A deep learning model for generating [18F]FDG PET Images from early-phase [18F]Florbetapir and [18F]Flutemetamol PET images
Introduction Amyloid-β (Aβ) plaques is a significant hallmark of Alzheimer's disease (AD), detectable via amyloid-PET imaging. The Fluorine-18-Fluorodeoxyglucose ([ 18 F]FDG) PET scan tracks cerebral glucose metabolism, correlated with synaptic dysfunction and disease progression and is complem...
Saved in:
Published in | European journal of nuclear medicine and molecular imaging Vol. 51; no. 12; pp. 3518 - 3531 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.10.2024
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1619-7070 1619-7089 |
DOI | 10.1007/s00259-024-06755-1 |
Cover
Loading…
Abstract | Introduction
Amyloid-β (Aβ) plaques is a significant hallmark of Alzheimer's disease (AD), detectable via amyloid-PET imaging. The Fluorine-18-Fluorodeoxyglucose ([
18
F]FDG) PET scan tracks cerebral glucose metabolism, correlated with synaptic dysfunction and disease progression and is complementary for AD diagnosis. Dual-scan acquisitions of amyloid PET allows the possibility to use early-phase amyloid-PET as a biomarker for neurodegeneration, proven to have a good correlation to [
18
F]FDG PET. The aim of this study was to evaluate the added value of synthesizing the later from the former through deep learning (DL), aiming at reducing the number of PET scans, radiation dose, and discomfort to patients.
Methods
A total of 166 subjects including cognitively unimpaired individuals (N = 72), subjects with mild cognitive impairment (N = 73) and dementia (N = 21) were included in this study. All underwent T1-weighted MRI, dual-phase amyloid PET scans using either Fluorine-18 Florbetapir ([
18
F]FBP) or Fluorine-18 Flutemetamol ([
18
F]FMM), and an [
18
F]FDG PET scan. Two transformer-based DL models called SwinUNETR were trained separately to synthesize the [
18
F]FDG from early phase [
18
F]FBP and [
18
F]FMM (eFBP/eFMM). A clinical similarity score (1: no similarity to 3: similar) was assessed to compare the imaging information obtained by synthesized [
18
F]FDG as well as eFBP/eFMM to actual [
18
F]FDG. Quantitative evaluations include region wise correlation and single-subject voxel-wise analyses in comparison with a reference [
18
F]FDG PET healthy control database. Dice coefficients were calculated to quantify the whole-brain spatial overlap between hypometabolic ([
18
F]FDG PET) and hypoperfused (eFBP/eFMM) binary maps at the single-subject level as well as between [
18
F]FDG PET and synthetic [
18
F]FDG PET hypometabolic binary maps.
Results
The clinical evaluation showed that, in comparison to eFBP/eFMM (average of clinical similarity score (CSS) = 1.53), the synthetic [
18
F]FDG images are quite similar to the actual [
18
F]FDG images (average of CSS = 2.7) in terms of preserving clinically relevant uptake patterns. The single-subject voxel-wise analyses showed that at the group level, the Dice scores improved by around 13% and 5% when using the DL approach for eFBP and eFMM, respectively. The correlation analysis results indicated a relatively strong correlation between eFBP/eFMM and [
18
F]FDG (eFBP: slope = 0.77, R
2
= 0.61, P-value < 0.0001); eFMM: slope = 0.77, R
2
= 0.61, P-value < 0.0001). This correlation improved for synthetic [
18
F]FDG (synthetic [
18
F]FDG generated from eFBP (slope = 1.00, R
2
= 0.68, P-value < 0.0001), eFMM (slope = 0.93, R
2
= 0.72, P-value < 0.0001)).
Conclusion
We proposed a DL model for generating the [
18
F]FDG from eFBP/eFMM PET images. This method may be used as an alternative for multiple radiotracer scanning in research and clinical settings allowing to adopt the currently validated [
18
F]FDG PET normal reference databases for data analysis. |
---|---|
AbstractList | Amyloid-β (Aβ) plaques is a significant hallmark of Alzheimer's disease (AD), detectable via amyloid-PET imaging. The Fluorine-18-Fluorodeoxyglucose ([
F]FDG) PET scan tracks cerebral glucose metabolism, correlated with synaptic dysfunction and disease progression and is complementary for AD diagnosis. Dual-scan acquisitions of amyloid PET allows the possibility to use early-phase amyloid-PET as a biomarker for neurodegeneration, proven to have a good correlation to [
F]FDG PET. The aim of this study was to evaluate the added value of synthesizing the later from the former through deep learning (DL), aiming at reducing the number of PET scans, radiation dose, and discomfort to patients.
A total of 166 subjects including cognitively unimpaired individuals (N = 72), subjects with mild cognitive impairment (N = 73) and dementia (N = 21) were included in this study. All underwent T1-weighted MRI, dual-phase amyloid PET scans using either Fluorine-18 Florbetapir ([
F]FBP) or Fluorine-18 Flutemetamol ([
F]FMM), and an [
F]FDG PET scan. Two transformer-based DL models called SwinUNETR were trained separately to synthesize the [
F]FDG from early phase [
F]FBP and [
F]FMM (eFBP/eFMM). A clinical similarity score (1: no similarity to 3: similar) was assessed to compare the imaging information obtained by synthesized [
F]FDG as well as eFBP/eFMM to actual [
F]FDG. Quantitative evaluations include region wise correlation and single-subject voxel-wise analyses in comparison with a reference [
F]FDG PET healthy control database. Dice coefficients were calculated to quantify the whole-brain spatial overlap between hypometabolic ([
F]FDG PET) and hypoperfused (eFBP/eFMM) binary maps at the single-subject level as well as between [
F]FDG PET and synthetic [
F]FDG PET hypometabolic binary maps.
