Adaptive Sliding Mode Control of Lateral Stability of Four Wheel Hub Electric Vehicles

Some physical parameters of a hub motor-driven four-wheel electric vehicle will change when the vehicle turns or maneuvers and the parameter change is caused by the change of the driving conditions. An adaptive sliding mode control is proposed in this paper to maintain the vehicle’s stability by com...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of automotive technology Vol. 21; no. 3; pp. 739 - 747
Main Authors Li, Shou-Tao, Liu, Hui, Zhao, Di, Li, Qiu-Yuan, Tian, Yan-Tao, Wang, De-Jun, Yu, Ding-Li
Format Journal Article
LanguageEnglish
Published Seoul The Korean Society of Automotive Engineers 01.06.2020
Springer Nature B.V
한국자동차공학회
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Some physical parameters of a hub motor-driven four-wheel electric vehicle will change when the vehicle turns or maneuvers and the parameter change is caused by the change of the driving conditions. An adaptive sliding mode control is proposed in this paper to maintain the vehicle’s stability by compensating for the change of these parameters. The control parameter being adapted is the converging rate of the system state towards the sliding mode. As the Lyapunov method is used, so both the vehicle stability and adaptive rate convergence are guaranteed. Moreover, the hierarchical control structure is adopted for this vehicle stability control system. The above adaptive sliding model control forms the upper-layer; while the lower-layer control is to distribute the upper torque to the four wheels in an optimal way, subject to several constraints. In addition, the best feasible reference of the yaw rate and the vehicle side slip angle are obtained and used in the control system. The developed method is simulated under the CarSim/MATLAB co-simulation environment to evaluate the system performance. The simulation results are compared with the non-adaptive existing sliding mode control, and show that the proposed method is superior under different conditions.
AbstractList Some physical parameters of a hub motor-driven four-wheel electric vehicle will change when the vehicle turns or maneuvers and the parameter change is caused by the change of the driving conditions. An adaptive sliding mode control is proposed in this paper to maintain the vehicle’s stability by compensating for the change of these parameters. The control parameter being adapted is the converging rate of the system state towards the sliding mode. As the Lyapunov method is used, so both the vehicle stability and adaptive rate convergence are guaranteed. Moreover, the hierarchical control structure is adopted for this vehicle stability control system. The above adaptive sliding model control forms the upper-layer; while the lower-layer control is to distribute the upper torque to the four wheels in an optimal way, subject to several constraints. In addition, the best feasible reference of the yaw rate and the vehicle side slip angle are obtained and used in the control system. The developed method is simulated under the CarSim/MATLAB co-simulation environment to evaluate the system performance. The simulation results are compared with the non-adaptive existing sliding mode control, and show that the proposed method is superior under different conditions.
Some physical parameters of a hub motor-driven four-wheel electric vehicle will change when the vehicle turns or maneuvers and the parameter change is caused by the change of the driving conditions. An adaptive sliding mode control is proposed in this paper to maintain the vehicle’s stability by compensating for the change of these parameters. The control parameter being adapted is the converging rate of the system state towards the sliding mode. As the Lyapunov method is used, so both the vehicle stability and adaptive rate convergence are guaranteed. Moreover, the hierarchical control structure is adopted for this vehicle stability control system. The above adaptive sliding model control forms the upper-layer; while the lower-layer control is to distribute the upper torque to the four wheels in an optimal way, subject to several constraints. In addition, the best feasible reference of the yaw rate and the vehicle side slip angle are obtained and used in the control system. The developed method is simulated under the CarSim/MATLAB co-simulation environment to evaluate the system performance. The simulation results are compared with the non-adaptive existing sliding mode control, and show that the proposed method is superior under different conditions. KCI Citation Count: 5
