An Acquisition Parameter Study for Machine-Learning-Enabled Electron Backscatter Diffraction

Methods within the domain of artificial intelligence are gaining traction for solving a range of materials science objectives, notably the use of deep neural networks for computer vision for the analysis of electron diffraction patterns. An important component of deploying these models is an underst...

Full description

Saved in:
Bibliographic Details
Published inMicroscopy and microanalysis Vol. 27; no. 4; pp. 776 - 793
Main Authors Kaufmann, Kevin, Vecchio, Kenneth S.
Format Journal Article
LanguageEnglish
Published New York, USA Cambridge University Press 01.08.2021
Oxford University Press
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Methods within the domain of artificial intelligence are gaining traction for solving a range of materials science objectives, notably the use of deep neural networks for computer vision for the analysis of electron diffraction patterns. An important component of deploying these models is an understanding of the performance as experimental diffraction conditions are varied. This knowledge can inspire confidence in the classifications over a range of operating conditions and identify where performance is degraded. Elucidating the relative impact of each parameter will suggest the most important parameters to vary during the collection of future training data. Knowing which data collection efforts to prioritize is of concern given the time required to collect or simulate vast libraries of diffraction patterns for a wide variety of materials without considering varying any parameters. In this work, five parameters, frame averaging, detector tilt, sample-to-detector distance, accelerating voltage, and pattern resolution, essential to electron diffraction are individually varied during the collection of electron backscatter diffraction patterns to explore the effect on the classifications produced by a deep neural network trained from diffraction patterns captured using a fixed set of parameters. The model is shown to be resilient to nearly all the individual changes examined here.
AbstractList Methods within the domain of artificial intelligence are gaining traction for solving a range of materials science objectives, notably the use of deep neural networks for computer vision for the analysis of electron diffraction patterns. An important component of deploying these models is an understanding of the performance as experimental diffraction conditions are varied. This knowledge can inspire confidence in the classifications over a range of operating conditions and identify where performance is degraded. Elucidating the relative impact of each parameter will suggest the most important parameters to vary during the collection of future training data. Knowing which data collection efforts to prioritize is of concern given the time required to collect or simulate vast libraries of diffraction patterns for a wide variety of materials without considering varying any parameters. In this work, five parameters, frame averaging, detector tilt, sample-to-detector distance, accelerating voltage, and pattern resolution, essential to electron diffraction are individually varied during the collection of electron backscatter diffraction patterns to explore the effect on the classifications produced by a deep neural network trained from diffraction patterns captured using a fixed set of parameters. The model is shown to be resilient to nearly all the individual changes examined here.
Author Kaufmann, Kevin
Vecchio, Kenneth S.
Author_xml – sequence: 1
  givenname: Kevin
  orcidid: 0000-0001-8358-3149
  surname: Kaufmann
  fullname: Kaufmann, Kevin
  organization: Department of NanoEngineering, UC San Diego, La Jolla, CA 92093, USA
– sequence: 2
  givenname: Kenneth S.
  orcidid: 0000-0003-0217-6803
  surname: Vecchio
  fullname: Vecchio, Kenneth S.
  email: kvecchio@eng.ucsd.edu
  organization: Department of NanoEngineering, UC San Diego, La Jolla, CA 92093, USA
