Identification of spin-dependent thermoelectric effects in metamagnetic FeRh/heavy-metal bilayers

A vertical flux of heat can bring about hybrid generation of charge and spin currents and eventually convert into the transverse electric voltage in the bilayers composed of metallic magnet and non-magnetic heavy metal (HM). We identified the thermoelectric effects in the sputter-deposited metallic...

Full description

Saved in:
Bibliographic Details
Published inApplied physics letters Vol. 118; no. 14
Main Authors Zhang, Sheng, Xia, Siyu, Li, Qian, Yang, Bin, Li, Jun, Cao, Qingqi, Wang, Dunhui, Liu, Ronghua, Du, Youwei
Format Journal Article
LanguageEnglish
Published Melville American Institute of Physics 05.04.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A vertical flux of heat can bring about hybrid generation of charge and spin currents and eventually convert into the transverse electric voltage in the bilayers composed of metallic magnet and non-magnetic heavy metal (HM). We identified the thermoelectric effects in the sputter-deposited metallic film of CsCl-ordered FeRh/HM throughout its metamagnetic transition from ferromagnetic (FM) to antiferromagnetic (AFM) phase. With the employment of different HMs (Pt, Au) as the spin detective layers, we found that the FM phase allows for hybrid generation of charge and spin currents by heat, respectively, attributed to the anomalous Nernst effect (ANE) and the spin Seebeck effect (SSE), while the AFM phase merely retains the ANE from residual nanoscale FM domains at cryogenic temperatures, which was further confirmed by the control measurement based on the adjustment of spin Hall angle for W during its β to α phase transition. Contribution from the proximity-induced ANE of HM was verified to be negligible compared with that of ANE and SSE of FeRh. Our method opens up more access to quantitatively discern the entangled thermo-charge/spin contributions in metallic magnets, and the combination of thermoelectric effects with metamagnetic phase transition gives impetus to exploiting more versatile and energy-saving thermo-spin logic applications.
AbstractList A vertical flux of heat can bring about hybrid generation of charge and spin currents and eventually convert into the transverse electric voltage in the bilayers composed of metallic magnet and non-magnetic heavy metal (HM). We identified the thermoelectric effects in the sputter-deposited metallic film of CsCl-ordered FeRh/HM throughout its metamagnetic transition from ferromagnetic (FM) to antiferromagnetic (AFM) phase. With the employment of different HMs (Pt, Au) as the spin detective layers, we found that the FM phase allows for hybrid generation of charge and spin currents by heat, respectively, attributed to the anomalous Nernst effect (ANE) and the spin Seebeck effect (SSE), while the AFM phase merely retains the ANE from residual nanoscale FM domains at cryogenic temperatures, which was further confirmed by the control measurement based on the adjustment of spin Hall angle for W during its β to α phase transition. Contribution from the proximity-induced ANE of HM was verified to be negligible compared with that of ANE and SSE of FeRh. Our method opens up more access to quantitatively discern the entangled thermo-charge/spin contributions in metallic magnets, and the combination of thermoelectric effects with metamagnetic phase transition gives impetus to exploiting more versatile and energy-saving thermo-spin logic applications.
A vertical flux of heat can bring about hybrid generation of charge and spin currents and eventually convert into the transverse electric voltage in the bilayers composed of metallic magnet and non-magnetic heavy metal (HM). We identified the thermoelectric effects in the sputter-deposited metallic film of CsCl-ordered FeRh/HM throughout its metamagnetic transition from ferromagnetic (FM) to antiferromagnetic (AFM) phase. With the employment of different HMs (Pt, Au) as the spin detective layers, we found that the FM phase allows for hybrid generation of charge and spin currents by heat, respectively, attributed to the anomalous Nernst effect (ANE) and the spin Seebeck effect (SSE), while the AFM phase merely retains the ANE from residual nanoscale FM domains at cryogenic temperatures, which was further confirmed by the control measurement based on the adjustment of spin Hall angle for W during its β to α phase transition. Contribution from the proximity-induced ANE of HM was verified to be negligible compared with that of ANE and SSE of FeRh. Our method opens up more access to quantitatively discern the entangled thermo-charge/spin contributions in metallic magnets, and the combination of thermoelectric effects with metamagnetic phase transition gives impetus to exploiting more versatile and energy-saving thermo-spin logic applications.
