIeH5zt7rENiZ8v3PeHOANqKeQvM8FxoxVMPUov88uH5Knjco1Y6PCGvCoSv1ceTy_W91cYhcKrFPlY7hAp1b5DB-e73P0--rbr9WP5vr2-8_V1-tGc8FL05FBt6JdKrZUhuv7YeiNHaw29SmIMEb0wtKBdB0lrRKcWjLwwXLbWmUM0fwczY-5U4p_drUAObqswXsVIO6y5LTjjLQ9E3X083FUp5hzAiu1K0_LlqScl5TIgxW5lS9W5MGKPFqpeP8Kn2rvKu3fBr8cQag9PDhIMmsHQVchCXSRJrq3Iv4D7_-wLQ
CitedBy_id crossref_primary_10_1016_j_renene_2025_122460
crossref_primary_10_3390_en17143371
crossref_primary_10_1016_j_buildenv_2024_112248
crossref_primary_10_1016_j_enbuild_2024_114650
crossref_primary_10_1016_j_est_2024_114581
crossref_primary_10_1016_j_energy_2025_135660
Cites_doi 10.1016/j.solmat.2013.09.037
10.1016/j.enbuild.2016.03.059
10.1016/j.enbuild.2010.10.022
10.1007/s12273-023-1067-4
10.1016/j.autcon.2016.01.002
10.1016/j.apenergy.2021.116477
10.1109/TCST.2015.2415411
10.1016/j.ces.2011.07.052
10.1016/j.autcon.2022.104339
10.1016/j.autcon.2021.104038
10.1016/j.apenergy.2020.116348
10.1016/j.enbuild.2022.112285
10.1016/j.autcon.2023.104792
10.1016/j.apenergy.2021.118491
10.1016/j.tca.2022.179326
10.1016/j.enbuild.2005.11.002
10.1016/j.buildenv.2018.12.020
10.1109/TAC.2011.2176389
10.1016/j.enbuild.2016.01.030
10.1016/j.autcon.2021.103919
10.1016/j.buildenv.2021.107709
10.1016/j.apenergy.2022.120023
10.1016/j.compchemeng.2017.10.038
10.1016/j.energy.2023.126791
10.1016/j.applthermaleng.2019.02.107
10.1016/j.enbuild.2006.09.013
10.1016/j.enpol.2015.06.016
10.1016/j.enbuild.2012.01.016
10.1016/j.renene.2019.05.124
10.1016/j.enbuild.2022.112514
10.1016/j.enbuild.2022.111983
10.1016/j.solener.2021.05.077
10.1016/j.compag.2020.105953
10.1016/j.enbuild.2020.110189
10.1016/j.apenergy.2021.117227
10.1016/j.jclepro.2022.130561
10.1016/j.apenergy.2016.11.118
10.1051/e3sconf/202236212004
10.1016/j.apenergy.2021.117112
10.1016/j.enbuild.2016.05.064
10.1016/j.asoc.2020.106695
10.1016/j.apenergy.2020.116306
10.1016/j.enbuild.2022.112301
10.1016/j.apenergy.2011.03.009
10.1016/j.autcon.2017.12.017
10.1016/j.enbuild.2021.110966
10.1016/j.apenergy.2020.115807
10.1016/j.enbuild.2016.04.007
10.1016/j.oneear.2023.10.020
10.1016/j.apenergy.2020.115661
10.1016/j.buildenv.2021.107952
10.1016/j.enbuild.2018.11.015
10.1016/j.rser.2021.110969
ContentType Journal Article
Copyright 2024 The Author(s)
Copyright_xml – notice: 2024 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.apenergy.2024.122750
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1872-9118
ExternalDocumentID 10_1016_j_apenergy_2024_122750
S0306261924001338
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
JJJVA
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
~02
~G-
AAHBH
AAQXK
AATTM
AAXKI
AAYOK
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
SSH
WUQ
ZY4
7S9
L.6
ID FETCH-LOGICAL-c393t-508c4947a27ad3cb886df8fcdcb8909dd969f18055104a931f0838f3f4fadd0c3
IEDL.DBID .~1
ISSN 0306-2619
IngestDate Fri Jul 11 08:32:38 EDT 2025
Thu Apr 24 23:13:17 EDT 2025
Tue Jul 01 04:01:22 EDT 2025
Sat Apr 13 16:39:18 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Phase change material (PCM)
Building energy storage system
Demand response
Raspberry Pi
Experimental model predictive control (MPC)
Internet of things (IoT)
Language English
License This is an open access article under the CC BY license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c393t-508c4947a27ad3cb886df8fcdcb8909dd969f18055104a931f0838f3f4fadd0c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0306261924001338
PQID 3153204629
PQPubID 24069
ParticipantIDs proquest_miscellaneous_3153204629
crossref_citationtrail_10_1016_j_apenergy_2024_122750
crossref_primary_10_1016_j_apenergy_2024_122750
elsevier_sciencedirect_doi_10_1016_j_apenergy_2024_122750
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-04-15
PublicationDateYYYYMMDD 2024-04-15
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-15
  day: 15
PublicationDecade 2020
PublicationTitle Applied energy
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Wijesuriya, Booten, Bianchi, Kishore (bb0085) 2022; 339
Martín-Garín, Millán-García, Baïri, Millán-Medel, Sala-Lizarraga (bb0135) 2018; 87
Weber, Oei, Linder, Böhm, Leistner, Sawodny (bb0315) 2022; 270
Calautit, Yong (bb0020) 2023; 6
Khodabakhshian, Feng, Börjesson, Lindgärde, Wikander (bb0055) 2017; 188
Hu, Xiao, Jørgensen, Li (bb0030) 2019; 153
Yang, Oliver Gao, You (bb0070) 2022; 326
Krupa, Camara, Alvarado, Limon, Alamo (bb0140) 2021
Wei, Calautit (bb0050) 2023; 269
Kishore, Bianchi, Booten, Vidal, Jackson (bb0060) 2021; 283
Bünning (bb0150) 2022; 310
Široký, Oldewurtel, Cigler, Prívara (bb0155) 2011; 88
Matlab (bb0200) 2012
Prívara, Široký, Ferkl, Cigler (bb0260) 2011; 43
Shen, Diamond, Gu, Boyd (bb0285) 2016, December
Lofberg (bb0230) 2004
Pan, Huang, Wu (bb0305) 2007; 39
Ahmad, Bontemps, Sallée, Quenard (bb0250) 2006; 38
Hannon (bb0015) 2015; 85
Yao, Shekhar (bb0145) 2021; 200
Zheng, Hsu, Pasos, Smith, Wood (bb0170) 2022; 261
Halhoul Merabet, Essaaidi, Ben Haddou, Qolomany, Qadir, Anan (bb0130) 2021; 144
Jáñez Morán, Profaizer, Herrando Zapater, Andérez Valdavida, Zabalza Bribián (bb0280) 2016; 127
Van Rossum (bb0205) 2007, June; 41
McKinney (bb0290) 2012
Chou, Ngo (bb0095) 2016; 72
Baskar, Chellapandian (bb0105) 2022; 276
Barbón, Fernández-Rubiera, Martínez-Valledor, Pérez-Fernández, Bayón (bb0180) 2021; 285
Ahmed (bb0195) 2021; 224
Sturzenegger, Gyalistras, Morari, Smith (bb0040) 2016; 24
Li, Li, Wang (bb0125) 2021; 132
Mouli-Castillo, Heinemann, Edlmann (bb0005) 2021; 283
Tuoi, Van Toan, Ono (bb0100) 2022; 311
U. MET Office (bb0210) 2023
Qu, Zhou, Xue, Cui (bb0080) 2021; 241
Pedersen, Hedegaard, Kristensen, Gadgaard, Petersen (bb0270) 2019; 183
Abioye, Abidin, Aman, Mahmud, Buyamin (bb0185) 2021; 181
Langer, Volling (bb0320) 2020; 278
Ahmad, Mourshed, Mundow, Sisinni, Rezgui (bb0275) 2016; 120
Mocanu, Nguyen, Kling, Gibescu (bb0160) 2016; 116
Knudsen, Georges, Skeie, Petersen (bb0035) 2021; 298
Georges, Thalfeldt, Skreiberg, Fornari (bb0265) 2019; 149
Sharmila, Sakthi, Geethanjali, Sagadevan (bb0215) 2017
Jayalath, Aye, Mendis, Ngo (bb0065) 2016; 121
Bixby (bb0235) 2007; 41
Acha, Vieira, Bird, Shah (bb0120) 2022; 271
de Gracia, Tarragona, Crespo, Fernández (bb0165) 2020; 279
Ma, Qin, Salsbury, Xu (bb0025) 2012; 67
M. Integrated (bb0190) 2023
Wang (bb0335) 2021; 194
Wei, Calautit (bb0240) 2023; 16
Noel, Jannot, Métivier, Sgreva (bb0255) 2022; 716
Remund, Müller, Schmutz, Graf (bb0245) 2020
Thilker, Bacher, Madsen (bb0310) 2022; 362
Klein (bb0225) 2017
Huang, Liu, Huang, Onstein, Merschbrock (bb0110) 2023; 149
Nord Pool (bb0220) 2023
Ecowitt (bb0175) 2023
Guyot, Giraud, Simon, Corgier, Marvillet, Tremeac (bb0300) 2020; 223
Yang (bb0045) 2021; 297
Richter, Jones, Morari (bb0295) 2011; 57
Jeoung, Jung, Hong, Choi (bb0090) 2022; 140
Williams, Elghali, Wheeler, France (bb0010) 2012; 48
Yu, Jeong, Chung, Kim (bb0350) 2014; 120
Rawlings, Patel, Risbeck, Maravelias, Wenzel, Turney (bb0330) 2018; 114
Wang, Lu, Wu, Zhang (bb0075) 2020; 145
Fredriksson, Sezer, Angelakis, Gundlegård (bb0115) 2022; 134
Dou, Kaszubowski Lopes, Rockett, Hathway, Saber (bb0325) 2020; 97
Ahmed (10.1016/j.apenergy.2024.122750_bb0195) 2021; 224
Klein (10.1016/j.apenergy.2024.122750_bb0225) 2017
Prívara (10.1016/j.apenergy.2024.122750_bb0260) 2011; 43
M. Integrated (10.1016/j.apenergy.2024.122750_bb0190)
Pedersen (10.1016/j.apenergy.2024.122750_bb0270) 2019; 183
Kishore (10.1016/j.apenergy.2024.122750_bb0060) 2021; 283
Wijesuriya (10.1016/j.apenergy.2024.122750_bb0085) 2022; 339
Široký (10.1016/j.apenergy.2024.122750_bb0155) 2011; 88
Shen (10.1016/j.apenergy.2024.122750_bb0285) 2016
Guyot (10.1016/j.apenergy.2024.122750_bb0300) 2020; 223
Martín-Garín (10.1016/j.apenergy.2024.122750_bb0135) 2018; 87
Thilker (10.1016/j.apenergy.2024.122750_bb0310) 2022; 362
Pan (10.1016/j.apenergy.2024.122750_bb0305) 2007; 39
de Gracia (10.1016/j.apenergy.2024.122750_bb0165) 2020; 279
Hu (10.1016/j.apenergy.2024.122750_bb0030) 2019; 153
Ma (10.1016/j.apenergy.2024.122750_bb0025) 2012; 67
Ahmad (10.1016/j.apenergy.2024.122750_bb0250) 2006; 38
Baskar (10.1016/j.apenergy.2024.122750_bb0105) 2022; 276
Ahmad (10.1016/j.apenergy.2024.122750_bb0275) 2016; 120
Remund (10.1016/j.apenergy.2024.122750_bb0245) 2020
Krupa (10.1016/j.apenergy.2024.122750_bb0140) 2021
Fredriksson (10.1016/j.apenergy.2024.122750_bb0115) 2022; 134
Van Rossum (10.1016/j.apenergy.2024.122750_bb0205) 2007; 41
Sharmila (10.1016/j.apenergy.2024.122750_bb0215) 2017
Mouli-Castillo (10.1016/j.apenergy.2024.122750_bb0005) 2021; 283
Sturzenegger (10.1016/j.apenergy.2024.122750_bb0040) 2016; 24
Wei (10.1016/j.apenergy.2024.122750_bb0240) 2023; 16
Li (10.1016/j.apenergy.2024.122750_bb0125) 2021; 132
Yao (10.1016/j.apenergy.2024.122750_bb0145) 2021; 200
Wang (10.1016/j.apenergy.2024.122750_bb0335) 2021; 194
McKinney (10.1016/j.apenergy.2024.122750_bb0290) 2012
Acha (10.1016/j.apenergy.2024.122750_bb0120) 2022; 271
Bünning (10.1016/j.apenergy.2024.122750_bb0150) 2022; 310
Matlab (10.1016/j.apenergy.2024.122750_bb0200) 2012
Nord Pool (10.1016/j.apenergy.2024.122750_bb0220)
Bixby (10.1016/j.apenergy.2024.122750_bb0235) 2007; 41
Ecowitt (10.1016/j.apenergy.2024.122750_bb0175)
Dou (10.1016/j.apenergy.2024.122750_bb0325) 2020; 97
Calautit (10.1016/j.apenergy.2024.122750_bb0020) 2023; 6
Qu (10.1016/j.apenergy.2024.122750_bb0080) 2021; 241
Zheng (10.1016/j.apenergy.2024.122750_bb0170) 2022; 261
Rawlings (10.1016/j.apenergy.2024.122750_bb0330) 2018; 114
Hannon (10.1016/j.apenergy.2024.122750_bb0015) 2015; 85
Mocanu (10.1016/j.apenergy.2024.122750_bb0160) 2016; 116
Khodabakhshian (10.1016/j.apenergy.2024.122750_bb0055) 2017; 188
Huang (10.1016/j.apenergy.2024.122750_bb0110) 2023; 149
Richter (10.1016/j.apenergy.2024.122750_bb0295) 2011; 57
Barbón (10.1016/j.apenergy.2024.122750_bb0180) 2021; 285
Georges (10.1016/j.apenergy.2024.122750_bb0265) 2019; 149
Halhoul Merabet (10.1016/j.apenergy.2024.122750_bb0130) 2021; 144
Yu (10.1016/j.apenergy.2024.122750_bb0350) 2014; 120
Yang (10.1016/j.apenergy.2024.122750_bb0045) 2021; 297
Knudsen (10.1016/j.apenergy.2024.122750_bb0035) 2021; 298
Noel (10.1016/j.apenergy.2024.122750_bb0255) 2022; 716
Williams (10.1016/j.apenergy.2024.122750_bb0010) 2012; 48
Wang (10.1016/j.apenergy.2024.122750_bb0075) 2020; 145
Tuoi (10.1016/j.apenergy.2024.122750_bb0100) 2022; 311
U. MET Office (10.1016/j.apenergy.2024.122750_bb0210)
Chou (10.1016/j.apenergy.2024.122750_bb0095) 2016; 72
Yang (10.1016/j.apenergy.2024.122750_bb0070) 2022; 326
Jáñez Morán (10.1016/j.apenergy.2024.122750_bb0280) 2016; 127
Weber (10.1016/j.apenergy.2024.122750_bb0315) 2022; 270
Abioye (10.1016/j.apenergy.2024.122750_bb0185) 2021; 181
Wei (10.1016/j.apenergy.2024.122750_bb0050) 2023; 269
Jayalath (10.1016/j.apenergy.2024.122750_bb0065) 2016; 121
Lofberg (10.1016/j.apenergy.2024.122750_bb0230) 2004
Jeoung (10.1016/j.apenergy.2024.122750_bb0090) 2022; 140
Langer (10.1016/j.apenergy.2024.122750_bb0320) 2020; 278
References_xml – volume: 241
  year: 2021
  ident: bb0080
  article-title: Multi-factor analysis on thermal comfort and energy saving potential for PCM-integrated buildings in summer
  publication-title: Energ Buildings
– volume: 114
  start-page: 89
  year: 2018
  end-page: 98
  ident: bb0330
  article-title: Economic MPC and real-time decision making with application to large-scale HVAC energy systems
  publication-title: Comp Chem Eng
– volume: 188
  start-page: 652
  year: 2017
  end-page: 671
  ident: bb0055
  article-title: Reducing auxiliary energy consumption of heavy trucks by onboard prediction and real-time optimization
  publication-title: Appl Energy
– volume: 120
  start-page: 85
  year: 2016
  end-page: 102
  ident: bb0275
  article-title: Building energy metering and environmental monitoring – a state-of-the-art review and directions for future research
  publication-title: Energ Buildings
– volume: 276
  year: 2022
  ident: bb0105
  article-title: Experimental and finite element analysis on the developed real-time form stable PCM based roof system for thermal energy storage applications
  publication-title: Energ Buildings
– volume: 285
  year: 2021
  ident: bb0180
  article-title: Design and construction of a solar tracking system for small-scale linear Fresnel reflector with three movements
  publication-title: Appl Energy
– volume: 87
  start-page: 201
  year: 2018
  end-page: 214
  ident: bb0135
  article-title: Environmental monitoring system based on an open source platform and the internet of things for a building energy retrofit
  publication-title: Autom Construct
– volume: 72
  start-page: 247
  year: 2016
  end-page: 257
  ident: bb0095
  article-title: Smart grid data analytics framework for increasing energy savings in residential buildings
  publication-title: Autom Construct
– volume: 132
  year: 2021
  ident: bb0125
  article-title: An event-driven multi-agent based distributed optimal control strategy for HVAC systems in IoT-enabled smart buildings
  publication-title: Autom Construct
– volume: 149
  year: 2023
  ident: bb0110
  article-title: BIM and IoT data fusion: the data process model perspective
  publication-title: Autom Construct
– volume: 41
  start-page: 159
  year: 2007
  end-page: 178
  ident: bb0235
  article-title: The gurobi optimizer
  publication-title: Transp Research Part B
– volume: 362
  start-page: 12004
  year: 2022
  ident: bb0310
  article-title: Learnings from experiments with MPC for heating of older school building
  publication-title: E3S Web Conf
– start-page: 284
  year: 2004
  end-page: 289
  ident: bb0230
  article-title: YALMIP: A toolbox for modeling and optimization in MATLAB
  publication-title: 2004 IEEE International Conference on Robotics and Automation (IEEE Cat. No. 04CH37508)
– volume: 57
  start-page: 1391
  year: 2011
  end-page: 1403
  ident: bb0295
  article-title: Computational complexity certification for real-time MPC with input constraints based on the fast gradient method
  publication-title: IEEE Trans Automat Contr
– volume: 88
  start-page: 3079
  year: 2011
  end-page: 3087
  ident: bb0155
  article-title: Experimental analysis of model predictive control for an energy efficient building heating system
  publication-title: Appl Energy
– volume: 67
  start-page: 92
  year: 2012
  end-page: 100
  ident: bb0025
  article-title: Demand reduction in building energy systems based on economic model predictive control
  publication-title: Chem Eng Sci
– year: 2020
  ident: bb0245
  article-title: Meteonorm version 8
  publication-title: METEOTEST (www.meteotest.com)
– volume: 16
  start-page: 1915
  year: 2023
  end-page: 1931
  ident: bb0240
  article-title: Evaluation of model predictive control (MPC) of solar thermal heating system with thermal energy storage for buildings with highly variable occupancy levels
  publication-title: Build Simulat
– volume: 297
  year: 2021
  ident: bb0045
  article-title: Model predictive control for integrated control of air-conditioning and mechanical ventilation, lighting and shading systems
  publication-title: Appl Energy
– volume: 339
  year: 2022
  ident: bb0085
  article-title: Building energy efficiency and load flexibility optimization using phase change materials under futuristic grid scenario
  publication-title: J Clean Prod
– volume: 224
  start-page: 175
  year: 2021
  end-page: 183
  ident: bb0195
  article-title: Computer vision and photosensor based hybrid control strategy for a two-axis solar tracker - daylighting application
  publication-title: Solar Energy
– volume: 279
  year: 2020
  ident: bb0165
  article-title: Smart control of dynamic phase change material wall system
  publication-title: Appl Energy
– volume: 298
  year: 2021
  ident: bb0035
  article-title: Experimental test of a black-box economic model predictive control for residential space heating
  publication-title: Appl Energy
– volume: 311
  year: 2022
  ident: bb0100
  article-title: Self-powered wireless sensing system driven by daily ambient temperature energy harvesting
  publication-title: Appl Energy
– volume: 38
  start-page: 673
  year: 2006
  end-page: 681
  ident: bb0250
  article-title: Thermal testing and numerical simulation of a prototype cell using light wallboards coupling vacuum isolation panels and phase change material
  publication-title: Energ Buildings
– volume: 85
  start-page: 369
  year: 2015
  end-page: 375
  ident: bb0015
  article-title: Raising the temperature of the UK heat pump market: learning lessons from Finland
  publication-title: Energy Policy
– year: 2023
  ident: bb0175
  article-title: ECOWITT GW1100 Mannual
– volume: 181
  year: 2021
  ident: bb0185
  article-title: A model predictive controller for precision irrigation using discrete lagurre networks
  publication-title: Comp Electron Agric
– volume: 120
  start-page: 549
  year: 2014
  end-page: 554
  ident: bb0350
  article-title: Bio-based PCM/carbon nanomaterials composites with enhanced thermal conductivity
  publication-title: Solar Energy Mater Solar Cells
– volume: 48
  start-page: 112
  year: 2012
  end-page: 126
  ident: bb0010
  article-title: Climate change influence on building lifecycle greenhouse gas emissions: case study of a UK mixed-use development
  publication-title: Energ Buildings
– volume: 716
  year: 2022
  ident: bb0255
  article-title: Thermal characterization of polyethylene glycol 600 in liquid and solid phase and across the phase transition
  publication-title: Thermochimica Acta
– volume: 223
  year: 2020
  ident: bb0300
  article-title: Building energy model calibration: a detailed case study using sub-hourly measured data
  publication-title: Energ Buildings
– volume: 144
  year: 2021
  ident: bb0130
  article-title: Intelligent building control systems for thermal comfort and energy-efficiency: a systematic review of artificial intelligence-assisted techniques
  publication-title: Renew Sustain Energy Rev
– year: 2017
  ident: bb0225
  article-title: TRNSYS 18: A transient system simulation program
– volume: 39
  start-page: 651
  year: 2007
  end-page: 657
  ident: bb0305
  article-title: Calibrated building energy simulation and its application in a high-rise commercial building in Shanghai
  publication-title: Energ Buildings
– volume: 116
  start-page: 646
  year: 2016
  end-page: 655
  ident: bb0160
  article-title: Unsupervised energy prediction in a smart grid context using reinforcement cross-building transfer learning
  publication-title: Energ Buildings
– volume: 121
  start-page: 152
  year: 2016
  end-page: 158
  ident: bb0065
  article-title: Effects of phase change material roof layers on thermal performance of a residential building in Melbourne and Sydney
  publication-title: Energ Buildings
– volume: 41
  start-page: 1
  year: 2007, June
  end-page: 36
  ident: bb0205
  article-title: Python programming language
  publication-title: USENIX Annual Technical Conference
– volume: 283
  year: 2021
  ident: bb0060
  article-title: Enhancing building energy performance by effectively using phase change material and dynamic insulation in walls
  publication-title: Appl Energy
– volume: 153
  start-page: 316
  year: 2019
  end-page: 329
  ident: bb0030
  article-title: Price-responsive model predictive control of floor heating systems for demand response using building thermal mass
  publication-title: Appl Therm Eng
– volume: 97
  year: 2020
  ident: bb0325
  article-title: Model predictive control of non-domestic heating using genetic programming dynamic models
  publication-title: Appl Soft Comput
– year: 2023
  ident: bb0190
  article-title: Technical data
– volume: 270
  year: 2022
  ident: bb0315
  article-title: Model predictive approaches for cost-efficient building climate control with seasonal energy storage
  publication-title: Energ Buildings
– volume: 283
  year: 2021
  ident: bb0005
  article-title: Mapping geological hydrogen storage capacity and regional heating demands: an applied UK case study
  publication-title: Appl Energy
– volume: 24
  start-page: 1
  year: 2016
  end-page: 12
  ident: bb0040
  article-title: Model predictive climate control of a Swiss office building: implementation, results, and cost-benefit analysis
  publication-title: IEEE Trans Control Syst Technol
– year: 2021
  ident: bb0140
  article-title: Real-time implementation of MPC for tracking in embedded systems: application to a two-wheeled inverted pendulum
  publication-title: arXiv.org
– year: 2023
  ident: bb0210
  article-title: Nottingham weather forecast
– start-page: 1009
  year: 2016, December
  end-page: 1014
  ident: bb0285
  article-title: Disciplined convex-concave programming
  publication-title: 2016 IEEE 55th Conference on Decision and Control (CDC)
– volume: 6
  start-page: 1430
  year: 2023
  end-page: 1434
  ident: bb0020
  article-title: Fad or future? Navigating challenges and proposing holistic solutions in sustainable building design
  publication-title: One Earth
– volume: 149
  start-page: 169
  year: 2019
  end-page: 181
  ident: bb0265
  article-title: Validation of a transient zonal model to predict the detailed indoor thermal environment: case of electric radiators and wood stoves
  publication-title: Build Environ
– volume: 183
  start-page: 772
  year: 2019
  end-page: 784
  ident: bb0270
  article-title: The effect of including hydronic radiator dynamics in model predictive control of space heating
  publication-title: Energ Buildings
– volume: 127
  start-page: 128
  year: 2016
  end-page: 137
  ident: bb0280
  article-title: Information and communications technologies (ICTs) for energy efficiency in buildings: review and analysis of results from EU pilot projects
  publication-title: Energ Buildings
– volume: 326
  year: 2022
  ident: bb0070
  article-title: Model predictive control in phase-change-material-wallboard-enhanced building energy management considering electricity price dynamics
  publication-title: Appl Energy
– volume: 261
  year: 2022
  ident: bb0170
  article-title: A progressive comparison of the novel pulse and conventional steady state methods of measuring the airtightness of buildings
  publication-title: Energ Buildings
– start-page: 301
  year: 2017
  end-page: 305
  ident: bb0215
  article-title: Regular expression based pattern matching for gene expression data to identify the abnormality gnome
  publication-title: 2017 Second International Conference on Recent Trends and Challenges in Computational Models (ICRTCCM)
– volume: 145
  start-page: 52
  year: 2020
  end-page: 64
  ident: bb0075
  article-title: Parametric analysis of applying PCM wallboards for energy saving in high-rise lightweight buildings in Shanghai
  publication-title: Renew Energy
– volume: 271
  year: 2022
  ident: bb0120
  article-title: Modelling UK electricity regional costs for commercial buildings
  publication-title: Energ Buildings
– year: 2023
  ident: bb0220
  article-title: Day-ahead Prices in UK
– volume: 134
  year: 2022
  ident: bb0115
  article-title: Construction related urban disturbances: identification and linking with an IoT-model
  publication-title: Autom Construct
– year: 2012
  ident: bb0290
  article-title: Python for data analysis: Data wrangling with pandas
  publication-title: NumPy, and IPython
– volume: 269
  year: 2023
  ident: bb0050
  article-title: Predictive control of low-temperature heating system with passive thermal mass energy storage and photovoltaic system: impact of occupancy patterns and climate change
  publication-title: Energy (Oxford)
– volume: 310
  year: 2022
  ident: bb0150
  article-title: Physics-informed linear regression is competitive with two machine learning methods in residential building MPC
  publication-title: Appl Energy
– volume: 140
  year: 2022
  ident: bb0090
  article-title: Blockchain-based IoT system for personalized indoor temperature control
  publication-title: Autom Construct
– year: 2012
  ident: bb0200
  article-title: Matlab
– volume: 43
  start-page: 564
  year: 2011
  end-page: 572
  ident: bb0260
  article-title: Model predictive control of a building heating system: the first experience
  publication-title: Energ Buildings
– volume: 200
  year: 2021
  ident: bb0145
  article-title: State of the art review on model predictive control (MPC) in heating ventilation and air-conditioning (HVAC) field
  publication-title: Build Environ
– volume: 278
  year: 2020
  ident: bb0320
  article-title: An optimal home energy management system for modulating heat pumps and photovoltaic systems
  publication-title: Appl Energy
– volume: 194
  year: 2021
  ident: bb0335
  article-title: Thermal storage performance of building envelopes for nearly-zero energy buildings during cooling season in Western China: an experimental study
  publication-title: Build Environ
– volume: 120
  start-page: 549
  year: 2014
  ident: 10.1016/j.apenergy.2024.122750_bb0350
  article-title: Bio-based PCM/carbon nanomaterials composites with enhanced thermal conductivity
  publication-title: Solar Energy Mater Solar Cells
  doi: 10.1016/j.solmat.2013.09.037
– volume: 120
  start-page: 85
  year: 2016
  ident: 10.1016/j.apenergy.2024.122750_bb0275
  article-title: Building energy metering and environmental monitoring – a state-of-the-art review and directions for future research
  publication-title: Energ Buildings
  doi: 10.1016/j.enbuild.2016.03.059
– volume: 43
  start-page: 564
  issue: 2–3
  year: 2011
  ident: 10.1016/j.apenergy.2024.122750_bb0260
  article-title: Model predictive control of a building heating system: the first experience
  publication-title: Energ Buildings
  doi: 10.1016/j.enbuild.2010.10.022
– volume: 16
  start-page: 1915
  issue: 10
  year: 2023
  ident: 10.1016/j.apenergy.2024.122750_bb0240
  article-title: Evaluation of model predictive control (MPC) of solar thermal heating system with thermal energy storage for buildings with highly variable occupancy levels
  publication-title: Build Simulat
  doi: 10.1007/s12273-023-1067-4
– volume: 72
  start-page: 247
  year: 2016
  ident: 10.1016/j.apenergy.2024.122750_bb0095
  article-title: Smart grid data analytics framework for increasing energy savings in residential buildings
  publication-title: Autom Construct
  doi: 10.1016/j.autcon.2016.01.002
– volume: 285
  year: 2021
  ident: 10.1016/j.apenergy.2024.122750_bb0180
  article-title: Design and construction of a solar tracking system for small-scale linear Fresnel reflector with three movements
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2021.116477
– volume: 24
  start-page: 1
  issue: 1
  year: 2016
  ident: 10.1016/j.apenergy.2024.122750_bb0040
  article-title: Model predictive climate control of a Swiss office building: implementation, results, and cost-benefit analysis
  publication-title: IEEE Trans Control Syst Technol
  doi: 10.1109/TCST.2015.2415411
– volume: 67
  start-page: 92
  issue: 1
  year: 2012
  ident: 10.1016/j.apenergy.2024.122750_bb0025
  article-title: Demand reduction in building energy systems based on economic model predictive control
  publication-title: Chem Eng Sci
  doi: 10.1016/j.ces.2011.07.052
– volume: 140
  year: 2022
  ident: 10.1016/j.apenergy.2024.122750_bb0090
  article-title: Blockchain-based IoT system for personalized indoor temperature control
  publication-title: Autom Construct
  doi: 10.1016/j.autcon.2022.104339
– year: 2017
  ident: 10.1016/j.apenergy.2024.122750_bb0225
– volume: 134
  year: 2022
  ident: 10.1016/j.apenergy.2024.122750_bb0115
  article-title: Construction related urban disturbances: identification and linking with an IoT-model
  publication-title: Autom Construct
  doi: 10.1016/j.autcon.2021.104038
– volume: 283
  year: 2021
  ident: 10.1016/j.apenergy.2024.122750_bb0005
  article-title: Mapping geological hydrogen storage capacity and regional heating demands: an applied UK case study
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2020.116348
– volume: 270
  year: 2022
  ident: 10.1016/j.apenergy.2024.122750_bb0315
  article-title: Model predictive approaches for cost-efficient building climate control with seasonal energy storage
  publication-title: Energ Buildings
  doi: 10.1016/j.enbuild.2022.112285
– volume: 149
  year: 2023
  ident: 10.1016/j.apenergy.2024.122750_bb0110
  article-title: BIM and IoT data fusion: the data process model perspective
  publication-title: Autom Construct
  doi: 10.1016/j.autcon.2023.104792
– volume: 310
  year: 2022
  ident: 10.1016/j.apenergy.2024.122750_bb0150
  article-title: Physics-informed linear regression is competitive with two machine learning methods in residential building MPC
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2021.118491
– volume: 716
  year: 2022
  ident: 10.1016/j.apenergy.2024.122750_bb0255
  article-title: Thermal characterization of polyethylene glycol 600 in liquid and solid phase and across the phase transition
  publication-title: Thermochimica Acta
  doi: 10.1016/j.tca.2022.179326
– volume: 38
  start-page: 673
  issue: 6
  year: 2006
  ident: 10.1016/j.apenergy.2024.122750_bb0250
  article-title: Thermal testing and numerical simulation of a prototype cell using light wallboards coupling vacuum isolation panels and phase change material
  publication-title: Energ Buildings
  doi: 10.1016/j.enbuild.2005.11.002
– year: 2021
  ident: 10.1016/j.apenergy.2024.122750_bb0140
  article-title: Real-time implementation of MPC for tracking in embedded systems: application to a two-wheeled inverted pendulum
  publication-title: arXiv.org
– volume: 149
  start-page: 169
  year: 2019
  ident: 10.1016/j.apenergy.2024.122750_bb0265
  article-title: Validation of a transient zonal model to predict the detailed indoor thermal environment: case of electric radiators and wood stoves
  publication-title: Build Environ
  doi: 10.1016/j.buildenv.2018.12.020
– volume: 57
  start-page: 1391
  issue: 6
  year: 2011
  ident: 10.1016/j.apenergy.2024.122750_bb0295
  article-title: Computational complexity certification for real-time MPC with input constraints based on the fast gradient method
  publication-title: IEEE Trans Automat Contr
  doi: 10.1109/TAC.2011.2176389
– volume: 116
  start-page: 646
  year: 2016
  ident: 10.1016/j.apenergy.2024.122750_bb0160
  article-title: Unsupervised energy prediction in a smart grid context using reinforcement cross-building transfer learning
  publication-title: Energ Buildings
  doi: 10.1016/j.enbuild.2016.01.030
– volume: 132
  year: 2021
  ident: 10.1016/j.apenergy.2024.122750_bb0125
  article-title: An event-driven multi-agent based distributed optimal control strategy for HVAC systems in IoT-enabled smart buildings
  publication-title: Autom Construct
  doi: 10.1016/j.autcon.2021.103919
– volume: 194
  year: 2021
  ident: 10.1016/j.apenergy.2024.122750_bb0335
  article-title: Thermal storage performance of building envelopes for nearly-zero energy buildings during cooling season in Western China: an experimental study
  publication-title: Build Environ
  doi: 10.1016/j.buildenv.2021.107709
– volume: 326
  year: 2022
  ident: 10.1016/j.apenergy.2024.122750_bb0070
  article-title: Model predictive control in phase-change-material-wallboard-enhanced building energy management considering electricity price dynamics
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2022.120023
– volume: 114
  start-page: 89
  year: 2018
  ident: 10.1016/j.apenergy.2024.122750_bb0330
  article-title: Economic MPC and real-time decision making with application to large-scale HVAC energy systems
  publication-title: Comp Chem Eng
  doi: 10.1016/j.compchemeng.2017.10.038
– volume: 269
  year: 2023
  ident: 10.1016/j.apenergy.2024.122750_bb0050
  article-title: Predictive control of low-temperature heating system with passive thermal mass energy storage and photovoltaic system: impact of occupancy patterns and climate change
  publication-title: Energy (Oxford)
  doi: 10.1016/j.energy.2023.126791
– start-page: 301
  year: 2017
  ident: 10.1016/j.apenergy.2024.122750_bb0215
  article-title: Regular expression based pattern matching for gene expression data to identify the abnormality gnome
– volume: 153
  start-page: 316
  year: 2019
  ident: 10.1016/j.apenergy.2024.122750_bb0030
  article-title: Price-responsive model predictive control of floor heating systems for demand response using building thermal mass
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2019.02.107
– volume: 39
  start-page: 651
  issue: 6
  year: 2007
  ident: 10.1016/j.apenergy.2024.122750_bb0305
  article-title: Calibrated building energy simulation and its application in a high-rise commercial building in Shanghai
  publication-title: Energ Buildings
  doi: 10.1016/j.enbuild.2006.09.013
– volume: 85
  start-page: 369
  year: 2015
  ident: 10.1016/j.apenergy.2024.122750_bb0015
  article-title: Raising the temperature of the UK heat pump market: learning lessons from Finland
  publication-title: Energy Policy
  doi: 10.1016/j.enpol.2015.06.016
– year: 2012
  ident: 10.1016/j.apenergy.2024.122750_bb0200
– volume: 48
  start-page: 112
  year: 2012
  ident: 10.1016/j.apenergy.2024.122750_bb0010
  article-title: Climate change influence on building lifecycle greenhouse gas emissions: case study of a UK mixed-use development
  publication-title: Energ Buildings
  doi: 10.1016/j.enbuild.2012.01.016
– volume: 145
  start-page: 52
  year: 2020
  ident: 10.1016/j.apenergy.2024.122750_bb0075
  article-title: Parametric analysis of applying PCM wallboards for energy saving in high-rise lightweight buildings in Shanghai
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2019.05.124
– year: 2020
  ident: 10.1016/j.apenergy.2024.122750_bb0245
  article-title: Meteonorm version 8
– volume: 276
  year: 2022
  ident: 10.1016/j.apenergy.2024.122750_bb0105
  article-title: Experimental and finite element analysis on the developed real-time form stable PCM based roof system for thermal energy storage applications
  publication-title: Energ Buildings
  doi: 10.1016/j.enbuild.2022.112514
– volume: 261
  year: 2022
  ident: 10.1016/j.apenergy.2024.122750_bb0170
  article-title: A progressive comparison of the novel pulse and conventional steady state methods of measuring the airtightness of buildings
  publication-title: Energ Buildings
  doi: 10.1016/j.enbuild.2022.111983
– volume: 224
  start-page: 175
  year: 2021
  ident: 10.1016/j.apenergy.2024.122750_bb0195
  article-title: Computer vision and photosensor based hybrid control strategy for a two-axis solar tracker - daylighting application
  publication-title: Solar Energy
  doi: 10.1016/j.solener.2021.05.077
– volume: 181
  year: 2021
  ident: 10.1016/j.apenergy.2024.122750_bb0185
  article-title: A model predictive controller for precision irrigation using discrete lagurre networks
  publication-title: Comp Electron Agric
  doi: 10.1016/j.compag.2020.105953
– volume: 223
  year: 2020
  ident: 10.1016/j.apenergy.2024.122750_bb0300
  article-title: Building energy model calibration: a detailed case study using sub-hourly measured data
  publication-title: Energ Buildings
  doi: 10.1016/j.enbuild.2020.110189
– start-page: 284
  year: 2004
  ident: 10.1016/j.apenergy.2024.122750_bb0230
  article-title: YALMIP: A toolbox for modeling and optimization in MATLAB
– volume: 298
  year: 2021
  ident: 10.1016/j.apenergy.2024.122750_bb0035
  article-title: Experimental test of a black-box economic model predictive control for residential space heating
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2021.117227
– volume: 339
  year: 2022
  ident: 10.1016/j.apenergy.2024.122750_bb0085
  article-title: Building energy efficiency and load flexibility optimization using phase change materials under futuristic grid scenario
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2022.130561
– volume: 311
  year: 2022
  ident: 10.1016/j.apenergy.2024.122750_bb0100
  article-title: Self-powered wireless sensing system driven by daily ambient temperature energy harvesting
  publication-title: Appl Energy
– volume: 188
  start-page: 652
  year: 2017
  ident: 10.1016/j.apenergy.2024.122750_bb0055
  article-title: Reducing auxiliary energy consumption of heavy trucks by onboard prediction and real-time optimization
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2016.11.118
– start-page: 1009
  year: 2016
  ident: 10.1016/j.apenergy.2024.122750_bb0285
  article-title: Disciplined convex-concave programming
– volume: 362
  start-page: 12004
  year: 2022
  ident: 10.1016/j.apenergy.2024.122750_bb0310
  article-title: Learnings from experiments with MPC for heating of older school building
  publication-title: E3S Web Conf
  doi: 10.1051/e3sconf/202236212004
– volume: 297
  year: 2021
  ident: 10.1016/j.apenergy.2024.122750_bb0045
  article-title: Model predictive control for integrated control of air-conditioning and mechanical ventilation, lighting and shading systems
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2021.117112
– volume: 127
  start-page: 128
  year: 2016
  ident: 10.1016/j.apenergy.2024.122750_bb0280
  article-title: Information and communications technologies (ICTs) for energy efficiency in buildings: review and analysis of results from EU pilot projects
  publication-title: Energ Buildings
  doi: 10.1016/j.enbuild.2016.05.064
– volume: 97
  year: 2020
  ident: 10.1016/j.apenergy.2024.122750_bb0325
  article-title: Model predictive control of non-domestic heating using genetic programming dynamic models
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2020.106695
– volume: 283
  year: 2021
  ident: 10.1016/j.apenergy.2024.122750_bb0060
  article-title: Enhancing building energy performance by effectively using phase change material and dynamic insulation in walls
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2020.116306
– volume: 41
  start-page: 1
  year: 2007
  ident: 10.1016/j.apenergy.2024.122750_bb0205
  article-title: Python programming language
– year: 2012
  ident: 10.1016/j.apenergy.2024.122750_bb0290
  article-title: Python for data analysis: Data wrangling with pandas
– volume: 271
  year: 2022
  ident: 10.1016/j.apenergy.2024.122750_bb0120
  article-title: Modelling UK electricity regional costs for commercial buildings
  publication-title: Energ Buildings
  doi: 10.1016/j.enbuild.2022.112301
– ident: 10.1016/j.apenergy.2024.122750_bb0190
– ident: 10.1016/j.apenergy.2024.122750_bb0220
– volume: 88
  start-page: 3079
  issue: 9
  year: 2011
  ident: 10.1016/j.apenergy.2024.122750_bb0155
  article-title: Experimental analysis of model predictive control for an energy efficient building heating system
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2011.03.009
– volume: 87
  start-page: 201
  year: 2018
  ident: 10.1016/j.apenergy.2024.122750_bb0135
  article-title: Environmental monitoring system based on an open source platform and the internet of things for a building energy retrofit
  publication-title: Autom Construct
  doi: 10.1016/j.autcon.2017.12.017
– volume: 41
  start-page: 159
  issue: 2
  year: 2007
  ident: 10.1016/j.apenergy.2024.122750_bb0235
  article-title: The gurobi optimizer
  publication-title: Transp Research Part B
– ident: 10.1016/j.apenergy.2024.122750_bb0175
– volume: 241
  year: 2021
  ident: 10.1016/j.apenergy.2024.122750_bb0080
  article-title: Multi-factor analysis on thermal comfort and energy saving potential for PCM-integrated buildings in summer
  publication-title: Energ Buildings
  doi: 10.1016/j.enbuild.2021.110966
– volume: 279
  year: 2020
  ident: 10.1016/j.apenergy.2024.122750_bb0165
  article-title: Smart control of dynamic phase change material wall system
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2020.115807
– volume: 121
  start-page: 152
  year: 2016
  ident: 10.1016/j.apenergy.2024.122750_bb0065
  article-title: Effects of phase change material roof layers on thermal performance of a residential building in Melbourne and Sydney
  publication-title: Energ Buildings
  doi: 10.1016/j.enbuild.2016.04.007
– ident: 10.1016/j.apenergy.2024.122750_bb0210
– volume: 6
  start-page: 1430
  year: 2023
  ident: 10.1016/j.apenergy.2024.122750_bb0020
  article-title: Fad or future? Navigating challenges and proposing holistic solutions in sustainable building design
  publication-title: One Earth
  doi: 10.1016/j.oneear.2023.10.020
– volume: 278
  year: 2020
  ident: 10.1016/j.apenergy.2024.122750_bb0320
  article-title: An optimal home energy management system for modulating heat pumps and photovoltaic systems
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2020.115661
– volume: 200
  year: 2021
  ident: 10.1016/j.apenergy.2024.122750_bb0145
  article-title: State of the art review on model predictive control (MPC) in heating ventilation and air-conditioning (HVAC) field
  publication-title: Build Environ
  doi: 10.1016/j.buildenv.2021.107952
– volume: 183
  start-page: 772
  year: 2019
  ident: 10.1016/j.apenergy.2024.122750_bb0270
  article-title: The effect of including hydronic radiator dynamics in model predictive control of space heating
  publication-title: Energ Buildings
  doi: 10.1016/j.enbuild.2018.11.015
– volume: 144
  year: 2021
  ident: 10.1016/j.apenergy.2024.122750_bb0130
  article-title: Intelligent building control systems for thermal comfort and energy-efficiency: a systematic review of artificial intelligence-assisted techniques
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2021.110969
SSID ssj0002120
Score 2.495569
Snippet Model Predictive Control (MPC) emerges as a promising solution to address the substantial greenhouse gas emissions from the building sector. By employing...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 122750
SubjectTerms Building energy storage system
case studies
cost effectiveness
Demand response
electrical equipment
electricity
electricity costs
energy efficiency
Experimental model predictive control (MPC)
field experimentation
greenhouse gases
Internet
Internet of things (IoT)
Phase change material (PCM)
phase transition
raspberries
Raspberry Pi
temperature
wireless technology
Title Field experiment testing of a low-cost model predictive controller (MPC) for building heating systems and analysis of phase change material (PCM) integration
URI https://dx.doi.org/10.1016/j.apenergy.2024.122750
https://www.proquest.com/docview/3153204629
Volume 360
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS-RAEG5EL7uHRd0V35SwBz30TB6dRx9lcJh1GRF2BW9NJ532wZCEmYg3_4n_1aqk4-iCeNhDyIPuJklVqr5OV33F2M_Cj4zna809mQouiiTgmUgMlwKxtfSMzdpfF9OLeHIlzq-j6xU26nNhKKzS2f7OprfW2l0Zurc5rO_uhn8I7XYTCMIxISX8CpGQlg-elmEegaNmxMacWr_JEr4f6LpoM-xwnhiIgR8Q2flHDuofU936n_E6--aAI5x297bBVopyk319Qye4ybbOlllr2NR9tovv7HlMcWqwZPOHhsg1yhuoLGiYVY88rxYNtGVxoJ7T4g2ZQXCB7LNiDsfTy9EJIMSFzFXSBrLjtO_YoBegS4NbR3JCI9e36CKhSy0GRMatssPx5Wh6Aj1NBarFD3Y1Pvs7mnBXl4HnoQwbjpguF1IkOki0CfMsTWNjU5sbPJSeNEbG0vqph2DME1qGvkWcl9rQCovW1MvDLbZaVmWxzSCmTgIhmMCmKAPtB1ZbREGxSaWOkh0W9cJQuSMtp9oZM9VHp92rXoiKhKg6Ie6w4Wu_uqPt-LSH7GWt3imgQt_yad-jXjkUfp205KLLonpYqNCnwhv4gHL3P8bfY1_ojBax_GifrTbzh-IAsVCTHbbKfsjWTn_9nly8AAr9C-A
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYoPbQ9oAJF0EKZSj3Awbt5OA8f0YrVtmUREiBxs5w45qFVEu0GceOf9L8ykzgsrVRx6CFKlNhWkhnPfIlnvmHse-FHxvO15p5MBRdFEvBMJIZLgdhaesZm7a-L6Wk8uRQ_r6KrFTbqc2EorNLZ_s6mt9banRm6tzmsb2-H54R2uw8IwjFh-oa9FTh9qYzB4HEZ5xE4bkZszan5izThu4GuizbFDj8UAzHwA2I7_5eH-stWtw5o_JGtOeQIR93NrbOVotxgH17wCW6wreNl2ho2dfN2scl-jylQDZZ0_tAQu0Z5DZUFDbPqgefVooG2Lg7Uc1q9ITsILpJ9VszhYHo2OgTEuJC5UtpAhpz2HR30AnRpcOtYTmjk-gZ9JHS5xYDQuNV2ODgbTQ-h56lAvfjELsfHF6MJd4UZeB7KsOEI6nIhRaKDRJswz9I0Nja1ucFD6UljZCytn3qIxjyhZehbBHqpDa2waE69PNxiq2VVFtsMYuokEIMJbIoy0H5gtUUYFJtU6ijZYVEvDJU71nIqnjFTfXjaneqFqEiIqhPiDhs-96s73o5Xe8he1uoPDVToXF7t-61XDoXTk9ZcdFlU9wsV-lR5Ax9Qfv6P8ffZu8nF9ESd_Dj99YW9pyu0ouVHu2y1md8XewiMmuxrq_hPCXMNbg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Field+experiment+testing+of+a+low-cost+model+predictive+controller+%28MPC%29+for+building+heating+systems+and+analysis+of+phase+change+material+%28PCM%29+integration&rft.jtitle=Applied+energy&rft.au=Wei%2C+Zhichen&rft.au=Calautit%2C+John+Kaiser&rft.date=2024-04-15&rft.issn=0306-2619&rft.volume=360&rft.spage=122750&rft_id=info:doi/10.1016%2Fj.apenergy.2024.122750&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_apenergy_2024_122750
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon