Field experiment testing of a low-cost model predictive controller (MPC) for building heating systems and analysis of phase change material (PCM) integration
Model Predictive Control (MPC) emerges as a promising solution to address the substantial greenhouse gas emissions from the building sector. By employing advanced control strategies, such as MPC, for peak energy shifting, there is a significant potential to enhance energy efficiency and reduce emiss...
Saved in:
Published in | Applied energy Vol. 360; p. 122750 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
15.04.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Model Predictive Control (MPC) emerges as a promising solution to address the substantial greenhouse gas emissions from the building sector. By employing advanced control strategies, such as MPC, for peak energy shifting, there is a significant potential to enhance energy efficiency and reduce emissions through effective demand response within a smart grid. Although MPC has been the subject of extensive research, the practical implementation of cost-effective and easily deployable solutions in buildings remains limited. This study proposes a cost-effective MPC approach, employing the Internet of Things (IoT) and dynamic pricing. The control strategy, developed in MATLAB, is locally deployed on Raspberry Pi hardware via WiFi. The proposed MPC was tested in a controlled environment at the University of Nottingham, UK, where it regulated a radiator heating device to maintain indoor comfort in response to dynamic hourly electricity prices, using real-time indoor temperature feedback. The results confirmed the proposed MPC's accuracy in predicting indoor temperature responses and controlling indoor temperature within setpoints over a typical winter week. Performance analysis further revealed that the proposed MPC strategy resulted in a 20% electricity cost reduction compared to a conventional control strategy. Additionally, alongside the proposed MPC strategy, a Phase Change Material (PCM) wallboard system was integrated into a co-simulation platform. The developed PCM wallboard model underwent a verification and validation process, utilizing both numerical simulations and experimental data. The results demonstrate that the proposed MPC-controlled PCM wallboard system saved 35% on electricity cost compared with the original case study room. This study provides valuable insights into the development of intelligent localized demand response control for the built environment, offering a range of choices for IoT equipment.
[Display omitted]
•Proposed low-cost, IoT-based model predictive control (MPC) strategy for buildings.•MPC strategy implemented in real-world settings using Raspberry Pi hardware.•Integrated PCM wallboard system, achieving 35% electricity cost savings.•Co-simulation platform for interactive modelling of MPC and PCM-integrated buildings.•Peak energy shifting using MPC in PCM-integrated buildings. |
---|---|
AbstractList | Model Predictive Control (MPC) emerges as a promising solution to address the substantial greenhouse gas emissions from the building sector. By employing advanced control strategies, such as MPC, for peak energy shifting, there is a significant potential to enhance energy efficiency and reduce emissions through effective demand response within a smart grid. Although MPC has been the subject of extensive research, the practical implementation of cost-effective and easily deployable solutions in buildings remains limited. This study proposes a cost-effective MPC approach, employing the Internet of Things (IoT) and dynamic pricing. The control strategy, developed in MATLAB, is locally deployed on Raspberry Pi hardware via WiFi. The proposed MPC was tested in a controlled environment at the University of Nottingham, UK, where it regulated a radiator heating device to maintain indoor comfort in response to dynamic hourly electricity prices, using real-time indoor temperature feedback. The results confirmed the proposed MPC's accuracy in predicting indoor temperature responses and controlling indoor temperature within setpoints over a typical winter week. Performance analysis further revealed that the proposed MPC strategy resulted in a 20% electricity cost reduction compared to a conventional control strategy. Additionally, alongside the proposed MPC strategy, a Phase Change Material (PCM) wallboard system was integrated into a co-simulation platform. The developed PCM wallboard model underwent a verification and validation process, utilizing both numerical simulations and experimental data. The results demonstrate that the proposed MPC-controlled PCM wallboard system saved 35% on electricity cost compared with the original case study room. This study provides valuable insights into the development of intelligent localized demand response control for the built environment, offering a range of choices for IoT equipment. Model Predictive Control (MPC) emerges as a promising solution to address the substantial greenhouse gas emissions from the building sector. By employing advanced control strategies, such as MPC, for peak energy shifting, there is a significant potential to enhance energy efficiency and reduce emissions through effective demand response within a smart grid. Although MPC has been the subject of extensive research, the practical implementation of cost-effective and easily deployable solutions in buildings remains limited. This study proposes a cost-effective MPC approach, employing the Internet of Things (IoT) and dynamic pricing. The control strategy, developed in MATLAB, is locally deployed on Raspberry Pi hardware via WiFi. The proposed MPC was tested in a controlled environment at the University of Nottingham, UK, where it regulated a radiator heating device to maintain indoor comfort in response to dynamic hourly electricity prices, using real-time indoor temperature feedback. The results confirmed the proposed MPC's accuracy in predicting indoor temperature responses and controlling indoor temperature within setpoints over a typical winter week. Performance analysis further revealed that the proposed MPC strategy resulted in a 20% electricity cost reduction compared to a conventional control strategy. Additionally, alongside the proposed MPC strategy, a Phase Change Material (PCM) wallboard system was integrated into a co-simulation platform. The developed PCM wallboard model underwent a verification and validation process, utilizing both numerical simulations and experimental data. The results demonstrate that the proposed MPC-controlled PCM wallboard system saved 35% on electricity cost compared with the original case study room. This study provides valuable insights into the development of intelligent localized demand response control for the built environment, offering a range of choices for IoT equipment. [Display omitted] •Proposed low-cost, IoT-based model predictive control (MPC) strategy for buildings.•MPC strategy implemented in real-world settings using Raspberry Pi hardware.•Integrated PCM wallboard system, achieving 35% electricity cost savings.•Co-simulation platform for interactive modelling of MPC and PCM-integrated buildings.•Peak energy shifting using MPC in PCM-integrated buildings. |