Author Li, Qian
Li, Jun
Wang, Dunhui
Cao, Qingqi
Du, Youwei
Zhang, Sheng
Liu, Ronghua
Yang, Bin
Xia, Siyu
Author_xml – sequence: 1
  givenname: Sheng
  surname: Zhang
  fullname: Zhang, Sheng
  organization: National Laboratory of Solid State Microstructures, Jiangsu Provincial Key Laboratory for Nanotechnology and Department of Physics, Nanjing University
– sequence: 2
  givenname: Siyu
  surname: Xia
  fullname: Xia, Siyu
  organization: 3Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
– sequence: 3
  givenname: Qian
  surname: Li
  fullname: Li, Qian
  organization: Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences
– sequence: 4
  givenname: Bin
  surname: Yang
  fullname: Yang, Bin
  organization: 3Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
– sequence: 5
  givenname: Jun
  surname: Li
  fullname: Li, Jun
  organization: National Laboratory of Solid State Microstructures, Jiangsu Provincial Key Laboratory for Nanotechnology and Department of Physics, Nanjing University
– sequence: 6
  givenname: Qingqi
  surname: Cao
  fullname: Cao, Qingqi
  organization: National Laboratory of Solid State Microstructures, Jiangsu Provincial Key Laboratory for Nanotechnology and Department of Physics, Nanjing University
– sequence: 7
  givenname: Dunhui
  surname: Wang
  fullname: Wang, Dunhui
  organization: National Laboratory of Solid State Microstructures, Jiangsu Provincial Key Laboratory for Nanotechnology and Department of Physics, Nanjing University
– sequence: 8
  givenname: Ronghua
  surname: Liu
  fullname: Liu, Ronghua
  organization: National Laboratory of Solid State Microstructures, Jiangsu Provincial Key Laboratory for Nanotechnology and Department of Physics, Nanjing University
– sequence: 9
  givenname: Youwei
  surname: Du
  fullname: Du, Youwei
  organization: National Laboratory of Solid State Microstructures, Jiangsu Provincial Key Laboratory for Nanotechnology and Department of Physics, Nanjing University
BookMark eNp9kE1LAzEQhoNUsK0e_AcLnhS2TTab_ThKsVooCKLnJU0mNmU3WZO00H_vrq0KKp5m5p1n3mFmhAbGGkDokuAJwRmdsgnGtCAMn6AhwXkeU0KKARriTo6zkpEzNPJ-05UsoXSI-EKCCVppwYO2JrIq8q02sYQWTN-KwhpcY6EGEZwWESjVZT7SJmog8Ia_GgidPoen9XQNfLePe72OVrrme3D-HJ0qXnu4OMYxepnfPc8e4uXj_WJ2u4wFLWmIU8klySRZ0RRIkmOucpnLkgnFWKYwk7zoSrJKmExEmSiQaZ5QUWLCKSvKlI7R1cG3dfZtCz5UG7t1pltZJQwXWdnf3FHTAyWc9d6BqoQOH6cHx3VdEVz1f6xYdfxjN3H9Y6J1uuFu_yd7c2D9p-sXvLPuG6xaqf6Dfzu_A_m_kPg
CODEN APPLAB
CitedBy_id crossref_primary_10_1103_PhysRevB_108_094414
crossref_primary_10_1021_acsami_4c12754
crossref_primary_10_1002_smll_202403315
crossref_primary_10_1016_j_vacuum_2023_112617
crossref_primary_10_1088_1361_6463_acc9d0
crossref_primary_10_3389_fphy_2023_1140286
Cites_doi 10.1038/nphys4181
10.1039/c3ee43299h
10.1103/PhysRevB.83.224401
10.1103/PhysRevLett.124.017203
10.1103/PhysRevB.89.054401
10.1126/sciadv.1701503
10.1088/0953-8984/26/34/343202
10.1063/1.4753947
10.1038/nmat3301
10.1103/PhysRevLett.97.026603
10.1038/nmat3870
10.1063/1.1662611
10.1063/1.5045262
10.1103/PhysRevLett.97.036601
10.1063/1.3507386
10.1063/1.1571232
10.1063/1.5000815
10.1038/s41467-019-14061-w
10.1103/PhysRevLett.122.217204
10.1038/nmat3861
10.1038/s41467-017-00290-4
10.1002/qute.202000059
10.1103/PhysRevB.98.134411
10.1063/1.5097422
10.1103/PhysRevLett.111.187201
10.1038/s41598-019-54833-4
10.1103/PhysRevMaterials.3.124407
10.1116/1.4936261
10.1038/nphys3304
10.1103/PhysRevB.96.241105
10.1088/0022-3727/49/32/323002
10.1103/PhysRevLett.106.036601
10.1016/j.jmmm.2019.165526
10.1103/PhysRevLett.119.227205
10.1109/JPROC.2016.2535167
10.1116/1.1506905
10.1103/PhysRevB.92.019905
10.1103/PhysRevB.96.060402
10.1038/nmat4964
10.1103/PhysRevB.81.214418
10.1103/PhysRevLett.112.197201
10.1002/aelm.201800466
10.1103/PhysRevB.92.064426
10.1103/PhysRevB.88.214403
10.1103/PhysRevX.4.041023
10.1038/srep46752
10.1103/PhysRevB.88.214304
10.1126/sciadv.abd2613
10.1103/PhysRevMaterials.4.034410
10.1103/PhysRevB.91.024402
10.1103/PhysRevLett.109.196602
10.1002/adma.202001080
10.1038/nature07321
10.1063/1.4904467
10.1038/nnano.2016.18
10.1103/PhysRevB.82.214403
10.1038/ncomms6959
10.1103/PhysRevB.87.014423
10.1063/1.4921927
10.1038/nmat3076
ContentType Journal Article
Copyright Author(s)
2021 Author(s). Published under license by AIP Publishing.
Copyright_xml – notice: Author(s)
– notice: 2021 Author(s). Published under license by AIP Publishing.
