An Acquisition Parameter Study for Machine-Learning-Enabled Electron Backscatter Diffraction
Methods within the domain of artificial intelligence are gaining traction for solving a range of materials science objectives, notably the use of deep neural networks for computer vision for the analysis of electron diffraction patterns. An important component of deploying these models is an underst...
Saved in:
Published in | Microscopy and microanalysis Vol. 27; no. 4; pp. 776 - 793 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York, USA
Cambridge University Press
01.08.2021
Oxford University Press |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Methods within the domain of artificial intelligence are gaining traction for solving a range of materials science objectives, notably the use of deep neural networks for computer vision for the analysis of electron diffraction patterns. An important component of deploying these models is an understanding of the performance as experimental diffraction conditions are varied. This knowledge can inspire confidence in the classifications over a range of operating conditions and identify where performance is degraded. Elucidating the relative impact of each parameter will suggest the most important parameters to vary during the collection of future training data. Knowing which data collection efforts to prioritize is of concern given the time required to collect or simulate vast libraries of diffraction patterns for a wide variety of materials without considering varying any parameters. In this work, five parameters, frame averaging, detector tilt, sample-to-detector distance, accelerating voltage, and pattern resolution, essential to electron diffraction are individually varied during the collection of electron backscatter diffraction patterns to explore the effect on the classifications produced by a deep neural network trained from diffraction patterns captured using a fixed set of parameters. The model is shown to be resilient to nearly all the individual changes examined here. |
---|---|
AbstractList | Methods within the domain of artificial intelligence are gaining traction for solving a range of materials science objectives, notably the use of deep neural networks for computer vision for the analysis of electron diffraction patterns. An important component of deploying these models is an understanding of the performance as experimental diffraction conditions are varied. This knowledge can inspire confidence in the classifications over a range of operating conditions and identify where performance is degraded. Elucidating the relative impact of each parameter will suggest the most important parameters to vary during the collection of future training data. Knowing which data collection efforts to prioritize is of concern given the time required to collect or simulate vast libraries of diffraction patterns for a wide variety of materials without considering varying any parameters. In this work, five parameters, frame averaging, detector tilt, sample-to-detector distance, accelerating voltage, and pattern resolution, essential to electron diffraction are individually varied during the collection of electron backscatter diffraction patterns to explore the effect on the classifications produced by a deep neural network trained from diffraction patterns captured using a fixed set of parameters. The model is shown to be resilient to nearly all the individual changes examined here. |
Author | Kaufmann, Kevin Vecchio, Kenneth S. |
Author_xml | – sequence: 1 givenname: Kevin orcidid: 0000-0001-8358-3149 surname: Kaufmann fullname: Kaufmann, Kevin organization: Department of NanoEngineering, UC San Diego, La Jolla, CA 92093, USA – sequence: 2 givenname: Kenneth S. orcidid: 0000-0003-0217-6803 surname: Vecchio fullname: Vecchio, Kenneth S. email: kvecchio@eng.ucsd.edu organization: Department of NanoEngineering, UC San Diego, La Jolla, CA 92093, USA |