BookMark eNp1kF1LwzAUhoNMcJv-AO8K3nhTTZqeflzOOT9gojC9E0qanszMLt2S9mL_3tQNBMWrJOc8z0t4R2RgGoOEnDN6xShLrxcs5iyP0iRilFKA5IgM_QjCjDEYfN9Z2O9PyMi5lWc4TZMheZ-YYCK3nXa61Y0JXoQVa2zRBou2q3aBamzwJOSHNhjOUVijzTKcGVHWWAWzGmVrvXUj5KeTou29W62UFbJPOyXHStQOzw7nmLzdzV6nD-H8-f5xOpmHkue8DeMMeK4yCijjNOGYYhSrNMtT4AwFz6SCsqLo3yqpOK0ABAgOIpIVsDJlfEwu97kb22w7dG2x1k5iXQuDTeeKCLhPZxHnHr34ha6azhr_O09BxgGiPPcU21PSNs5ZVMXG6rWwu4LRou-7-NO3d_jBEevS6mqJP9H_W19AaYKg
CitedBy_id crossref_primary_10_1016_j_matdes_2023_111998
crossref_primary_10_1016_j_matchar_2022_111805
crossref_primary_10_1093_micmic_ozae001
Cites_doi 10.1038/s41524-020-0317-6
10.1109/ACCESS.2018.2870052
10.1111/j.1365-2818.2008.02011.x
10.1016/j.ultramic.2019.112845
10.1371/journal.pmed.1002683
10.1017/S1431927618006128
10.1038/s41598-017-13565-z
10.1017/S1431927618015131
10.1016/j.actamat.2017.10.069
10.1017/S1431927618015635
10.1016/j.commatsci.2015.08.011
10.1007/s10853-011-6130-3
10.1038/s41524-019-0196-x
10.1109/CVPR.2017.195
10.1038/s41524-019-0226-8
10.1007/s11837-016-1984-0
10.1016/j.matchar.2020.110119
10.1017/S1431927619000710
10.1038/d41586-019-02307-y
10.1038/nature14539
10.1007/s40192-019-00137-4
10.1016/j.ultramic.2019.112836
10.1017/S1431927620001488
10.1038/s41467-018-05169-6
10.1016/j.matchar.2018.11.014
10.1007/BF02647714
10.1038/s41598-019-49105-0
10.1007/978-0-387-88136-2
10.1126/science.aax0162
10.1038/s41524-020-00406-3
10.1016/j.actamat.2019.03.026
10.1111/j.1365-2818.2012.03676.x
10.1017/S1431927613005618
10.1016/j.jallcom.2009.09.181
10.1038/s41586-019-1335-8
10.1017/S1431927620001506
10.1088/1361-6501/ab65d9
10.1017/S1431927615000756
10.1038/s41598-018-29315-8
10.1103/PhysRevLett.120.145301
10.1016/j.jsg.2008.05.008
10.1038/s41598-019-48444-2
10.1016/j.commatsci.2018.05.018
10.1016/j.actamat.2020.07.065
10.1016/j.commatsci.2012.10.028
10.1016/0001-6160(87)90295-1
10.1017/S1431927611000389
10.1038/s41563-020-00833-z
10.1038/s43588-020-00002-x
10.1016/j.ultramic.2017.04.016
10.1038/s41467-017-00399-6
10.1016/j.actamat.2020.08.046
10.1038/nature21056
10.1016/j.ultramic.2010.08.001
10.1016/j.ultramic.2019.112841
10.1109/CVPR.2009.5206848
10.1126/science.aay3062
10.1016/j.ultramic.2019.112851
ContentType Journal Article
Copyright Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of the Microscopy Society of America
Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of the Microscopy Society of America. This work is licensed under the Creative Commons Attribution – Non-Commercial – Share Alike License http://creativecommons.org/licenses/by-nc-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of the Microscopy Society of America
– notice: Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of the Microscopy Society of America. This work is licensed under the Creative Commons Attribution – Non-Commercial – Share Alike License http://creativecommons.org/licenses/by-nc-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID IKXGN
AAYXX
CITATION
3V.
7QO
7RV
7TK
7X7
7XB
88E
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
KB0
LK8
M0S
M1P
M7P
NAPCQ
P5Z
P62
P64
PQEST
PQQKQ
PQUKI
7X8
DOI 10.1017/S1431927621000556
DatabaseName Cambridge University Press:Open Access Journals
CrossRef
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Biological Sciences
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Biological Science Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
MEDLINE - Academic
DatabaseTitle CrossRef
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central
Health Research Premium Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Nursing & Allied Health Source
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Advanced Technologies & Aerospace Database
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef
ProQuest Central Student

Database_xml – sequence: 1
  dbid: IKXGN
  name: Cambridge University Press:Open Access Journals
  url: http://journals.cambridge.org/action/login
  sourceTypes: Publisher
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1435-8115
EndPage 793
ExternalDocumentID 10_1017_S1431927621000556
GroupedDBID ---
-E.
.FH
09C
0E1
0R~
123
29M
3V.