Author Li, Shou-Tao
Yu, Ding-Li
Wang, De-Jun
Liu, Hui
Li, Qiu-Yuan
Tian, Yan-Tao
Zhao, Di
Author_xml – sequence: 1
  givenname: Shou-Tao
  surname: Li
  fullname: Li, Shou-Tao
  organization: College of Communications Engineering, Jilin University
– sequence: 2
  givenname: Hui
  surname: Liu
  fullname: Liu, Hui
  organization: College of Communications Engineering, Jilin University
– sequence: 3
  givenname: Di
  surname: Zhao
  fullname: Zhao, Di
  organization: College of Communications Engineering, Jilin University
– sequence: 4
  givenname: Qiu-Yuan
  surname: Li
  fullname: Li, Qiu-Yuan
  organization: College of Communications Engineering, Jilin University
– sequence: 5
  givenname: Yan-Tao
  surname: Tian
  fullname: Tian, Yan-Tao
  organization: College of Communications Engineering, Jilin University
– sequence: 6
  givenname: De-Jun
  surname: Wang
  fullname: Wang, De-Jun
  organization: College of Communications Engineering, Jilin University
– sequence: 7
  givenname: Ding-Li
  surname: Yu
  fullname: Yu, Ding-Li
  email: D.Yu@ljmu.ac.uk
  organization: College of Communications Engineering, Jilin University, Department of Electrical Engineering, Liverpool John Moores University
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002591124$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNp9kE1r3DAQhkVJofn6Ab0JeurB7Yy0kq3jsiRNYEshSZOjkO3xRolqbSVtIf--dl0oFNrTjIbnETPvCTsa40iMvUX4gAD1x4xCSFOBgGp6igpfsWM0ta5kI8XR1AthKoOyecNOcn4CUBolHLP7de_2xf8gfht878cd_xx74ps4lhQDjwPfukLJBX5bXOuDLy_z8DIeEn94JAr86tDyi0BdSb7j9_Tou0D5jL0eXMh0_ruesq-XF3ebq2r75dP1Zr2tOmlkqVYS60Z0ZAY1aNJuhRqM7jWSgtYh9W0jUQ-6RYFqUL2gGhRqZaAFt-pBnrL3y79jGuxz5210_lfdRfuc7Prm7toaKZVpcGLfLew-xe8HysU-TVeM03pWrGoNCmqcqXqhuhRzTjTYzhdX_ByI88Ei2DlwuwRup8DtHLidTfzL3Cf_zaWX_zpicfLEjjtKf3b6t_QT11-R6g
CitedBy_id crossref_primary_10_1155_2024_9904307
crossref_primary_10_3390_app14093664
crossref_primary_10_1002_asjc_2807
crossref_primary_10_3390_en15228382
crossref_primary_10_1177_09544070231157134
crossref_primary_10_1088_1742_6596_2216_1_012051
crossref_primary_10_3390_wevj15120574
crossref_primary_10_1177_09544062211009926
crossref_primary_10_1109_TVT_2024_3368283
crossref_primary_10_1177_09544070241286016
crossref_primary_10_1007_s12239_024_00086_8
crossref_primary_10_3390_machines10110969
Cites_doi 10.1080/00423114.2015.1028414
10.1504/IJVD.2015.066474
10.1016/j.ymssp.2015.09.017
10.1080/00423114.2015.1025082
10.1109/TMECH.2012.2233210
10.1109/TITS.2015.2498157
10.1504/IJVD.2016.080016
10.3901/CJME.2016.0314.031
10.1007/s12239-015-0068-4
10.1002/eej.20569
10.1049/iet-cta.2015.0437
10.1007/s12239-010-0043-z
10.1109/TVT.2014.2306733
10.1016/j.mechatronics.2017.07.002
10.1007/s12239-015-0034-1
10.1016/j.mechatronics.2014.08.006
10.1109/TVT.2016.2526663
10.1007/s12239-013-0007-1
10.3233/JIFS-169019
10.1504/IJVD.2015.073112
10.1007/s12206-009-0338-z
10.4271/930505
ContentType Journal Article
Copyright KSAE 2020
KSAE 2020.
Copyright_xml – notice: KSAE 2020
– notice: KSAE 2020.
DBID AAYXX
CITATION
3V.
7TB
7WY
7WZ
7XB
87Z
88I
8FD
8FE
8FG
8FK
8FL
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
D1I
DWQXO
FR3
FRNLG
F~G
GNUQQ
HCIFZ
K60
K6~
KB.
L.-
M0C
M2P
PDBOC
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
ACYCR
DOI 10.1007/s12239-020-0072-1
DatabaseName CrossRef
ProQuest Central (Corporate)
Mechanical & Transportation Engineering Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Science Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One
ProQuest Materials Science Collection
ProQuest Central Korea
Engineering Research Database
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Materials Science Database
ABI/INFORM Professional Advanced
ABI/INFORM Global
Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
Korean Citation Index
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
ABI/INFORM Complete (Alumni Edition)
ProQuest Materials Science Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Science Journals (Alumni Edition)
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
Engineering Research Database
ProQuest One Academic
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
ProQuest One Academic (New)
DatabaseTitleList ABI/INFORM Global (Corporate)


Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1976-3832
EndPage 747
ExternalDocumentID oai_kci_go_kr_ARTI_9335981
10_1007_s12239_020_0072_1
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
.86
.UV
.VR
06D
0R~
0VY
1N0
203
29J
29~
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
3V.