DBID AAYXX
CITATION
8FD
H8D
L7M
DOI 10.1063/5.0038150
DatabaseName CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitleList
Technology Research Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1077-3118
ExternalDocumentID 10_1063_5_0038150
apl
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 11774150
  funderid: https://doi.org/10.13039/501100001809
– fundername: National Natural Science Foundation of China
  grantid: 12074178
  funderid: https://doi.org/10.13039/501100001809
GroupedDBID -DZ
-~X
.DC
1UP
2-P
23M
4.4
53G
5GY
5VS
6J9
A9.
AAAAW
AABDS
AAEUA
AAGZG
AAPUP
AAYIH
ABFTF
ABJNI
ABZEH
ACBEA
ACBRY
ACGFO
ACGFS
ACLYJ
ACNCT
ACZLF
ADCTM
AEGXH
AEJMO
AENEX
AFATG
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AIAGR
AJJCW
AJQPL
ALEPV
ALMA_UNASSIGNED_HOLDINGS
AQWKA
ATXIE
AWQPM
BPZLN
CS3
D0L
EBS
ESX
F.2
F5P
FDOHQ
FFFMQ
HAM
M6X
M71
M73
N9A
NPSNA
O-B
P2P
RIP
RNS
RQS
SJN
TAE
TN5
UCJ
UPT
WH7
XJE
YZZ
~02
AAGWI
AAYXX
ABJGX
ADMLS
BDMKI
CITATION
8FD
H8D
L7M
ID FETCH-LOGICAL-c393t-4dad16d1b34e1270af7d7d95cf556f05da87d91b25d2c92fed4723c901a358943
ISSN 0003-6951
IngestDate Mon Jun 30 06:47:30 EDT 2025
Thu Apr 24 23:09:18 EDT 2025
Tue Jul 01 01:08:04 EDT 2025
Thu Jun 23 13:36:48 EDT 2022
Fri Jun 21 00:13:50 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 14
Language English
License 0003-6951/2021/118(14)/142401/7/$30.00
Published under license by AIP Publishing.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c393t-4dad16d1b34e1270af7d7d95cf556f05da87d91b25d2c92fed4723c901a358943
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4487-4132
0000-0003-3809-8800
0000-0002-4053-3923
PQID 2508690005
PQPubID 2050678
PageCount 7
ParticipantIDs crossref_primary_10_1063_5_0038150
scitation_primary_10_1063_5_0038150
crossref_citationtrail_10_1063_5_0038150
proquest_journals_2508690005
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210405
2021-04-05
PublicationDateYYYYMMDD 2021-04-05
PublicationDate_xml – month: 04
  year: 2021
  text: 20210405
  day: 05
PublicationDecade 2020
PublicationPlace Melville
PublicationPlace_xml – name: Melville
PublicationTitle Applied physics letters
PublicationYear 2021
Publisher American Institute of Physics
Publisher_xml – name: American Institute of Physics
References Uchida, Adachi, Ota, Nakayama, Maekawa, Saitoh (c29) 2010
Meyer, Chen, Wimmer, Althammer, Wimmer, Schlitz, Gepraegs, Huebl, Koedderitzsch, Ebert, Bauer, Gross, Goennenwein (c5) 2017
Ikhlas, Tomita, Koretsune, Suzuki, Nishio-Hamane, Arita, Otani, Nakatsuji (c8) 2017
Pai, Liu, Li, Tseng, Ralph, Buhrman (c44) 2012
Avery, Pufall, Zink (c36) 2012
Petroff, Sheng, Sinha, Rozgonyi, Alexander (c51) 1973
Xiao, Yao, Fang, Niu (c7) 2006
Mei, Gray, Tang, Schubert, Werder, Bartell, Ralph, Fuchs, Schlom (c26) 2020
Bose, Tulapurkar (c34) 2019
Pu, Johnston-Halperin, Awschalom, Shi (c35) 2006
Xu, Yang, Tang, Jiang, Schneider, Whig, Shi (c16) 2014
De, Ghosh, Mandal, Ogale, Nair (c39) 2020
Lewis, Marrows, Langridge (c19) 2016
Jungwirth, Marti, Wadley, Wunderlich (c20) 2016
Gray, Stiehl, Heron, Mei, Schlom, Ramesh, Ralph, Fuchs (c11) 2019
Mosendz, Vlaminck, Pearson, Fradin, Bauer, Bader, Hoffmann (c42) 2010
Xiao, Bauer, Uchida, Saitoh, Maekawa (c54) 2010
Uchida, Adachi, Kikkawa, Kirihara, Ishida, Yorozu, Maekawa, Saitoh (c3) 2016