4.4
53G
5VS
5WD
74X
74Y
7RV
7X7
7~V
88E
8FE
8FG
8FH
8FI
8FJ
8R4
8R5
9M5
AAAZR
AABES
AABWE
AACJH
AAEED
AAGFV
AAKTX
AARAB
AASVR
AATID
AAUKB
ABBXD
ABEFU
ABITZ
ABJNI
ABKKG
ABMWE
ABMYL
ABPTD
ABQTM
ABQWD
ABROB
ABTCQ
ABUWG
ABWCF
ABWST
ABZCX
ACBEK
ACBMC
ACCHT
ACFRR
ACGFS
ACIMK
ACIPB
ACIWK
ACPRK
ACQFJ
ACQPF
ACREK
ACUFI
ACUIJ
ACUYZ
ACWGA
ACYZP
ACZBM
ACZUX
ACZWT
ADAZD
ADBBV
ADCGK
ADFEC
ADGEJ
ADIPN
ADIYS
ADKIL
ADOCW
ADOVH
ADQBN
ADRDM
ADVEK
AEBAK
AEHGV
AEMTW
AENEX
AENGE
AEYYC
AFFUJ
AFGWE
AFKQG
AFKRA
AFKSM
AFLOS
AFLVW
AFRAH
AFUTZ
AGABE
AGBYD
AGJUD
AGOOT
AHIPN
AHLTW
AHMBA
AHQXX
AIGNW
AIHIV
AIOIP
AISIE
AJ7
AJCYY
AJPFC
AJQAS
ALMA_UNASSIGNED_HOLDINGS
ALVPG
ALWZO
ANFBD
ANPSP
AQJOH
ARABE
ARAPS
ATUCA
AUXHV
AZGZS
BBLKV
BBNVY
BENPR
BGHMG
BGLVJ
BGNMA
BHPHI
BKEYQ
BLZWO
BMAJL
BPHCQ
BRIRG
BVXVI
C0O
CAG
CBIIA
CCPQU
CCQAD
CFAFE
CJCSC
COF
CS3
DC4
DOHLZ
DU5
EBS
EJD
EX3
F5P
FYUFA
HCIFZ
HG-
HMCUK
HST
HZ~
I.6
IH6
IKXGN
IOEEP
IS6
I~P
J36
J38
J3A
JHPGK
JKPOH
JQKCU
JVRFK
KCGVB
KFECR
KOP
L98
LAS
LK8
LW7
M-V
M1P
M4Y
M7P
NAPCQ
NIKVX
NU0
O9-
OBOKY
OJZSN
OVD
OWPYF
OYBOY
P62
PQQKQ
PROAC
PSQYO
PYCCK
Q2X
RAMDC
RCA
RIG
RNS
ROL
RR0
S6-
S6U
SAAAG
SDH
SY4
T9M
TEORI
UKHRP
UT1
UU6
VUG
WFFJZ
WOW
WQ3
WXU
WXY
WYP
ZYDXJ
AAUAY
AAYXX
ATGXG
CITATION
CTKSN
H13
7QO
7TK
7XB
8FD
8FK
AZQEC
DWQXO
FR3
GNUQQ
K9.
P64
PQEST
PQUKI
7X8
ID FETCH-LOGICAL-c393t-48539f805ec4763e7e24f7897531ea38cf5bd0e975f6d30d55a5a35a2cd51b713
IEDL.DBID BENPR
ISSN 1431-9276
IngestDate Fri Oct 25 01:06:51 EDT 2024
Thu Oct 10 21:00:18 EDT 2024
Thu Sep 26 17:46:03 EDT 2024
Wed Mar 13 05:54:16 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords machine learning
space groups
convolutional neural network
EBSD
electron diffraction
Language English
License http://creativecommons.org/licenses/by-nc-sa/4.0/This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike licence (http://creativecommons.org/licenses/by-nc-sa/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the same Creative Commons licence is included and the original work is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c393t-48539f805ec4763e7e24f7897531ea38cf5bd0e975f6d30d55a5a35a2cd51b713
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-0217-6803
0000-0001-8358-3149
OpenAccessLink https://www.cambridge.org/core/product/identifier/S1431927621000556/type/journal_article
PQID 2558355299
PQPubID 33692
PageCount 18
ParticipantIDs proquest_miscellaneous_2538051233
proquest_journals_2558355299
crossref_primary_10_1017_S1431927621000556
cambridge_journals_10_1017_S1431927621000556
PublicationCentury 2000
PublicationDate 20210800
2021-08-00
20210801
PublicationDateYYYYMMDD 2021-08-01
PublicationDate_xml – month: 08
  year: 2021
  text: 20210800
PublicationDecade 2020
PublicationPlace New York, USA
PublicationPlace_xml – name: New York, USA
– name: Oxford
PublicationTitle Microscopy and microanalysis
PublicationTitleAlternate Microsc Microanal
PublicationYear 2021
Publisher Cambridge University Press
Oxford University Press
Publisher_xml – name: Cambridge University Press
– name: Oxford University Press
References 2019; 8
1987; 35
2018; 120
2017; 7
2018; 144
2017; 8
2019; 9
2019; 170
2019; 5
2020; 20
1988; 19
2015; 521
2013; 68
2020; 160
2013; 249
2019; 147
2019; 207
2020; 367
2008; 30
2011; 17
2021; 1
2019; 364
2020; 208
2018; 24
2013; 19
2018; 6
2018; 152
2020; 6
2018; 9
2018; 8
2020; 31
2020; 198
2015; 21
2015; 110
2019; 25
2010; 110
2017; 181
2020; 26
2020; 199
2010; 490
2012; 47
2017; 542
2008; 230
2016; 68
2018; 15
2019; 571
2019; 572
S1431927621000556_ref36
S1431927621000556_ref37
S1431927621000556_ref38
S1431927621000556_ref39
S1431927621000556_ref30
S1431927621000556_ref31
S1431927621000556_ref32
S1431927621000556_ref33
S1431927621000556_ref34
S1431927621000556_ref25
S1431927621000556_ref26
S1431927621000556_ref27
S1431927621000556_ref28
S1431927621000556_ref29
S1431927621000556_ref61
S1431927621000556_ref62
S1431927621000556_ref63
S1431927621000556_ref20
S1431927621000556_ref64
S1431927621000556_ref21
S1431927621000556_ref22
S1431927621000556_ref23