The clinical evaluation showed that, in comparison to eFBP/eFMM (average of clinical similarity score (CSS) = 1.53), the synthetic [
F]FDG images are quite similar to the actual [
F]FDG images (average of CSS = 2.7) in terms of preserving clinically relevant uptake patterns. The single-subject voxel-wise analyses showed that at the group level, the Dice scores improved by around 13% and 5% when using the DL approach for eFBP and eFMM, respectively. The correlation analysis results indicated a relatively strong correlation between eFBP/eFMM and [
F]FDG (eFBP: slope = 0.77, R
= 0.61, P-value < 0.0001); eFMM: slope = 0.77, R
= 0.61, P-value < 0.0001). This correlation improved for synthetic [
F]FDG (synthetic [
F]FDG generated from eFBP (slope = 1.00, R
= 0.68, P-value < 0.0001), eFMM (slope = 0.93, R
= 0.72, P-value < 0.0001)).
We proposed a DL model for generating the [
F]FDG from eFBP/eFMM PET images. This method may be used as an alternative for multiple radiotracer scanning in research and clinical settings allowing to adopt the currently validated [
F]FDG PET normal reference databases for data analysis. Introduction Amyloid-β (Aβ) plaques is a significant hallmark of Alzheimer's disease (AD), detectable via amyloid-PET imaging. The Fluorine-18-Fluorodeoxyglucose ([ 18 F]FDG) PET scan tracks cerebral glucose metabolism, correlated with synaptic dysfunction and disease progression and is complementary for AD diagnosis. Dual-scan acquisitions of amyloid PET allows the possibility to use early-phase amyloid-PET as a biomarker for neurodegeneration, proven to have a good correlation to [ 18 F]FDG PET. The aim of this study was to evaluate the added value of synthesizing the later from the former through deep learning (DL), aiming at reducing the number of PET scans, radiation dose, and discomfort to patients. Methods A total of 166 subjects including cognitively unimpaired individuals (N = 72), subjects with mild cognitive impairment (N = 73) and dementia (N = 21) were included in this study. All underwent T1-weighted MRI, dual-phase amyloid PET scans using either Fluorine-18 Florbetapir ([ 18 F]FBP) or Fluorine-18 Flutemetamol ([ 18 F]FMM), and an [ 18 F]FDG PET scan. Two transformer-based DL models called SwinUNETR were trained separately to synthesize the [ 18 F]FDG from early phase [ 18 F]FBP and [ 18 F]FMM (eFBP/eFMM). A clinical similarity score (1: no similarity to 3: similar) was assessed to compare the imaging information obtained by synthesized [ 18 F]FDG as well as eFBP/eFMM to actual [ 18 F]FDG. Quantitative evaluations include region wise correlation and single-subject voxel-wise analyses in comparison with a reference [ 18 F]FDG PET healthy control database. Dice coefficients were calculated to quantify the whole-brain spatial overlap between hypometabolic ([ 18 F]FDG PET) and hypoperfused (eFBP/eFMM) binary maps at the single-subject level as well as between [ 18 F]FDG PET and synthetic [ 18 F]FDG PET hypometabolic binary maps. Results The clinical evaluation showed that, in comparison to eFBP/eFMM (average of clinical similarity score (CSS) = 1.53), the synthetic [ 18 F]FDG images are quite similar to the actual [ 18 F]FDG images (average of CSS = 2.7) in terms of preserving clinically relevant uptake patterns. The single-subject voxel-wise analyses showed that at the group level, the Dice scores improved by around 13% and 5% when using the DL approach for eFBP and eFMM, respectively. The correlation analysis results indicated a relatively strong correlation between eFBP/eFMM and [ 18 F]FDG (eFBP: slope = 0.77, R 2 = 0.61, P-value < 0.0001); eFMM: slope = 0.77, R 2 = 0.61, P-value < 0.0001). This correlation improved for synthetic [ 18 F]FDG (synthetic [ 18 F]FDG generated from eFBP (slope = 1.00, R 2 = 0.68, P-value < 0.0001), eFMM (slope = 0.93, R 2 = 0.72, P-value < 0.0001)). Conclusion We proposed a DL model for generating the [ 18 F]FDG from eFBP/eFMM PET images. This method may be used as an alternative for multiple radiotracer scanning in research and clinical settings allowing to adopt the currently validated [ 18 F]FDG PET normal reference databases for data analysis. IntroductionAmyloid-β (Aβ) plaques is a significant hallmark of Alzheimer's disease (AD), detectable via amyloid-PET imaging. The Fluorine-18-Fluorodeoxyglucose ([18F]FDG) PET scan tracks cerebral glucose metabolism, correlated with synaptic dysfunction and disease progression and is complementary for AD diagnosis. Dual-scan acquisitions of amyloid PET allows the possibility to use early-phase amyloid-PET as a biomarker for neurodegeneration, proven to have a good correlation to [18F]FDG PET. The aim of this study was to evaluate the added value of synthesizing the later from the former through deep learning (DL), aiming at reducing the number of PET scans, radiation dose, and discomfort to patients.MethodsA total of 166 subjects including cognitively