Uchida, Ishida, Kikkawa, Kirihara, Murakami, Saitoh (c12) 2014
Pai, Ou, Vilela-Leão, Ralph, Buhrman (c57) 2015
Li, Shi, Ortiz, Aldosary, Chen, Aji, Wei, Shi (c32) 2019
Bosu, Sakuraba, Uchida, Saito, Ota, Saitoh, Takanashi (c58) 2011
Sheng, Sakuraba, Lau, Takahashi, Mitani, Hayashi (c6) 2017
Almeida, McGrouther, Temple, Massey, Li, Moore, Marrows, McVitie (c47) 2020
Bougiatioti, Klewe, Meier, Manos, Kuschel, Wollschläger, Bouchenoire, Brown, Schmalhorst, Reiss, Kuschel (c17) 2017
Chen, Xiao, Zhang, Zhang (c49) 2018
Boona, Myers, Heremans (c2) 2014
Uchida, Kikkawa, Miura, Shiomi, Saitoh (c45) 2014
Hong, Liu, Pearson, Hoffmann, Fong, Bhattacharyaa (c31) 2019
Wang, Du, Pu, Adur, Hammel, Yang (c56) 2014
Bauer, Saitoh, van Wees (c1) 2012
Narita, Ikhlas, Kimata, Nugroho, Nakatsuji, Otani (c9) 2017
Iguchi, Kasai, Koshikawa, Chinone, Suzuki, Uchida (c10) 2019
Zhang, Han, Jiang, Yang, S. P. Parkin (c41) 2015
Liu, Moriyama, Ralph, Buhrman (c40) 2011
Isasa, Villamor, Hueso, Gradhand, Casanova (c48) 2015
Zhang, Weng, Chuang, Qu, Huang (c30) 2020
Tian, Li, Qu, Jin, Chien (c14) 2015
Wang, Zou, Cai, Shen, Sun (c15) 2013
Kikkawa, Uchida, Daimon, Shiomi, Adachi, Qiu, Hou, Jin, Maekawa, Saitoh (c13) 2013
Feng, Yan, Liu (c21) 2019
Cherifi, Ivanovskaya, Phillips, Zobelli, Infante, Jacquet, Garcia, Fusil, Briddon, Guiblin, Mougin, Unal, Kronast, Valencia, Dkhil, Barthelemy, Bibes (c59) 2014
Lee, Liu, Heron, Clarkson, Hong, Ko, Biegalski, Aschauer, Hsu, Nowakowski, Wu, Christen, Salahuddin, Bokor, Spaldin, Schlom, Ramesh (c23) 2015
Niimi, Suzuki, Kawanishi, Omori, Valet, Fert, Otani (c43) 2014
Nan, Lee, Zhuang, Hu, Clarkson, Wang, Ko, Choe, Chen, Budil, Wu, Salahuddin, Hu, Ramesh, Sun (c28) 2020
Walter, Walowski, Zbarsky, Münzenberg, Schäfers, Ebke, Reiss, Thomas, Peretzki, Seibt, Moodera, Czerner, Bachmann, Heiliger (c33) 2011
Sui, Wang, Kim, Wang, Rhim, Duan, Kioussis (c50) 2017
Sola, Bougiatioti, Kuepferling, Meier, Reiss, Pasquale, Kuschel, Basso (c46) 2017
Schmid, Srichandan, Meier, Kuschel, Schmalhorst, Vogel, Reiss, Strunk, Back (c37) 2013
(c48) 2015
Rossnagel, Noyan, Cabral (c52) 2002
Ghosh, De, Nair (c38) 2018
Uchida, Takahashi, Harii, Ieda, Koshibae, Ando, Maekawa, Saitoh (c4) 2008
Chen, Feng, Wang, Zhang, Zhong, Song, Jin, Zhang, Li, Jiang (c24) 2017
Wu, Luo, Lin, Huang (c18) 2017
Marti, Fina, Frontera, Liu, Wadley, He, Paull, Clarkson, Kudrnovský, Turek, Kuneš, Yi, Chu, Nelson, You, Arenholz, Salahuddin, Fontcuberta, Jungwirth, Ramesh (c22) 2014
Lee, Cho, You (c53) 2016
Wang, Decker, Meier, Chen, Song, Grünbaum, Zhao, Zhang, Chen, Back (c27) 2020
Ohnuma, Adachi, Saitoh, Maekawa (c55) 2013
Thiele, Maat, Fullerton (c25) 2003
(2023061717504733700_c5) 2017; 16
(2023061717504733700_c28) 2020; 6
(2023061717504733700_c16) 2014; 105
(2023061717504733700_c26) 2020; 32
(2023061717504733700_c51) 1973; 44
(2023061717504733700_c54) 2010; 81
(2023061717504733700_c18) 2017; 96
(2023061717504733700_c52) 2002; 20
(2023061717504733700_c17) 2017; 119
(2023061717504733700_c39) 2020; 124
(2023061717504733700_c35) 2006; 97
(2023061717504733700_c14) 2015; 106
(2023061717504733700_c8) 2017; 13
(2023061717504733700_c29) 2010; 97
(2023061717504733700_c21) 2019; 5
(2023061717504733700_c38) 2018; 113
(2023061717504733700_c58) 2011; 83
(2023061717504733700_c42) 2010; 82
(2023061717504733700_c56) 2014; 112
