Identification of spin-dependent thermoelectric effects in metamagnetic FeRh/heavy-metal bilayers
A vertical flux of heat can bring about hybrid generation of charge and spin currents and eventually convert into the transverse electric voltage in the bilayers composed of metallic magnet and non-magnetic heavy metal (HM). We identified the thermoelectric effects in the sputter-deposited metallic...
Saved in:
Published in | Applied physics letters Vol. 118; no. 14 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Melville
American Institute of Physics
05.04.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A vertical flux of heat can bring about hybrid generation of charge and spin currents and eventually convert into the transverse electric voltage in the bilayers composed of metallic magnet and non-magnetic heavy metal (HM). We identified the thermoelectric effects in the sputter-deposited metallic film of CsCl-ordered FeRh/HM throughout its metamagnetic transition from ferromagnetic (FM) to antiferromagnetic (AFM) phase. With the employment of different HMs (Pt, Au) as the spin detective layers, we found that the FM phase allows for hybrid generation of charge and spin currents by heat, respectively, attributed to the anomalous Nernst effect (ANE) and the spin Seebeck effect (SSE), while the AFM phase merely retains the ANE from residual nanoscale FM domains at cryogenic temperatures, which was further confirmed by the control measurement based on the adjustment of spin Hall angle for W during its
β to
α phase transition. Contribution from the proximity-induced ANE of HM was verified to be negligible compared with that of ANE and SSE of FeRh. Our method opens up more access to quantitatively discern the entangled thermo-charge/spin contributions in metallic magnets, and the combination of thermoelectric effects with metamagnetic phase transition gives impetus to exploiting more versatile and energy-saving thermo-spin logic applications. |
---|---|
AbstractList | A vertical flux of heat can bring about hybrid generation of charge and spin currents and eventually convert into the transverse electric voltage in the bilayers composed of metallic magnet and non-magnetic heavy metal (HM). We identified the thermoelectric effects in the sputter-deposited metallic film of CsCl-ordered FeRh/HM throughout its metamagnetic transition from ferromagnetic (FM) to antiferromagnetic (AFM) phase. With the employment of different HMs (Pt, Au) as the spin detective layers, we found that the FM phase allows for hybrid generation of charge and spin currents by heat, respectively, attributed to the anomalous Nernst effect (ANE) and the spin Seebeck effect (SSE), while the AFM phase merely retains the ANE from residual nanoscale FM domains at cryogenic temperatures, which was further confirmed by the control measurement based on the adjustment of spin Hall angle for W during its
β to
α phase transition. Contribution from the proximity-induced ANE of HM was verified to be negligible compared with that of ANE and SSE of FeRh. Our method opens up more access to quantitatively discern the entangled thermo-charge/spin contributions in metallic magnets, and the combination of thermoelectric effects with metamagnetic phase transition gives impetus to exploiting more versatile and energy-saving thermo-spin logic applications. A vertical flux of heat can bring about hybrid generation of charge and spin currents and eventually convert into the transverse electric voltage in the bilayers composed of metallic magnet and non-magnetic heavy metal (HM). We identified the thermoelectric effects in the sputter-deposited metallic film of CsCl-ordered FeRh/HM throughout its metamagnetic transition from ferromagnetic (FM) to antiferromagnetic (AFM) phase. With the employment of different HMs (Pt, Au) as the spin detective layers, we found that the FM phase allows for hybrid generation of charge and spin currents by heat, respectively, attributed to the anomalous Nernst effect (ANE) and the spin Seebeck effect (SSE), while the AFM phase merely retains the ANE from residual nanoscale FM domains at cryogenic temperatures, which was further confirmed by the control measurement based on the adjustment of spin Hall angle for W during its β to α phase transition. Contribution from the proximity-induced ANE of HM was verified to be negligible compared with that of ANE and SSE of FeRh. Our method opens up more access to quantitatively discern the entangled thermo-charge/spin contributions in metallic magnets, and the combination of thermoelectric effects with metamagnetic phase transition gives impetus to exploiting more versatile and energy-saving thermo-spin logic applications. |
Author | Li, Qian Li, Jun Wang, Dunhui Cao, Qingqi Du, Youwei Zhang, Sheng Liu, Ronghua Yang, Bin Xia, Siyu |
Author_xml | – sequence: 1 givenname: Sheng surname: Zhang fullname: Zhang, Sheng organization: National Laboratory of Solid State Microstructures, Jiangsu Provincial Key Laboratory for Nanotechnology and Department of Physics, Nanjing University – sequence: 2 givenname: Siyu surname: Xia fullname: Xia, Siyu organization: 3Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China – sequence: 3 givenname: Qian surname: Li fullname: Li, Qian organization: Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences – sequence: 4 givenname: Bin surname: Yang fullname: Yang, Bin organization: 3Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China – sequence: 5 givenname: Jun surname: Li fullname: Li, Jun organization: National Laboratory of Solid State Microstructures, Jiangsu Provincial Key Laboratory for Nanotechnology and Department of Physics, Nanjing University – sequence: 6 givenname: Qingqi surname: Cao fullname: Cao, Qingqi organization: National Laboratory of Solid State Microstructures, Jiangsu Provincial Key Laboratory for Nanotechnology and Department of Physics, Nanjing University – sequence: 7 givenname: Dunhui surname: Wang fullname: Wang, Dunhui organization: National Laboratory of Solid State Microstructures, Jiangsu Provincial Key Laboratory for Nanotechnology and Department of Physics, Nanjing University – sequence: 8 givenname: Ronghua surname: Liu fullname: Liu, Ronghua organization: National Laboratory of Solid State Microstructures, Jiangsu Provincial Key Laboratory for Nanotechnology and Department of Physics, Nanjing University – sequence: 9 givenname: Youwei surname: Du fullname: Du, Youwei organization: National Laboratory of Solid State Microstructures, Jiangsu Provincial Key Laboratory for Nanotechnology and Department of Physics, Nanjing University |
BookMark | eNp9kE1LAzEQhoNUsK0e_AcLnhS2TTab_ThKsVooCKLnJU0mNmU3WZO00H_vrq0KKp5m5p1n3mFmhAbGGkDokuAJwRmdsgnGtCAMn6AhwXkeU0KKARriTo6zkpEzNPJ-05UsoXSI-EKCCVppwYO2JrIq8q02sYQWTN-KwhpcY6EGEZwWESjVZT7SJmog8Ia_GgidPoen9XQNfLePe72OVrrme3D-HJ0qXnu4OMYxepnfPc8e4uXj_WJ2u4wFLWmIU8klySRZ0RRIkmOucpnLkgnFWKYwk7zoSrJKmExEmSiQaZ5QUWLCKSvKlI7R1cG3dfZtCz5UG7t1pltZJQwXWdnf3FHTAyWc9d6BqoQOH6cHx3VdEVz1f6xYdfxjN3H9Y6J1uuFu_yd7c2D9p-sXvLPuG6xaqf6Dfzu_A_m_kPg |
CODEN | APPLAB |
CitedBy_id | crossref_primary_10_1103_PhysRevB_108_094414 crossref_primary_10_1021_acsami_4c12754 crossref_primary_10_1002_smll_202403315 crossref_primary_10_1016_j_vacuum_2023_112617 crossref_primary_10_1088_1361_6463_acc9d0 crossref_primary_10_3389_fphy_2023_1140286 |
Cites_doi | 10.1038/nphys4181 10.1039/c3ee43299h 10.1103/PhysRevB.83.224401 10.1103/PhysRevLett.124.017203 10.1103/PhysRevB.89.054401 10.1126/sciadv.1701503 10.1088/0953-8984/26/34/343202 10.1063/1.4753947 10.1038/nmat3301 10.1103/PhysRevLett.97.026603 10.1038/nmat3870 10.1063/1.1662611 10.1063/1.5045262 10.1103/PhysRevLett.97.036601 10.1063/1.3507386 10.1063/1.1571232 10.1063/1.5000815 10.1038/s41467-019-14061-w 10.1103/PhysRevLett.122.217204 10.1038/nmat3861 10.1038/s41467-017-00290-4 10.1002/qute.202000059 10.1103/PhysRevB.98.134411 10.1063/1.5097422 10.1103/PhysRevLett.111.187201 10.1038/s41598-019-54833-4 10.1103/PhysRevMaterials.3.124407 