unimpaired individuals (N = 72), subjects with mild cognitive impairment (N = 73) and dementia (N = 21) were included in this study. All underwent T1-weighted MRI, dual-phase amyloid PET scans using either Fluorine-18 Florbetapir ([18F]FBP) or Fluorine-18 Flutemetamol ([18F]FMM), and an [18F]FDG PET scan. Two transformer-based DL models called SwinUNETR were trained separately to synthesize the [18F]FDG from early phase [18F]FBP and [18F]FMM (eFBP/eFMM). A clinical similarity score (1: no similarity to 3: similar) was assessed to compare the imaging information obtained by synthesized [18F]FDG as well as eFBP/eFMM to actual [18F]FDG. Quantitative evaluations include region wise correlation and single-subject voxel-wise analyses in comparison with a reference [18F]FDG PET healthy control database. Dice coefficients were calculated to quantify the whole-brain spatial overlap between hypometabolic ([18F]FDG PET) and hypoperfused (eFBP/eFMM) binary maps at the single-subject level as well as between [18F]FDG PET and synthetic [18F]FDG PET hypometabolic binary maps.ResultsThe clinical evaluation showed that, in comparison to eFBP/eFMM (average of clinical similarity score (CSS) = 1.53), the synthetic [18F]FDG images are quite similar to the actual [18F]FDG images (average of CSS = 2.7) in terms of preserving clinically relevant uptake patterns. The single-subject voxel-wise analyses showed that at the group level, the Dice scores improved by around 13% and 5% when using the DL approach for eFBP and eFMM, respectively. The correlation analysis results indicated a relatively strong correlation between eFBP/eFMM and [18F]FDG (eFBP: slope = 0.77, R2 = 0.61, P-value < 0.0001); eFMM: slope = 0.77, R2 = 0.61, P-value < 0.0001). This correlation improved for synthetic [18F]FDG (synthetic [18F]FDG generated from eFBP (slope = 1.00, R2 = 0.68, P-value < 0.0001), eFMM (slope = 0.93, R2 = 0.72, P-value < 0.0001)).ConclusionWe proposed a DL model for generating the [18F]FDG from eFBP/eFMM PET images. This method may be used as an alternative for multiple radiotracer scanning in research and clinical settings allowing to adopt the currently validated [18F]FDG PET normal reference databases for data analysis. |
Author | Boccalini, Cecilia Frisoni, Giovanni B. Haller, Sven Rodriguez, Cristelle Garibotto, Valentina Zaidi, Habib Giannakopoulos, Panteleimon Mathoux, Gregory Sanaat, Amirhossein Perani, Daniela Montandon, Marie-Louise |
Author_xml | – sequence: 1 givenname: Amirhossein surname: Sanaat fullname: Sanaat, Amirhossein email: Amirhossein.sanaat@unige.ch organization: Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital – sequence: 2 givenname: Cecilia surname: Boccalini fullname: Boccalini, Cecilia email: cecilia.boccalini@unige.ch organization: Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Laboratory of Neuroimaging and Innovative Molecular Tracers (NIMTlab), Geneva University Neurocenter and Faculty of Medicine, University of Geneva – sequence: 3 givenname: Gregory surname: Mathoux fullname: Mathoux, Gregory organization: Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital – sequence: 4 givenname: Daniela surname: Perani fullname: Perani, Daniela organization: Vita-Salute San Raffaele University, Nuclear Medicine Unit San Raffaele Hospital – sequence: 5 givenname: Giovanni B. surname: Frisoni fullname: Frisoni, Giovanni B. organization: Memory Clinic, Geneva University Hospitals – sequence: 6 givenname: Sven surname: Haller fullname: Haller, Sven organization: CIMC - Centre d’Imagerie Médicale de Cornavin, Faculty of Medicine, University of Geneva – sequence: 7 givenname: Marie-Louise surname: Montandon fullname: Montandon, Marie-Louise organization: Department of Rehabilitation and Geriatrics, Geneva University Hospitals and University of Geneva – sequence: 8 givenname: Cristelle surname: Rodriguez fullname: Rodriguez, Cristelle organization: Division of Institutional Measures, Medical Direction, Geneva University Hospitals – sequence: 9 givenname: Panteleimon surname: Giannakopoulos fullname: Giannakopoulos, Panteleimon organization: Division of Institutional Measures, Medical Direction, Geneva University Hospitals, Department of Psychiatry, Faculty of Medicine, University of Geneva – sequence: 10 givenname: Valentina surname: Garibotto fullname: Garibotto, Valentina organization: Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Laboratory of Neuroimaging and Innovative Molecular Tracers (NIMTlab), Geneva University Neurocenter and Faculty of Medicine, University of Geneva, CIBM Center for Biomedical Imaging – sequence: 11 givenname: Habib orcidid: 0000-0001-7559-5297 surname: Zaidi fullname: Zaidi, Habib email: habib.zaidi@hcuge.ch organization: Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Department of Nuclear Medicine and Molecular Imaging, University of Groningen, Department of Nuclear Medicine, University of Southern Denmark, University Research and Innovation Center, Óbudabuda University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38861183$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc1q3DAUhUVIyV_7AlkEQddudS3LklYlpJk0EGih2ZUiZOvacbAlV_IUQl--ysxk2m66krj6zjkXnVNy6INHQs6BvQPG5PvEWCl0wcqqYLUUooADcgI16EIypQ_3d8mOyWlKj4yBKpU-IsdcqRpA8RPy65I6xJmOaKMffE-n4HCkXYi0R4_RLs_Db6BW31cfb-iX63t6O9keE-1imGhWjU_F_GAT7qAxxAYXOw-RWu9ehusFpzydwrixGDYWr8mrzo4J3-zOM_J1dX1_9am4-3xze3V5V7Rc86XgTrdSc2jaSpfScQWl5EpYbDVzoDlrUWDpdNcyELVE4Vhd87ZpZCdFzc_Ih63rvG4mdC36JdrRzDEvEZ9MsIP598UPD6YPPw1AVQnOq-zwducQw481psU8hnX0eWXDAUCWrFQyUxd_5-wDXv46A-UWaGNIKWK3R4CZ50LNtlCTCzWbQg1kEd-KUoZ9j_FP9n9UvwEy5qHe |