BookMark | eNp1kF1LwzAUhoNMcJv-AO8K3nhTTZqeflzOOT9gojC9E0qanszMLt2S9mL_3tQNBMWrJOc8z0t4R2RgGoOEnDN6xShLrxcs5iyP0iRilFKA5IgM_QjCjDEYfN9Z2O9PyMi5lWc4TZMheZ-YYCK3nXa61Y0JXoQVa2zRBou2q3aBamzwJOSHNhjOUVijzTKcGVHWWAWzGmVrvXUj5KeTou29W62UFbJPOyXHStQOzw7nmLzdzV6nD-H8-f5xOpmHkue8DeMMeK4yCijjNOGYYhSrNMtT4AwFz6SCsqLo3yqpOK0ABAgOIpIVsDJlfEwu97kb22w7dG2x1k5iXQuDTeeKCLhPZxHnHr34ha6azhr_O09BxgGiPPcU21PSNs5ZVMXG6rWwu4LRou-7-NO3d_jBEevS6mqJP9H_W19AaYKg |
CitedBy_id | crossref_primary_10_1016_j_matdes_2023_111998 crossref_primary_10_1016_j_matchar_2022_111805 crossref_primary_10_1093_micmic_ozae001 |
Cites_doi | 10.1038/s41524-020-0317-6 10.1109/ACCESS.2018.2870052 10.1111/j.1365-2818.2008.02011.x 10.1016/j.ultramic.2019.112845 10.1371/journal.pmed.1002683 10.1017/S1431927618006128 10.1038/s41598-017-13565-z 10.1017/S1431927618015131 10.1016/j.actamat.2017.10.069 10.1017/S1431927618015635 10.1016/j.commatsci.2015.08.011 10.1007/s10853-011-6130-3 10.1038/s41524-019-0196-x 10.1109/CVPR.2017.195 10.1038/s41524-019-0226-8 10.1007/s11837-016-1984-0 10.1016/j.matchar.2020.110119 10.1017/S1431927619000710 10.1038/d41586-019-02307-y 10.1038/nature14539 10.1007/s40192-019-00137-4 10.1016/j.ultramic.2019.112836 10.1017/S1431927620001488 10.1038/s41467-018-05169-6 10.1016/j.matchar.2018.11.014 10.1007/BF02647714 10.1038/s41598-019-49105-0 10.1007/978-0-387-88136-2 10.1126/science.aax0162 10.1038/s41524-020-00406-3 10.1016/j.actamat.2019.03.026 10.1111/j.1365-2818.2012.03676.x 10.1017/S1431927613005618 10.1016/j.jallcom.2009.09.181 10.1038/s41586-019-1335-8 10.1017/S1431927620001506 10.1088/1361-6501/ab65d9 10.1017/S1431927615000756 10.1038/s41598-018-29315-8 10.1103/PhysRevLett.120.145301 10.1016/j.jsg.2008.05.008 10.1038/s41598-019-48444-2 10.1016/j.commatsci.2018.05.018 10.1016/j.actamat.2020.07.065 10.1016/j.commatsci.2012.10.028 10.1016/0001-6160(87)90295-1 10.1017/S1431927611000389 10.1038/s41563-020-00833-z 10.1038/s43588-020-00002-x 10.1016/j.ultramic.2017.04.016 10.1038/s41467-017-00399-6 10.1016/j.actamat.2020.08.046 10.1038/nature21056 10.1016/j.ultramic.2010.08.001 10.1016/j.ultramic.2019.112841 10.1109/CVPR.2009.5206848 10.1126/science.aay3062 10.1016/j.ultramic.2019.112851 |
ContentType | Journal Article |
Copyright | Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of the Microscopy Society of America Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of the Microscopy Society of America. This work is licensed under the Creative Commons Attribution – Non-Commercial – Share Alike License http://creativecommons.org/licenses/by-nc-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of the Microscopy Society of America – notice: Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of the Microscopy Society of America. This work is licensed under the Creative Commons Attribution – Non-Commercial – Share Alike License http://creativecommons.org/licenses/by-nc-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | IKXGN AAYXX CITATION 3V. 7QO 7RV 7TK 7X7 7XB 88E 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. KB0 LK8 M0S M1P M7P NAPCQ P5Z P62 P64 PQEST PQQKQ PQUKI 7X8 |
DOI | 10.1017/S1431927621000556 |
DatabaseName | Cambridge University Press:Open Access Journals CrossRef ProQuest Central (Corporate) Biotechnology Research Abstracts Nursing & Allied Health Database Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection (Proquest) (PQ_SDU_P3) ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) Biological Sciences Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) Biological Science Database Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition MEDLINE - Academic |
DatabaseTitle | CrossRef ProQuest Central Student Technology Collection Technology Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central Health Research Premium Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Nursing & Allied Health Source ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Advanced Technologies & Aerospace Database Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef ProQuest Central Student |