4.4
406
408
40D
40E
5GY
5VS
6NX
7WY
88I
8FE
8FG
8FL
8TC
8UJ
95-
95.
95~
96X
9ZL
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABDZT
ABECU
ABFTD
ABFTV
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
AXYYD
AYJHY
AZQEC
B-.
BA0
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
CAG
CCPQU
COF
CS3
CSCUP
CZ9
D1I
DBRKI
DDRTE
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GROUPED_ABI_INFORM_COMPLETE
GW5
H13
HCIFZ
HF~
HG6
HLICF
HMJXF
HRMNR
HZ~
I-F
IJ-
IKXTQ
IWAJR
IXC
IXD
I~X
I~Z
J-C
J0Z
JBSCW
JZLTJ
K60
K6~
KB.
KC.
KOV
KVFHK
LLZTM
M0C
M2P
M4Y
MA-
MK~
ML~
MZR
NPVJJ
NQJWS
NU0
O9-
O9J
P9P
PDBOC
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
Q2X
QOS
R89
R9I
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SDH
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TDB
TR2
TSG
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7X
Z7Y
Z7Z
Z83
Z88
ZMTXR
ZZE
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
CITATION
PHGZM
PHGZT
7TB
7XB
8FD
8FK
ABRTQ
FR3
L.-
PKEHL
PQEST
PQGLB
PQUKI
Q9U
AAFGU
ABFGW
ABKAS
ACBMV
ACBRV
ACBYP
ACIGE
ACIPQ
ACTTH
ACVWB
ACWMK
ACYCR
ADMDM
ADOXG
AEFTE
AESTI
AEVTX
AFNRJ
AGGBP
AIMYW
AJDOV
AKQUC
UNUBA
ID FETCH-LOGICAL-c393t-431782ce9f5f6e6a416096d61e50ba1edb8316f6b1215f5d2e70516590b0a4d03
IEDL.DBID BENPR
ISSN 1229-9138
IngestDate Tue Jun 25 21:13:30 EDT 2024
Fri Jul 25 19:07:54 EDT 2025
Tue Jul 01 02:44:14 EDT 2025
Thu Apr 24 23:10:51 EDT 2025
Fri Feb 21 02:32:49 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Vehicle stability
Torque distribution
Electric vehicle
Adaptive sliding mode control
Parameter uncertainty
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c393t-431782ce9f5f6e6a416096d61e50ba1edb8316f6b1215f5d2e70516590b0a4d03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://link.springer.com/content/pdf/10.1007/s12239-020-0072-1.pdf
PQID 2476050711
PQPubID 54404
PageCount 9
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_9335981
proquest_journals_2476050711
crossref_citationtrail_10_1007_s12239_020_0072_1
crossref_primary_10_1007_s12239_020_0072_1
springer_journals_10_1007_s12239_020_0072_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200600
2020-06-00
20200601
2020-06
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 6
  year: 2020
  text: 20200600
PublicationDecade 2020
PublicationPlace Seoul
PublicationPlace_xml – name: Seoul
– name: Dordrecht
PublicationTitle International journal of automotive technology
PublicationTitleAbbrev Int.J Automot. Technol
PublicationYear 2020
Publisher The Korean Society of Automotive Engineers
Springer Nature B.V
한국자동차공학회
Publisher_xml – name: The Korean Society of Automotive Engineers
– name: Springer Nature B.V
– name: 한국자동차공학회
References Wang, Jing, Hu, Yan, Chen (CR21) 2016; 17
Jalali, Hashemi, Khajepour, Chen, Litkouhi (CR6) 2017; 46
Kanarachos, Alirezaei, Jansen, Maurice (CR7) 2014; 228
Kazemi, Janbakhsh (CR8) 2010; 11
Le, Chen (CR9) 2016; 72
Tchamna, Youn (CR18) 2013; 14
CR15
Lian, Zhao, Hu, Tian (CR13) 2015; 16
Hu, Jing, Wang, Yan, Chadli (CR5) 2016; 70–71
Luo, Cao, Xiang, Li (CR14) 2015; 69
Nam, Fujimoto, Hori (CR17) 2015; 67
Lee, Park, Hwang, Noh, Heo, Jeong, Choi, Kwak, Kim (CR10) 2009; 23
Zhao, Ren, Chen, Deng (CR25) 2015; 9
Li, Goodarzi, Khajepour, Chen, Litkouhi (CR11) 2015; 53
Zhang, Zhang, Huang, Liu, Ding (CR24) 2013; 227
Li, Jia, Chen, Zhu, Cao, Song (CR12) 2015; 53
Zhai, Sun, Wang (CR23) 2016; 65
Alipour, Sabahi, Sharifian (CR1) 2015; 30
Yu, Leng, Xiong, Feng, Shi (CR22) 2016; 29
Emırler, Kahraman, Sentürk, Acar, Guvenç, Güvenç, Efendioğlu (CR4) 2015; 16
Chiara, Canova (CR2) 2013; 6
Nam, Fujimoto, Hori (CR16) 2014; 19
Wang, He, Yu, Liu, Do, Kong, Man (CR20) 2016; 31
Choi, Choi (CR3) 2014; 63
Tsumasaka, Fujimoto, Noguchi (CR19) 2009; 166
R Tchamna (72_CR18) 2013; 14
K Nam (72_CR16) 2014; 19
B Li (72_CR11) 2015; 53
F Chiara (72_CR2) 2013; 6
L Zhai (72_CR23) 2016; 65
Z Zhang (72_CR24) 2013; 227