Cites_doi | 10.2967/jnumed.110.082057 10.2967/jnumed.119.239327 10.2967/jnumed.117.199414 10.1007/s00259-019-04536-9 10.1001/jama.2010.2008 10.1186/s13244-023-01487-6 10.1006/nimg.1995.1017 10.1007/s00259-011-2051-2 10.1146/annurev-bioeng-082420-020343 10.1007/s00259-021-05603-w 10.3389/fnagi.2021.661284 10.1002/hbm.26068 10.1002/mp.15073 10.1097/rlu.0000000000002768 10.1007/s00259-015-3208-1 10.1007/s00259-016-3393-6 10.2967/jnumed.122.264256 10.1186/2191-219x-4-4 10.1002/mp.15063 10.1016/j.neuroimage.2019.116189 10.1016/S1474-4422(20)30314-8 10.1093/brain/awp326 10.1016/j.jalz.2019.05.010 10.3389/fnagi.2013.00070 10.1016/j.neuroimage.2011.09.015 10.1016/j.compmedimag.2023.102315 10.1007/s00259-022-05784-y 10.1016/j.nicl.2014.10.009 10.1007/s00259-020-05167-1 10.1007/s10278-021-00536-0 10.1177/0146645314558019 10.1109/ICCV48922.2021.00986 |
ContentType | Journal Article |
Copyright | The Author(s) 2024 2024. The Author(s). The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2024 2024 |
Copyright_xml | – notice: The Author(s) 2024 – notice: 2024. The Author(s). – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2024 2024 |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 7TK K9. NAPCQ 5PM |
DOI | 10.1007/s00259-024-06755-1 |
DatabaseName | SpringerOpen Free (Free internet resource, activated by CARLI) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Neurosciences Abstracts ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium Neurosciences Abstracts |
DatabaseTitleList | MEDLINE ProQuest Health & Medical Complete (Alumni) |
Database_xml | – sequence: 1 dbid: C6C name: Open Access资源_Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1619-7089 |
EndPage | 3531 |
ExternalDocumentID | PMC11445334 38861183 10_1007_s00259_024_06755_1 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung grantid: SNSF 320030_176052 funderid: http://dx.doi.org/10.13039/501100001711 – fundername: University of Geneva – fundername: Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung grantid: SNSF 320030_176052 |
GroupedDBID | --- -5E -5G -BR -Y2 -~C .86 .GJ .VR 04C 06C 06D 0R~ 0VY 199 1N0 203 29G 29~ 2JN 2JY 2KM 2LR 2P1 2VQ 2~H 30V 36B 3V. 4.4 406 40D 53G 5GY 5QI 5RE 5VS 67Z 6NX 78A 7RV 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ 8UJ 95- 95. 95~ 96X AAAVM AACDK AAHNG AAIAL AAJBT AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABECU ABFTV ABHQN ABIPD ABJNI ABJOX ABKCH ABLJU ABMNI ABMQK ABNWP ABPLI ABQBU ABQSL ABSXP ABTEG ABTKH ABTMW ABULA ABUWG ABUWZ ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHVE ACIWK ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACUDM ACUHS ACZOJ ADBBV ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AEVLU AEXYK AFBBN AFEXP AFFNX AFJLC AFKRA AFLOW AFQWF AFRAH AFWTZ AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGVAE AGWIL AHAVH AHBYD AHIZS AHKAY AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AOCGG ARAPS ARMRJ AXYYD AZFZN B-. B0M BA0 BBNVY BDATZ BENPR BGLVJ BGNMA BHPHI BKEYQ BMSDO BPHCQ BSONS BVXVI C6C CAG CCPQU COF CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EAS EBB EBC EBD EBLON EBO EBS EBX EHN EIHBH EIOEI EJD EMB EMK EMOBN EN4 EPL EPT ESBYG ESX EX3 F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GNWQR GQ6 GQ7 GQ8 GRRUI GXS H13 HCIFZ HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IMOTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KPH LAS LK8 LLZTM M1P M4Y M7P MA- N2Q N9A NAPCQ NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P62 P9S PF0 PQQKQ PROAC PSQYO PT4 PT5 Q2X QOK QOR QOS Q~Q R89 R9I RNI RNS ROL RPX RRX RSV RZK S1Z S26 S27 S28 S37 S3B SAP SCLPG SDH SISQX SJYHP SMD SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZ9 SZN T13 T16 TEORI TH9 TSG TSK TT1 TUS U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 WOW YLTOR Z45 Z7R Z7U Z7W Z7X Z7Y Z7Z Z81 Z82 Z83 Z87 Z88 Z8M Z8O Z8Q Z8R Z8S Z8T Z8U Z8V Z8W Z8Z Z91 ZMTXR ~8M AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT ABRTQ CGR CUY CVF ECM EIF NPM PJZUB PPXIY PQGLB 7TK K9. 5PM |
ID | FETCH-LOGICAL-c393t-3d9c7931bc4927d38127385aec90d1930ce5e2d9fc01567e5d0663cbb7f7563 |
IEDL.DBID | C6C |
ISSN | 1619-7070 |