(2023061717504733700_c40) 2011; 106
(2023061717504733700_c46) 2017; 7
(2023061717504733700_c1) 2012; 11
(2023061717504733700_c43) 2014; 89
(2023061717504733700_c32) 2019; 122
(2023061717504733700_c15) 2013; 88
(2023061717504733700_c53) 2016; 34
(2023061717504733700_c6) 2017; 3
(2023061717504733700_c59) 2014; 13
(2023061717504733700_c4) 2008; 455
(2023061717504733700_c25) 2003; 82
(2023061717504733700_c45) 2014; 4
(2023061717504733700_c23) 2015; 6
Isasa (2023061717504733700_c48b) 2015; 92
(2023061717504733700_c9) 2017; 111
(2023061717504733700_c22) 2014; 13
(2023061717504733700_c48a) 2015; 91
(2023061717504733700_c3) 2016; 104
(2023061717504733700_c24) 2017; 8
(2023061717504733700_c31) 2019; 114
(2023061717504733700_c12) 2014; 26
(2023061717504733700_c44) 2012; 101
(2023061717504733700_c50) 2017; 96
(2023061717504733700_c27) 2020; 11
(2023061717504733700_c20) 2016; 11
(2023061717504733700_c47) 2020; 4
(2023061717504733700_c49) 2018; 98
(2023061717504733700_c33) 2011; 10
(2023061717504733700_c41) 2015; 11
(2023061717504733700_c11) 2019; 3
(2023061717504733700_c19) 2016; 49
(2023061717504733700_c7) 2006; 97
(2023061717504733700_c10) 2019; 9
(2023061717504733700_c2) 2014; 7
(2023061717504733700_c13) 2013; 88
(2023061717504733700_c30) 2020; 3
(2023061717504733700_c57) 2015; 92
(2023061717504733700_c36) 2012; 109
(2023061717504733700_c34) 2019; 491
(2023061717504733700_c37) 2013; 111
(2023061717504733700_c55) 2013; 87
References_xml – start-page: 014423
  year: 2013
  ident: c55
  publication-title: Phys. Rev. B
– start-page: 2047
  year: 2002
  ident: c52
  publication-title: J. Vac. Sci. Technol. B
– start-page: eabd2613
  year: 2020
  ident: c28
  publication-title: Sci. Adv.
– start-page: 214403
  year: 2013
  ident: c13
  publication-title: Phys. Rev. B
– start-page: 214403
  year: 2010
  ident: c42
  publication-title: Phys. Rev. B
– start-page: 036601
  year: 2011
  ident: c40
  publication-title: Phys. Rev. Lett.
– start-page: 034410
  year: 2020
  ident: c47
  publication-title: Phys. Rev. Mater.
– start-page: 885
  year: 2014
  ident: c2
  publication-title: Energy Environ. Sci.
– start-page: 124407
  year: 2019
  ident: c11
  publication-title: Phys. Rev. Mater.
– start-page: 122404
  year: 2012
  ident: c44
  publication-title: Appl. Phys. Lett.
– start-page: 496
  year: 2015
  ident: c41
  publication-title: Nat. Phys.
– start-page: 2859
  year: 2003
  ident: c25
  publication-title: Appl. Phys. Lett.
– start-page: 242404
  year: 2014
  ident: c16
  publication-title: Appl. Phys. Lett.
– start-page: 345
  year: 2014
  ident: c59
  publication-title: Nat. Mater
– start-page: 041023
  year: 2014
  ident: c45
  publication-title: Phys. Rev. X
– start-page: 242403
  year: 2019
  ident: c31
  publication-title: Appl. Phys. Lett.
– start-page: 46752
  year: 2017
  ident: c46
  publication-title: Sci. Rep.
– start-page: 5959
  year: 2015
  ident: c23
  publication-title: Nat. Commun.
– start-page: 036601
  year: 2006
  ident: c35
  publication-title: Phys. Rev. Lett.
– start-page: 017203
  year: 2020
  ident: c39
  publication-title: Phys. Rev. Lett.
– start-page: 1800466
  year: 2019
  ident: c21
  publication-title: Adv. Electron. Mater.
– start-page: 172505
  year: 2010
  ident: c29
  publication-title: Appl. Phys. Lett.