M Jalali (72_CR6) 2017; 46
72_CR15
M T Emırler (72_CR4) 2015; 16
Z Yu (72_CR22) 2016; 29
H Zhao (72_CR25) 2015; 9
H Alipour (72_CR1) 2015; 30
M Choi (72_CR3) 2014; 63
Y F Lian (72_CR13) 2015; 16
R Kazemi (72_CR8) 2010; 11
Y Luo (72_CR14) 2015; 69
S Kanarachos (72_CR7) 2014; 228
C Hu (72_CR5) 2016; 70–71
K Nam (72_CR17) 2015; 67
A Tsumasaka (72_CR19) 2009; 166
H Wang (72_CR20) 2016; 31
L Li (72_CR12) 2015; 53
R Wang (72_CR21) 2016; 17
A-T Le (72_CR9) 2016; 72
H Lee (72_CR10) 2009; 23
References_xml – volume: 53
  start-page: 1172
  issue: 8
  year: 2015
  end-page: 1189
  ident: CR11
  article-title: An optimal torque distribution control strategy for four-independent wheel drive electric vehicles
  publication-title: Vehicle System Dynamics: Int. J. Vehicle Mechanics and Mobility
  doi: 10.1080/00423114.2015.1028414
– volume: 6
  start-page: 914
  year: 2013
  end-page: 936
  ident: CR2
  article-title: A review of energy consumption, management, and recovery in automotive systems, with considerations of future trends
  publication-title: Proc. Institution of Mechanical Engineers, Part D: J. Automobile Engineering 111
– volume: 67
  start-page: 98
  issue: 1
  year: 2015
  end-page: 113
  ident: CR17
  article-title: Design of an adaptive sliding mode controller for robust yaw stabilization of in-wheel-motor-driven electric vehicles
  publication-title: Int. J. Vehicle Design
  doi: 10.1504/IJVD.2015.066474
– volume: 70–71
  start-page: 414
  year: 2016
  end-page: 427
  ident: CR5
  article-title: Robust H., output-feedback control for path following of autonomous ground vehicles
  publication-title: Mechanical Systems and Signal Processing
  doi: 10.1016/j.ymssp.2015.09.017
– volume: 53
  start-page: 1093
  issue: 8
  year: 2015
  end-page: 1116
  ident: CR12
  article-title: A novel vehicle dynamics stability control algorithm based on the hierarchical strategy with constrain of nonlinear tire forces
  publication-title: Vehicle System Dynamics: Int. J. Vehicle Mechanics and Mobility
  doi: 10.1080/00423114.2015.1025082
– volume: 19
  start-page: 289
  issue: 1
  year: 2014
  end-page: 299
  ident: CR16
  article-title: Advanced motion control of electric vehicles based on robust lateral tire force control via active front steering
  publication-title: IEEE/ ASME Trans. Mechatronics
  doi: 10.1109/TMECH.2012.2233210
– volume: 17
  start-page: 2042
  issue: 7
  year: 2016
  end-page: 2050
  ident: CR21
  article-title: Robust H path following control for autonomous ground vehicles with delay and data dropout
  publication-title: IEEE Trans. Intelligent Transportation Systems
  doi: 10.1109/TITS.2015.2498157
– volume: 72
  start-page: 107
  issue: 2
  year: 2016
  end-page: 131
  ident: CR9
  article-title: Vehicle stability control by using an adaptive sliding-mode algorithm
  publication-title: Int. J. Vehicle Design
  doi: 10.1504/IJVD.2016.080016
– volume: 29
  start-page: 486
  issue: 3
  year: 2016
  end-page: 497
  ident: CR22
  article-title: Direct yaw moment control for distributed drive electric vehicle handling performance improvement
  publication-title: Chinese J. Mechanical Engineering
  doi: 10.3901/CJME.2016.0314.031
– volume: 16
  start-page: 669
  issue: 4
  year: 2015
  end-page: 683
  ident: CR13
  article-title: Cornering stiffness and sideslip angle estimation based on simplified lateral dynamic models for four-in-wheel-motor-driven electric vehicles with lateral tire force information
  publication-title: Int. J. Automotive Technology
  doi: 10.1007/s12239-015-0068-4
– volume: 166
  start-page: 97
  issue: 4
  year: 2009
  end-page: 104
  ident: CR19
  article-title: Running stabilization control of electric vehicle based on cornering stiffness estimation
  publication-title: Electrical Engineering in Japan
  doi: 10.1002/eej.20569
– volume: 9
  start-page: 2688
  issue: 18