IngestDate | Thu Aug 21 18:34:59 EDT 2025 Sat Aug 16 21:21:44 EDT 2025 Mon Jul 21 05:59:46 EDT 2025 Tue Jul 01 04:04:45 EDT 2025 Fri Feb 21 02:41:17 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | Neuroimaging Deep learning Amyloid Metabolism PET |
Language | English |
License | 2024. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c393t-3d9c7931bc4927d38127385aec90d1930ce5e2d9fc01567e5d0663cbb7f7563 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-7559-5297 |
OpenAccessLink | https://doi.org/10.1007/s00259-024-06755-1 |
PMID | 38861183 |
PQID | 3111720287 |
PQPubID | 42802 |
PageCount | 14 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_11445334 proquest_journals_3111720287 pubmed_primary_38861183 crossref_primary_10_1007_s00259_024_06755_1 springer_journals_10_1007_s00259_024_06755_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-10-01 |
PublicationDateYYYYMMDD | 2024-10-01 |
PublicationDate_xml | – month: 10 year: 2024 text: 2024-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Germany – name: Heidelberg |
PublicationTitle | European journal of nuclear medicine and molecular imaging |
PublicationTitleAbbrev | Eur J Nucl Med Mol Imaging |
PublicationTitleAlternate | Eur J Nucl Med Mol Imaging |
PublicationYear | 2024 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | Boccalini (CR6) 2022; 64 Sanaat, Shiri, Arabi, Mainta, Nkoulou, Zaidi (CR30) 2021; 48 Rabinovici (CR3) 2010; 133 Clark (CR2) 2011; 305 Sanaat, Akhavanalaf, Shiri, Salimi, Arabi, Zaidi (CR10) 2022; 43 Silverman (CR34) 2004; 45 Sanaat, Shiri, Ferdowsi, Arabi, Zaidi (CR13) 2022; 35 Wang (CR15) 2021; 48 Jueptner, Weiller (CR35) 1995; 2 Schmitt (CR18) 2021; 13 Kaviani, Sanaat, Mokri, Cohalan, Carrier (CR11) 2023; 110 Gjedde, Aanerud, Braendgaard, Rodell (CR33) 2013; 5 Hsiao (CR19) 2012; 39 Jenkinson, Beckmann, Behrens, Woolrich, Smith (CR25) 2012; 62 Joshi (CR28) 2014; 4 Zaidi, El Naqa (CR12) 2021; 23 Dodich (CR20) 2020; 47 Guedj (CR17) 2022; 49 CR26 Sanaat, Arabi, Mainta, Garibotto, Zaidi (CR31) 2020; 61 CR24 CR23 Sanaat, Mirsadeghi, Razeghi, Ginovart, Zaidi (CR29) 2021; 48 Rostomian, Madison, Rabinovici, Jagust (CR8) 2011; 52 CR22 Perani (CR16) 2014; 6 Garibotto, Morbelli, Pagani (CR5) 2016; 43 Chetelat (CR4) 2020; 19 Rolls, Huang, Lin, Feng, Joliot (CR21) 2020; 206 Choi, Lee (CR14) 2018; 59 Ottoy (CR7) 2019; 15 Heurling, Leuzy, Zimmer, Lubberink, Nordberg (CR27) 2016; 43 Pemberton (CR1) 2022; 49 Boehringer, Sanaat, Arabi, Zaidi (CR9) 2023; 14 Son (CR32) 2020; 45 AH Rostomian (6755_CR8) 2011; 52 S Kaviani (6755_CR11) 2023; 110 R Wang (6755_CR15) 2021; 48 ET Rolls (6755_CR21) 2020; 206 A Sanaat (6755_CR10) 2022; 43 A Dodich (6755_CR20) 2020; 47 6755_CR22 A Sanaat (6755_CR13) 2022; 35 6755_CR24 6755_CR23 A Sanaat (6755_CR29) 2021; 48 H Zaidi (6755_CR12) 2021; 23 IT Hsiao (6755_CR19) 2012; 39 HG Pemberton (6755_CR1) 2022; 49 D Perani (6755_CR16) 2014; 6 6755_CR26 A Gjedde (6755_CR33) 2013; 5 V Garibotto (6755_CR5) 2016; 43 M Jenkinson (6755_CR25) 2012; 62 J Schmitt (6755_CR18) 2021; 13 AD Joshi (6755_CR28) 2014; 4 M Jueptner (6755_CR35) 1995; 2 CM Clark (6755_CR2) 2011; 305 H Choi (6755_CR14) 2018; 59 K Heurling (6755_CR27) 2016; 43 AS Boehringer (6755_CR9) 2023; 14 DH Silverman (6755_CR34) 2004; 45 A Sanaat (6755_CR30) 2021; 48 J Ottoy (6755_CR7) 2019; 15 G Chetelat (6755_CR4) 2020; 19 GD Rabinovici (6755_CR3) 2010; 133 SH Son (6755_CR32) 2020; 45 C Boccalini (6755_CR6) 2022; 64 A Sanaat (6755_CR31) 2020; 61 E Guedj (6755_CR17) 2022; 49 |
References_xml | – volume: 52 start-page: 173 issue: 2 year: 2011 end-page: 179 ident: CR8 article-title: Early 11C-PIB frames and 18F-FDG PET measures are comparable: a study validated in a cohort of AD and FTLD patients publication-title: J Nucl Med doi: 10.2967/jnumed.110.082057 – volume: 61 start-page: 1388 issue: 9 year: 2020 end-page: 1396 ident: CR31 article-title: Projection space implementation of deep learning-guided low-dose brain PET imaging improves performance over implementation in image space publication-title: J Nucl Med doi: 10.2967/jnumed.119.239327 – ident: CR22 – volume: 59 start-page: 1111 issue: 7 year: 2018 end-page: 1117 ident: CR14 article-title: Generation of structural MR images from amyloid PET: Application to MR-less quantification publication-title: J Nucl Med doi: 10.2967/jnumed.117.199414 – volume: 47 start-page: 247 issue: 2 year: 2020 end-page: 255 ident: CR20 article-title: The A/T/N model applied through imaging biomarkers in a memory clinic publication-title: Eur J Nucl Med Mol Imaging doi: 10.1007/s00259-019-04536-9 – volume: 305 start-page: 275 issue: 3 year: 2011 end-page: 283 ident: CR2 article-title: Use of florbetapir-PET for imaging beta-amyloid pathology publication-title: JAMA doi: 10.1001/jama.2010.2008 – volume: 14 start-page: 141 issue: 1 year: 2023 ident: CR9 article-title: An active learning approach to train a deep learning algorithm for tumor segmentation from brain MR images publication-title: Insights Into Imaging doi: 10.1186/s13244-023-01487-6 – volume: 2 start-page: 