ArticleNumber | 122750 |
Author | Wei, Zhichen Calautit, John Kaiser |
Author_xml | – sequence: 1 givenname: Zhichen surname: Wei fullname: Wei, Zhichen email: zhichen.wei@nottingham.ac.uk – sequence: 2 givenname: John Kaiser surname: Calautit fullname: Calautit, John Kaiser |
BookMark | eNqFkc1uGyEURlGVSHWSvkLF0lmMy8_MeJC6aGU1baVEyaJdIwIXG4uBKeCkfpi-a3GcbLLJAsHino-r75yhkxADIPSRkgUltP-0XagJAqT1fsEIaxeUsWVH3qEZHZasEZQOJ2hGOOkb1lPxHp3lvCWEMMrIDP27cuANhr8TJDdCKLhALi6scbRYYR8fGx1zwWM04PGUwDhd3ANgHUNJ0XtIeH5zt7rENiZ8v3PeHOANqKeQvM8FxoxVMPUov88uH5Knjco1Y6PCGvCoSv1ceTy_W91cYhcKrFPlY7hAp1b5DB-e73P0--rbr9WP5vr2-8_V1-tGc8FL05FBt6JdKrZUhuv7YeiNHaw29SmIMEb0wtKBdB0lrRKcWjLwwXLbWmUM0fwczY-5U4p_drUAObqswXsVIO6y5LTjjLQ9E3X083FUp5hzAiu1K0_LlqScl5TIgxW5lS9W5MGKPFqpeP8Kn2rvKu3fBr8cQag9PDhIMmsHQVchCXSRJrq3Iv4D7_-wLQ |
CitedBy_id | crossref_primary_10_1016_j_renene_2025_122460 crossref_primary_10_3390_en17143371 crossref_primary_10_1016_j_buildenv_2024_112248 crossref_primary_10_1016_j_enbuild_2024_114650 crossref_primary_10_1016_j_est_2024_114581 crossref_primary_10_1016_j_energy_2025_135660 |
Cites_doi | 10.1016/j.solmat.2013.09.037 10.1016/j.enbuild.2016.03.059 10.1016/j.enbuild.2010.10.022 10.1007/s12273-023-1067-4 10.1016/j.autcon.2016.01.002 10.1016/j.apenergy.2021.116477 10.1109/TCST.2015.2415411 10.1016/j.ces.2011.07.052 10.1016/j.autcon.2022.104339 10.1016/j.autcon.2021.104038 10.1016/j.apenergy.2020.116348 10.1016/j.enbuild.2022.112285 10.1016/j.autcon.2023.104792 10.1016/j.apenergy.2021.118491 10.1016/j.tca.2022.179326 10.1016/j.enbuild.2005.11.002 10.1016/j.buildenv.2018.12.020 10.1109/TAC.2011.2176389 10.1016/j.enbuild.2016.01.030 10.1016/j.autcon.2021.103919 10.1016/j.buildenv.2021.107709 10.1016/j.apenergy.2022.120023 10.1016/j.compchemeng.2017.10.038 10.1016/j.energy.2023.126791 10.1016/j.applthermaleng.2019.02.107 10.1016/j.enbuild.2006.09.013 10.1016/j.enpol.2015.06.016 10.1016/j.enbuild.2012.01.016 10.1016/j.renene.2019.05.124 10.1016/j.enbuild.2022.112514 10.1016/j.enbuild.2022.111983 10.1016/j.solener.2021.05.077 10.1016/j.compag.2020.105953 10.1016/j.enbuild.2020.110189 10.1016/j.apenergy.2021.117227 10.1016/j.jclepro.2022.130561 10.1016/j.apenergy.2016.11.118 10.1051/e3sconf/202236212004 10.1016/j.apenergy.2021.117112 10.1016/j.enbuild.2016.05.064 10.1016/j.asoc.2020.106695 10.1016/j.apenergy.2020.116306 10.1016/j.enbuild.2022.112301 10.1016/j.apenergy.2011.03.009 10.1016/j.autcon.2017.12.017 10.1016/j.enbuild.2021.110966 10.1016/j.apenergy.2020.115807 10.1016/j.enbuild.2016.04.007 10.1016/j.oneear.2023.10.020 10.1016/j.apenergy.2020.115661 10.1016/j.buildenv.2021.107952 10.1016/j.enbuild.2018.11.015 10.1016/j.rser.2021.110969 |
ContentType | Journal Article |
Copyright | 2024 The Author(s) |
Copyright_xml | – notice: 2024 The Author(s) |
DBID | 6I. AAFTH AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.apenergy.2024.122750 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Environmental Sciences |
EISSN | 1872-9118 |
ExternalDocumentID | 10_1016_j_apenergy_2024_122750 S0306261924001338 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAFTH AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BJAXD BKOJK BLXMC CS3 EBS EFJIC EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE JJJVA KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SSR SST SSZ T5K TN5 ~02 ~G- AAHBH AAQXK AATTM AAXKI AAYOK AAYWO AAYXX ABEFU ABFNM ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- SAC SSH WUQ ZY4 7S9 L.6 |
ID | FETCH-LOGICAL-c393t-508c4947a27ad3cb886df8fcdcb8909dd969f18055104a931f0838f3f4fadd0c3 |
IEDL.DBID | .~1 |
ISSN | 0306-2619 |
IngestDate | Fri Jul 11 08:32:38 EDT 2025 Thu Apr 24 23:13:17 EDT 2025 Tue Jul 01 04:01:22 EDT 2025 Sat Apr 13 16:39:18 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Phase change material (PCM) Building energy storage system Demand response Raspberry Pi Experimental model predictive control (MPC) Internet of things (IoT) |
Language | English |
License | This is an open access article under the CC BY license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c393t-508c4947a27ad3cb886df8fcdcb8909dd969f18055104a931f0838f3f4fadd0c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0306261924001338 |
PQID | 3153204629 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_3153204629 crossref_citationtrail_10_1016_j_apenergy_2024_122750 crossref_primary_10_1016_j_apenergy_2024_122750 elsevier_sciencedirect_doi_10_1016_j_apenergy_2024_122750 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-04-15 |
PublicationDateYYYYMMDD | 2024-04-15 |
PublicationDate_xml | – month: 04 year: 2024 text: 2024-04-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Applied energy |