– start-page: 019905(E)
  year: 2015
  ident: c48
  publication-title: Phys. Rev. B
– start-page: 449
  year: 2017
  ident: c24
  publication-title: Nat. Commun.
– start-page: 2545
  year: 1973
  ident: c51
  publication-title: J. Appl. Phys.
– start-page: 217204
  year: 2019
  ident: c32
  publication-title: Phys. Rev. Lett.
– start-page: 021502
  year: 2016
  ident: c53
  publication-title: J. Vac. Sci. Technol. A
– start-page: 202404
  year: 2017
  ident: c9
  publication-title: Appl. Phys. Lett.
– start-page: 212407
  year: 2015
  ident: c14
  publication-title: Appl. Phys. Lett.
– start-page: e1701503
  year: 2017
  ident: c6
  publication-title: Sci. Adv.
– start-page: 060402(R)
  year: 2017
  ident: c18
  publication-title: Phys. Rev. B
– start-page: 1946
  year: 2016
  ident: c3
  publication-title: Proc. IEEE
– start-page: 977
  year: 2017
  ident: c5
  publication-title: Nat. Mater.
– start-page: 2001080
  year: 2020
  ident: c26
  publication-title: Adv. Mater.
– start-page: 18443
  year: 2019
  ident: c10
  publication-title: Sci. Rep.
– start-page: 227205
  year: 2017
  ident: c17
  publication-title: Phys. Rev. Lett.
– start-page: 262405
  year: 2018
  ident: c38
  publication-title: Appl. Phys. Lett.
– start-page: 2000059
  year: 2020
  ident: c30
  publication-title: Adv. Quantum Technol.
– start-page: 1085
  year: 2017
  ident: c8
  publication-title: Nat. Phys.
– start-page: 323002
  year: 2016
  ident: c19
  publication-title: J. Phys. D: Appl. Phys.
– start-page: 742
  year: 2011
  ident: c33
  publication-title: Nat. Mater.
– start-page: 241105
  year: 2017
  ident: c50
  publication-title: Phys. Rev. B
– start-page: 224401
  year: 2011
  ident: c58
  publication-title: Phys. Rev. B
– start-page: 134411
  year: 2018
  ident: c49
  publication-title: Phys. Rev. B
– start-page: 026603
  year: 2006
  ident: c7
  publication-title: Phys. Rev. Lett.
– start-page: 778
  year: 2008
  ident: c4
  publication-title: Nature
– start-page: 275
  year: 2020
  ident: c27
  publication-title: Nat. Commun.
– start-page: 054401
  year: 2014
  ident: c43
  publication-title: Phys. Rev. B
– start-page: 343202
  year: 2014
  ident: c12
  publication-title: J. Phys.: Condens. Matter
– start-page: 231
  year: 2016
  ident: c20
  publication-title: Nat. Nanotechnol.
– start-page: 367
  year: 2014
  ident: c22
  publication-title: Nat. Mater.
– start-page: 165526
  year: 2019
  ident: c34
  publication-title: J. Magn. Magn. Mater.
– start-page: 214418
  year: 2010
  ident: c54
  publication-title: Phys. Rev. B
– start-page: 214304
  year: 2013
  ident: c15
  publication-title: Phys. Rev. B
– start-page: 391
  year: 2012
  ident: c1
  publication-title: Nat. Mater.
– start-page: 196602
  year: 2012
  ident: c36
  publication-title: Phys. Rev. Lett.
– start-page: 064426
  year: 2015
  ident: c57
  publication-title: Phys. Rev. B
– start-page: 187201
  year: 2013
  ident: c37
  publication-title: Phys. Rev. Lett.
– start-page: 024402
  year: 2015
  ident: c48
  publication-title: Phys. Rev. B
– start-page: 197201
  year: 2014
  ident: c56
  publication-title: Phys. Rev. Lett.
– volume: 13
  start-page: 1085
  year: 2017
  ident: 2023061717504733700_c8
  publication-title: Nat. Phys.