148 issue: 2 year: 1995 end-page: 156 ident: CR35 article-title: Review: does measurement of regional cerebral blood flow reflect synaptic activity? Implications for PET and fMRI publication-title: Neuroimage doi: 10.1006/nimg.1995.1017 – volume: 39 start-page: 613 issue: 4 year: 2012 end-page: 620 ident: CR19 article-title: Correlation of early-phase 18F-florbetapir (AV-45/Amyvid) PET images to FDG images: preliminary studies publication-title: Eur J Nucl Med Mol Imaging doi: 10.1007/s00259-011-2051-2 – volume: 23 start-page: 249 year: 2021 end-page: 276 ident: CR12 article-title: Quantitative molecular positron emission tomography imaging using advanced deep learning techniques publication-title: Annu Rev Biomed Eng doi: 10.1146/annurev-bioeng-082420-020343 – volume: 49 start-page: 632 issue: 2 year: 2022 end-page: 651 ident: CR17 article-title: EANM procedure guidelines for brain PET imaging using [(18)F]FDG, version 3 publication-title: Eur J Nucl Med Mol Imaging doi: 10.1007/s00259-021-05603-w – volume: 13 start-page: 661284 year: 2021 ident: CR18 article-title: Dual-Phase β-Amyloid PET captures neuronal injury and amyloidosis in corticobasal syndrome publication-title: Front Aging Neurosci doi: 10.3389/fnagi.2021.661284 – volume: 43 start-page: 5032 issue: 16 year: 2022 end-page: 5043 ident: CR10 article-title: Deep-TOF-PET: Deep learning-guided generation of time-of-flight from non-TOF brain PET images in the image and projection domains publication-title: Hum Brain Mapp doi: 10.1002/hbm.26068 – volume: 48 start-page: 5115 issue: 9 year: 2021 end-page: 5129 ident: CR15 article-title: Generation of synthetic PET images of synaptic density and amyloid from (18) F-FDG images using deep learning publication-title: Med Phys doi: 10.1002/mp.15073 – volume: 45 start-page: e8 issue: 1 year: 2020 end-page: e14 ident: CR32 article-title: Early-Phase 18F-Florbetaben PET as an alternative modality for 18F-FDG PET publication-title: Clin Nucl Med doi: 10.1097/rlu.0000000000002768 – volume: 43 start-page: 362 issue: 2 year: 2016 end-page: 373 ident: CR27 article-title: Imaging β-amyloid using [18F]flutemetamol positron emission tomography: from dosimetry to clinical diagnosis publication-title: Eur J Nucl Med Mol Imaging doi: 10.1007/s00259-015-3208-1 – ident: CR23 – volume: 43 start-page: 1300 issue: 7 year: 2016 end-page: 3 ident: CR5 article-title: Dual-phase amyloid PET: hitting two birds with one stone publication-title: Eur J Nucl Med Mol Imaging doi: 10.1007/s00259-016-3393-6 – volume: 64 start-page: 266 issue: 2 year: 2022 end-page: 273 ident: CR6 article-title: Early-phase (18)F-Florbetapir and (18)F-Flutemetamol images as proxies of brain metabolism in a memory clinic setting publication-title: J Nucl Med doi: 10.2967/jnumed.122.264256 – volume: 4 start-page: 4 issue: 1 year: 2014 ident: CR28 article-title: Radiation dosimetry of florbetapir F 18 publication-title: EJNMMI Res doi: 10.1186/2191-219x-4-4 – volume: 48 start-page: 5059 issue: 9 year: 2021 end-page: 5071 ident: CR29 article-title: Fast dynamic brain PET imaging using stochastic variational prediction for recurrent frame generation publication-title: Med Phys doi: 10.1002/mp.15063 – volume: 206 start-page: 116189 year: 2020 ident: CR21 article-title: Automated anatomical labelling atlas 3 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2019.116189 – volume: 19 start-page: 951 issue: 11 year: 2020 end-page: 962 ident: CR4 article-title: Amyloid-PET and (18)F-FDG-PET in the diagnostic investigation of Alzheimer's disease and other dementias publication-title: Lancet Neurol doi: 10.1016/S1474-4422(20)30314-8 – volume: 133 start-page: 512 issue: Pt 2 year: 2010 end-page: 528 ident: CR3 article-title: "Increased metabolic vulnerability in early-onset Alzheimer's disease is not related to amyloid burden publication-title: Brain doi: 10.1093/brain/awp326 – volume: 15 start-page: 1172 issue: 9 year: 2019 end-page: 1182 ident: CR7 article-title: (18)F-FDG PET, the early phases and the delivery rate of (18)F-AV45 PET as proxies of cerebral blood flow in Alzheimer's disease: Validation against (15)O-H(2)O PET publication-title: Alzheimers Dement doi: 10.1016/j.jalz.2019.05.010 – volume: 5 start-page: 70 year: 2013 ident: CR33 article-title: Blood-brain transfer of Pittsburgh compound B in humans publication-title: Front Aging Neurosci doi: 10.3389/fnagi.2013.00070 – volume: 62 start-page: 782 issue: 2 year: 2012 end-page: 790 ident: CR25 article-title: FSL publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.09.015 – volume: 110 start-page: 102315 year: 2023 ident: CR11 article-title: Image reconstruction using UNET-transformer network for fast and low-dose PET scans publication-title: Comput Med Imag Graph doi: 10.1016/j.compmedimag.2023.102315 – volume: 49 start-page: 3508 issue: 10 year: 2022 end-page: 3528 ident: CR1 article-title: Quantification of amyloid PET for future clinical use: a state-of-the-art review publication-title: Eur J Nucl Med Mol Imaging doi: 10.1007/s00259-022-05784-y – volume: 6 start-page: 445 year: 2014 end-page: 454 ident: CR16 article-title: Validation of an optimized SPM procedure for FDG-PET in dementia diagnosis in a clinical setting publication-title: Neuroimage Clin doi: 10.1016/j.nicl.2014.10.009 – ident: CR26 – ident: CR24 – volume: 48 start-page: 2405 issue: 8 year: 2021 end-page: 2415 ident: CR30 article-title: Deep learning-assisted ultra-fast/low-dose whole-body PET/CT imaging publication-title: Eur J Nucl Med Mol Imaging doi: 10.1007/s00259-020-05167-1 – volume: 45 start-page: 594 issue: 4 year: 2004 end-page: 607 ident: CR34 article-title: Brain 18F-FDG PET in the diagnosis of neurodegenerative dementias: comparison with perfusion SPECT and with clinical evaluations lacking nuclear imaging publication-title: J Nucl Med – volume: 35 start-page: 469 issue: 3 year: 2022 end-page: 481 ident: CR13 article-title: Robust-deep: A method for increasing brain imaging datasets to improve deep learning models’ performance and robustness publication-title: J Digit Imaging doi: 10.1007/s10278-021-00536-0 – volume: 48 start-page: 5059 issue: 9 year: 2021 ident: 6755_CR29 publication-title: Med Phys doi: 10.1002/mp.15063 – volume: 59 start-page: 1111 issue: 7 year: 2018 ident: 6755_CR14 publication-title: J Nucl Med doi: 10.2967/jnumed.117.199414 – volume: 6 start-page: 445 year: 2014 ident: 6755_CR16 publication-title: Neuroimage Clin doi: 10.1016/j.nicl.2014.10.009 – volume: 305 start-page: 275 issue: 3 year: 2011 ident: 6755_CR2 publication-title: JAMA doi: 10.1001/jama.2010.2008 – volume: 13 start-page: 661284 year: 2021 ident: 6755_CR18 publication-title: Front Aging Neurosci doi: 10.3389/fnagi.2021.661284 – volume: 52 start-page: 173 issue: 2 year: 2011 ident: 6755_CR8 publication-title: J Nucl Med doi: 10.2967/jnumed.110.082057 – ident: 6755_CR26 doi: 10.1177/0146645314558019 – volume: 61 start-page: 1388 issue: 9 year: 2020 ident: 6755_CR31 publication-title: J Nucl Med doi: 10.2967/jnumed.119.239327 – volume: 206 start-page: 116189 year: 2020 ident: 6755_CR21 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2019.116189 – ident: 6755_CR23 doi: 10.1109/ICCV48922.2021.00986 – volume: 48 start-page: 2405 issue: 8 year: 2021 ident: 6755_CR30 publication-title: Eur J Nucl Med Mol Imaging doi: 10.1007/s00259-020-05167-1 – volume: 5 start-page: 70 year: 2013 ident: 6755_CR33 publication-title: Front Aging Neurosci doi: 10.3389/fnagi.2013.00070 – volume: 19 start-page: 951 issue: 11 year: 2020 ident: 6755_CR4 publication-title: Lancet Neurol doi: 10.1016/S1474-4422(20)30314-8 – ident: 6755_CR24 – volume: 2 start-page: 148 issue: 2 year: 1995 ident: 6755_CR35 publication-title: Neuroimage doi: 10.1006/nimg.1995.1017 – volume: 45 start-page: e8 issue: 1 year: 2020 ident: 6755_CR32 publication-title: Clin Nucl Med doi: 10.1097/rlu.0000000000002768 – volume: 133 start-page: 512 issue: Pt 2 year: 2010 ident: 6755_CR3 publication-title: Brain doi: 10.1093/brain/awp326 – volume: 43 start-page: 5032 issue: 16 year: 2022 ident: 6755_CR10 publication-title: Hum Brain Mapp doi: 10.1002/hbm.26068 – volume: 15 start-page: 1172 issue: 9 year: 2019 ident: 6755_CR7 publication-title: Alzheimers Dement doi: 10.1016/j.jalz.2019.05.010 – volume: 48 start-page: 5115 issue: 9 year: 2021 ident: 6755_CR15 publication-title: Med Phys doi: 10.1002/mp.15073 – volume: 35 start-page: 469 issue: 3 year: 2022 ident: 6755_CR13 publication-title: J Digit Imaging doi: 10.1007/s10278-021-00536-0 – volume: 23 start-page: 249 year: 2021 ident: 6755_CR12 publication-title: Annu Rev Biomed Eng doi: 10.1146/annurev-bioeng-082420-020343 – volume: 64 start-page: 266 issue: 2 year: 2022 ident: 6755_CR6 publication-title: J Nucl Med doi: 10.2967/jnumed.122.264256 – ident: 6755_CR22 – volume: 49 start-page: 632 issue: 2 year: 2022 ident: 6755_CR17 publication-title: Eur J Nucl Med Mol Imaging doi: 10.1007/s00259-021-05603-w – volume: 110 start-page: 102315 year: 2023 ident: 6755_CR11 publication-title: Comput Med Imag Graph doi: 10.1016/j.compmedimag.2023.102315 – volume: 47 start-page: 247 issue: 2 year: 2020 ident: 6755_CR20 publication-title: Eur J Nucl Med Mol Imaging doi: 10.1007/s00259-019-04536-9 – volume: 45 start-page: 594 issue: 4 year: 2004 ident: 6755_CR34 publication-title: J Nucl Med – volume: 49 start-page: 3508 issue: 10 year: 2022 ident: 6755_CR1 publication-title: Eur J Nucl Med Mol Imaging doi: 10.1007/s00259-022-05784-y – volume: 62 start-page: 782 issue: 2 year: 2012 ident: 6755_CR25 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.09.015 – volume: 43 start-page: 1300 issue: 7 year: 2016 ident: 6755_CR5 publication-title: Eur J Nucl Med Mol Imaging doi: 10.1007/s00259-016-3393-6 – volume: 4 start-page: 4 issue: 1 year: 2014 ident: 6755_CR28 publication-title: EJNMMI Res doi: 10.1186/2191-219x-4-4 – volume: 39 start-page: 613 issue: 4 year: 2012 ident: 6755_CR19 publication-title: Eur J Nucl Med Mol Imaging doi: 10.1007/s00259-011-2051-2 – volume: 14 start-page: 141 issue: 1 year: 2023 ident: 6755_CR9 publication-title: Insights Into Imaging doi: 10.1186/s13244-023-01487-6 – volume: 43 start-page: 362 issue: 2 year: 2016 ident: 6755_CR27 publication-title: Eur J Nucl Med Mol Imaging doi: 10.1007/s00259-015-3208-1 |