10.1116/1.4936261 10.1038/nphys3304 10.1103/PhysRevB.96.241105 10.1088/0022-3727/49/32/323002 10.1103/PhysRevLett.106.036601 10.1016/j.jmmm.2019.165526 10.1103/PhysRevLett.119.227205 10.1109/JPROC.2016.2535167 10.1116/1.1506905 10.1103/PhysRevB.92.019905 10.1103/PhysRevB.96.060402 10.1038/nmat4964 10.1103/PhysRevB.81.214418 10.1103/PhysRevLett.112.197201 10.1002/aelm.201800466 10.1103/PhysRevB.92.064426 10.1103/PhysRevB.88.214403 10.1103/PhysRevX.4.041023 10.1038/srep46752 10.1103/PhysRevB.88.214304 10.1126/sciadv.abd2613 10.1103/PhysRevMaterials.4.034410 10.1103/PhysRevB.91.024402 10.1103/PhysRevLett.109.196602 10.1002/adma.202001080 10.1038/nature07321 10.1063/1.4904467 10.1038/nnano.2016.18 10.1103/PhysRevB.82.214403 10.1038/ncomms6959 10.1103/PhysRevB.87.014423 10.1063/1.4921927 10.1038/nmat3076 |
ContentType | Journal Article |
Copyright | Author(s) 2021 Author(s). Published under license by AIP Publishing. |
Copyright_xml | – notice: Author(s) – notice: 2021 Author(s). Published under license by AIP Publishing. |
DBID | AAYXX CITATION 8FD H8D L7M |
DOI | 10.1063/5.0038150 |
DatabaseName | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | Technology Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1077-3118 |
ExternalDocumentID | 10_1063_5_0038150 apl |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 11774150 funderid: https://doi.org/10.13039/501100001809 – fundername: National Natural Science Foundation of China grantid: 12074178 funderid: https://doi.org/10.13039/501100001809 |
GroupedDBID | -DZ -~X .DC 1UP 2-P 23M 4.4 53G 5GY 5VS 6J9 A9. AAAAW AABDS AAEUA AAGZG AAPUP AAYIH ABFTF ABJNI ABZEH ACBEA ACBRY ACGFO ACGFS ACLYJ ACNCT ACZLF ADCTM AEGXH AEJMO AENEX AFATG AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AIAGR AJJCW AJQPL ALEPV ALMA_UNASSIGNED_HOLDINGS AQWKA ATXIE AWQPM BPZLN CS3 D0L EBS ESX F.2 F5P FDOHQ FFFMQ HAM M6X M71 M73 N9A NPSNA O-B P2P RIP RNS RQS SJN TAE TN5 UCJ UPT WH7 XJE YZZ ~02 AAGWI AAYXX ABJGX ADMLS BDMKI CITATION 8FD H8D L7M |
ID | FETCH-LOGICAL-c393t-4dad16d1b34e1270af7d7d95cf556f05da87d91b25d2c92fed4723c901a358943 |
ISSN | 0003-6951 |
IngestDate | Mon Jun 30 06:47:30 EDT 2025 Thu Apr 24 23:09:18 EDT 2025 Tue Jul 01 01:08:04 EDT 2025 Thu Jun 23 13:36:48 EDT 2022 Fri Jun 21 00:13:50 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 14 |
Language | English |
License | 0003-6951/2021/118(14)/142401/7/$30.00 Published under license by AIP Publishing. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c393t-4dad16d1b34e1270af7d7d95cf556f05da87d91b25d2c92fed4723c901a358943 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-4487-4132 0000-0003-3809-8800 0000-0002-4053-3923 |
PQID | 2508690005 |
PQPubID | 2050678 |
PageCount | 7 |
ParticipantIDs | crossref_primary_10_1063_5_0038150 scitation_primary_10_1063_5_0038150 crossref_citationtrail_10_1063_5_0038150 proquest_journals_2508690005 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210405 2021-04-05 |
PublicationDateYYYYMMDD | 2021-04-05 |
PublicationDate_xml | – month: 04 year: 2021 text: 20210405 day: 05 |
PublicationDecade | 2020 |
PublicationPlace | Melville |
PublicationPlace_xml | – name: Melville |
PublicationTitle | Applied physics letters |
PublicationYear | 2021 |
Publisher | American Institute of Physics |
Publisher_xml | – name: American Institute of Physics |
References | Uchida, Adachi, Ota, Nakayama, Maekawa, Saitoh (c29) 2010 Meyer, Chen, Wimmer, Althammer, Wimmer, Schlitz, Gepraegs, Huebl, Koedderitzsch, Ebert, Bauer, Gross, Goennenwein (c5) 2017 Ikhlas, Tomita, Koretsune, Suzuki, Nishio-Hamane, Arita, Otani, Nakatsuji (c8) 2017 Pai, Liu, Li, Tseng, Ralph, Buhrman (c44) 2012 Avery, Pufall, Zink (c36) 2012 Petroff, Sheng, Sinha, Rozgonyi, Alexander (c51) 1973 Xiao, Yao, Fang, Niu (c7) 2006 Mei, Gray, Tang, Schubert, Werder, Bartell, Ralph, Fuchs, Schlom (c26) 2020 Bose, Tulapurkar (c34) 2019 Pu, Johnston-Halperin, Awschalom, Shi (c35) 2006 Xu, Yang, Tang, Jiang, Schneider, Whig, Shi (c16) 2014 De, Ghosh, Mandal, Ogale, Nair (c39) 2020 Lewis, Marrows, Langridge (c19) 2016 Jungwirth, Marti, Wadley, Wunderlich (c20) 2016 Gray, Stiehl, Heron, Mei, Schlom, Ramesh, Ralph, Fuchs (c11) 2019 Mosendz, Vlaminck, Pearson, Fradin, Bauer, Bader, Hoffmann (c42) 2010 Xiao, Bauer, Uchida, Saitoh, Maekawa (c54) 2010 Uchida, Adachi, Kikkawa, Kirihara, Ishida, Yorozu, Maekawa, Saitoh (c3) 2016 Uchida, Ishida, Kikkawa, Kirihara, Murakami, Saitoh (c12) 2014 Pai, Ou, Vilela-Leão, Ralph, Buhrman (c57) 2015 Li, Shi, Ortiz, Aldosary, Chen, Aji, Wei, Shi (c32) 2019 Bosu, Sakuraba, Uchida, Saito, Ota, Saitoh, Takanashi (c58) 2011 Sheng, Sakuraba, Lau, Takahashi, Mitani, Hayashi (c6) 2017 Almeida, McGrouther, Temple, Massey, Li, Moore, Marrows, McVitie (c47) 2020 Bougiatioti, Klewe, Meier, Manos, Kuschel, Wollschläger, Bouchenoire, Brown, Schmalhorst, Reiss, Kuschel (c17) 2017 Chen, Xiao, Zhang, Zhang (c49) 2018 Boona, Myers, Heremans (c2) 2014 Uchida, Kikkawa, Miura, Shiomi, Saitoh (c45) 2014 Hong, Liu, Pearson, Hoffmann, Fong, Bhattacharyaa (c31) 2019 Wang, Du, Pu, Adur, Hammel, Yang (c56) 2014 Bauer, Saitoh, van Wees (c1) 2012 Narita, Ikhlas, Kimata, Nugroho, Nakatsuji, Otani (c9) 2017 Iguchi, Kasai, Koshikawa, Chinone, Suzuki, Uchida (c10) 2019 Zhang, Han, Jiang, Yang, S. P. Parkin (c41) 2015 Liu, Moriyama, Ralph, Buhrman (c40) 2011 Isasa, Villamor, Hueso, Gradhand, Casanova (c48) 2015 Zhang, Weng, Chuang, Qu, Huang (c30) 2020 Tian, Li, Qu, Jin, Chien (c14) 2015 Wang, Zou, Cai, Shen, Sun (c15) 2013 Kikkawa, Uchida, Daimon, Shiomi, Adachi, Qiu, Hou, Jin, Maekawa, Saitoh (c13) 2013 Feng, Yan, Liu (c21) 2019 Cherifi, Ivanovskaya, Phillips, Zobelli, Infante, Jacquet, Garcia, Fusil, Briddon, Guiblin, Mougin, Unal, Kronast, Valencia, Dkhil, Barthelemy, Bibes (c59) 2014 Lee, Liu, Heron, Clarkson, Hong, Ko, Biegalski, Aschauer, Hsu, Nowakowski, Wu, Christen, Salahuddin, Bokor, Spaldin, Schlom, Ramesh (c23) 2015 Niimi, Suzuki, Kawanishi, Omori, Valet, Fert, Otani (c43) 2014 Nan, Lee, Zhuang, Hu, Clarkson, Wang, Ko, Choe, Chen, Budil, Wu, Salahuddin, Hu, Ramesh, Sun (c28) 2020 Walter, Walowski, Zbarsky, Münzenberg, Schäfers, Ebke, Reiss, Thomas, Peretzki, Seibt, Moodera, Czerner, Bachmann, Heiliger (c33) 2011 Sui, Wang, Kim, Wang, Rhim, Duan, Kioussis (c50) 2017 Sola, Bougiatioti, Kuepferling, Meier, Reiss, Pasquale, Kuschel, Basso (c46) 2017 Schmid, Srichandan, Meier, Kuschel, Schmalhorst, Vogel, Reiss, Strunk, Back (c37) 2013 (c48) 2015 Rossnagel, Noyan, Cabral (c52) 2002 Ghosh, De, Nair (c38) 2018 Uchida, Takahashi, Harii, Ieda, Koshibae, Ando, Maekawa, Saitoh (c4) 2008 Chen, Feng, Wang, Zhang, Zhong, Song, Jin, Zhang, Li, Jiang (c24) 2017 Wu, Luo, Lin, Huang (c18) 2017 Marti, Fina, Frontera, Liu, Wadley, He, Paull, Clarkson, Kudrnovský, Turek, Kuneš, Yi, Chu, Nelson, You, Arenholz, Salahuddin, Fontcuberta, Jungwirth, Ramesh (c22) 2014 Lee, Cho, You (c53) 2016 Wang, Decker, Meier, Chen, Song, Grünbaum, Zhao, Zhang, Chen, Back (c27) 2020 Ohnuma, Adachi, Saitoh, Maekawa (c55) 2013 Thiele, Maat, Fullerton (c25) 2003 (2023061717504733700_c5) 2017; 16 (2023061717504733700_c28) 2020; 6 (2023061717504733700_c16) 2014; 105 (2023061717504733700_c26) 2020; 32 (2023061717504733700_c51) 1973; 44 (2023061717504733700_c54) 2010; 81 (2023061717504733700_c18) 2017; 96 (2023061717504733700_c52) 2002; 20 (2023061717504733700_c17) 2017; 119 (2023061717504733700_c39) 2020; 124 (2023061717504733700_c35) 2006; 97 (2023061717504733700_c14) 2015; 106 (2023061717504733700_c8) 2017; 13 (2023061717504733700_c29) 2010; 97 (2023061717504733700_c21) 2019; 5 (2023061717504733700_c38) 2018; 113 (2023061717504733700_c58) 2011; 83 (2023061717504733700_c42) 2010; 82 (2023061717504733700_c56) 2014; 112 (2023061717504733700_c40) 2011; 106 (2023061717504733700_c46) 2017; 7 (2023061717504733700_c1) 2012; 11 (2023061717504733700_c43) 2014; 89 (2023061717504733700_c32) 2019; 122 (2023061717504733700_c15) 2013; 88 (2023061717504733700_c53) 2016; 34 (2023061717504733700_c6) 2017; 3 (2023061717504733700_c59) 2014; 13 (2023061717504733700_c4) 