  doi: 10.1038/nphys4181
– volume: 7
  start-page: 885
  year: 2014
  ident: 2023061717504733700_c2
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c3ee43299h
– volume: 83
  start-page: 224401
  year: 2011
  ident: 2023061717504733700_c58
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.83.224401
– volume: 124
  start-page: 017203
  year: 2020
  ident: 2023061717504733700_c39
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.124.017203
– volume: 89
  start-page: 054401
  year: 2014
  ident: 2023061717504733700_c43
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.89.054401
– volume: 3
  start-page: e1701503
  year: 2017
  ident: 2023061717504733700_c6
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1701503
– volume: 26
  start-page: 343202
  year: 2014
  ident: 2023061717504733700_c12
  publication-title: J. Phys.: Condens. Matter
  doi: 10.1088/0953-8984/26/34/343202
– volume: 101
  start-page: 122404
  year: 2012
  ident: 2023061717504733700_c44
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4753947
– volume: 11
  start-page: 391
  year: 2012
  ident: 2023061717504733700_c1
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3301
– volume: 97
  start-page: 026603
  year: 2006
  ident: 2023061717504733700_c7
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.97.026603
– volume: 13
  start-page: 345
  year: 2014
  ident: 2023061717504733700_c59
  publication-title: Nat. Mater
  doi: 10.1038/nmat3870
– volume: 44
  start-page: 2545
  year: 1973
  ident: 2023061717504733700_c51
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1662611
– volume: 113
  start-page: 262405
  year: 2018
  ident: 2023061717504733700_c38
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.5045262
– volume: 97
  start-page: 036601
  year: 2006
  ident: 2023061717504733700_c35
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.97.036601
– volume: 97
  start-page: 172505
  year: 2010
  ident: 2023061717504733700_c29
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3507386
– volume: 82
  start-page: 2859
  year: 2003
  ident: 2023061717504733700_c25
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1571232
– volume: 111
  start-page: 202404
  year: 2017
  ident: 2023061717504733700_c9
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.5000815
– volume: 11
  start-page: 275
  year: 2020
  ident: 2023061717504733700_c27
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-14061-w
– volume: 122
  start-page: 217204
  year: 2019
  ident: 2023061717504733700_c32
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.122.217204
– volume: 13
  start-page: 367
  year: 2014
  ident: 2023061717504733700_c22
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3861
– volume: 8
  start-page: 449
  year: 2017
  ident: 2023061717504733700_c24
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-00290-4
– volume: 3
  start-page: 2000059
  year: 2020
  ident: 2023061717504733700_c30
  publication-title: Adv. Quantum Technol.
  doi: 10.1002/qute.202000059
– volume: 98
  start-page: 134411
  year: 2018
  ident: 2023061717504733700_c49
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.98.134411
– volume: 114
  start-page: 242403
  year: 2019
  ident: 2023061717504733700_c31
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.5097422
– volume: 111
  start-page: 187201
  year: 2013
  ident: 2023061717504733700_c37
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.111.187201
– volume: 9
  start-page: 18443
  year: 2019
  ident: 2023061717504733700_c10
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-54833-4
– volume: 3
  start-page: 124407
  year: 2019
  ident: 2023061717504733700_c11
  publication-title: Phys. Rev. Mater.
  doi: 10.1103/PhysRevMaterials.3.124407
– volume: 34
  start-page: 021502
  year: 2016
  ident: 2023061717504733700_c53
  publication-title: J. Vac. Sci. Technol. A
  doi: 10.1116/1.4936261
– volume: 11
  start-page: 496
  year: 2015
  ident: 2023061717504733700_c41
  publication-title: Nat. Phys.
  doi: 10.1038/nphys3304
– volume: 96
  start-page: 241105
  year: 2017
  ident: 2023061717504733700_c50
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.96.241105
– volume: 49
  start-page: 323002
  year: 2016
  ident: 2023061717504733700_c19
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/49/32/323002
– volume: 106
  start-page: 036601
  year: 2011
  ident: 2023061717504733700_c40
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.106.036601
– volume: 491
  start-page: 165526
  year: 2019
  ident: 2023061717504733700_c34
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2019.165526
– volume: 119
  start-page: 227205
  year: 2017
  ident: 2023061717504733700_c17
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.119.227205
– volume: 104
  start-page: 1946
  year: 2016
  ident: 2023061717504733700_c3
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2016.2535167
– volume: 20
  start-page: 2047
  year: 2002
  ident: 2023061717504733700_c52
  publication-title: J. Vac. Sci. Technol. B
  doi: 10.1116/1.1506905
– volume: 92
  start-page: 019905(E)
  year: 2015
  ident: 2023061717504733700_c48b
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.92.019905
– volume: 96
  start-page: 060402(R)
  year: 2017
  ident: 2023061717504733700_c18
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.96.060402
– volume: 16
  start-page: 977
  year: 2017
  ident: 2023061717504733700_c5
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4964
– volume: 81
  start-page: 214418
  year: 2010
  ident: 2023061717504733700_c54
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.81.214418
– volume: 112
  start-page: 197201
  year: 2014
  ident: 2023061717504733700_c56
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.112.197201
– volume: 5
  start-page: 1800466
  year: 2019
  ident: 2023061717504733700_c21
  publication-title: Adv. Electron. Mater.
  doi: 10.1002/aelm.201800466
– volume: 92
  start-page: 064426
  year: 2015
  ident: 2023061717504733700_c57
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.92.064426
– volume: 88
  start-page: 214403
  year: 2013
  ident: 2023061717504733700_c13
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.88.214403
– volume: 4
  start-page: 041023
  year: 2014
  ident: 2023061717504733700_c45
  publication-title: Phys. Rev. X
  doi: 10.1103/PhysRevX.4.041023
– volume: 7
  start-page: 46752
  year: 2017
  ident: 2023061717504733700_c46
  publication-title: Sci. Rep.
  doi: 10.1038/srep46752
– volume: 88
  start-page: 214304
  year: 2013
  ident: 2023061717504733700_c15
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.88.214304
– volume: 6
  start-page: eabd2613
  year: 2020
  ident: 2023061717504733700_c28
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abd2613
– volume: 4
  start-page: 034410
  year: 2020
  ident: 2023061717504733700_c47
  publication-title: Phys. Rev. Mater.
  doi: 10.1103/PhysRevMaterials.4.034410
– volume: 91
  start-page: 024402
  year: 2015
  ident: 2023061717504733700_c48a
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.91.024402
– volume: 109
  start-page: 196602
  year: 2012
  ident: 2023061717504733700_c36
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.109.196602
– volume: 32
  start-page: 2001080
  year: 2020
  ident: 2023061717504733700_c26
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202001080
– volume: 455
  start-page: 778
  year: 2008
  ident: 2023061717504733700_c4
  publication-title: Nature
  doi: 10.1038/nature07321
– volume: 105
  start-page: 242404
  year: 2014
  ident: 2023061717504733700_c16
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4904467
– volume: 11
  start-page: 231
  year: 2016
  ident: 2023061717504733700_c20
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2016.18
– volume: 82
  start-page: 214403
  year: 2010
  ident: 2023061717504733700_c42
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.82.214403
– volume: 6
  start-page: 5959
  year: 2015
  ident: 2023061717504733700_c23
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms6959
– volume: 87
  start-page: 014423
  year: 2013
  ident: 2023061717504733700_c55
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.87.014423
– volume: 106
  start-page: 212407
  year: 2015
  ident: 2023061717504733700_c14
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4921927
– volume: 10
  start-page: 742
  year: 2011
  ident: 2023061717504733700_c33
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3076
SSID ssj0005233
Score 2.3966818
Snippet A vertical flux of heat can bring about hybrid generation of charge and spin currents and eventually convert into the transverse electric voltage in the...
SourceID proquest
crossref
scitation
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Antiferromagnetism
Applied physics
Bilayers
Cryogenic temperature
Ferromagnetic materials
Gold
Heavy metals
Magnets
Nernst-Ettingshausen effect
Phase transitions
Platinum
Seebeck effect
Thermoelectricity
Title Identification of spin-dependent thermoelectric effects in metamagnetic FeRh/heavy-metal bilayers
URI http://dx.doi.org/10.1063/5.0038150
https://www.proquest.com/docview/2508690005
Volume 118
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLagE4I9IBggOgaygAekKqyN46R5nMaqaerGrZX6Fjmxs0XqktLLpPHrOSe2c4FqAl6ixLUcy-fL8efTcyHkPexZQZh4rsNSTKodDJUzlH3uKDVkaphgVjM0DZxf-KdT72zGZ79Fl6zjj8nPrXEl_yNVaAO5YpTsP0i2GhQa4B7kC1eQMFz_SsY6yjY1ZjfkfatFlju2sG0Zpri8LnSpmyypnDeyHCtHi2txmWMMY2-kvl3BLEAv39w6-Mu8F2dzcWu846sstYaxamvIqjcvQ4EqUl7bnq-U2Q_R06d0F_jaQKFuOdtUDceigA755Y-saYNwB6XrCq9RY_9cajk4fNGTaWlf5vihSTCrtMLtB2gnNTrYauRaJW9skOkfqh64FawMWsSAdOjkte102hefo9F0PI4mJ7PJfbLjwjnC7ZCdo0_n4-8NLyDGbFFFnJpNPuWzw2roNmWpzyEPgaRof4kGJZk8IY_NWYIeaWA8JfdUvkd2Gxkm98gDszzPiGiDhRYpbYOFtsFCDVholtMmWCiC5bABFWqh8pxMRyeT41PH1NdwEhayteNJIQe-HMTMU-iAINJABjLkScq5n_a5FEN4HMQul24SuqmSXuCyBBikYBzz9r8gnbzI1UtCPT_xYx54MZY3kBKOHR4WEvJT4bIY9rAu-WCXMLKLhjVQ5lHpBOGziEdmtbvkbdV1oTOubOt0YOUQmQ9yFQGbx_pqINQueVfJ5q5BtvS6KZZ1j2gh0_27X_WKPKq_iAPSWS836jXw1HX8xmDtFwV_lP0
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identification+of+spin-dependent+thermoelectric+effects+in+metamagnetic+FeRh%2Fheavy-metal+bilayers&rft.jtitle=Applied+physics+letters&rft.au=Zhang%2C+Sheng&rft.au=Li%2C+Qian&rft.au=Li%2C+Jun&rft.au=Cao+Qingqi&rft.date=2021-04-05&rft.pub=American+Institute+of+Physics&rft.issn=0003-6951&rft.eissn=1077-3118&rft.volume=118&rft.issue=14&rft_id=info:doi/10.1063%2F5.0038150&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-6951&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-6951&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-6951&client=summon