S1431927621000556_ref24
Lassen (S1431927621000556_ref35) 1994
S1431927621000556_ref14
S1431927621000556_ref58
S1431927621000556_ref2
S1431927621000556_ref1
S1431927621000556_ref15
S1431927621000556_ref59
S1431927621000556_ref16
S1431927621000556_ref4
S1431927621000556_ref17
S1431927621000556_ref3
S1431927621000556_ref18
S1431927621000556_ref19
S1431927621000556_ref50
S1431927621000556_ref51
S1431927621000556_ref52
S1431927621000556_ref53
S1431927621000556_ref54
S1431927621000556_ref10
S1431927621000556_ref11
S1431927621000556_ref55
S1431927621000556_ref12
S1431927621000556_ref56
S1431927621000556_ref57
S1431927621000556_ref13
S1431927621000556_ref60
S1431927621000556_ref9
S1431927621000556_ref6
S1431927621000556_ref5
S1431927621000556_ref8
S1431927621000556_ref7
S1431927621000556_ref47
S1431927621000556_ref48
S1431927621000556_ref49
S1431927621000556_ref40
S1431927621000556_ref41
S1431927621000556_ref42
S1431927621000556_ref43
S1431927621000556_ref44
S1431927621000556_ref45
S1431927621000556_ref46
References_xml – volume: 9
  start-page: 1
  year: 2019
  end-page: 12
  article-title: Deep learning for semantic segmentation of defects in advanced STEM images of steels
  publication-title: Sci Rep
– volume: 7
  start-page: 1
  year: 2017
  end-page: 12
  article-title: Neural network for nanoscience scanning electron microscope image recognition
  publication-title: Sci Rep
– volume: 230
  start-page: 472
  issue: 3
  year: 2008
  end-page: 486
  article-title: Spherical EBSD
  publication-title: J Microsc
– volume: 19
  start-page: 724
  year: 2013
  end-page: 725
  article-title: Improving the accuracy of orientation measurements using EBSD
  publication-title: Microsc Microanal
– volume: 208
  start-page: 112851
  year: 2020
  article-title: Novel remapping approach for HR-EBSD based on demons registration
  publication-title: Ultramicroscopy
– volume: 20
  start-page: 274
  year: 2020
  end-page: 279
  article-title: Towards data-driven next-generation transmission electron microscopy
  publication-title: Nat Mater
– volume: 199
  start-page: 370
  year: 2020
  end-page: 382
  article-title: Indexing of electron back-scatter diffraction patterns using a convolutional neural network
  publication-title: Acta Mater
– volume: 490
  start-page: 293
  year: 2010
  end-page: 300
  article-title: The combined use of EBSD and EDX analyses for the identification of complex intermetallic phases in multicomponent Al-Si piston alloys
  publication-title: J. Alloys Compd
– volume: 21
  start-page: 1
  issue: 3
  year: 2015
  end-page: 8
  article-title: A dictionary approach to electron backscatter diffraction indexing
  publication-title: Microsc Microanal
– volume: 571
  start-page: 95
  year: 2019
  end-page: 98
  article-title: Unsupervised word embeddings capture latent knowledge from materials science literature
  publication-title: Nature
– volume: 5
  start-page: 1
  year: 2019
  end-page: 11
  article-title: Predicting superhard materials via a machine learning informed evolutionary structure search
  publication-title: npj Comput Mater
– volume: 110
  start-page: 1443
  year: 2010
  end-page: 1453
  article-title: Factors affecting the accuracy of high resolution electron backscatter diffraction when using simulated patterns
  publication-title: Ultramicroscopy
– volume: 9
  start-page: 1
  year: 2019
  end-page: 7
  article-title: Resolution enhancement in scanning electron microscopy using deep learning
  publication-title: Sci Rep
– volume: 15
  start-page: e1002683
  year: 2018
  article-title: Variable generalization performance of a deep learning model to detect pneumonia in chest radiographs: A cross-sectional study
  publication-title: PLoS Med
– volume: 542
  start-page: 115
  year: 2017
  end-page: 118
  article-title: Dermatologist-level classification of skin cancer with deep neural networks
  publication-title: Nature
– volume: 68
  start-page: 2031
  year: 2016
  end-page: 2034