2008; 455 (2023061717504733700_c25) 2003; 82 (2023061717504733700_c45) 2014; 4 (2023061717504733700_c23) 2015; 6 Isasa (2023061717504733700_c48b) 2015; 92 (2023061717504733700_c9) 2017; 111 (2023061717504733700_c22) 2014; 13 (2023061717504733700_c48a) 2015; 91 (2023061717504733700_c3) 2016; 104 (2023061717504733700_c24) 2017; 8 (2023061717504733700_c31) 2019; 114 (2023061717504733700_c12) 2014; 26 (2023061717504733700_c44) 2012; 101 (2023061717504733700_c50) 2017; 96 (2023061717504733700_c27) 2020; 11 (2023061717504733700_c20) 2016; 11 (2023061717504733700_c47) 2020; 4 (2023061717504733700_c49) 2018; 98 (2023061717504733700_c33) 2011; 10 (2023061717504733700_c41) 2015; 11 (2023061717504733700_c11) 2019; 3 (2023061717504733700_c19) 2016; 49 (2023061717504733700_c7) 2006; 97 (2023061717504733700_c10) 2019; 9 (2023061717504733700_c2) 2014; 7 (2023061717504733700_c13) 2013; 88 (2023061717504733700_c30) 2020; 3 (2023061717504733700_c57) 2015; 92 (2023061717504733700_c36) 2012; 109 (2023061717504733700_c34) 2019; 491 (2023061717504733700_c37) 2013; 111 (2023061717504733700_c55) 2013; 87 |
References_xml | – start-page: 014423 year: 2013 ident: c55 publication-title: Phys. Rev. B – start-page: 2047 year: 2002 ident: c52 publication-title: J. Vac. Sci. Technol. B – start-page: eabd2613 year: 2020 ident: c28 publication-title: Sci. Adv. – start-page: 214403 year: 2013 ident: c13 publication-title: Phys. Rev. B – start-page: 214403 year: 2010 ident: c42 publication-title: Phys. Rev. B – start-page: 036601 year: 2011 ident: c40 publication-title: Phys. Rev. Lett. – start-page: 034410 year: 2020 ident: c47 publication-title: Phys. Rev. Mater. – start-page: 885 year: 2014 ident: c2 publication-title: Energy Environ. Sci. – start-page: 124407 year: 2019 ident: c11 publication-title: Phys. Rev. Mater. – start-page: 122404 year: 2012 ident: c44 publication-title: Appl. Phys. Lett. – start-page: 496 year: 2015 ident: c41 publication-title: Nat. Phys. – start-page: 2859 year: 2003 ident: c25 publication-title: Appl. Phys. Lett. – start-page: 242404 year: 2014 ident: c16 publication-title: Appl. Phys. Lett. – start-page: 345 year: 2014 ident: c59 publication-title: Nat. Mater – start-page: 041023 year: 2014 ident: c45 publication-title: Phys. Rev. X – start-page: 242403 year: 2019 ident: c31 publication-title: Appl. Phys. Lett. – start-page: 46752 year: 2017 ident: c46 publication-title: Sci. Rep. – start-page: 5959 year: 2015 ident: c23 publication-title: Nat. Commun. – start-page: 036601 year: 2006 ident: c35 publication-title: Phys. Rev. Lett. – start-page: 017203 year: 2020 ident: c39 publication-title: Phys. Rev. Lett. – start-page: 1800466 year: 2019 ident: c21 publication-title: Adv. Electron. Mater. – start-page: 172505 year: 2010 ident: c29 publication-title: Appl. Phys. Lett. – start-page: 019905(E) year: 2015 ident: c48 publication-title: Phys. Rev. B – start-page: 449 year: 2017 ident: c24 publication-title: Nat. Commun. – start-page: 2545 year: 1973 ident: c51 publication-title: J. Appl. Phys. – start-page: 217204 year: 2019 ident: c32 publication-title: Phys. Rev. Lett. – start-page: 021502 year: 2016 ident: c53 publication-title: J. Vac. Sci. Technol. A – start-page: 202404 year: 2017 ident: c9 publication-title: Appl. Phys. Lett. – start-page: 212407 year: 2015 ident: c14 publication-title: Appl. Phys. Lett. – start-page: e1701503 year: 2017 ident: c6 publication-title: Sci. Adv. – start-page: 060402(R) year: 2017 ident: c18 publication-title: Phys. Rev. B – start-page: 1946 year: 2016 ident: c3 publication-title: Proc. IEEE – start-page: 977 year: 2017 ident: c5 publication-title: Nat. Mater. – start-page: 2001080 year: 2020 ident: c26 publication-title: Adv. Mater. – start-page: 18443 year: 2019 ident: c10 publication-title: Sci. Rep. – start-page: 227205 year: 2017 ident: c17 publication-title: Phys. Rev. Lett. – start-page: 262405 year: 2018 ident: c38 publication-title: Appl. Phys. Lett. – start-page: 2000059 year: 2020 ident: c30 