SSID | ssj0018289 |
Score | 2.4532168 |
Snippet | Introduction
Amyloid-β (Aβ) plaques is a significant hallmark of Alzheimer's disease (AD), detectable via amyloid-PET imaging. The... Amyloid-β (Aβ) plaques is a significant hallmark of Alzheimer's disease (AD), detectable via amyloid-PET imaging. The Fluorine-18-Fluorodeoxyglucose ([ F]FDG)... IntroductionAmyloid-β (Aβ) plaques is a significant hallmark of Alzheimer's disease (AD), detectable via amyloid-PET imaging. The... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 3518 |
SubjectTerms | Aged Alzheimer Disease - diagnostic imaging Alzheimer Disease - metabolism Alzheimer's disease Aniline Compounds Benzothiazoles Biomarkers Brain mapping Cardiology Cognitive Dysfunction - diagnostic imaging Cognitive Dysfunction - metabolism Correlation analysis Data analysis Deep Learning Dementia disorders Ethylene Glycols Female Fluorine Fluorine isotopes Fluorodeoxyglucose F18 Glucose metabolism Humans Image Processing, Computer-Assisted Imaging Male Medical imaging Medicine Medicine & Public Health Middle Aged Neurodegenerative diseases Neuroimaging Nuclear Medicine Oncology Original Original Article Orthopedics Positron emission Positron emission tomography Positron-Emission Tomography - methods Radiation dosage Radioactive tracers Radiology Radiopharmaceuticals Similarity Synthesis β-Amyloid |
Title | A deep learning model for generating [18F]FDG PET Images from early-phase [18F]Florbetapir and [18F]Flutemetamol PET images |
URI | https://link.springer.com/article/10.1007/s00259-024-06755-1 https://www.ncbi.nlm.nih.gov/pubmed/38861183 https://www.proquest.com/docview/3111720287 https://pubmed.ncbi.nlm.nih.gov/PMC11445334 |
Volume | 51 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS-QwEB5EQe7l8NS7651KHnzzAtsmaZvHdc_6AxThFASRkh-zunBbF61P_vM3yXZXVs8HX9MwLZ1J5vuYzBeAXSWlN8Y7bvKh4FJbxTVKwzNiQIRfM-9laE4-PcuPLuXJlbrqZHJCL8yr-n0Q-ySAzimT8IBtFSems6JSkYcIHuSDecUgMIdArogQ8ILiuGuQ-b-NxST0Blm-PSD5qkoak0-1Bp871Mj6Uzd_gSVs1mH1tKuLb8Bzn3nECevugLhl8YIbRoCU3UZd6XC4mV2nZXVT_T5k5wcX7HhMO8kjC-0lDIPKMZ_cUUbrJhGLt9iayeiBmcbPBp9aHNPo-P5vNDGKJjbhT3VwMTji3bUK3AktWi68drQqU-ukzgpPKTtK2hh0uucJz_UcKsy8HrrQZl2g8gGWOGuLYaFy8RWWm_sGvwNLrTcoC2VSZ2RPos6stqXBHAmFolIJ7M3-cj2ZamfUc5Xk6JOafFJHn9RpAlszR9TdOnqsBW3FRUYYqEjg29Qnc1OiLHOiRyKBcsFb8wlBOXvxSTO6iwraRAJl6EFO4NfMsS_vfP8Tf3xs-k_4lIWgi0f_tmC5fXjCbYIwrd2BlX61v3-2E2P4H8lQ55Q |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT-MwEB0hkIALApaFAAs-cFssNYmdxEdUKGWhaKUtEtJqFfljCpVoqCCc-POM3bSrAnvYq2NNoozteU8z8wxwJIVwWjvLdTZIuVBGcoVC84QYEOHXxDnhm5N711n3Rvy4lbeNTI7vhXmXv_dinwTQOUUS7rGt5MR0lgQxZV--187as4yBZw6eXBEh4Dmt46ZB5nMb80HoA7L8WCD5Lksagk9nHdYa1MhOJm7egAWsNmG51-TFv8DrCXOIY9bcAXHHwgU3jAApuwu60r64mf2Oi86fzuk5-3nWZxcjOkmemW8vYehVjvn4niJaM4lYvMFaj4dPTFduOvhS44hGR48PwcQwmNiCX52zfrvLm2sVuE1VWvPUKUu7MjZWqCR3FLKDpI1Gq1qO8FzLosTEqYH1bdY5SudhiTUmH-QyS7_CYvVY4Q6w2DiNIpc6tlq0BKrEKFNozJBQKEoZwffpXy7HE-2McqaSHHxSkk_K4JMyjmB_6oiy2UfPZUpHcZ4QBsoj2J74ZGYqLYqM6FEaQTHnrdkEr5w9_6Qa3gcFbSKBwvcgR3A8dezfd_77E3f_b_ohrHT7vavy6uL6cg9WE78AQxngPizWTy_4jeBMbQ7COn4DhfrpBQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB1VICEuVUtLmxaKD70Vi01iJ_ERLQRoC0IqSEhVFfljFlZiQwTh1D_fsTdJu1AOXB1rEuXZnvc0Hwb4LIVwWjvLdTZJuVBGcoVC84QUEPHXxDnhi5OPT7LDc_H1Ql78U8Ufst37kOS8psF3aarbncZNdobCN--qFSf_wj3jlZz0zzIplRCoHWfjIY7g9YSXXCQTeE6ruyub-b-NRdf0iG8-Tpt8EDsNLql8BS87Lsl25-C_hhdYr8HKcRctfwO_d5lDbFh3M8QlC9feMKKp7DJ0m_Ypz-xnXJS_yr0Ddrp_xo5mdL7cMV90wtD3PubNFfm5bhJpe4Otbqa3TNeuH7xvcUajs5vrYGIaTLyFH-X-2fiQd5ctcJuqtOWpU5b2amysUEnuyJGHRjcarRo5YnkjixITpybWF1_nKJ0nK9aYfJLLLF2HpfqmxvfAYuM0ilzq2GoxEqgSo0yhMUPipihlBF_6v1w1844a1dA7OWBSESZVwKSKI9jogai63XVXpXRA5wkxozyCd3NMBlNpUWQkmtIIigW0hgm-n_bik3p6FfpqkzQUvjI5gu0e2L_vfPoTPzxv-hasnO6V1fejk28fYTXx6y_kBm7AUnt7j5vEcVrzKSzjP_NJ8Uw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+deep+learning+model+for+generating+%5B+18+F%5DFDG+PET+Images+from+early-phase+%5B+18+F%5DFlorbetapir+and+%5B+18+F%5DFlutemetamol+PET+images&rft.jtitle=European+journal+of+nuclear+medicine+and+molecular+imaging&rft.au=Sanaat%2C+Amirhossein&rft.au=Boccalini%2C+Cecilia&rft.au=Mathoux%2C+Gregory&rft.au=Perani%2C+Daniela&rft.date=2024-10-01&rft.eissn=1619-7089&rft.volume=51&rft.issue=12&rft.spage=3518&rft_id=info:doi/10.1007%2Fs00259-024-06755-1&rft_id=info%3Apmid%2F38861183&rft.externalDocID=38861183 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1619-7070&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1619-7070&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1619-7070&client=summon |