PublicationYear | 2024 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Wijesuriya, Booten, Bianchi, Kishore (bb0085) 2022; 339 Martín-Garín, Millán-García, Baïri, Millán-Medel, Sala-Lizarraga (bb0135) 2018; 87 Weber, Oei, Linder, Böhm, Leistner, Sawodny (bb0315) 2022; 270 Calautit, Yong (bb0020) 2023; 6 Khodabakhshian, Feng, Börjesson, Lindgärde, Wikander (bb0055) 2017; 188 Hu, Xiao, Jørgensen, Li (bb0030) 2019; 153 Yang, Oliver Gao, You (bb0070) 2022; 326 Krupa, Camara, Alvarado, Limon, Alamo (bb0140) 2021 Wei, Calautit (bb0050) 2023; 269 Kishore, Bianchi, Booten, Vidal, Jackson (bb0060) 2021; 283 Bünning (bb0150) 2022; 310 Široký, Oldewurtel, Cigler, Prívara (bb0155) 2011; 88 Matlab (bb0200) 2012 Prívara, Široký, Ferkl, Cigler (bb0260) 2011; 43 Shen, Diamond, Gu, Boyd (bb0285) 2016, December Lofberg (bb0230) 2004 Pan, Huang, Wu (bb0305) 2007; 39 Ahmad, Bontemps, Sallée, Quenard (bb0250) 2006; 38 Hannon (bb0015) 2015; 85 Yao, Shekhar (bb0145) 2021; 200 Zheng, Hsu, Pasos, Smith, Wood (bb0170) 2022; 261 Halhoul Merabet, Essaaidi, Ben Haddou, Qolomany, Qadir, Anan (bb0130) 2021; 144 Jáñez Morán, Profaizer, Herrando Zapater, Andérez Valdavida, Zabalza Bribián (bb0280) 2016; 127 Van Rossum (bb0205) 2007, June; 41 McKinney (bb0290) 2012 Chou, Ngo (bb0095) 2016; 72 Baskar, Chellapandian (bb0105) 2022; 276 Barbón, Fernández-Rubiera, Martínez-Valledor, Pérez-Fernández, Bayón (bb0180) 2021; 285 Ahmed (bb0195) 2021; 224 Sturzenegger, Gyalistras, Morari, Smith (bb0040) 2016; 24 Li, Li, Wang (bb0125) 2021; 132 Mouli-Castillo, Heinemann, Edlmann (bb0005) 2021; 283 Tuoi, Van Toan, Ono (bb0100) 2022; 311 U. MET Office (bb0210) 2023 Qu, Zhou, Xue, Cui (bb0080) 2021; 241 Pedersen, Hedegaard, Kristensen, Gadgaard, Petersen (bb0270) 2019; 183 Abioye, Abidin, Aman, Mahmud, Buyamin (bb0185) 2021; 181 Langer, Volling (bb0320) 2020; 278 Ahmad, Mourshed, Mundow, Sisinni, Rezgui (bb0275) 2016; 120 Mocanu, Nguyen, Kling, Gibescu (bb0160) 2016; 116 Knudsen, Georges, Skeie, Petersen (bb0035) 2021; 298 Georges, Thalfeldt, Skreiberg, Fornari (bb0265) 2019; 149 Sharmila, Sakthi, Geethanjali, Sagadevan (bb0215) 2017 Jayalath, Aye, Mendis, Ngo (bb0065) 2016; 121 Bixby (bb0235) 2007; 41 Acha, Vieira, Bird, Shah (bb0120) 2022; 271 de Gracia, Tarragona, Crespo, Fernández (bb0165) 2020; 279 Ma, Qin, Salsbury, Xu (bb0025) 2012; 67 M. Integrated (bb0190) 2023 Wang (bb0335) 2021; 194 Wei, Calautit (bb0240) 2023; 16 Noel, Jannot, Métivier, Sgreva (bb0255) 2022; 716 Remund, Müller, Schmutz, Graf (bb0245) 2020 Thilker, Bacher, Madsen (bb0310) 2022; 362 Klein (bb0225) 2017 Huang, Liu, Huang, Onstein, Merschbrock (bb0110) 2023; 149 Nord Pool (bb0220) 2023 Ecowitt (bb0175) 2023 Guyot, Giraud, Simon, Corgier, Marvillet, Tremeac (bb0300) 2020; 223 Yang (bb0045) 2021; 297 Richter, Jones, Morari (bb0295) 2011; 57 Jeoung, Jung, Hong, Choi (bb0090) 2022; 140 Williams, Elghali, Wheeler, France (bb0010) 2012; 48 Yu, Jeong, Chung, Kim (bb0350) 2014; 120 Rawlings, Patel, Risbeck, Maravelias, Wenzel, Turney (bb0330) 2018; 114 Wang, Lu, Wu, Zhang (bb0075) 2020; 145 Fredriksson, Sezer, Angelakis, Gundlegård (bb0115) 2022; 134 Dou, Kaszubowski Lopes, Rockett, Hathway, Saber (bb0325) 2020; 97 Ahmed (10.1016/j.apenergy.2024.122750_bb0195) 2021; 224 Klein (10.1016/j.apenergy.2024.122750_bb0225) 2017 Prívara (10.1016/j.apenergy.2024.122750_bb0260) 2011; 43 M. Integrated (10.1016/j.apenergy.2024.122750_bb0190) Pedersen (10.1016/j.apenergy.2024.122750_bb0270) 2019; 183 Kishore (10.1016/j.apenergy.2024.122750_bb0060) 2021; 283 Wijesuriya (10.1016/j.apenergy.2024.122750_bb0085) 2022; 339 Široký (10.1016/j.apenergy.2024.122750_bb0155) 2011; 88 Shen (10.1016/j.apenergy.2024.122750_bb0285) 2016 Guyot (10.1016/j.apenergy.2024.122750_bb0300) 2020; 223 Martín-Garín (10.1016/j.apenergy.2024.122750_bb0135) 2018; 87 Thilker (10.1016/j.apenergy.2024.122750_bb0310) 2022; 362 Pan (10.1016/j.apenergy.2024.122750_bb0305) 2007; 39 de Gracia (10.1016/j.apenergy.2024.122750_bb0165) 2020; 279 Hu (10.1016/j.apenergy.2024.122750_bb0030) 2019; 153 Ma (10.1016/j.apenergy.2024.122750_bb0025) 2012; 67 Ahmad (10.1016/j.apenergy.2024.122750_bb0250) 2006; 38 Baskar (10.1016/j.apenergy.2024.122750_bb0105) 2022; 276 Ahmad (10.1016/j.apenergy.2024.122750_bb0275) 2016; 120 Remund (10.1016/j.apenergy.2024.122750_bb0245) 2020 Krupa (10.1016/j.apenergy.2024.122750_bb0140) 2021 Fredriksson (10.1016/j.apenergy.2024.122750_bb0115) 2022; 134 Van Rossum (10.1016/j.apenergy.2024.122750_bb0205) 2007; 41 Sharmila (10.1016/j.apenergy.2024.122750_bb0215) 2017 Mouli-Castillo (10.1016/j.apenergy.2024.122750_bb0005) 2021; 283 Sturzenegger (10.1016/j.apenergy.2024.122750_bb0040) 2016; 24 Wei (10.1016/j.apenergy.2024.122750_bb0240) 2023; 16 Li (10.1016/j.apenergy.2024.122750_bb0125) 2021; 132 Yao (10.1016/j.apenergy.2024.122750_bb0145) 2021; 200 Wang (10.1016/j.apenergy.2024.122750_bb0335) 2021; 194 McKinney (10.1016/j.apenergy.2024.122750_bb0290) 2012 Acha (10.1016/j.apenergy.2024.122750_bb0120) 2022; 271 Bünning (10.1016/j.apenergy.2024.122750_bb0150) 2022; 310 Matlab (10.1016/j.apenergy.2024.122750_bb0200) 2012 Nord Pool (10.1016/j.apenergy.2024.122750_bb0220) Bixby (10.1016/j.apenergy.2024.122750_bb0235) 2007; 41 Ecowitt (10.1016/j.apenergy.2024.122750_bb0175) Dou (10.1016/j.apenergy.2024.122750_bb0325) 2020; 97 Calautit (10.1016/j.apenergy.2024.122750_bb0020) 2023; 6 Qu (10.1016/j.apenergy.2024.122750_bb0080) 2021; 241 Zheng (10.1016/j.apenergy.2024.122750_bb0170) 2022; 261 Rawlings (10.1016/j.apenergy.2024.122750_bb0330) 2018; 114 Hannon (10.1016/j.apenergy.2024.122750_bb0015) 2015; 85 Mocanu (10.1016/j.apenergy.2024.122750_bb0160) 2016; 116 Khodabakhshian (10.1016/j.apenergy.2024.122750_bb0055) 2017; 188 Huang (10.1016/j.apenergy.2024.122750_bb0110) 2023; 149 Richter (10.1016/j.apenergy.2024.122750_bb0295) 2011; 57 Barbón (10.1016/j.apenergy.2024.122750_bb0180) 2021; 285 Georges (10.1016/j.apenergy.2024.122750_bb0265) 2019; 149 Halhoul Merabet (10.1016/j.apenergy.2024.122750_bb0130) 2021; 144 Yu (10.1016/j.apenergy.2024.122750_bb0350) 2014; 120 Yang (10.1016/j.apenergy.2024.122750_bb0045) 2021; 297 Knudsen (10.1016/j.apenergy.2024.122750_bb0035) 2021; 298 Noel (10.1016/j.apenergy.2024.122750_bb0255) 2022; 716 Williams (10.1016/j.apenergy.2024.122750_bb0010) 2012; 48 Wang (10.1016/j.apenergy.2024.122750_bb0075) 2020; 145 Tuoi (10.1016/j.apenergy.2024.122750_bb0100) 2022; 311 U. MET Office (10.1016/j.apenergy.2024.122750_bb0210) Chou (10.1016/j.apenergy.2024.122750_bb0095) 2016; 72 Yang (10.1016/j.apenergy.2024.122750_bb0070) 2022; 326 Jáñez Morán (10.1016/j.apenergy.2024.122750_bb0280) 2016; 127 Weber (10.1016/j.apenergy.2024.122750_bb0315) 2022; 270 Abioye (10.1016/j.apenergy.2024.122750_bb0185) 2021; 181 Wei (10.1016/j.apenergy.2024.122750_bb0050) 2023; 269 Jayalath (10.1016/j.apenergy.2024.122750_bb0065) 2016; 121 Lofberg (10.1016/j.apenergy.2024.122750_bb0230) 2004 Jeoung (10.1016/j.apenergy.2024.122750_bb0090) 2022; 140 Langer (10.1016/j.apenergy.2024.122750_bb0320) 2020; 278 |