publication-title: Adv. Quantum Technol. – start-page: 1085 year: 2017 ident: c8 publication-title: Nat. Phys. – start-page: 323002 year: 2016 ident: c19 publication-title: J. Phys. D: Appl. Phys. – start-page: 742 year: 2011 ident: c33 publication-title: Nat. Mater. – start-page: 241105 year: 2017 ident: c50 publication-title: Phys. Rev. B – start-page: 224401 year: 2011 ident: c58 publication-title: Phys. Rev. B – start-page: 134411 year: 2018 ident: c49 publication-title: Phys. Rev. B – start-page: 026603 year: 2006 ident: c7 publication-title: Phys. Rev. Lett. – start-page: 778 year: 2008 ident: c4 publication-title: Nature – start-page: 275 year: 2020 ident: c27 publication-title: Nat. Commun. – start-page: 054401 year: 2014 ident: c43 publication-title: Phys. Rev. B – start-page: 343202 year: 2014 ident: c12 publication-title: J. Phys.: Condens. Matter – start-page: 231 year: 2016 ident: c20 publication-title: Nat. Nanotechnol. – start-page: 367 year: 2014 ident: c22 publication-title: Nat. Mater. – start-page: 165526 year: 2019 ident: c34 publication-title: J. Magn. Magn. Mater. – start-page: 214418 year: 2010 ident: c54 publication-title: Phys. Rev. B – start-page: 214304 year: 2013 ident: c15 publication-title: Phys. Rev. B – start-page: 391 year: 2012 ident: c1 publication-title: Nat. Mater. – start-page: 196602 year: 2012 ident: c36 publication-title: Phys. Rev. Lett. – start-page: 064426 year: 2015 ident: c57 publication-title: Phys. Rev. B – start-page: 187201 year: 2013 ident: c37 publication-title: Phys. Rev. Lett. – start-page: 024402 year: 2015 ident: c48 publication-title: Phys. Rev. B – start-page: 197201 year: 2014 ident: c56 publication-title: Phys. Rev. Lett. – volume: 13 start-page: 1085 year: 2017 ident: 2023061717504733700_c8 publication-title: Nat. Phys. doi: 10.1038/nphys4181 – volume: 7 start-page: 885 year: 2014 ident: 2023061717504733700_c2 publication-title: Energy Environ. Sci. doi: 10.1039/c3ee43299h – volume: 83 start-page: 224401 year: 2011 ident: 2023061717504733700_c58 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.83.224401 – volume: 124 start-page: 017203 year: 2020 ident: 2023061717504733700_c39 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.124.017203 – volume: 89 start-page: 054401 year: 2014 ident: 2023061717504733700_c43 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.89.054401 – volume: 3 start-page: e1701503 year: 2017 ident: 2023061717504733700_c6 publication-title: Sci. Adv. doi: 10.1126/sciadv.1701503 – volume: 26 start-page: 343202 year: 2014 ident: 2023061717504733700_c12 publication-title: J. Phys.: Condens. Matter doi: 10.1088/0953-8984/26/34/343202 – volume: 101 start-page: 122404 year: 2012 ident: 2023061717504733700_c44 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4753947 – volume: 11 start-page: 391 year: 2012 ident: 2023061717504733700_c1 publication-title: Nat. Mater. doi: 10.1038/nmat3301 – volume: 97 start-page: 026603 year: 2006 ident: 2023061717504733700_c7 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.97.026603 – volume: 13 start-page: 345 year: 2014 ident: 2023061717504733700_c59 publication-title: Nat. Mater doi: 10.1038/nmat3870 – volume: 44 start-page: 2545 year: 1973 ident: 2023061717504733700_c51 publication-title: J. Appl. Phys. doi: 10.1063/1.1662611 – volume: 113 start-page: 262405 year: 2018 ident: 2023061717504733700_c38 publication-title: Appl. Phys. Lett. doi: 10.1063/1.5045262 – volume: 97 start-page: 036601 year: 2006 ident: 2023061717504733700_c35 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.97.036601 – volume: 97 start-page: 172505 year: 2010 ident: 2023061717504733700_c29 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3507386 – volume: 82 start-page: 2859 year: 2003 ident: 2023061717504733700_c25 publication-title: Appl. Phys. Lett. doi: 10.1063/1.1571232 – volume: 111 start-page: 202404 year: 2017 ident: 2023061717504733700_c9 publication-title: Appl. Phys. Lett. doi: 10.1063/1.5000815 – volume: 11 start-page: 