  article-title: Materials data infrastructure: A case study of the citrination platform to examine data import, storage, and access
  publication-title: JOM
– volume: 120
  start-page: 145301
  year: 2018
  article-title: Crystal graph convolutional neural networks for an accurate and interpretable prediction of material properties
  publication-title: Phys Rev Lett
– volume: 6
  start-page: 52138
  year: 2018
  end-page: 52160
  article-title: Peeking inside the black-box: A survey on explainable artificial intelligence (XAI)
  publication-title: IEEE Access
– volume: 364
  start-page: 26
  year: 2019
  end-page: 27
  article-title: In defense of the black box
  publication-title: Science
– volume: 24
  start-page: 497
  year: 2018
  end-page: 502
  article-title: Extracting grain orientations from EBSD patterns of polycrystalline materials using convolutional neural networks
  publication-title: Microsc Microanal
– volume: 144
  start-page: 352
  year: 2018
  end-page: 364
  article-title: Phase differentiation by electron backscatter diffraction using the dictionary indexing approach
  publication-title: Acta Mater
– volume: 249
  start-page: 26
  year: 2013
  end-page: 35
  article-title: Evaluation of misindexing of EBSD patterns in a ferritic steel
  publication-title: J Microsc
– volume: 6
  start-page: 138
  year: 2020
  article-title: Benchmarking materials property prediction methods: The Matbench test set and Automatminer reference algorithm
  publication-title: npj Comput Mater
– volume: 5
  start-page: 1
  year: 2019
  end-page: 9
  article-title: Fast and interpretable classification of small X-ray diffraction datasets using data augmentation and deep neural networks
  publication-title: npj Comput Mater
– volume: 147
  start-page: 271
  year: 2019
  end-page: 279
  article-title: Rapid electron backscatter diffraction mapping: Painting by numbers
  publication-title: Mater Charact
– volume: 160
  start-page: 110119
  year: 2020
  article-title: Optimizing convolutional neural networks to perform semantic segmentation on large materials imaging datasets: X-ray tomography and serial sectioning
  publication-title: Mater Charact
– volume: 367
  start-page: 564
  year: 2020
  end-page: 568
  article-title: Crystal symmetry determination in electron diffraction using machine learning
  publication-title: Science
– volume: 17
  start-page: 330
  year: 2011
  end-page: 340
  article-title: Pattern center determination in electron backscatter diffraction microscopy
  publication-title: Microsc Microanal
– volume: 30
  start-page: 1229
  year: 2008
  end-page: 1241
  article-title: Automated mapping of K-feldspar by electron backscatter diffraction and application to 40Ar/39Ar dating
  publication-title: J Struct Geol
– volume: 31
  start-page: 055602
  year: 2020
  article-title: A computer vision approach to study surface deformation of materials
  publication-title: Meas Sci Technol
– volume: 26
  start-page: 447
  year: 2020
  end-page: 457
  article-title: Deep neural network enabled space group identification in EBSD
  publication-title: Microsc Microanal
– volume: 8
  start-page: 10991
  year: 2018
  article-title: High resolution low kV EBSD of heavily deformed and nanocrystalline aluminium by dictionary-based indexing
  publication-title: Sci Rep
– volume: 25
  start-page: 21
  year: 2019
  end-page: 29
  article-title: High throughput quantitative metallography for complex microstructures using deep learning: A case study in ultrahigh carbon steel
  publication-title: Microsc Microanal
– volume: 8
  start-page: 1
  year: 2017
  end-page: 8
  article-title: Computational prediction of new auxetic materials
  publication-title: Nat Commun
– volume: 1
  start-page: 46
  year: 2021
  end-page: 53
  article-title: Learning properties of ordered and disordered materials from multi-fidelity data
  publication-title: Nat Comput Sci
– volume: 207
  start-page: 112845
  year: 2019
  article-title: Indexing electron backscatter diffraction patterns with a refined template matching approach
  publication-title: Ultramicroscopy
– volume: 207
  start-page: 112841
  year: 2019
  article-title: A spherical harmonic transform approach to the indexing of electron back-scattered diffraction patterns
  publication-title: Ultramicroscopy
– volume: 26
  start-page: 458
  year: 2020
  end-page: 468
  article-title: Phase mapping in EBSD using convolutional neural networks
  publication-title: Microsc Microanal
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  article-title: Deep learning
  publication-title: Nature
– volume: 170
  start-page: 118
  year: 2019
  end-page: 131
  article-title: Convolutional neural network-based method for real-time orientation indexing of measured electron backscatter diffraction patterns
  publication-title: Acta Mater
– volume: 198
  start-page: 178
  year: 2020
  end-page: 222
  article-title: Searching for high entropy alloys: A machine learning approach
  publication-title: Acta Mater
– volume: 152
  start-page: 60
  year: 2018
  end-page: 69
  article-title: Matminer: An open source toolkit for materials data mining
  publication-title: Comput Mater Sci
– volume: 25
  start-page: 912
  issue: 4
  year: 2019
  end-page: 923
  article-title: Automated reconstruction of spherical Kikuchi maps
  publication-title: Microsc Microanal
– volume: 8
  start-page: 226
  year: 2019
  end-page: 246
  article-title: Dictionary indexing of electron back-scatter diffraction patterns: A hands-on tutorial
  publication-title: Integr Mater Manuf Innov
– volume: 207
  year: 2019
  article-title: Gazing at crystal balls: Electron backscatter diffraction pattern analysis and cross correlation on the sphere
  publication-title: Ultramicroscopy
– volume: 35
  start-page: 2959
  year: 1987
  end-page: 2970
  article-title: Convergent beam electron diffraction study of Al3Zr in Al-Zr and Al-Li-Zr alloys
  publication-title: Acta Metall
– volume: 19
  start-page: 2885
  year: 1988
  end-page: 2891
  article-title: Convergent beam electron diffraction analysis of the T1 (Al2CuLi) phase in Al-Li-Cu alloys
  publication-title: Metall Trans A
– volume: 24
  start-page: 1128
  year: 2018
  end-page: 1129
  article-title: The benefits and applications of a CMOS-based EBSD detector
  publication-title: Microsc Microanal
– volume: 9
  start-page: 2775
  year: 2018
  article-title: Insightful classification of crystal structures using deep learning
  publication-title: Nat Commun
– volume: 110
  start-page: 126
  year: 2015
  end-page: 133
  article-title: A computer vision approach for automated analysis and classification of microstructural image data
  publication-title: Comput Mater Sci
– volume: 68
  start-page: 314
  year: 2013
  end-page: 319
  article-title: Python materials genomics (pymatgen): A robust, open-source python library for materials analysis
  publication-title: Comput Mater Sci
– volume: 572
  start-page: 27
  year: 2019
  end-page: 29
  article-title: Three pitfalls to avoid in machine learning
  publication-title: Nature
– volume: 6
  start-page: 42
  year: 2020
  article-title: Discovery of high-entropy ceramics via machine learning.
  publication-title: npj Comput Mater
– volume: 47
  start-page: 2966
  year: 2012
  end-page: 2974
  article-title: Mechanical and microstructural analysis of 2205 duplex stainless steel under hot working condition
  publication-title: J Mater Sci
– volume: 181
  start-page: 17
  year: 2017
  end-page: 26
  article-title: Error analysis of the crystal orientations obtained by the dictionary approach to EBSD indexing
  publication-title: Ultramicroscopy
– ident: S1431927621000556_ref28
  doi: 10.1038/s41524-020-0317-6
– ident: S1431927621000556_ref2
  doi: 10.1109/ACCESS.2018.2870052
– ident: S1431927621000556_ref12
  doi: 10.1111/j.1365-2818.2008.02011.x
– ident: S1431927621000556_ref20
  doi: 10.1016/j.ultramic.2019.112845
– ident: S1431927621000556_ref60
  doi: 10.1371/journal.pmed.1002683
– ident: S1431927621000556_ref22
  doi: 10.1017/S1431927618006128
– ident: S1431927621000556_ref39
  doi: 10.1038/s41598-017-13565-z
– ident: S1431927621000556_ref26
  doi: 10.1017/S1431927618015131
– ident: S1431927621000556_ref44
  doi: 10.1016/j.actamat.2017.10.069
– ident: S1431927621000556_ref14
  doi: 10.1017/S1431927618015635
– ident: S1431927621000556_ref13
  doi: 10.1016/j.commatsci.2015.08.011
– ident: S1431927621000556_ref40
  doi: 10.1007/s10853-011-6130-3
– ident: S1431927621000556_ref43
  doi: 10.1038/s41524-019-0196-x
– ident: S1431927621000556_ref10
  doi: 10.1109/CVPR.2017.195
– ident: S1431927621000556_ref3
  doi: 10.1038/s41524-019-0226-8
– ident: S1431927621000556_ref1
– ident: S1431927621000556_ref41
  doi: 10.1007/s11837-016-1984-0
– ident: S1431927621000556_ref52
  doi: 10.1016/j.matchar.2020.110119
– ident: S1431927621000556_ref61
  doi: 10.1017/S1431927619000710
– ident: S1431927621000556_ref46
  doi: 10.1038/d41586-019-02307-y
– ident: S1431927621000556_ref9
– ident: S1431927621000556_ref36
  doi: 10.1038/nature14539
– ident: S1431927621000556_ref25
  doi: 10.1007/s40192-019-00137-4
– ident: S1431927621000556_ref23
  doi: 10.1016/j.ultramic.2019.112836
– ident: S1431927621000556_ref31
  doi: 10.1017/S1431927620001488
– ident: S1431927621000556_ref21
– ident: S1431927621000556_ref64
  doi: 10.1038/s41467-018-05169-6
– ident: S1431927621000556_ref54
  doi: 10.1016/j.matchar.2018.11.014
– ident: S1431927621000556_ref57
  doi: 10.1007/BF02647714
– ident: S1431927621000556_ref47
  doi: 10.1038/s41598-019-49105-0
– ident: S1431927621000556_ref48
  doi: 10.1007/978-0-387-88136-2
– ident: S1431927621000556_ref24
  doi: 10.1126/science.aax0162
– ident: S1431927621000556_ref18
  doi: 10.1038/s41524-020-00406-3
– ident: S1431927621000556_ref49
  doi: 10.1016/j.actamat.2019.03.026
– ident: S1431927621000556_ref27
  doi: 10.1111/j.1365-2818.2012.03676.x
– ident: S1431927621000556_ref53
  doi: 10.1017/S1431927613005618
– ident: S1431927621000556_ref7
  doi: 10.1016/j.jallcom.2009.09.181
– ident: S1431927621000556_ref55
  doi: 10.1038/s41586-019-1335-8
– ident: S1431927621000556_ref32
  doi: 10.1017/S1431927620001506
– volume-title: Automated Determination of Crystal Orientations from Electron Backscattering Patterns
  year: 1994
  ident: S1431927621000556_ref35
  contributor:
    fullname: Lassen
– ident: S1431927621000556_ref63
  doi: 10.1088/1361-6501/ab65d9
– ident: S1431927621000556_ref8
  doi: 10.1017/S1431927615000756
– ident: S1431927621000556_ref50
  doi: 10.1038/s41598-018-29315-8
– ident: S1431927621000556_ref59
  doi: 10.1103/PhysRevLett.120.145301
– ident: S1431927621000556_ref34
– ident: S1431927621000556_ref38
  doi: 10.1016/j.jsg.2008.05.008
– ident: S1431927621000556_ref15
  doi: 10.1038/s41598-019-48444-2
– ident: S1431927621000556_ref58
  doi: 10.1016/j.commatsci.2018.05.018
– ident: S1431927621000556_ref33
– ident: S1431927621000556_ref29
  doi: 10.1016/j.actamat.2020.07.065
– ident: S1431927621000556_ref42
  doi: 10.1016/j.commatsci.2012.10.028
– ident: S1431927621000556_ref56
  doi: 10.1016/0001-6160(87)90295-1
– ident: S1431927621000556_ref4
  doi: 10.1017/S1431927611000389
– ident: S1431927621000556_ref51
  doi: 10.1038/s41563-020-00833-z
– ident: S1431927621000556_ref6
  doi: 10.1038/s43588-020-00002-x
– ident: S1431927621000556_ref45
  doi: 10.1016/j.ultramic.2017.04.016
– ident: S1431927621000556_ref11
  doi: 10.1038/s41467-017-00399-6
– ident: S1431927621000556_ref17
  doi: 10.1016/j.actamat.2020.08.046
– ident: S1431927621000556_ref19
  doi: 10.1038/nature21056
– ident: S1431927621000556_ref5
  doi: 10.1016/j.ultramic.2010.08.001
– ident: S1431927621000556_ref37
  doi: 10.1016/j.ultramic.2019.112841
– ident: S1431927621000556_ref16
  doi: 10.1109/CVPR.2009.5206848
– ident: S1431927621000556_ref30
  doi: 10.1126/science.aay3062
– ident: S1431927621000556_ref62
  doi: 10.1016/j.ultramic.2019.112851
SSID ssj0003076
Score 2.3483284
Snippet Methods within the domain of artificial intelligence are gaining traction for solving a range of materials science objectives, notably the use of deep neural...
SourceID proquest
crossref
cambridge
SourceType Aggregation Database
Publisher
StartPage 776
SubjectTerms Algorithms
Artificial intelligence
Artificial neural networks
Automation
Classification
Computer vision
Data collection
Deep learning
Diffraction patterns
Electron backscatter diffraction
Electron diffraction
Learning algorithms
Machine learning
Materials science
Mathematical models
Neural networks
Parameters
Performance degradation
Sensors
Software and Instrumentation
Transmission electron microscopy
SummonAdditionalLinks – databaseName: Cambridge University Press:Open Access Journals
  dbid: IKXGN
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB5qi-BFfGK1ygqexCWPzeZxrNpalRZBCz0IIcnuSi9pre2h_97ZbBqtguAxZLNsZh8zs_PNNwAXGoObKp7QgAlBPR4qmtqZTwNX-JFAFSULtHt_4PeG3sOIj2owWuXCaFhlxXFQRPKL-mhTQ39qjYXB0MiZ9YyaHs0T3Mz6ippz39KXllY5BXEp-A1ouAx99jo07h9Hd4PqlMa1bTKPmEN1L6uIp6aT_tnzd96Fdf21fnwXOqm7A9ulMUnaZhC7UJP5Hmya8pLLfXht56SdvS_GBpdFnhKNxEJBEo0eXBK0V0m_AFNKWvKsvtFOkUwlSKesj0OudRZ-VtBwktuxUjOTCnEAw27n5aZHy2oKNGMRm1MPFXOkQpvLzMNDRQbS9VQQ6sRaRyYszBRPhS3xWfmC2YLzhCeMJ24muJOiL3sI9XySyyMgHI3cEF1y9EYcT0V-6kf4Teg6SeiiQec14aqSV1xOyEds8GRB_Eu8TbhciTSeGo6Nvxq3VkL_6hpHgpYkR9XahPPqNW4UHf1IcjlZ6DYMfx4VNTv-3_BOYMvVQJYC9deC-ny2kKdoiczTs3JRfQKFatab
  priority: 102
  providerName: Cambridge University Press
Title An Acquisition Parameter Study for Machine-Learning-Enabled Electron Backscatter Diffraction
URI https://www.cambridge.org/core/product/identifier/S1431927621000556/type/journal_article
https://www.proquest.com/docview/2558355299
https://search.proquest.com/docview/2538051233
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8QwEB7cXQQv4hPXFxE8icE2afo4yar7UNlFxIUehKVtEtlL933w3ztp05VF8NLSNA10Op1H5psZgGuDwU21SGjApaSeCDVNncynAZN-JFFFqQLt3h_4vaH3EovYbrgtLKyykomFoJaTzOyR36Hpi8aCQOl5P51R0zXKRFdtC40aNBh6Ck4dGg_twdv7WhYjB5f5RdylEQv8Kq5pikabQTPGzBa3EBvVFTa11KaQLjRPZw92rclIWuU33octlR_AdtlE8vsQPls5aWWz1bhEX5G3xOCtkFzEYAS_CVqlpF9AJhW11VS_aLtImZKkbbvgkAeTa58VxTbJ01jreZnwcATDTvvjsUdtzwSa8YgvqYfqN9KhI1TmoehQgWKeDkKTPuuqhIeZFql0FF5rX3JHCpGIhIuEZVK4KXqsx1DPJ7k6ASLQlA3R8Uafw_V05Kd-hM-EzE1Chmab14TbNb1GlvMXoxI1Foz-kLcJNxVJR9OyksZ_k88rov8u_csCTbha38bfwcQ4klxNVmYOx5dHdcxP_1_iDHaYgacUWL5zqC_nK3WB9sUyvYRaEAd4DDvdS8tQeH5-jbuDH4HIzbY
link.rule.ids 315,783,787,12068,12777,21400,23330,27936,27937,31731,31732,33385,33386,33756,33757,43322,43612,43817,56136
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDI5gCMEF8RSDAUHihIhom6aPExqwacA2cdikHZCqtknQLt37sH-PnbabJqQdm6aR6rr25-SzTcgDcnATLWLmcymZKwLNEiv1mO9IL5TgopRhu3e6Xqvvfg7EoNhwmxW0ytImGkMtRynukT8D9AWwIMB6vownDLtG4elq0UJjl-xhHS7sYOAPVgEX6m-eXcRtFjq-V55qYsloHMQxBze4hdiorbDpozZNtPE7zWNyVABGWs-_8AnZUdkp2c9bSC7PyE89o_V0shjm3Cv6HSPbCoRFkSG4pIBJaccQJhUraqn-soZJmJK0UfTAoa-YaZ-aUpv0faj1NE93OCf9ZqP31mJFxwSW8pDPmQvON9SBJVTqguFQvnJc7QeYPGurmAepFom0FFxrT3JLChGLmIvYSaWwE4hXL0glG2XqklABQDaAsBsiDtvVoZd4ITwTOHYcOADa3Cp5WskrKvR-FuWcMT_6J94qeSxFGo3zOhrbJtdKoa-XXitAldyvbsPPgCcccaZGC5zD4eXBGfOr7UvckYNWr9OO2h_dr2ty6CBRxbD6aqQyny7UDSCNeXJr1OkPwm3L0A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Acquisition+Parameter+Study+for+Machine-Learning-Enabled+Electron+Backscatter+Diffraction&rft.jtitle=Microscopy+and+microanalysis&rft.au=Kaufmann%2C+Kevin&rft.au=Vecchio%2C+Kenneth+S.&rft.date=2021-08-01&rft.issn=1431-9276&rft.eissn=1435-8115&rft.volume=27&rft.issue=4&rft.spage=776&rft.epage=793&rft_id=info:doi/10.1017%2FS1431927621000556&rft.externalDBID=n%2Fa&rft.externalDocID=10_1017_S1431927621000556
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1431-9276&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1431-9276&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1431-9276&client=summon