Database_xml | – sequence: 1 dbid: IKXGN name: Cambridge University Press:Open Access Journals url: http://journals.cambridge.org/action/login sourceTypes: Publisher – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1435-8115 |
EndPage | 793 |
ExternalDocumentID | 10_1017_S1431927621000556 |
GroupedDBID | --- -E. .FH 09C 0E1 0R~ 123 29M 3V. 4.4 53G 5VS 5WD 74X 74Y 7RV 7X7 7~V 88E 8FE 8FG 8FH 8FI 8FJ 8R4 8R5 9M5 AAAZR AABES AABWE AACJH AAEED AAGFV AAKTX AARAB AASVR AATID AAUKB ABBXD ABEFU ABITZ ABJNI ABKKG ABMWE ABMYL ABPTD ABQTM ABQWD ABROB ABTCQ ABUWG ABWCF ABWST ABZCX ACBEK ACBMC ACCHT ACFRR ACGFS ACIMK ACIPB ACIWK ACPRK ACQFJ ACQPF ACREK ACUFI ACUIJ ACUYZ ACWGA ACYZP ACZBM ACZUX ACZWT ADAZD ADBBV ADCGK ADFEC ADGEJ ADIPN ADIYS ADKIL ADOCW ADOVH ADQBN ADRDM ADVEK AEBAK AEHGV AEMTW AENEX AENGE AEYYC AFFUJ AFGWE AFKQG AFKRA AFKSM AFLOS AFLVW AFRAH AFUTZ AGABE AGBYD AGJUD AGOOT AHIPN AHLTW AHMBA AHQXX AIGNW AIHIV AIOIP AISIE AJ7 AJCYY AJPFC AJQAS ALMA_UNASSIGNED_HOLDINGS ALVPG ALWZO ANFBD ANPSP AQJOH ARABE ARAPS ATUCA AUXHV AZGZS BBLKV BBNVY BENPR BGHMG BGLVJ BGNMA BHPHI BKEYQ BLZWO BMAJL BPHCQ BRIRG BVXVI C0O CAG CBIIA CCPQU CCQAD CFAFE CJCSC COF CS3 DC4 DOHLZ DU5 EBS EJD EX3 F5P FYUFA HCIFZ HG- HMCUK HST HZ~ I.6 IH6 IKXGN IOEEP IS6 I~P J36 J38 J3A JHPGK JKPOH JQKCU JVRFK KCGVB KFECR KOP L98 LAS LK8 LW7 M-V M1P M4Y M7P NAPCQ NIKVX NU0 O9- OBOKY OJZSN OVD OWPYF OYBOY P62 PQQKQ PROAC PSQYO PYCCK Q2X RAMDC RCA RIG RNS ROL RR0 S6- S6U SAAAG SDH SY4 T9M TEORI UKHRP UT1 UU6 VUG WFFJZ WOW WQ3 WXU WXY WYP ZYDXJ AAUAY AAYXX ATGXG CITATION CTKSN H13 7QO 7TK 7XB 8FD 8FK AZQEC DWQXO FR3 GNUQQ K9. P64 PQEST PQUKI 7X8 |
ID | FETCH-LOGICAL-c393t-48539f805ec4763e7e24f7897531ea38cf5bd0e975f6d30d55a5a35a2cd51b713 |
IEDL.DBID | BENPR |
ISSN | 1431-9276 |
IngestDate | Fri Oct 25 01:06:51 EDT 2024 Thu Oct 10 21:00:18 EDT 2024 Thu Sep 26 17:46:03 EDT 2024 Wed Mar 13 05:54:16 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | machine learning space groups convolutional neural network EBSD electron diffraction |
Language | English |
License | http://creativecommons.org/licenses/by-nc-sa/4.0/This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike licence (http://creativecommons.org/licenses/by-nc-sa/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the same Creative Commons licence is included and the original work is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c393t-48539f805ec4763e7e24f7897531ea38cf5bd0e975f6d30d55a5a35a2cd51b713 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-0217-6803 0000-0001-8358-3149 |
OpenAccessLink | https://www.cambridge.org/core/product/identifier/S1431927621000556/type/journal_article |
PQID | 2558355299 |
PQPubID | 33692 |
PageCount | 18 |
ParticipantIDs | proquest_miscellaneous_2538051233 proquest_journals_2558355299 crossref_primary_10_1017_S1431927621000556 cambridge_journals_10_1017_S1431927621000556 |
PublicationCentury | 2000 |
PublicationDate | 20210800 2021-08-00 20210801 |
PublicationDateYYYYMMDD | 2021-08-01 |
PublicationDate_xml | – month: 08 year: 2021 text: 20210800 |
PublicationDecade | 2020 |
PublicationPlace | New York, USA |
PublicationPlace_xml | – name: New York, USA – name: Oxford |
PublicationTitle | Microscopy and microanalysis |
PublicationTitleAlternate | Microsc Microanal |
PublicationYear | 2021 |
Publisher | Cambridge University Press Oxford University Press |
Publisher_xml | – name: Cambridge University Press – name: Oxford University Press |
References | 2019; 8 1987; 35 2018; 120 2017; 7 2018; 144 2017; 8 2019; 9 2019; 170 2019; 5 2020; 20 1988; 19 2015; 521 2013; 68 2020; 160 2013; 249 2019; 147 2019; 207 2020; 367 2008; 30 2011; 17 2021; 1 2019; 364 2020; 208 2018; 24 2013; 19 2018; 6 2018; 152 2020; 6 2018; 9 2018; 8 2020; 31 2020; 198 2015; 21 2015; 110 2019; 25 2010; 110 2017; 181 2020; 26 2020; 199 2010; 490 2012; 47 2017; 542 2008; 230 2016; 68 2018; 15 2019; 571 2019; 572 S1431927621000556_ref36 S1431927621000556_ref37 S1431927621000556_ref38 S1431927621000556_ref39 S1431927621000556_ref30 S1431927621000556_ref31 S1431927621000556_ref32 S1431927621000556_ref33 S1431927621000556_ref34 S1431927621000556_ref25 S1431927621000556_ref26 S1431927621000556_ref27 S1431927621000556_ref28 S1431927621000556_ref29 S1431927621000556_ref61 S1431927621000556_ref62 S1431927621000556_ref63 S1431927621000556_ref20 S1431927621000556_ref64 S1431927621000556_ref21 S1431927621000556_ref22 S1431927621000556_ref23 S1431927621000556_ref24 Lassen (S1431927621000556_ref35) 1994 S1431927621000556_ref14 S1431927621000556_ref58 S1431927621000556_ref2 S1431927621000556_ref1 S1431927621000556_ref15 S1431927621000556_ref59 S1431927621000556_ref16 S1431927621000556_ref4 S1431927621000556_ref17 S1431927621000556_ref3 S1431927621000556_ref18 S1431927621000556_ref19 S1431927621000556_ref50 S1431927621000556_ref51 S1431927621000556_ref52 S1431927621000556_ref53 S1431927621000556_ref54 S1431927621000556_ref10 S1431927621000556_ref11 S1431927621000556_ref55 S1431927621000556_ref12 S1431927621000556_ref56 S1431927621000556_ref57 S1431927621000556_ref13 S1431927621000556_ref60 S1431927621000556_ref9 S1431927621000556_ref6 S1431927621000556_ref5 S1431927621000556_ref8 S1431927621000556_ref7 S1431927621000556_ref47 S1431927621000556_ref48 S1431927621000556_ref49 S1431927621000556_ref40 S1431927621000556_ref41 S1431927621000556_ref42 S1431927621000556_ref43 S1431927621000556_ref44 S1431927621000556_ref45 S1431927621000556_ref46 |
References_xml | – volume: 9 start-page: 1 year: 2019 end-page: 12 article-title: Deep learning for semantic segmentation of defects in advanced STEM images of steels publication-title: Sci Rep – volume: 7 start-page: 1 year: 2017 end-page: 12 article-title: Neural network for nanoscience scanning electron microscope image recognition publication-title: Sci Rep – volume: 230 start-page: 472 issue: 3 year: 2008 end-page: 486 article-title: Spherical EBSD publication-title: J Microsc – volume: 19 start-page: 724 year: 2013 end-page: 725 article-title: Improving the accuracy of orientation measurements using EBSD publication-title: Microsc Microanal – volume: 208 start-page: 112851 year: 2020 article-title: Novel remapping approach for HR-EBSD based on demons registration publication-title: Ultramicroscopy – volume: 20 start-page: 274 year: 2020 end-page: 279 article-title: Towards data-driven next-generation transmission electron microscopy publication-title: Nat Mater – volume: 199 start-page: 370 year: 2020 end-page: 382 article-title: Indexing of electron back-scatter diffraction patterns using a convolutional neural network publication-title: Acta Mater – volume: 490 start-page: 293 year: 2010 end-page: 300 article-title: The combined use of EBSD and EDX analyses for the identification of complex intermetallic phases in multicomponent Al-Si piston alloys publication-title: J. Alloys Compd – volume: 21 start-page: 1 issue: 3 year: 2015 end-page: 8 article-title: A dictionary approach to electron backscatter diffraction indexing publication-title: Microsc Microanal – volume: 571 start-page: 95 year: 2019 end-page: 98 article-title: Unsupervised word embeddings capture latent knowledge from materials science literature publication-title: Nature – volume: 5 start-page: 1 year: 2019 end-page: 11 article-title: Predicting superhard materials via a machine learning informed evolutionary structure search publication-title: npj Comput Mater – volume: 110 start-page: 1443 year: 2010 end-page: 1453 article-title: Factors affecting the accuracy of high resolution electron backscatter diffraction when using simulated patterns publication-title: Ultramicroscopy – volume: 9 start-page: 1 year: 2019 end-page: 7 article-title: Resolution enhancement in scanning electron microscopy using deep learning publication-title: Sci Rep – volume: 15 start-page: e1002683 year: 2018 article-title: Variable generalization performance of a deep learning model to detect pneumonia in chest radiographs: A cross-sectional study publication-title: PLoS Med – volume: 542 start-page: 115 year: 2017 end-page: 118 article-title: Dermatologist-level classification of skin cancer with deep neural networks publication-title: Nature – volume: 68 start-page: 2031 year: 2016 end-page: 2034 article-title: Materials data infrastructure: A case study of the citrination platform to examine data import, storage, and access publication-title: JOM – volume: 120 start-page: 145301 year: 2018 article-title: Crystal graph convolutional neural networks for an accurate and interpretable prediction of material properties publication-title: Phys Rev Lett – volume: 6 start-page: 52138 year: 2018 end-page: 52160 article-title: Peeking inside the black-box: A survey on explainable artificial intelligence (XAI) publication-title: IEEE Access – volume: 364 start-page: 26 year: 2019 end-page: 27 article-title: In defense of the black box publication-title: Science – volume: 24 start-page: 497 year: 2018 end-page: 502 article-title: Extracting grain orientations from EBSD patterns of polycrystalline materials using convolutional neural networks publication-title: Microsc Microanal – volume: 144 start-page: 352 year: 2018 end-page: 364 article-title: Phase differentiation by electron backscatter diffraction using the dictionary indexing approach publication-title: Acta Mater – volume: 249 start-page: 26 year: 2013 end-page: 35 article-title: Evaluation of misindexing of EBSD patterns in a ferritic steel publication-title: J Microsc – volume: 6 start-page: 138 year: 2020 article-title: Benchmarking materials property prediction methods: The Matbench test set and Automatminer reference algorithm publication-title: npj Comput Mater – volume: 5 start-page: 1 year: 2019 end-page: 9 article-title: Fast and interpretable classification of small X-ray diffraction datasets using data augmentation and deep neural networks publication-title: npj Comput Mater – volume: 147 start-page: 271 year: 2019 end-page: 279 article-title: Rapid electron backscatter diffraction mapping: Painting by numbers publication-title: Mater Charact – volume: 160 start-page: 110119 year: 2020 article-title: Optimizing convolutional neural networks to perform semantic segmentation on large materials imaging datasets: X-ray tomography and serial sectioning publication-title: Mater Charact – volume: 367 start-page: 564 year: 2020 end-page: 568 article-title: Crystal symmetry determination in electron diffraction using machine learning publication-title: Science – volume: 17 start-page: 330 year: 2011 end-page: 340 article-title: Pattern center determination in electron backscatter diffraction microscopy publication-title: Microsc Microanal – volume: 30 start-page: 1229 year: 2008 end-page: 1241 article-title: Automated mapping of K-feldspar by electron backscatter diffraction and application to 40Ar/39Ar dating publication-title: J Struct Geol – volume: 31 start-page: 055602 year: 2020 article-title: A computer vision approach to study surface deformation of materials publication-title: Meas Sci Technol – volume: 26 start-page: 447 year: 2020 end-page: 457 article-title: Deep neural network enabled space group identification in EBSD publication-title: Microsc Microanal – volume: 8 start-page: 10991 year: 2018 article-title: High resolution low kV EBSD of heavily deformed and nanocrystalline aluminium by dictionary-based indexing publication-title: Sci Rep – volume: 25 start-page: 21 year: 2019 end-page: 29 article-title: High throughput quantitative metallography for complex microstructures using deep learning: A case study in ultrahigh carbon steel publication-title: Microsc Microanal – volume: 8 start-page: 1 year: 2017 end-page: 8 article-title: Computational prediction of new auxetic materials publication-title: Nat Commun – volume: 1 start-page: 46 year: 2021 end-page: 53 article-title: Learning properties of ordered and disordered materials from multi-fidelity data publication-title: Nat Comput Sci – volume: 207 start-page: 112845 year: 2019 article-title: Indexing electron backscatter diffraction patterns with a refined template matching approach publication-title: Ultramicroscopy – volume: 207 start-page: 112841 year: 2019 article-title: A spherical harmonic transform approach to the indexing of electron back-scattered diffraction patterns publication-title: Ultramicroscopy – volume: 26 start-page: 458 year: 2020 end-page: 468 article-title: Phase mapping in EBSD using convolutional neural networks publication-title: Microsc Microanal – volume: 521 start-page: 436 year: 2015 end-page: 444 article-title: Deep learning publication-title: Nature – volume: 170 start-page: 118 year: 2019 end-page: 131 article-title: Convolutional neural network-based method for real-time orientation indexing of measured electron backscatter diffraction patterns publication-title: Acta Mater – volume: 198 start-page: 178 year: 2020 end-page: 222 article-title: Searching for high entropy alloys: A machine learning approach publication-title: Acta Mater – volume: 152 start-page: 60 year: 2018 end-page: 69 article-title: Matminer: An open source toolkit for materials data mining publication-title: Comput Mater Sci – volume: 25 start-page: 912 issue: 4 year: 2019 end-page: 923 article-title: Automated reconstruction of spherical Kikuchi maps publication-title: Microsc Microanal – volume: 8 start-page: 226 year: 2019 end-page: 246 article-title: Dictionary indexing of electron back-scatter diffraction patterns: A hands-on tutorial publication-title: Integr Mater Manuf Innov – volume: 207 year: 2019 article-title: Gazing at crystal balls: Electron backscatter diffraction pattern analysis and cross correlation on the sphere publication-title: Ultramicroscopy – volume: 35 start-page: 2959 year: 1987 end-page: 2970 article-title: Convergent beam electron diffraction study of Al3Zr in Al-Zr and Al-Li-Zr alloys publication-title: Acta Metall – volume: 19 start-page: 2885 year: 1988 end-page: 2891 article-title: Convergent beam electron diffraction analysis of the T1 (Al2CuLi) phase in Al-Li-Cu alloys publication-title: Metall Trans A – volume: 24 start-page: 1128 year: 2018 end-page: 1129 article-title: The benefits and applications of a CMOS-based EBSD detector publication-title: Microsc Microanal – volume: 9 start-page: 2775 year: 2018 article-title: Insightful classification of crystal structures using deep learning publication-title: Nat Commun – volume: 110 start-page: 126 year: 2015 end-page: 133 article-title: A computer vision approach for automated analysis and classification of microstructural image data publication-title: Comput Mater Sci – volume: 68 start-page: 314 year: 2013 end-page: 319 article-title: Python materials genomics (pymatgen): A robust, open-source python library for materials analysis publication-title: Comput Mater Sci – volume: 572 start-page: 27 year: 2019 end-page: 29 article-title: Three pitfalls to avoid in machine learning publication-title: Nature – volume: 6 start-page: 42 year: 2020 article-title: Discovery of high-entropy ceramics via machine learning. publication-title: npj Comput Mater – volume: 47 start-page: 2966 year: 2012 end-page: 2974 article-title: Mechanical and microstructural analysis of 2205 duplex stainless steel under hot working condition publication-title: J Mater Sci – volume: 181 start-page: 17 year: 2017 end-page: 26 article-title: Error analysis of the crystal orientations obtained by the dictionary approach to EBSD indexing publication-title: Ultramicroscopy – ident: S1431927621000556_ref28 doi: 10.1038/s41524-020-0317-6 – ident: S1431927621000556_ref2 doi: 10.1109/ACCESS.2018.2870052 – ident: S1431927621000556_ref12 doi: 10.1111/j.1365-2818.2008.02011.x – ident: S1431927621000556_ref20 doi: 10.1016/j.ultramic.2019.112845 – ident: S1431927621000556_ref60 doi: 10.1371/journal.pmed.1002683 – ident: S1431927621000556_ref22 doi: 10.1017/S1431927618006128 – ident: S1431927621000556_ref39 doi: 10.1038/s41598-017-13565-z – ident: S1431927621000556_ref26 doi: 10.1017/S1431927618015131 – ident: S1431927621000556_ref44 doi: 10.1016/j.actamat.2017.10.069 – ident: S1431927621000556_ref14 doi: 10.1017/S1431927618015635 – ident: S1431927621000556_ref13 doi: 10.1016/j.commatsci.2015.08.011 – ident: S1431927621000556_ref40 doi: 10.1007/s10853-011-6130-3 – ident: S1431927621000556_ref43 doi: 10.1038/s41524-019-0196-x – ident: S1431927621000556_ref10 doi: 10.1109/CVPR.2017.195 – ident: S1431927621000556_ref3 doi: 10.1038/s41524-019-0226-8 – ident: S1431927621000556_ref1 – ident: S1431927621000556_ref41 doi: 10.1007/s11837-016-1984-0 – ident: S1431927621000556_ref52 doi: 10.1016/j.matchar.2020.110119 – ident: S1431927621000556_ref61 doi: 10.1017/S1431927619000710 – ident: S1431927621000556_ref46 doi: 10.1038/d41586-019-02307-y – ident: S1431927621000556_ref9 – ident: S1431927621000556_ref36 doi: 10.1038/nature14539 – ident: S1431927621000556_ref25 doi: 10.1007/s40192-019-00137-4 – ident: S1431927621000556_ref23 doi: 10.1016/j.ultramic.2019.112836 – ident: S1431927621000556_ref31 doi: 10.1017/S1431927620001488 – ident: S1431927621000556_ref21 – ident: S1431927621000556_ref64 doi: 10.1038/s41467-018-05169-6 – ident: S1431927621000556_ref54 doi: 10.1016/j.matchar.2018.11.014 – ident: S1431927621000556_ref57 doi: 10.1007/BF02647714 – ident: S1431927621000556_ref47 doi: 10.1038/s41598-019-49105-0 – ident: S1431927621000556_ref48 doi: 10.1007/978-0-387-88136-2 – ident: S1431927621000556_ref24 doi: 10.1126/science.aax0162 – ident: S1431927621000556_ref18 doi: 10.1038/s41524-020-00406-3 – ident: S1431927621000556_ref49 doi: 10.1016/j.actamat.2019.03.026 – ident: S1431927621000556_ref27 doi: 10.1111/j.1365-2818.2012.03676.x – ident: S1431927621000556_ref53 doi: 10.1017/S1431927613005618 – ident: S1431927621000556_ref7 doi: 10.1016/j.jallcom.2009.09.181 – ident: S1431927621000556_ref55 doi: 10.1038/s41586-019-1335-8 – ident: S1431927621000556_ref32 doi: 10.1017/S1431927620001506 – volume-title: Automated Determination of Crystal Orientations from Electron Backscattering Patterns year: 1994 ident: S1431927621000556_ref35 contributor: fullname: Lassen – ident: S1431927621000556_ref63 doi: 10.1088/1361-6501/ab65d9 – ident: S1431927621000556_ref8 doi: 10.1017/S1431927615000756 – ident: S1431927621000556_ref50 doi: 10.1038/s41598-018-29315-8 – ident: S1431927621000556_ref59 doi: 10.1103/PhysRevLett.120.145301 – ident: S1431927621000556_ref34 – ident: S1431927621000556_ref38 doi: 10.1016/j.jsg.2008.05.008 – ident: S1431927621000556_ref15 doi: 10.1038/s41598-019-48444-2 – ident: S1431927621000556_ref58 doi: 10.1016/j.commatsci.2018.05.018 – ident: S1431927621000556_ref33 – ident: S1431927621000556_ref29 doi: 10.1016/j.actamat.2020.07.065 – ident: S1431927621000556_ref42 doi: 10.1016/j.commatsci.2012.10.028 – ident: S1431927621000556_ref56 doi: 10.1016/0001-6160(87)90295-1 – ident: S1431927621000556_ref4 doi: 10.1017/S1431927611000389 – ident: S1431927621000556_ref51 doi: 10.1038/s41563-020-00833-z – ident: S1431927621000556_ref6 doi: 10.1038/s43588-020-00002-x – ident: S1431927621000556_ref45 doi: 10.1016/j.ultramic.2017.04.016 – ident: S1431927621000556_ref11 doi: 10.1038/s41467-017-00399-6 – ident: S1431927621000556_ref17 doi: 10.1016/j.actamat.2020.08.046 – ident: S1431927621000556_ref19 doi: 10.1038/nature21056 – ident: S1431927621000556_ref5 doi: 10.1016/j.ultramic.2010.08.001 – ident: S1431927621000556_ref37 doi: 10.1016/j.ultramic.2019.112841 – ident: S1431927621000556_ref16 doi: 10.1109/CVPR.2009.5206848 – ident: S1431927621000556_ref30 doi: 10.1126/science.aay3062 – ident: S1431927621000556_ref62 doi: 10.1016/j.ultramic.2019.112851 |
SSID | ssj0003076 |
Score | 2.3483284 |
Snippet | Methods within the domain of artificial intelligence are gaining traction for solving a range of materials science objectives, notably the use of deep neural... |
SourceID | proquest crossref cambridge |
SourceType | Aggregation Database Publisher |
StartPage | 776 |
SubjectTerms | Algorithms Artificial intelligence Artificial neural networks Automation Classification Computer vision Data collection Deep learning Diffraction patterns Electron backscatter diffraction Electron diffraction Learning algorithms Machine learning Materials science Mathematical models Neural networks Parameters Performance degradation Sensors Software and Instrumentation Transmission electron microscopy |
SummonAdditionalLinks | – databaseName: Cambridge University Press:Open Access Journals dbid: IKXGN link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB5qi-BFfGK1ygqexCWPzeZxrNpalRZBCz0IIcnuSi9pre2h_97ZbBqtguAxZLNsZh8zs_PNNwAXGoObKp7QgAlBPR4qmtqZTwNX-JFAFSULtHt_4PeG3sOIj2owWuXCaFhlxXFQRPKL-mhTQ39qjYXB0MiZ9YyaHs0T3Mz6ippz39KXllY5BXEp-A1ouAx99jo07h9Hd4PqlMa1bTKPmEN1L6uIp6aT_tnzd96Fdf21fnwXOqm7A9ulMUnaZhC7UJP5Hmya8pLLfXht56SdvS_GBpdFnhKNxEJBEo0eXBK0V0m_AFNKWvKsvtFOkUwlSKesj0OudRZ-VtBwktuxUjOTCnEAw27n5aZHy2oKNGMRm1MPFXOkQpvLzMNDRQbS9VQQ6sRaRyYszBRPhS3xWfmC2YLzhCeMJ24muJOiL3sI9XySyyMgHI3cEF1y9EYcT0V-6kf4Teg6SeiiQec14aqSV1xOyEds8GRB_Eu8TbhciTSeGo6Nvxq3VkL_6hpHgpYkR9XahPPqNW4UHf1IcjlZ6DYMfx4VNTv-3_BOYMvVQJYC9deC-ny2kKdoiczTs3JRfQKFatab priority: 102 providerName: Cambridge University Press |
Title | An Acquisition Parameter Study for Machine-Learning-Enabled Electron Backscatter Diffraction |
URI | https://www.cambridge.org/core/product/identifier/S1431927621000556/type/journal_article https://www.proquest.com/docview/2558355299 https://search.proquest.com/docview/2538051233 |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8QwEB7cXQQv4hPXFxE8icE2afo4yar7UNlFxIUehKVtEtlL933w3ztp05VF8NLSNA10Op1H5psZgGuDwU21SGjApaSeCDVNncynAZN-JFFFqQLt3h_4vaH3EovYbrgtLKyykomFoJaTzOyR36Hpi8aCQOl5P51R0zXKRFdtC40aNBh6Ck4dGg_twdv7WhYjB5f5RdylEQv8Kq5pikabQTPGzBa3EBvVFTa11KaQLjRPZw92rclIWuU33octlR_AdtlE8vsQPls5aWWz1bhEX5G3xOCtkFzEYAS_CVqlpF9AJhW11VS_aLtImZKkbbvgkAeTa58VxTbJ01jreZnwcATDTvvjsUdtzwSa8YgvqYfqN9KhI1TmoehQgWKeDkKTPuuqhIeZFql0FF5rX3JHCpGIhIuEZVK4KXqsx1DPJ7k6ASLQlA3R8Uafw_V05Kd-hM-EzE1Chmab14TbNb1GlvMXoxI1Foz-kLcJNxVJR9OyksZ_k88rov8u_csCTbha38bfwcQ4klxNVmYOx5dHdcxP_1_iDHaYgacUWL5zqC_nK3WB9sUyvYRaEAd4DDvdS8tQeH5-jbuDH4HIzbY |
link.rule.ids | 315,783,787,12068,12777,21400,23330,27936,27937,31731,31732,33385,33386,33756,33757,43322,43612,43817,56136 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDI5gCMEF8RSDAUHihIhom6aPExqwacA2cdikHZCqtknQLt37sH-PnbabJqQdm6aR6rr25-SzTcgDcnATLWLmcymZKwLNEiv1mO9IL5TgopRhu3e6Xqvvfg7EoNhwmxW0ytImGkMtRynukT8D9AWwIMB6vownDLtG4elq0UJjl-xhHS7sYOAPVgEX6m-eXcRtFjq-V55qYsloHMQxBze4hdiorbDpozZNtPE7zWNyVABGWs-_8AnZUdkp2c9bSC7PyE89o_V0shjm3Cv6HSPbCoRFkSG4pIBJaccQJhUraqn-soZJmJK0UfTAoa-YaZ-aUpv0faj1NE93OCf9ZqP31mJFxwSW8pDPmQvON9SBJVTqguFQvnJc7QeYPGurmAepFom0FFxrT3JLChGLmIvYSaWwE4hXL0glG2XqklABQDaAsBsiDtvVoZd4ITwTOHYcOADa3Cp5WskrKvR-FuWcMT_6J94qeSxFGo3zOhrbJtdKoa-XXitAldyvbsPPgCcccaZGC5zD4eXBGfOr7UvckYNWr9OO2h_dr2ty6CBRxbD6aqQyny7UDSCNeXJr1OkPwm3L0A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Acquisition+Parameter+Study+for+Machine-Learning-Enabled+Electron+Backscatter+Diffraction&rft.jtitle=Microscopy+and+microanalysis&rft.au=Kaufmann%2C+Kevin&rft.au=Vecchio%2C+Kenneth+S.&rft.date=2021-08-01&rft.issn=1431-9276&rft.eissn=1435-8115&rft.volume=27&rft.issue=4&rft.spage=776&rft.epage=793&rft_id=info:doi/10.1017%2FS1431927621000556&rft.externalDBID=n%2Fa&rft.externalDocID=10_1017_S1431927621000556 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1431-9276&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1431-9276&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1431-9276&client=summon |