275 year: 2020 ident: 2023061717504733700_c27 publication-title: Nat. Commun. doi: 10.1038/s41467-019-14061-w – volume: 122 start-page: 217204 year: 2019 ident: 2023061717504733700_c32 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.122.217204 – volume: 13 start-page: 367 year: 2014 ident: 2023061717504733700_c22 publication-title: Nat. Mater. doi: 10.1038/nmat3861 – volume: 8 start-page: 449 year: 2017 ident: 2023061717504733700_c24 publication-title: Nat. Commun. doi: 10.1038/s41467-017-00290-4 – volume: 3 start-page: 2000059 year: 2020 ident: 2023061717504733700_c30 publication-title: Adv. Quantum Technol. doi: 10.1002/qute.202000059 – volume: 98 start-page: 134411 year: 2018 ident: 2023061717504733700_c49 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.98.134411 – volume: 114 start-page: 242403 year: 2019 ident: 2023061717504733700_c31 publication-title: Appl. Phys. Lett. doi: 10.1063/1.5097422 – volume: 111 start-page: 187201 year: 2013 ident: 2023061717504733700_c37 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.111.187201 – volume: 9 start-page: 18443 year: 2019 ident: 2023061717504733700_c10 publication-title: Sci. Rep. doi: 10.1038/s41598-019-54833-4 – volume: 3 start-page: 124407 year: 2019 ident: 2023061717504733700_c11 publication-title: Phys. Rev. Mater. doi: 10.1103/PhysRevMaterials.3.124407 – volume: 34 start-page: 021502 year: 2016 ident: 2023061717504733700_c53 publication-title: J. Vac. Sci. Technol. A doi: 10.1116/1.4936261 – volume: 11 start-page: 496 year: 2015 ident: 2023061717504733700_c41 publication-title: Nat. Phys. doi: 10.1038/nphys3304 – volume: 96 start-page: 241105 year: 2017 ident: 2023061717504733700_c50 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.96.241105 – volume: 49 start-page: 323002 year: 2016 ident: 2023061717504733700_c19 publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/0022-3727/49/32/323002 – volume: 106 start-page: 036601 year: 2011 ident: 2023061717504733700_c40 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.106.036601 – volume: 491 start-page: 165526 year: 2019 ident: 2023061717504733700_c34 publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2019.165526 – volume: 119 start-page: 227205 year: 2017 ident: 2023061717504733700_c17 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.119.227205 – volume: 104 start-page: 1946 year: 2016 ident: 2023061717504733700_c3 publication-title: Proc. IEEE doi: 10.1109/JPROC.2016.2535167 – volume: 20 start-page: 2047 year: 2002 ident: 2023061717504733700_c52 publication-title: J. Vac. Sci. Technol. B doi: 10.1116/1.1506905 – volume: 92 start-page: 019905(E) year: 2015 ident: 2023061717504733700_c48b publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.92.019905 – volume: 96 start-page: 060402(R) year: 2017 ident: 2023061717504733700_c18 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.96.060402 – volume: 16 start-page: 977 year: 2017 ident: 2023061717504733700_c5 publication-title: Nat. Mater. doi: 10.1038/nmat4964 – volume: 81 start-page: 214418 year: 2010 ident: 2023061717504733700_c54 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.81.214418 – volume: 112 start-page: 197201 year: 2014 ident: 2023061717504733700_c56 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.112.197201 – volume: 5 start-page: 1800466 year: 2019 ident: 2023061717504733700_c21 publication-title: Adv. Electron. Mater. doi: 10.1002/aelm.201800466 – volume: 92 start-page: 064426 year: 2015 ident: 2023061717504733700_c57 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.92.064426 – volume: 88 start-page: 214403 year: 2013 ident: 2023061717504733700_c13 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.88.214403 – volume: 4 start-page: 041023 year: 2014 ident: 2023061717504733700_c45 publication-title: Phys. Rev. X doi: 10.1103/PhysRevX.4.041023 – volume: 7 start-page: 46752 year: 2017 ident: 2023061717504733700_c46 publication-title: Sci. Rep. doi: 10.1038/srep46752 – volume: 88 start-page: 214304 year: 2013 ident: 2023061717504733700_c15 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.88.214304 – volume: 6 start-page: eabd2613 year: 2020 ident: 2023061717504733700_c28 publication-title: Sci. Adv. doi: 10.1126/sciadv.abd2613 – volume: 4 start-page: 034410 year: 2020 ident: 2023061717504733700_c47 publication-title: Phys. Rev. Mater. doi: 10.1103/PhysRevMaterials.4.034410 – volume: 91 start-page: 024402 year: 2015 ident: 2023061717504733700_c48a publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.91.024402 – volume: 109 start-page: 196602 year: 2012 ident: 2023061717504733700_c36 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.109.196602 – volume: 32 start-page: 2001080 year: 2020 ident: 2023061717504733700_c26 publication-title: Adv. Mater. doi: 10.1002/adma.202001080 – volume: 455 start-page: 778 year: 2008 ident: 2023061717504733700_c4 publication-title: Nature doi: 10.1038/nature07321 – volume: 105 start-page: 242404 year: 2014 ident: 2023061717504733700_c16 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4904467 – volume: 11 start-page: 231 year: 2016 ident: 2023061717504733700_c20 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2016.18 – volume: 82 start-page: 214403 year: 2010 ident: 2023061717504733700_c42 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.82.214403 – volume: 6 start-page: 5959 year: 2015 ident: 2023061717504733700_c23 publication-title: Nat. Commun. doi: 10.1038/ncomms6959 – volume: 87 start-page: 014423 year: 2013 ident: 2023061717504733700_c55 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.87.014423 – volume: 106 start-page: 212407 year: 2015 ident: 2023061717504733700_c14 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4921927 – volume: 10 start-page: 742 year: 2011 ident: 2023061717504733700_c33 publication-title: Nat. Mater. doi: 10.1038/nmat3076 |
SSID | ssj0005233 |
Score | 2.3966818 |
Snippet | A vertical flux of heat can bring about hybrid generation of charge and spin currents and eventually convert into the transverse electric voltage in the... |
SourceID | proquest crossref scitation |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Antiferromagnetism Applied physics Bilayers Cryogenic temperature Ferromagnetic materials Gold Heavy metals Magnets Nernst-Ettingshausen effect Phase transitions Platinum Seebeck effect Thermoelectricity |
Title | Identification of spin-dependent thermoelectric effects in metamagnetic FeRh/heavy-metal bilayers |
URI | http://dx.doi.org/10.1063/5.0038150 https://www.proquest.com/docview/2508690005 |
Volume | 118 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLagE4I9IBggOgaygAekKqyN46R5nMaqaerGrZX6Fjmxs0XqktLLpPHrOSe2c4FqAl6ixLUcy-fL8efTcyHkPexZQZh4rsNSTKodDJUzlH3uKDVkaphgVjM0DZxf-KdT72zGZ79Fl6zjj8nPrXEl_yNVaAO5YpTsP0i2GhQa4B7kC1eQMFz_SsY6yjY1ZjfkfatFlju2sG0Zpri8LnSpmyypnDeyHCtHi2txmWMMY2-kvl3BLEAv39w6-Mu8F2dzcWu846sstYaxamvIqjcvQ4EqUl7bnq-U2Q_R06d0F_jaQKFuOdtUDceigA755Y-saYNwB6XrCq9RY_9cajk4fNGTaWlf5vihSTCrtMLtB2gnNTrYauRaJW9skOkfqh64FawMWsSAdOjkte102hefo9F0PI4mJ7PJfbLjwjnC7ZCdo0_n4-8NLyDGbFFFnJpNPuWzw2roNmWpzyEPgaRof4kGJZk8IY_NWYIeaWA8JfdUvkd2Gxkm98gDszzPiGiDhRYpbYOFtsFCDVholtMmWCiC5bABFWqh8pxMRyeT41PH1NdwEhayteNJIQe-HMTMU-iAINJABjLkScq5n_a5FEN4HMQul24SuqmSXuCyBBikYBzz9r8gnbzI1UtCPT_xYx54MZY3kBKOHR4WEvJT4bIY9rAu-WCXMLKLhjVQ5lHpBOGziEdmtbvkbdV1oTOubOt0YOUQmQ9yFQGbx_pqINQueVfJ5q5BtvS6KZZ1j2gh0_27X_WKPKq_iAPSWS836jXw1HX8xmDtFwV_lP0 |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identification+of+spin-dependent+thermoelectric+effects+in+metamagnetic+FeRh%2Fheavy-metal+bilayers&rft.jtitle=Applied+physics+letters&rft.au=Zhang%2C+Sheng&rft.au=Li%2C+Qian&rft.au=Li%2C+Jun&rft.au=Cao+Qingqi&rft.date=2021-04-05&rft.pub=American+Institute+of+Physics&rft.issn=0003-6951&rft.eissn=1077-3118&rft.volume=118&rft.issue=14&rft_id=info:doi/10.1063%2F5.0038150&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-6951&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-6951&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-6951&client=summon |