References_xml | – volume: 241 year: 2021 ident: bb0080 article-title: Multi-factor analysis on thermal comfort and energy saving potential for PCM-integrated buildings in summer publication-title: Energ Buildings – volume: 114 start-page: 89 year: 2018 end-page: 98 ident: bb0330 article-title: Economic MPC and real-time decision making with application to large-scale HVAC energy systems publication-title: Comp Chem Eng – volume: 188 start-page: 652 year: 2017 end-page: 671 ident: bb0055 article-title: Reducing auxiliary energy consumption of heavy trucks by onboard prediction and real-time optimization publication-title: Appl Energy – volume: 120 start-page: 85 year: 2016 end-page: 102 ident: bb0275 article-title: Building energy metering and environmental monitoring – a state-of-the-art review and directions for future research publication-title: Energ Buildings – volume: 276 year: 2022 ident: bb0105 article-title: Experimental and finite element analysis on the developed real-time form stable PCM based roof system for thermal energy storage applications publication-title: Energ Buildings – volume: 285 year: 2021 ident: bb0180 article-title: Design and construction of a solar tracking system for small-scale linear Fresnel reflector with three movements publication-title: Appl Energy – volume: 87 start-page: 201 year: 2018 end-page: 214 ident: bb0135 article-title: Environmental monitoring system based on an open source platform and the internet of things for a building energy retrofit publication-title: Autom Construct – volume: 72 start-page: 247 year: 2016 end-page: 257 ident: bb0095 article-title: Smart grid data analytics framework for increasing energy savings in residential buildings publication-title: Autom Construct – volume: 132 year: 2021 ident: bb0125 article-title: An event-driven multi-agent based distributed optimal control strategy for HVAC systems in IoT-enabled smart buildings publication-title: Autom Construct – volume: 149 year: 2023 ident: bb0110 article-title: BIM and IoT data fusion: the data process model perspective publication-title: Autom Construct – volume: 41 start-page: 159 year: 2007 end-page: 178 ident: bb0235 article-title: The gurobi optimizer publication-title: Transp Research Part B – volume: 362 start-page: 12004 year: 2022 ident: bb0310 article-title: Learnings from experiments with MPC for heating of older school building publication-title: E3S Web Conf – start-page: 284 year: 2004 end-page: 289 ident: bb0230 article-title: YALMIP: A toolbox for modeling and optimization in MATLAB publication-title: 2004 IEEE International Conference on Robotics and Automation (IEEE Cat. No. 04CH37508) – volume: 57 start-page: 1391 year: 2011 end-page: 1403 ident: bb0295 article-title: Computational complexity certification for real-time MPC with input constraints based on the fast gradient method publication-title: IEEE Trans Automat Contr – volume: 88 start-page: 3079 year: 2011 end-page: 3087 ident: bb0155 article-title: Experimental analysis of model predictive control for an energy efficient building heating system publication-title: Appl Energy – volume: 67 start-page: 92 year: 2012 end-page: 100 ident: bb0025 article-title: Demand reduction in building energy systems based on economic model predictive control publication-title: Chem Eng Sci – year: 2020 ident: bb0245 article-title: Meteonorm version 8 publication-title: METEOTEST (www.meteotest.com) – volume: 16 start-page: 1915 year: 2023 end-page: 1931 ident: bb0240 article-title: Evaluation of model predictive control (MPC) of solar thermal heating system with thermal energy storage for buildings with highly variable occupancy levels publication-title: Build Simulat – volume: 297 year: 2021 ident: bb0045 article-title: Model predictive control for integrated control of air-conditioning and mechanical ventilation, lighting and shading systems publication-title: Appl Energy – volume: 339 year: 2022 ident: bb0085 article-title: Building energy efficiency and load flexibility optimization using phase change materials under futuristic grid scenario publication-title: J Clean Prod – volume: 224 start-page: 175 year: 2021 end-page: 183 ident: bb0195 article-title: Computer vision and photosensor based hybrid control strategy for a two-axis solar tracker - daylighting application publication-title: Solar Energy – volume: 279 year: 2020 ident: bb0165 article-title: Smart control of dynamic phase change material wall system publication-title: Appl Energy – volume: 298 year: 2021 ident: bb0035 article-title: Experimental test of a black-box economic model predictive control for residential space heating publication-title: Appl Energy – volume: 311 year: 2022 ident: bb0100 article-title: Self-powered wireless sensing system driven by daily ambient temperature energy harvesting publication-title: Appl Energy – volume: 38 start-page: 673 year: 2006 end-page: 681 ident: bb0250 article-title: Thermal testing and numerical simulation of a prototype cell using light wallboards coupling vacuum isolation panels and phase change material publication-title: Energ Buildings – volume: 85 start-page: 369 year: 2015 end-page: 375 ident: bb0015 article-title: Raising the temperature of the UK heat pump market: learning lessons from Finland publication-title: Energy Policy – year: 2023 ident: bb0175 article-title: ECOWITT GW1100 Mannual – volume: 181 year: 2021 ident: bb0185 article-title: A model predictive controller for precision irrigation using discrete lagurre networks publication-title: Comp Electron Agric – volume: 120 start-page: 549 year: 2014 end-page: 554 ident: bb0350 article-title: Bio-based PCM/carbon nanomaterials composites with enhanced thermal conductivity publication-title: Solar Energy Mater Solar Cells – volume: 48 start-page: 112 year: 2012 end-page: 126 ident: bb0010 article-title: Climate change influence on building lifecycle greenhouse gas emissions: case study of a UK mixed-use development publication-title: Energ Buildings – volume: 716 year: 2022 ident: bb0255 article-title: Thermal characterization of polyethylene glycol 600 in liquid and solid phase and across the phase transition publication-title: Thermochimica Acta – volume: 223 year: 2020 ident: bb0300 article-title: Building energy model calibration: a detailed case study using sub-hourly measured data publication-title: Energ Buildings – volume: 144 year: 2021 ident: bb0130 article-title: Intelligent building control systems for thermal comfort and energy-efficiency: a systematic review of artificial intelligence-assisted techniques