  year: 2015
  end-page: 2696
  ident: CR25
  article-title: Model predictive control allocation for stability improvement of four-wheel drive electric vehicles in critical driving condition
  publication-title: IET Control Theory & Applications
  doi: 10.1049/iet-cta.2015.0437
– volume: 11
  start-page: 345
  issue: 3
  year: 2010
  end-page: 354
  ident: CR8
  article-title: Nonlinear adaptive sliding mode control for vehicle handling improvement via steer-by-wire
  publication-title: Int. J. Automotive Technology
  doi: 10.1007/s12239-010-0043-z
– volume: 63
  start-page: 3539
  issue: 8
  year: 2014
  end-page: 3548
  ident: CR3
  article-title: Model predictive control for vehicle yaw stability with practical concerns
  publication-title: IEEE Trans. Vehicular Technology
  doi: 10.1109/TVT.2014.2306733
– volume: 46
  start-page: 84
  year: 2017
  end-page: 100
  ident: CR6
  article-title: Integrated model predictive control and velocity estimation of electric vehicles
  publication-title: Mechatronics
  doi: 10.1016/j.mechatronics.2017.07.002
– volume: 16
  start-page: 317
  issue: 2
  year: 2015
  end-page: 328
  ident: CR4
  article-title: Lateral stability control of fully electric vehicles
  publication-title: Int. J. Automotive Technology
  doi: 10.1007/s12239-015-0034-1
– volume: 30
  start-page: 275
  year: 2015
  end-page: 285
  ident: CR1
  article-title: Lateral stabilization of a four wheel independent drive electric vehicle on slippery roads
  publication-title: Mechatronics
  doi: 10.1016/j.mechatronics.2014.08.006
– volume: 228
  start-page: 129
  issue: 2
  year: 2014
  end-page: 143
  ident: CR7
  article-title: Control allocation for regenerative braking of electric vehicles with an electric motor at the front axle using the state-dependent Riccati equation control technique
  publication-title: Proc. Institution of Mechanical Engineers. Part D: J. Automobile Engineering
– ident: CR15
– volume: 65
  start-page: 4726
  issue: 6
  year: 2016
  end-page: 4739
  ident: CR23
  article-title: Electronic stability control based on motor driving and braking torque distribution for a four in-wheel motor drive electric vehicle
  publication-title: IEEE Trans. Vehicular Technology
  doi: 10.1109/TVT.2016.2526663
– volume: 227
  start-page: 704
  issue: 9
  year: 2013
  end-page: 717
  ident: CR24
  article-title: Observer-based H., control for vehicle handling and stability subject to parameter uncertainties
  publication-title: Proc. Institution of Mechanical Engineers, Part I: J. Systems and Control Engineering
– volume: 14
  start-page: 53
  issue: 1
  year: 2013
  end-page: 60
  ident: CR18
  article-title: Yaw rate and side-slip control considering vehicle longitudinal dynamics
  publication-title: Int. J. Automotive Technology
  doi: 10.1007/s12239-013-0007-1
– volume: 31
  start-page: 885
  issue: 2
  year: 2016
  end-page: 902
  ident: CR20
  article-title: Adaptive neural network sliding mode control for steer-by-wire-based vehicle stability control
  publication-title: J. Intelligent & Fuzzy Systems
  doi: 10.3233/JIFS-169019
– volume: 69
  start-page: 25
  issue: 1–4
  year: 2015
  end-page: 49
  ident: CR14
  article-title: Vehicle stability and attitude improvement through the coordinated control of longitudinal, lateral and vertical tyre forces for electric vehicles
  publication-title: Int. J. Vehicle Design
  doi: 10.1504/IJVD.2015.073112
– volume: 23
  start-page: 1046
  issue: 4
  year: 2009
  end-page: 1049
  ident: CR10
  article-title: Development of enhanced ESP system through vehicle parameter estimation
  publication-title: J. Mechanical Science and Technology
  doi: 10.1007/s12206-009-0338-z
– volume: 14
  start-page: 53
  issue: 1
  year: 2013
  ident: 72_CR18
  publication-title: Int. J. Automotive Technology
  doi: 10.1007/s12239-013-0007-1
– volume: 53
  start-page: 1093
  issue: 8
  year: 2015
  ident: 72_CR12
  publication-title: Vehicle System Dynamics: Int. J. Vehicle Mechanics and Mobility
  doi: 10.1080/00423114.2015.1025082
– volume: 17
  start-page: 2042
  issue: 7
  year: 2016
  ident: 72_CR21
  publication-title: IEEE Trans. Intelligent Transportation Systems
  doi: 10.1109/TITS.2015.2498157
– volume: 227
  start-page: 704
  issue: 9
  year: 2013
  ident: 72_CR24
  publication-title: Proc. Institution of Mechanical Engineers, Part I: J. Systems and Control Engineering
– volume: 16
  start-page: 317
  issue: 2
  year: 2015
  ident: 72_CR4
  publication-title: Int. J. Automotive Technology
  doi: 10.1007/s12239-015-0034-1
– volume: 72
  start-page: 107
  issue: 2
  year: 2016
  ident: 72_CR9
  publication-title: Int. J. Vehicle Design
  doi: 10.1504/IJVD.2016.080016
– volume: 65
  start-page: 4726
  issue: 6
  year: 2016
  ident: 72_CR23
  publication-title: IEEE Trans. Vehicular Technology
  doi: 10.1109/TVT.2016.2526663
– volume: 63
  start-page: 3539
  issue: 8
  year: 2014
  ident: 72_CR3
  publication-title: IEEE Trans. Vehicular Technology
  doi: 10.1109/TVT.2014.2306733
– volume: 31
  start-page: 885
  issue: 2
  year: 2016
  ident: 72_CR20
  publication-title: J. Intelligent & Fuzzy Systems
  doi: 10.3233/JIFS-169019
– volume: 53
  start-page: 1172
  issue: 8
  year: 2015
  ident: 72_CR11
  publication-title: Vehicle System Dynamics: Int. J. Vehicle Mechanics and Mobility
  doi: 10.1080/00423114.2015.1028414
– volume: 166
  start-page: 97
  issue: 4
  year: 2009
  ident: 72_CR19
  publication-title: Electrical Engineering in Japan
  doi: 10.1002/eej.20569
– volume: 16
  start-page: 669
  issue: 4
  year: 2015
  ident: 72_CR13
  publication-title: Int. J. Automotive Technology
  doi: 10.1007/s12239-015-0068-4
– volume: 23
  start-page: 1046
  issue: 4
  year: 2009
  ident: 72_CR10
  publication-title: J. Mechanical Science and Technology
  doi: 10.1007/s12206-009-0338-z
– volume: 19
  start-page: 289
  issue: 1
  year: 2014
  ident: 72_CR16
  publication-title: IEEE/ ASME Trans. Mechatronics
  doi: 10.1109/TMECH.2012.2233210
– volume: 46
  start-page: 84
  year: 2017
  ident: 72_CR6
  publication-title: Mechatronics
  doi: 10.1016/j.mechatronics.2017.07.002
– volume: 11
  start-page: 345
  issue: 3
  year: 2010
  ident: 72_CR8
  publication-title: Int. J. Automotive Technology
  doi: 10.1007/s12239-010-0043-z
– volume: 29
  start-page: 486
  issue: 3
  year: 2016
  ident: 72_CR22
  publication-title: Chinese J. Mechanical Engineering
  doi: 10.3901/CJME.2016.0314.031
– volume: 70–71
  start-page: 414
  year: 2016
  ident: 72_CR5
  publication-title: Mechanical Systems and Signal Processing
  doi: 10.1016/j.ymssp.2015.09.017
– volume: 228
  start-page: 129
  issue: 2
  year: 2014
  ident: 72_CR7
  publication-title: Proc. Institution of Mechanical Engineers. Part D: J. Automobile Engineering
– volume: 67
  start-page: 98
  issue: 1
  year: 2015
  ident: 72_CR17
  publication-title: Int. J. Vehicle Design
  doi: 10.1504/IJVD.2015.066474
– volume: 9
  start-page: 2688
  issue: 18
  year: 2015
  ident: 72_CR25
  publication-title: IET Control Theory & Applications
  doi: 10.1049/iet-cta.2015.0437
– volume: 30
  start-page: 275
  year: 2015
  ident: 72_CR1
  publication-title: Mechatronics
  doi: 10.1016/j.mechatronics.2014.08.006
– volume: 69
  start-page: 25
  issue: 1–4
  year: 2015
  ident: 72_CR14
  publication-title: Int. J. Vehicle Design
  doi: 10.1504/IJVD.2015.073112
– volume: 6
  start-page: 914
  year: 2013
  ident: 72_CR2
  publication-title: Proc. Institution of Mechanical Engineers, Part D: J. Automobile Engineering 111
– ident: 72_CR15
  doi: 10.4271/930505
SSID ssj0056130
Score 2.2773817
Snippet Some physical parameters of a hub motor-driven four-wheel electric vehicle will change when the vehicle turns or maneuvers and the parameter change is caused...
SourceID nrf
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 739
SubjectTerms Adaptive control
Automotive Engineering
Control stability
Convergence
Driving conditions
Electric vehicles
Engineering
Lateral stability
Maneuvers
Parameters
Physical properties
Sideslip
Simulation
Sliding mode control
Structural hierarchy
Yaw
자동차공학
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60XvQgPrFaZRFPSiCv3STHUixV1Iu29LZkX1oa2tLHwX_vzDaxVlTwFEgmG5jZnfkmM_stIVdBbDLEBV6E9X-IUKGXS5t4sU61zGVumUsUH594pxvf91m_3Mc9q7rdq5Kk89SrzW4QyTIP0x2ku_Yg5dlimLrDJO6Gzcr9OkCMWVYYZlhWTqtS5k9DrAWjzdHUruHMb6VRF3Hae2S3hIq0ubTtPtkwowOy84VA8JD0mjqfoMOiz8UAoxDFs81oa9l_TseWPuS4xbigACpdG-w73mzD0BTcsCloZyHprTsKZ6Boz7y5Lrkj0m3fvrQ6XnlSgqeiLJqjjiHSK5NZZrnhOaAsSE00DwzzZR4YLdMo4JZL5JKwTIcmgcXIWeZLP4-1Hx2T2mg8MieEKqU5U5rpCFJHy1QKokoGMkm0n-rIrxO_UplQJY04nmZRiBUBMmpZgJYFalkEdXL9-cpkyaHxl_Al2EEM1UAg8zVeX8diOBWA7-9EFiHjIAg1KjOJcs3NRBgnkJsBZILHN5XpVo9__eLpv6TPyHboJhD-iGmQ2ny6MOeAS-byws3DDyA41ZY
  priority: 102
  providerName: Springer Nature
Title Adaptive Sliding Mode Control of Lateral Stability of Four Wheel Hub Electric Vehicles
URI https://link.springer.com/article/10.1007/s12239-020-0072-1
https://www.proquest.com/docview/2476050711
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002591124
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX International Journal of Automotive Technology, 2020, 21(3), 115, pp.739-747
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LTxsxEB415FIOCNoiAjSyKk5Fq-7L-zihFOXRAhFqmyicrPULIqIkhHDg3zPj7BJAKqeVvF6vNLZnvvGMvwE4CmKTEy7wIor_o4UKvULa1It1pmUhC8udo3jRT3qD-PeIj8oDt_syrbLSiU5R65miM_IfYZwi8kaDGJzM7zyqGkXR1bKERg3qqIIzdL7qP9v9yz-VLnbomFyuMMwpxpxVcU13eQ4tY-6R-0T02V7wyjLVpgv7CnS-iZM689PZhq0SN7LWaqJ34IOZfoLNF2yCn2HY0sWctBf7OxmTSWJU6IydrpLR2cyy84LuG08YIkyXE_tIjR0cmqFONhPWe5Cs7erijBUbmhuXMvcFBp32v9OeV5ZN8FSUR0sSOJp9ZXLLbWKSAiEX-ik6CQz3ZREYLbMoSGwiiVjCch2aFHdmwnNf-kWs_WgXNqazqdkDppROuNJcR-hHWq4y7KpkINNU-5mO_Ab4lciEKjnFqbTFRKzZkEnKAqUsSMoiaMD350_mK0KN9zp_w3kQt2osiAabntczcbsQCPZ_iTwi-kHsdFhNkyg34L1YL5cGHFdTt3793z_uvz_YAXwM3YqhY5hD2FguHsxXRCVL2YRa1uk2od7qXp21m-VCxNZB2HoCAvfd5A
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB7xONAeqvKoCKVlheACsmp7vX4cUIUoIYHAhYe4bb0vGiVKQgiq-FP9jcxsYlKQ4MbJkr1eWzOzM9_szM4AbEWJLQgXBJzi_2ih4qBULgsSkxtVqtIJ7yienqWNy-T4WlzPwL_qLAylVVY60Stq09e0R_4jTjJE3mgQo5-D24C6RlF0tWqhMRaLE_vwF122u73mL-TvdhzXDy8OGsGkq0CgecFH9D9oFbUtnHCpTUtEJAjjTRpZEaoyskblPEpdqqjughMmthkKbiqKUIVlYkKO887CfMJ5QSsqrx9Vmt9jcXLw4rigiHZeRVH9UT20w0VAzhoV6w6iZ3Zwtjd0zyDui6isN3b1z_BpglLZ_lisFmHG9pbg43-1C5fhat-UA9KV7LzbJgPIqK0aOxinvrO-Y62STjd3GeJZn4H7QDfrODVDC2C7rHGv2KHvwtPW7Mr-8Ql6K3D5LuT8AnO9fs-uAtPapEIbYTh6rU7oHIdqFaksM2FueFiDsCKZ1JMK5tRIoyuntZeJyhKpLInKMqrBztMrg3H5jrcGbyIfZEe3JRXdputNX3aGEl2Lpiw4FTvEQesVm-Rkud_JqXDWYLdi3fTxq19ce3uyDVhoXJy2ZKt5dvIVPsReemgDaB3mRsN7-w3x0Eh990LI4Pd7S_0j4gUUng
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB5BkBAcqraACIV2VbUXkIVf68ehQhQSJYVGiJe4Ld4XRImSNARV_LX-us5s7KYgwY2TJXu9tmbG-33jmZ0B-BLEJide4EUU_0eECr1C2tSLdaZlIQvLnaP4s5O0LuIfV_xqDv5Ue2EorbJaE91CrYeK_pHvhnGKzBsBMdi1ZVrEyWFzb_TLow5SFGmt2mlMTeTIPPxG9-3uW_sQdf01DJuN84OWV3YY8FSURxN6N0RIZXLLbWKSAtkJUnqdBIb7sgiMllkUJDaRVIPBch2aFI044bkv_SLWfoTzzsNCil6RX4OF743OyWmFA46Zk7sXhjnFt7Mqpuo27iEq5x65blS62wseoeL8YGwfEd4nMVoHfc238KbkrGx_amTvYM4M3sPyf5UMV-ByXxcjWjnZWb9LcMioyRo7mCbCs6FlxwXtde4zZLcuH_eBTjZxaoZ4YPqsdS9Zw_Xk6Sp2aW5dut4qXLyKQNegNhgOzDowpXTCleY6Qh_WcpXhUCUDmabaz3Tk18GvRCZUWc-c2mr0xawSM0lZoJQFSVkEddj-d8toWszjpcGfUQ-ip7qCSnDT8WYoemOBjkZb5BGVPsRBm5WaRPnx34mZqdZhp1Ld7PKzT9x4ebJPsIgWL47bnaMPsBQ646G_QZtQm4zvzRaSo4n8WFohg-vXNvy_wUgaMA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ADAPTIVE+SLIDING+MODE+CONTROL+OF+LATERAL+STABILITY+OF+FOUR+WHEEL+HUB+ELECTRIC+VEHICLES&rft.jtitle=International+journal+of+automotive+technology&rft.au=Shou-Tao+Li&rft.au=Hui+Liu&rft.au=Di+Zhao&rft.au=Qiu-Yuan+Li&rft.date=2020-06-01&rft.pub=%ED%95%9C%EA%B5%AD%EC%9E%90%EB%8F%99%EC%B0%A8%EA%B3%B5%ED%95%99%ED%9A%8C&rft.issn=1229-9138&rft.eissn=1976-3832&rft.spage=739&rft.epage=747&rft_id=info:doi/10.1007%2Fs12239-020-0072-1&rft.externalDBID=n%2Fa&rft.externalDocID=oai_kci_go_kr_ARTI_9335981
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1229-9138&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1229-9138&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1229-9138&client=summon