publication-title: Renew Sustain Energy Rev – year: 2017 ident: bb0225 article-title: TRNSYS 18: A transient system simulation program – volume: 39 start-page: 651 year: 2007 end-page: 657 ident: bb0305 article-title: Calibrated building energy simulation and its application in a high-rise commercial building in Shanghai publication-title: Energ Buildings – volume: 116 start-page: 646 year: 2016 end-page: 655 ident: bb0160 article-title: Unsupervised energy prediction in a smart grid context using reinforcement cross-building transfer learning publication-title: Energ Buildings – volume: 121 start-page: 152 year: 2016 end-page: 158 ident: bb0065 article-title: Effects of phase change material roof layers on thermal performance of a residential building in Melbourne and Sydney publication-title: Energ Buildings – volume: 41 start-page: 1 year: 2007, June end-page: 36 ident: bb0205 article-title: Python programming language publication-title: USENIX Annual Technical Conference – volume: 283 year: 2021 ident: bb0060 article-title: Enhancing building energy performance by effectively using phase change material and dynamic insulation in walls publication-title: Appl Energy – volume: 153 start-page: 316 year: 2019 end-page: 329 ident: bb0030 article-title: Price-responsive model predictive control of floor heating systems for demand response using building thermal mass publication-title: Appl Therm Eng – volume: 97 year: 2020 ident: bb0325 article-title: Model predictive control of non-domestic heating using genetic programming dynamic models publication-title: Appl Soft Comput – year: 2023 ident: bb0190 article-title: Technical data – volume: 270 year: 2022 ident: bb0315 article-title: Model predictive approaches for cost-efficient building climate control with seasonal energy storage publication-title: Energ Buildings – volume: 283 year: 2021 ident: bb0005 article-title: Mapping geological hydrogen storage capacity and regional heating demands: an applied UK case study publication-title: Appl Energy – volume: 24 start-page: 1 year: 2016 end-page: 12 ident: bb0040 article-title: Model predictive climate control of a Swiss office building: implementation, results, and cost-benefit analysis publication-title: IEEE Trans Control Syst Technol – year: 2021 ident: bb0140 article-title: Real-time implementation of MPC for tracking in embedded systems: application to a two-wheeled inverted pendulum publication-title: arXiv.org – year: 2023 ident: bb0210 article-title: Nottingham weather forecast – start-page: 1009 year: 2016, December end-page: 1014 ident: bb0285 article-title: Disciplined convex-concave programming publication-title: 2016 IEEE 55th Conference on Decision and Control (CDC) – volume: 6 start-page: 1430 year: 2023 end-page: 1434 ident: bb0020 article-title: Fad or future? Navigating challenges and proposing holistic solutions in sustainable building design publication-title: One Earth – volume: 149 start-page: 169 year: 2019 end-page: 181 ident: bb0265 article-title: Validation of a transient zonal model to predict the detailed indoor thermal environment: case of electric radiators and wood stoves publication-title: Build Environ – volume: 183 start-page: 772 year: 2019 end-page: 784 ident: bb0270 article-title: The effect of including hydronic radiator dynamics in model predictive control of space heating publication-title: Energ Buildings – volume: 127 start-page: 128 year: 2016 end-page: 137 ident: bb0280 article-title: Information and communications technologies (ICTs) for energy efficiency in buildings: review and analysis of results from EU pilot projects publication-title: Energ Buildings – volume: 326 year: 2022 ident: bb0070 article-title: Model predictive control in phase-change-material-wallboard-enhanced building energy management considering electricity price dynamics publication-title: Appl Energy – volume: 261 year: 2022 ident: bb0170 article-title: A progressive comparison of the novel pulse and conventional steady state methods of measuring the airtightness of buildings publication-title: Energ Buildings – start-page: 301 year: 2017 end-page: 305 ident: bb0215 article-title: Regular expression based pattern matching for gene expression data to identify the abnormality gnome publication-title: 2017 Second International Conference on Recent Trends and Challenges in Computational Models (ICRTCCM) – volume: 145 start-page: 52 year: 2020 end-page: 64 ident: bb0075 article-title: Parametric analysis of applying PCM wallboards for energy saving in high-rise lightweight buildings in Shanghai publication-title: Renew Energy – volume: 271 year: 2022 ident: bb0120 article-title: Modelling UK electricity regional costs for commercial buildings publication-title: Energ Buildings – year: 2023 ident: bb0220 article-title: Day-ahead Prices in UK – volume: 134 year: 2022 ident: bb0115 article-title: Construction related urban disturbances: identification and linking with an IoT-model publication-title: Autom Construct – year: 2012 ident: bb0290 article-title: Python for data analysis: Data wrangling with pandas publication-title: NumPy, and IPython – volume: 269 year: 2023 ident: bb0050 article-title: Predictive control of low-temperature heating system with passive thermal mass energy storage and photovoltaic system: impact of occupancy patterns and climate change publication-title: Energy (Oxford) – volume: 310 year: 2022 ident: bb0150 article-title: Physics-informed linear regression is competitive with two machine learning methods in residential building MPC publication-title: Appl Energy – volume: 140 year: 2022 ident: bb0090 article-title: Blockchain-based IoT system for personalized indoor temperature control publication-title: Autom Construct – year: 2012 ident: bb0200 article-title: Matlab – volume: 43 start-page: 564 year: 2011 end-page: 572 ident: bb0260 article-title: Model predictive control of a building heating system: the first experience publication-title: Energ Buildings – volume: 200 year: 2021 ident: bb0145 article-title: State of the art review on model predictive control (MPC) in heating ventilation and air-conditioning (HVAC) field publication-title: Build Environ – volume: 278 year: 2020 ident: bb0320 article-title: An optimal home energy management system for modulating heat pumps and photovoltaic systems publication-title: Appl Energy – volume: 194 year: 2021 ident: bb0335 article-title: Thermal storage performance of building envelopes for nearly-zero energy buildings during cooling season in Western China: an experimental study publication-title: Build Environ – volume: 120 start-page: 549 year: 2014 ident: 10.1016/j.apenergy.2024.122750_bb0350 article-title: Bio-based PCM/carbon nanomaterials composites with enhanced thermal conductivity publication-title: Solar Energy Mater Solar Cells doi: 10.1016/j.solmat.2013.09.037 – volume: 120 start-page: 85 year: 2016 ident: 10.1016/j.apenergy.2024.122750_bb0275 article-title: Building energy metering and environmental monitoring – a state-of-the-art review and directions for future research publication-title: Energ Buildings doi: 10.1016/j.enbuild.2016.03.059 – volume: 43 start-page: 564 issue: 2–3 year: 2011 ident: 10.1016/j.apenergy.2024.122750_bb0260 article-title: Model predictive control of a building heating system: the first experience publication-title: Energ Buildings doi: 10.1016/j.enbuild.2010.10.022 – volume: 16 start-page: 1915 issue: 10 year: 2023 ident: 10.1016/j.apenergy.2024.122750_bb0240 article-title: Evaluation of model predictive control (MPC) of solar thermal heating system with thermal energy storage for buildings with highly variable occupancy levels publication-title: Build Simulat doi: 10.1007/s12273-023-1067-4 – volume: 72 start-page: 247 year: 2016 ident: 10.1016/j.apenergy.2024.122750_bb0095 article-title: Smart grid data analytics framework for increasing energy savings in residential buildings publication-title: Autom Construct doi: 10.1016/j.autcon.2016.01.002 – volume: 285 year: 2021 ident: 10.1016/j.apenergy.2024.122750_bb0180 article-title: Design and construction of a solar tracking system for small-scale linear Fresnel reflector with three movements publication-title: Appl Energy doi: 10.1016/j.apenergy.2021.116477 – volume: 24 start-page: 1 issue: 1 year: 2016 ident: 10.1016/j.apenergy.2024.122750_bb0040 article-title: Model predictive climate control of a Swiss office building: implementation, results, and cost-benefit analysis publication-title: IEEE Trans Control Syst Technol doi: 10.1109/TCST.2015.2415411 – volume: 67 start-page: 92 issue: 1 year: 2012 ident: 10.1016/j.apenergy.2024.122750_bb0025 article-title: Demand reduction in building energy systems based on economic model predictive control publication-title: Chem Eng Sci doi: 10.1016/j.ces.2011.07.052 – volume: 140 year: 2022 ident: 10.1016/j.apenergy.2024.122750_bb0090 article-title: Blockchain-based IoT system for personalized indoor temperature control publication-title: Autom Construct doi: 10.1016/j.autcon.2022.104339 – year: 2017 ident: 10.1016/j.apenergy.2024.122750_bb0225 – volume: 134 year: 2022 ident: 10.1016/j.apenergy.2024.122750_bb0115 article-title: Construction related urban disturbances: identification and linking with an IoT-model publication-title: Autom Construct doi: 10.1016/j.autcon.2021.104038 – volume: 283 year: 2021 ident: 10.1016/j.apenergy.2024.122750_bb0005 article-title: Mapping geological hydrogen storage capacity and regional heating demands: an applied UK case study publication-title: Appl Energy doi: 10.1016/j.apenergy.2020.116348 – volume: 270 year: 2022 ident: 10.1016/j.apenergy.2024.122750_bb0315 article-title: Model predictive approaches for cost-efficient building climate control with seasonal energy storage publication-title: Energ Buildings doi: 10.1016/j.enbuild.2022.112285 – volume: 149 year: 2023 ident: 10.1016/j.apenergy.2024.122750_bb0110 article-title: BIM and IoT data fusion: the data process model perspective publication-title: Autom Construct doi: 10.1016/j.autcon.2023.104792 – volume: 310 year: 2022 ident: 10.1016/j.apenergy.2024.122750_bb0150 article-title: Physics-informed linear regression is competitive with two machine learning methods in residential building MPC publication-title: Appl Energy doi: 10.1016/j.apenergy.2021.118491 – volume: 716 year: 2022 ident: 10.1016/j.apenergy.2024.122750_bb0255 article-title: Thermal characterization of polyethylene glycol 600 in liquid and solid phase and across the phase transition publication-title: Thermochimica Acta doi: 10.1016/j.tca.2022.179326 – volume: 38 start-page: 673 issue: 6 year: 2006 ident: 10.1016/j.apenergy.2024.122750_bb0250 article-title: Thermal testing and numerical simulation of a prototype cell using light wallboards coupling vacuum isolation panels and phase change material publication-title: Energ Buildings doi: 10.1016/j.enbuild.2005.11.002 – year: 2021 ident: 10.1016/j.apenergy.2024.122750_bb0140 article-title: Real-time implementation of MPC for tracking in embedded systems: application to a two-wheeled inverted pendulum publication-title: arXiv.org – volume: 149 start-page: 169 year: 2019 ident: 10.1016/j.apenergy.2024.122750_bb0265 article-title: Validation of a transient zonal model to predict the detailed indoor thermal environment: case of electric radiators and wood stoves publication-title: Build Environ doi: 10.1016/j.buildenv.2018.12.020 – volume: 57 start-page: 1391 issue: 6 year: 2011 ident: 10.1016/j.apenergy.2024.122750_bb0295 article-title: Computational complexity certification for real-time MPC with input constraints based on the fast gradient method publication-title: IEEE Trans Automat Contr doi: 10.1109/TAC.2011.2176389 – volume: 116 start-page: 646 year: 2016 ident: 10.1016/j.apenergy.2024.122750_bb0160 article-title: Unsupervised energy prediction in a smart grid context using reinforcement cross-building transfer learning publication-title: Energ Buildings doi: 10.1016/j.enbuild.2016.01.030 – volume: 132 year: 2021 ident: 10.1016/j.apenergy.2024.122750_bb0125 article-title: An event-driven multi-agent based distributed optimal control strategy for HVAC systems in IoT-enabled smart buildings publication-title: Autom Construct doi: 10.1016/j.autcon.2021.103919 – volume: 194 year: 2021 ident: 10.1016/j.apenergy.2024.122750_bb0335 article-title: Thermal storage performance of building envelopes for nearly-zero energy buildings during cooling season in Western China: an experimental study publication-title: Build Environ doi: 10.1016/j.buildenv.2021.107709 – volume: 326 year: 2022 ident: 10.1016/j.apenergy.2024.122750_bb0070 article-title: Model predictive control in phase-change-material-wallboard-enhanced building energy management considering electricity price dynamics publication-title: Appl Energy doi: 10.1016/j.apenergy.2022.120023 – volume: 114 start-page: 89 year: 2018 ident: 10.1016/j.apenergy.2024.122750_bb0330 article-title: Economic MPC and real-time decision making with application to large-scale HVAC energy systems publication-title: Comp Chem Eng doi: 10.1016/j.compchemeng.2017.10.038 – volume: 269 year: 2023 ident: 10.1016/j.apenergy.2024.122750_bb0050 article-title: Predictive control of low-temperature heating system with passive thermal mass energy storage and photovoltaic system: impact of occupancy patterns and climate change publication-title: Energy (Oxford) doi: 10.1016/j.energy.2023.126791 – start-page: 301 year: 2017 ident: 10.1016/j.apenergy.2024.122750_bb0215 article-title: Regular expression based pattern matching for gene expression data to identify the abnormality gnome – volume: 153 start-page: 316 year: 2019 ident: 10.1016/j.apenergy.2024.122750_bb0030 article-title: Price-responsive model predictive control of floor heating systems for demand response using building thermal mass publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2019.02.107 – volume: 39 start-page: 651 issue: 6 year: 2007 ident: 10.1016/j.apenergy.2024.122750_bb0305 article-title: Calibrated building energy simulation and its application in a high-rise commercial building in Shanghai publication-title: Energ Buildings doi: 10.1016/j.enbuild.2006.09.013 – volume: 85 start-page: 369 year: 2015 ident: 10.1016/j.apenergy.2024.122750_bb0015 article-title: Raising the temperature of the UK heat pump market: learning lessons from Finland publication-title: Energy Policy doi: 10.1016/j.enpol.2015.06.016 – year: 2012 ident: 10.1016/j.apenergy.2024.122750_bb0200 – volume: 48 start-page: 112 year: 2012 ident: 10.1016/j.apenergy.2024.122750_bb0010 article-title: Climate change influence on building lifecycle greenhouse gas emissions: case study of a UK mixed-use development publication-title: Energ Buildings doi: 10.1016/j.enbuild.2012.01.016 – volume: 145 start-page: 52 year: 2020 ident: 10.1016/j.apenergy.2024.122750_bb0075 article-title: Parametric analysis of applying PCM wallboards for energy saving in high-rise lightweight buildings in Shanghai publication-title: Renew Energy doi: 10.1016/j.renene.2019.05.124 – year: 2020 ident: 10.1016/j.apenergy.2024.122750_bb0245 article-title: Meteonorm version 8 – volume: 276 year: 2022 ident: 10.1016/j.apenergy.2024.122750_bb0105 article-title: Experimental and finite element analysis on the developed real-time form stable PCM based roof system for thermal energy storage applications publication-title: Energ Buildings doi: 10.1016/j.enbuild.2022.112514 – volume: 261 year: 2022 ident: 10.1016/j.apenergy.2024.122750_bb0170 article-title: A progressive comparison of the novel pulse and conventional steady state methods of measuring the airtightness of buildings publication-title: Energ Buildings doi: 10.1016/j.enbuild.2022.111983 – volume: 224 start-page: 175 year: 2021 ident: 10.1016/j.apenergy.2024.122750_bb0195 article-title: Computer vision and photosensor based hybrid control strategy for a two-axis solar tracker - daylighting application publication-title: Solar Energy doi: 10.1016/j.solener.2021.05.077 – volume: 181 year: 2021 ident: 10.1016/j.apenergy.2024.122750_bb0185 article-title: A model predictive controller for precision irrigation using discrete lagurre networks publication-title: Comp Electron Agric doi: 10.1016/j.compag.2020.105953 – volume: 223 year: 2020 ident: 10.1016/j.apenergy.2024.122750_bb0300 article-title: Building energy model calibration: a detailed case study using sub-hourly measured data publication-title: Energ Buildings doi: 10.1016/j.enbuild.2020.110189 – start-page: 284 year: 2004 ident: 10.1016/j.apenergy.2024.122750_bb0230 article-title: YALMIP: A toolbox for modeling and optimization in MATLAB – volume: 298 year: 2021 ident: 10.1016/j.apenergy.2024.122750_bb0035 article-title: Experimental test of a black-box economic model predictive control for residential space heating publication-title: Appl Energy doi: 10.1016/j.apenergy.2021.117227 – volume: 339 year: 2022 ident: 10.1016/j.apenergy.2024.122750_bb0085 article-title: Building energy efficiency and load flexibility optimization using phase change materials under futuristic grid scenario publication-title: J Clean Prod doi: 10.1016/j.jclepro.2022.130561 – volume: 311 year: 2022 ident: 10.1016/j.apenergy.2024.122750_bb0100 article-title: Self-powered wireless sensing system driven by daily ambient temperature energy harvesting publication-title: Appl Energy – volume: 188 start-page: 652 year: 2017 ident: 10.1016/j.apenergy.2024.122750_bb0055 article-title: Reducing auxiliary energy consumption of heavy trucks by onboard prediction and real-time optimization publication-title: Appl Energy doi: 10.1016/j.apenergy.2016.11.118 – start-page: 1009 year: 2016 ident: 10.1016/j.apenergy.2024.122750_bb0285 article-title: Disciplined convex-concave programming – volume: 362 start-page: 12004 year: 2022 ident: 10.1016/j.apenergy.2024.122750_bb0310 article-title: Learnings from experiments with MPC for heating of older school building publication-title: E3S Web Conf doi: 10.1051/e3sconf/202236212004 – volume: 297 year: 2021 ident: 10.1016/j.apenergy.2024.122750_bb0045 article-title: Model predictive control for integrated control of air-conditioning and mechanical ventilation, lighting and shading systems publication-title: Appl Energy doi: 10.1016/j.apenergy.2021.117112 – volume: 127 start-page: 128 year: 2016 ident: 10.1016/j.apenergy.2024.122750_bb0280 article-title: Information and communications technologies (ICTs) for energy efficiency in buildings: review and analysis of results from EU pilot projects publication-title: Energ Buildings doi: 10.1016/j.enbuild.2016.05.064 – volume: 97 year: 2020 ident: 10.1016/j.apenergy.2024.122750_bb0325 article-title: Model predictive control of non-domestic heating using genetic programming dynamic models publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2020.106695 – volume: 283 year: 2021 ident: 10.1016/j.apenergy.2024.122750_bb0060 article-title: Enhancing building energy performance by effectively using phase change material and dynamic insulation in walls publication-title: Appl Energy doi: 10.1016/j.apenergy.2020.116306 – volume: 41 start-page: 1 year: 2007 ident: 10.1016/j.apenergy.2024.122750_bb0205 article-title: Python programming language – year: 2012 ident: 10.1016/j.apenergy.2024.122750_bb0290 article-title: Python for data analysis: Data wrangling with pandas – volume: 271 year: 2022 ident: 10.1016/j.apenergy.2024.122750_bb0120 article-title: Modelling UK electricity regional costs for commercial buildings publication-title: Energ Buildings doi: 10.1016/j.enbuild.2022.112301 – ident: 10.1016/j.apenergy.2024.122750_bb0190 – ident: 10.1016/j.apenergy.2024.122750_bb0220 – volume: 88 start-page: 3079 issue: 9 year: 2011 ident: 10.1016/j.apenergy.2024.122750_bb0155 article-title: Experimental analysis of model predictive control for an energy efficient building heating system publication-title: Appl Energy doi: 10.1016/j.apenergy.2011.03.009 – volume: 87 start-page: 201 year: 2018 ident: 10.1016/j.apenergy.2024.122750_bb0135 article-title: Environmental monitoring system based on an open source platform and the internet of things for a building energy retrofit publication-title: Autom Construct doi: 10.1016/j.autcon.2017.12.017 – volume: 41 start-page: 159 issue: 2 year: 2007 ident: 10.1016/j.apenergy.2024.122750_bb0235 article-title: The gurobi optimizer publication-title: Transp Research Part B – ident: 10.1016/j.apenergy.2024.122750_bb0175 – volume: 241 year: 2021 ident: 10.1016/j.apenergy.2024.122750_bb0080 article-title: Multi-factor analysis on thermal comfort and energy saving potential for PCM-integrated buildings in summer publication-title: Energ Buildings doi: 10.1016/j.enbuild.2021.110966 – volume: 279 year: 2020 ident: 10.1016/j.apenergy.2024.122750_bb0165 article-title: Smart control of dynamic phase change material wall system publication-title: Appl Energy doi: 10.1016/j.apenergy.2020.115807 – volume: 121 start-page: 152 year: 2016 ident: 10.1016/j.apenergy.2024.122750_bb0065 article-title: Effects of phase change material roof layers on thermal performance of a residential building in Melbourne and Sydney publication-title: Energ Buildings doi: 10.1016/j.enbuild.2016.04.007 – ident: 10.1016/j.apenergy.2024.122750_bb0210 – volume: 6 start-page: 1430 year: 2023 ident: 10.1016/j.apenergy.2024.122750_bb0020 article-title: Fad or future? Navigating challenges and proposing holistic solutions in sustainable building design publication-title: One Earth doi: 10.1016/j.oneear.2023.10.020 – volume: 278 year: 2020 ident: 10.1016/j.apenergy.2024.122750_bb0320 article-title: An optimal home energy management system for modulating heat pumps and photovoltaic systems publication-title: Appl Energy doi: 10.1016/j.apenergy.2020.115661 – volume: 200 year: 2021 ident: 10.1016/j.apenergy.2024.122750_bb0145 article-title: State of the art review on model predictive control (MPC) in heating ventilation and air-conditioning (HVAC) field publication-title: Build Environ doi: 10.1016/j.buildenv.2021.107952 – volume: 183 start-page: 772 year: 2019 ident: 10.1016/j.apenergy.2024.122750_bb0270 article-title: The effect of including hydronic radiator dynamics in model predictive control of space heating publication-title: Energ Buildings doi: 10.1016/j.enbuild.2018.11.015 – volume: 144 year: 2021 ident: 10.1016/j.apenergy.2024.122750_bb0130 article-title: Intelligent building control systems for thermal comfort and energy-efficiency: a systematic review of artificial intelligence-assisted techniques publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2021.110969 |
SSID | ssj0002120 |
Score | 2.495569 |
Snippet | Model Predictive Control (MPC) emerges as a promising solution to address the substantial greenhouse gas emissions from the building sector. By employing... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 122750 |
SubjectTerms | Building energy storage system case studies cost effectiveness Demand response electrical equipment electricity electricity costs energy efficiency Experimental model predictive control (MPC) field experimentation greenhouse gases Internet Internet of things (IoT) Phase change material (PCM) phase transition raspberries Raspberry Pi temperature wireless technology |
Title | Field experiment testing of a low-cost model predictive controller (MPC) for building heating systems and analysis of phase change material (PCM) integration |
URI | https://dx.doi.org/10.1016/j.apenergy.2024.122750 https://www.proquest.com/docview/3153204629 |
Volume | 360 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS-RAEG5EL7uHRd0V35SwBz30TB6dRx9lcJh1GRF2BW9NJ532wZCEmYg3_4n_1aqk4-iCeNhDyIPuJklVqr5OV33F2M_Cj4zna809mQouiiTgmUgMlwKxtfSMzdpfF9OLeHIlzq-j6xU26nNhKKzS2f7OprfW2l0Zurc5rO_uhn8I7XYTCMIxISX8CpGQlg-elmEegaNmxMacWr_JEr4f6LpoM-xwnhiIgR8Q2flHDuofU936n_E6--aAI5x297bBVopyk319Qye4ybbOlllr2NR9tovv7HlMcWqwZPOHhsg1yhuoLGiYVY88rxYNtGVxoJ7T4g2ZQXCB7LNiDsfTy9EJIMSFzFXSBrLjtO_YoBegS4NbR3JCI9e36CKhSy0GRMatssPx5Wh6Aj1NBarFD3Y1Pvs7mnBXl4HnoQwbjpguF1IkOki0CfMsTWNjU5sbPJSeNEbG0vqph2DME1qGvkWcl9rQCovW1MvDLbZaVmWxzSCmTgIhmMCmKAPtB1ZbREGxSaWOkh0W9cJQuSMtp9oZM9VHp92rXoiKhKg6Ie6w4Wu_uqPt-LSH7GWt3imgQt_yad-jXjkUfp205KLLonpYqNCnwhv4gHL3P8bfY1_ojBax_GifrTbzh-IAsVCTHbbKfsjWTn_9nly8AAr9C-A |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYoPbQ9oAJF0EKZSj3Awbt5OA8f0YrVtmUREiBxs5w45qFVEu0GceOf9L8ykzgsrVRx6CFKlNhWkhnPfIlnvmHse-FHxvO15p5MBRdFEvBMJIZLgdhaesZm7a-L6Wk8uRQ_r6KrFTbqc2EorNLZ_s6mt9banRm6tzmsb2-H54R2uw8IwjFh-oa9FTh9qYzB4HEZ5xE4bkZszan5izThu4GuizbFDj8UAzHwA2I7_5eH-stWtw5o_JGtOeQIR93NrbOVotxgH17wCW6wreNl2ho2dfN2scl-jylQDZZ0_tAQu0Z5DZUFDbPqgefVooG2Lg7Uc1q9ITsILpJ9VszhYHo2OgTEuJC5UtpAhpz2HR30AnRpcOtYTmjk-gZ9JHS5xYDQuNV2ODgbTQ-h56lAvfjELsfHF6MJd4UZeB7KsOEI6nIhRaKDRJswz9I0Nja1ucFD6UljZCytn3qIxjyhZehbBHqpDa2waE69PNxiq2VVFtsMYuokEIMJbIoy0H5gtUUYFJtU6ijZYVEvDJU71nIqnjFTfXjaneqFqEiIqhPiDhs-96s73o5Xe8he1uoPDVToXF7t-61XDoXTk9ZcdFlU9wsV-lR5Ax9Qfv6P8ffZu8nF9ESd_Dj99YW9pyu0ouVHu2y1md8XewiMmuxrq_hPCXMNbg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Field+experiment+testing+of+a+low-cost+model+predictive+controller+%28MPC%29+for+building+heating+systems+and+analysis+of+phase+change+material+%28PCM%29+integration&rft.jtitle=Applied+energy&rft.au=Wei%2C+Zhichen&rft.au=Calautit%2C+John+Kaiser&rft.date=2024-04-15&rft.issn=0306-2619&rft.volume=360&rft.spage=122750&rft_id=info:doi/10.1016%2Fj.apenergy.2024.122750&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_apenergy_2024_122750 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon |