A deep learning model for generating [18F]FDG PET Images from early-phase [18F]Florbetapir and [18F]Flutemetamol PET images

Introduction Amyloid-β (Aβ) plaques is a significant hallmark of Alzheimer's disease (AD), detectable via amyloid-PET imaging. The Fluorine-18-Fluorodeoxyglucose ([ 18 F]FDG) PET scan tracks cerebral glucose metabolism, correlated with synaptic dysfunction and disease progression and is complem...

Full description

Saved in:
Bibliographic Details
Published inEuropean journal of nuclear medicine and molecular imaging Vol. 51; no. 12; pp. 3518 - 3531
Main Authors Sanaat, Amirhossein, Boccalini, Cecilia, Mathoux, Gregory, Perani, Daniela, Frisoni, Giovanni B., Haller, Sven, Montandon, Marie-Louise, Rodriguez, Cristelle, Giannakopoulos, Panteleimon, Garibotto, Valentina, Zaidi, Habib
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.10.2024
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1619-7070
1619-7089
DOI10.1007/s00259-024-06755-1

Cover

Loading…
Abstract Introduction Amyloid-β (Aβ) plaques is a significant hallmark of Alzheimer's disease (AD), detectable via amyloid-PET imaging. The Fluorine-18-Fluorodeoxyglucose ([ 18 F]FDG) PET scan tracks cerebral glucose metabolism, correlated with synaptic dysfunction and disease progression and is complementary for AD diagnosis. Dual-scan acquisitions of amyloid PET allows the possibility to use early-phase amyloid-PET as a biomarker for neurodegeneration, proven to have a good correlation to [ 18 F]FDG PET. The aim of this study was to evaluate the added value of synthesizing the later from the former through deep learning (DL), aiming at reducing the number of PET scans, radiation dose, and discomfort to patients. Methods A total of 166 subjects including cognitively unimpaired individuals (N = 72), subjects with mild cognitive impairment (N = 73) and dementia (N = 21) were included in this study. All underwent T1-weighted MRI, dual-phase amyloid PET scans using either Fluorine-18 Florbetapir ([ 18 F]FBP) or Fluorine-18 Flutemetamol ([ 18 F]FMM), and an [ 18 F]FDG PET scan. Two transformer-based DL models called SwinUNETR were trained separately to synthesize the [ 18 F]FDG from early phase [ 18 F]FBP and [ 18 F]FMM (eFBP/eFMM). A clinical similarity score (1: no similarity to 3: similar) was assessed to compare the imaging information obtained by synthesized [ 18 F]FDG as well as eFBP/eFMM to actual [ 18 F]FDG. Quantitative evaluations include region wise correlation and single-subject voxel-wise analyses in comparison with a reference [ 18 F]FDG PET healthy control database. Dice coefficients were calculated to quantify the whole-brain spatial overlap between hypometabolic ([ 18 F]FDG PET) and hypoperfused (eFBP/eFMM) binary maps at the single-subject level as well as between [ 18 F]FDG PET and synthetic [ 18 F]FDG PET hypometabolic binary maps. Results The clinical evaluation showed that, in comparison to eFBP/eFMM (average of clinical similarity score (CSS) = 1.53), the synthetic [ 18 F]FDG images are quite similar to the actual [ 18 F]FDG images (average of CSS = 2.7) in terms of preserving clinically relevant uptake patterns. The single-subject voxel-wise analyses showed that at the group level, the Dice scores improved by around 13% and 5% when using the DL approach for eFBP and eFMM, respectively. The correlation analysis results indicated a relatively strong correlation between eFBP/eFMM and [ 18 F]FDG (eFBP: slope = 0.77, R 2  = 0.61, P-value < 0.0001); eFMM: slope = 0.77, R 2  = 0.61, P-value < 0.0001). This correlation improved for synthetic [ 18 F]FDG (synthetic [ 18 F]FDG generated from eFBP (slope = 1.00, R 2  = 0.68, P-value < 0.0001), eFMM (slope = 0.93, R 2  = 0.72, P-value < 0.0001)). Conclusion We proposed a DL model for generating the [ 18 F]FDG from eFBP/eFMM PET images. This method may be used as an alternative for multiple radiotracer scanning in research and clinical settings allowing to adopt the currently validated [ 18 F]FDG PET normal reference databases for data analysis.
AbstractList Amyloid-β (Aβ) plaques is a significant hallmark of Alzheimer's disease (AD), detectable via amyloid-PET imaging. The Fluorine-18-Fluorodeoxyglucose ([ F]FDG) PET scan tracks cerebral glucose metabolism, correlated with synaptic dysfunction and disease progression and is complementary for AD diagnosis. Dual-scan acquisitions of amyloid PET allows the possibility to use early-phase amyloid-PET as a biomarker for neurodegeneration, proven to have a good correlation to [ F]FDG PET. The aim of this study was to evaluate the added value of synthesizing the later from the former through deep learning (DL), aiming at reducing the number of PET scans, radiation dose, and discomfort to patients. A total of 166 subjects including cognitively unimpaired individuals (N = 72), subjects with mild cognitive impairment (N = 73) and dementia (N = 21) were included in this study. All underwent T1-weighted MRI, dual-phase amyloid PET scans using either Fluorine-18 Florbetapir ([ F]FBP) or Fluorine-18 Flutemetamol ([ F]FMM), and an [ F]FDG PET scan. Two transformer-based DL models called SwinUNETR were trained separately to synthesize the [ F]FDG from early phase [ F]FBP and [ F]FMM (eFBP/eFMM). A clinical similarity score (1: no similarity to 3: similar) was assessed to compare the imaging information obtained by synthesized [ F]FDG as well as eFBP/eFMM to actual [ F]FDG. Quantitative evaluations include region wise correlation and single-subject voxel-wise analyses in comparison with a reference [ F]FDG PET healthy control database. Dice coefficients were calculated to quantify the whole-brain spatial overlap between hypometabolic ([ F]FDG PET) and hypoperfused (eFBP/eFMM) binary maps at the single-subject level as well as between [ F]FDG PET and synthetic [ F]FDG PET hypometabolic binary maps. The clinical evaluation showed that, in comparison to eFBP/eFMM (average of clinical similarity score (CSS) = 1.53), the synthetic [ F]FDG images are quite similar to the actual [ F]FDG images (average of CSS = 2.7) in terms of preserving clinically relevant uptake patterns. The single-subject voxel-wise analyses showed that at the group level, the Dice scores improved by around 13% and 5% when using the DL approach for eFBP and eFMM, respectively. The correlation analysis results indicated a relatively strong correlation between eFBP/eFMM and [ F]FDG (eFBP: slope = 0.77, R  = 0.61, P-value < 0.0001); eFMM: slope = 0.77, R  = 0.61, P-value < 0.0001). This correlation improved for synthetic [ F]FDG (synthetic [ F]FDG generated from eFBP (slope = 1.00, R  = 0.68, P-value < 0.0001), eFMM (slope = 0.93, R  = 0.72, P-value < 0.0001)). We proposed a DL model for generating the [ F]FDG from eFBP/eFMM PET images. This method may be used as an alternative for multiple radiotracer scanning in research and clinical settings allowing to adopt the currently validated [ F]FDG PET normal reference databases for data analysis.
Introduction Amyloid-β (Aβ) plaques is a significant hallmark of Alzheimer's disease (AD), detectable via amyloid-PET imaging. The Fluorine-18-Fluorodeoxyglucose ([ 18 F]FDG) PET scan tracks cerebral glucose metabolism, correlated with synaptic dysfunction and disease progression and is complementary for AD diagnosis. Dual-scan acquisitions of amyloid PET allows the possibility to use early-phase amyloid-PET as a biomarker for neurodegeneration, proven to have a good correlation to [ 18 F]FDG PET. The aim of this study was to evaluate the added value of synthesizing the later from the former through deep learning (DL), aiming at reducing the number of PET scans, radiation dose, and discomfort to patients. Methods A total of 166 subjects including cognitively unimpaired individuals (N = 72), subjects with mild cognitive impairment (N = 73) and dementia (N = 21) were included in this study. All underwent T1-weighted MRI, dual-phase amyloid PET scans using either Fluorine-18 Florbetapir ([ 18 F]FBP) or Fluorine-18 Flutemetamol ([ 18 F]FMM), and an [ 18 F]FDG PET scan. Two transformer-based DL models called SwinUNETR were trained separately to synthesize the [ 18 F]FDG from early phase [ 18 F]FBP and [ 18 F]FMM (eFBP/eFMM). A clinical similarity score (1: no similarity to 3: similar) was assessed to compare the imaging information obtained by synthesized [ 18 F]FDG as well as eFBP/eFMM to actual [ 18 F]FDG. Quantitative evaluations include region wise correlation and single-subject voxel-wise analyses in comparison with a reference [ 18 F]FDG PET healthy control database. Dice coefficients were calculated to quantify the whole-brain spatial overlap between hypometabolic ([ 18 F]FDG PET) and hypoperfused (eFBP/eFMM) binary maps at the single-subject level as well as between [ 18 F]FDG PET and synthetic [ 18 F]FDG PET hypometabolic binary maps. Results The clinical evaluation showed that, in comparison to eFBP/eFMM (average of clinical similarity score (CSS) = 1.53), the synthetic [ 18 F]FDG images are quite similar to the actual [ 18 F]FDG images (average of CSS = 2.7) in terms of preserving clinically relevant uptake patterns. The single-subject voxel-wise analyses showed that at the group level, the Dice scores improved by around 13% and 5% when using the DL approach for eFBP and eFMM, respectively. The correlation analysis results indicated a relatively strong correlation between eFBP/eFMM and [ 18 F]FDG (eFBP: slope = 0.77, R 2  = 0.61, P-value < 0.0001); eFMM: slope = 0.77, R 2  = 0.61, P-value < 0.0001). This correlation improved for synthetic [ 18 F]FDG (synthetic [ 18 F]FDG generated from eFBP (slope = 1.00, R 2  = 0.68, P-value < 0.0001), eFMM (slope = 0.93, R 2  = 0.72, P-value < 0.0001)). Conclusion We proposed a DL model for generating the [ 18 F]FDG from eFBP/eFMM PET images. This method may be used as an alternative for multiple radiotracer scanning in research and clinical settings allowing to adopt the currently validated [ 18 F]FDG PET normal reference databases for data analysis.
IntroductionAmyloid-β (Aβ) plaques is a significant hallmark of Alzheimer's disease (AD), detectable via amyloid-PET imaging. The Fluorine-18-Fluorodeoxyglucose ([18F]FDG) PET scan tracks cerebral glucose metabolism, correlated with synaptic dysfunction and disease progression and is complementary for AD diagnosis. Dual-scan acquisitions of amyloid PET allows the possibility to use early-phase amyloid-PET as a biomarker for neurodegeneration, proven to have a good correlation to [18F]FDG PET. The aim of this study was to evaluate the added value of synthesizing the later from the former through deep learning (DL), aiming at reducing the number of PET scans, radiation dose, and discomfort to patients.MethodsA total of 166 subjects including cognitively unimpaired individuals (N = 72), subjects with mild cognitive impairment (N = 73) and dementia (N = 21) were included in this study. All underwent T1-weighted MRI, dual-phase amyloid PET scans using either Fluorine-18 Florbetapir ([18F]FBP) or Fluorine-18 Flutemetamol ([18F]FMM), and an [18F]FDG PET scan. Two transformer-based DL models called SwinUNETR were trained separately to synthesize the [18F]FDG from early phase [18F]FBP and [18F]FMM (eFBP/eFMM). A clinical similarity score (1: no similarity to 3: similar) was assessed to compare the imaging information obtained by synthesized [18F]FDG as well as eFBP/eFMM to actual [18F]FDG. Quantitative evaluations include region wise correlation and single-subject voxel-wise analyses in comparison with a reference [18F]FDG PET healthy control database. Dice coefficients were calculated to quantify the whole-brain spatial overlap between hypometabolic ([18F]FDG PET) and hypoperfused (eFBP/eFMM) binary maps at the single-subject level as well as between [18F]FDG PET and synthetic [18F]FDG PET hypometabolic binary maps.ResultsThe clinical evaluation showed that, in comparison to eFBP/eFMM (average of clinical similarity score (CSS) = 1.53), the synthetic [18F]FDG images are quite similar to the actual [18F]FDG images (average of CSS = 2.7) in terms of preserving clinically relevant uptake patterns. The single-subject voxel-wise analyses showed that at the group level, the Dice scores improved by around 13% and 5% when using the DL approach for eFBP and eFMM, respectively. The correlation analysis results indicated a relatively strong correlation between eFBP/eFMM and [18F]FDG (eFBP: slope = 0.77, R2 = 0.61, P-value < 0.0001); eFMM: slope = 0.77, R2 = 0.61, P-value < 0.0001). This correlation improved for synthetic [18F]FDG (synthetic [18F]FDG generated from eFBP (slope = 1.00, R2 = 0.68, P-value < 0.0001), eFMM (slope = 0.93, R2 = 0.72, P-value < 0.0001)).ConclusionWe proposed a DL model for generating the [18F]FDG from eFBP/eFMM PET images. This method may be used as an alternative for multiple radiotracer scanning in research and clinical settings allowing to adopt the currently validated [18F]FDG PET normal reference databases for data analysis.
Author Boccalini, Cecilia
Frisoni, Giovanni B.
Haller, Sven
Rodriguez, Cristelle
Garibotto, Valentina
Zaidi, Habib
Giannakopoulos, Panteleimon
Mathoux, Gregory
Sanaat, Amirhossein
Perani, Daniela
Montandon, Marie-Louise
Author_xml – sequence: 1
  givenname: Amirhossein
  surname: Sanaat
  fullname: Sanaat, Amirhossein
  email: Amirhossein.sanaat@unige.ch
  organization: Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital
– sequence: 2
  givenname: Cecilia
  surname: Boccalini
  fullname: Boccalini, Cecilia
  email: cecilia.boccalini@unige.ch
  organization: Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Laboratory of Neuroimaging and Innovative Molecular Tracers (NIMTlab), Geneva University Neurocenter and Faculty of Medicine, University of Geneva
– sequence: 3
  givenname: Gregory
  surname: Mathoux
  fullname: Mathoux, Gregory
  organization: Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital
– sequence: 4
  givenname: Daniela
  surname: Perani
  fullname: Perani, Daniela
  organization: Vita-Salute San Raffaele University, Nuclear Medicine Unit San Raffaele Hospital
– sequence: 5
  givenname: Giovanni B.
  surname: Frisoni
  fullname: Frisoni, Giovanni B.
  organization: Memory Clinic, Geneva University Hospitals
– sequence: 6
  givenname: Sven
  surname: Haller
  fullname: Haller, Sven
  organization: CIMC - Centre d’Imagerie Médicale de Cornavin, Faculty of Medicine, University of Geneva
– sequence: 7
  givenname: Marie-Louise
  surname: Montandon
  fullname: Montandon, Marie-Louise
  organization: Department of Rehabilitation and Geriatrics, Geneva University Hospitals and University of Geneva
– sequence: 8
  givenname: Cristelle
  surname: Rodriguez
  fullname: Rodriguez, Cristelle
  organization: Division of Institutional Measures, Medical Direction, Geneva University Hospitals
– sequence: 9
  givenname: Panteleimon
  surname: Giannakopoulos
  fullname: Giannakopoulos, Panteleimon
  organization: Division of Institutional Measures, Medical Direction, Geneva University Hospitals, Department of Psychiatry, Faculty of Medicine, University of Geneva
– sequence: 10
  givenname: Valentina
  surname: Garibotto
  fullname: Garibotto, Valentina
  organization: Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Laboratory of Neuroimaging and Innovative Molecular Tracers (NIMTlab), Geneva University Neurocenter and Faculty of Medicine, University of Geneva, CIBM Center for Biomedical Imaging
– sequence: 11
  givenname: Habib
  orcidid: 0000-0001-7559-5297
  surname: Zaidi
  fullname: Zaidi, Habib
  email: habib.zaidi@hcuge.ch
  organization: Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Department of Nuclear Medicine and Molecular Imaging, University of Groningen, Department of Nuclear Medicine, University of Southern Denmark, University Research and Innovation Center, Óbudabuda University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38861183$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1q3DAUhUVIyV_7AlkEQddudS3LklYlpJk0EGih2ZUiZOvacbAlV_IUQl--ysxk2m66krj6zjkXnVNy6INHQs6BvQPG5PvEWCl0wcqqYLUUooADcgI16EIypQ_3d8mOyWlKj4yBKpU-IsdcqRpA8RPy65I6xJmOaKMffE-n4HCkXYi0R4_RLs_Db6BW31cfb-iX63t6O9keE-1imGhWjU_F_GAT7qAxxAYXOw-RWu9ehusFpzydwrixGDYWr8mrzo4J3-zOM_J1dX1_9am4-3xze3V5V7Rc86XgTrdSc2jaSpfScQWl5EpYbDVzoDlrUWDpdNcyELVE4Vhd87ZpZCdFzc_Ih63rvG4mdC36JdrRzDEvEZ9MsIP598UPD6YPPw1AVQnOq-zwducQw481psU8hnX0eWXDAUCWrFQyUxd_5-wDXv46A-UWaGNIKWK3R4CZ50LNtlCTCzWbQg1kEd-KUoZ9j_FP9n9UvwEy5qHe
Cites_doi 10.2967/jnumed.110.082057
10.2967/jnumed.119.239327
10.2967/jnumed.117.199414
10.1007/s00259-019-04536-9
10.1001/jama.2010.2008
10.1186/s13244-023-01487-6
10.1006/nimg.1995.1017
10.1007/s00259-011-2051-2
10.1146/annurev-bioeng-082420-020343
10.1007/s00259-021-05603-w
10.3389/fnagi.2021.661284
10.1002/hbm.26068
10.1002/mp.15073
10.1097/rlu.0000000000002768
10.1007/s00259-015-3208-1
10.1007/s00259-016-3393-6
10.2967/jnumed.122.264256
10.1186/2191-219x-4-4
10.1002/mp.15063
10.1016/j.neuroimage.2019.116189
10.1016/S1474-4422(20)30314-8
10.1093/brain/awp326
10.1016/j.jalz.2019.05.010
10.3389/fnagi.2013.00070
10.1016/j.neuroimage.2011.09.015
10.1016/j.compmedimag.2023.102315
10.1007/s00259-022-05784-y
10.1016/j.nicl.2014.10.009
10.1007/s00259-020-05167-1
10.1007/s10278-021-00536-0
10.1177/0146645314558019
10.1109/ICCV48922.2021.00986
ContentType Journal Article
Copyright The Author(s) 2024
2024. The Author(s).
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2024 2024
Copyright_xml – notice: The Author(s) 2024
– notice: 2024. The Author(s).
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2024 2024
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TK
K9.
NAPCQ
5PM
DOI 10.1007/s00259-024-06755-1
DatabaseName SpringerOpen Free (Free internet resource, activated by CARLI)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Neurosciences Abstracts
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
Neurosciences Abstracts
DatabaseTitleList MEDLINE

ProQuest Health & Medical Complete (Alumni)
Database_xml – sequence: 1
  dbid: C6C
  name: Open Access资源_Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1619-7089
EndPage 3531
ExternalDocumentID PMC11445334
38861183
10_1007_s00259_024_06755_1
Genre Journal Article
GrantInformation_xml – fundername: Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung
  grantid: SNSF 320030_176052
  funderid: http://dx.doi.org/10.13039/501100001711
– fundername: University of Geneva
– fundername: Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung
  grantid: SNSF 320030_176052
GroupedDBID ---
-5E
-5G
-BR
-Y2
-~C
.86
.GJ
.VR
04C
06C
06D
0R~
0VY
199
1N0
203
29G
29~
2JN
2JY
2KM
2LR
2P1
2VQ
2~H
30V
36B
3V.
4.4
406
40D
53G
5GY
5QI
5RE
5VS
67Z
6NX
78A
7RV
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8UJ
95-
95.
95~
96X
AAAVM
AACDK
AAHNG
AAIAL
AAJBT
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABECU
ABFTV
ABHQN
ABIPD
ABJNI
ABJOX
ABKCH
ABLJU
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTKH
ABTMW
ABULA
ABUWG
ABUWZ
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHVE
ACIWK
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACUDM
ACUHS
ACZOJ
ADBBV
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFJLC
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGVAE
AGWIL
AHAVH
AHBYD
AHIZS
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AOCGG
ARAPS
ARMRJ
AXYYD
AZFZN
B-.
B0M
BA0
BBNVY
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BKEYQ
BMSDO
BPHCQ
BSONS
BVXVI
C6C
CAG
CCPQU
COF
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EAS
EBB
EBC
EBD
EBLON
EBO
EBS
EBX
EHN
EIHBH
EIOEI
EJD
EMB
EMK
EMOBN
EN4
EPL
EPT
ESBYG
ESX
EX3
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GNWQR
GQ6
GQ7
GQ8
GRRUI
GXS
H13
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IMOTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KPH
LAS
LK8
LLZTM
M1P
M4Y
M7P
MA-
N2Q
N9A
NAPCQ
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P62
P9S
PF0
PQQKQ
PROAC
PSQYO
PT4
PT5
Q2X
QOK
QOR
QOS
Q~Q
R89
R9I
RNI
RNS
ROL
RPX
RRX
RSV
RZK
S1Z
S26
S27
S28
S37
S3B
SAP
SCLPG
SDH
SISQX
SJYHP
SMD
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZ9
SZN
T13
T16
TEORI
TH9
TSG
TSK
TT1
TUS
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
WOW
YLTOR
Z45
Z7R
Z7U
Z7W
Z7X
Z7Y
Z7Z
Z81
Z82
Z83
Z87
Z88
Z8M
Z8O
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8V
Z8W
Z8Z
Z91
ZMTXR
~8M
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
ABRTQ
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PQGLB
7TK
K9.
5PM
ID FETCH-LOGICAL-c393t-3d9c7931bc4927d38127385aec90d1930ce5e2d9fc01567e5d0663cbb7f7563
IEDL.DBID C6C
ISSN 1619-7070
IngestDate Thu Aug 21 18:34:59 EDT 2025
Sat Aug 16 21:21:44 EDT 2025
Mon Jul 21 05:59:46 EDT 2025
Tue Jul 01 04:04:45 EDT 2025
Fri Feb 21 02:41:17 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords Neuroimaging
Deep learning
Amyloid
Metabolism
PET
Language English
License 2024. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c393t-3d9c7931bc4927d38127385aec90d1930ce5e2d9fc01567e5d0663cbb7f7563
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7559-5297
OpenAccessLink https://doi.org/10.1007/s00259-024-06755-1
PMID 38861183
PQID 3111720287
PQPubID 42802
PageCount 14
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_11445334
proquest_journals_3111720287
pubmed_primary_38861183
crossref_primary_10_1007_s00259_024_06755_1
springer_journals_10_1007_s00259_024_06755_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-10-01
PublicationDateYYYYMMDD 2024-10-01
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Germany
– name: Heidelberg
PublicationTitle European journal of nuclear medicine and molecular imaging
PublicationTitleAbbrev Eur J Nucl Med Mol Imaging
PublicationTitleAlternate Eur J Nucl Med Mol Imaging
PublicationYear 2024
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Boccalini (CR6) 2022; 64
Sanaat, Shiri, Arabi, Mainta, Nkoulou, Zaidi (CR30) 2021; 48
Rabinovici (CR3) 2010; 133
Clark (CR2) 2011; 305
Sanaat, Akhavanalaf, Shiri, Salimi, Arabi, Zaidi (CR10) 2022; 43
Silverman (CR34) 2004; 45
Sanaat, Shiri, Ferdowsi, Arabi, Zaidi (CR13) 2022; 35
Wang (CR15) 2021; 48
Jueptner, Weiller (CR35) 1995; 2
Schmitt (CR18) 2021; 13
Kaviani, Sanaat, Mokri, Cohalan, Carrier (CR11) 2023; 110
Gjedde, Aanerud, Braendgaard, Rodell (CR33) 2013; 5
Hsiao (CR19) 2012; 39
Jenkinson, Beckmann, Behrens, Woolrich, Smith (CR25) 2012; 62
Joshi (CR28) 2014; 4
Zaidi, El Naqa (CR12) 2021; 23
Dodich (CR20) 2020; 47
Guedj (CR17) 2022; 49
CR26
Sanaat, Arabi, Mainta, Garibotto, Zaidi (CR31) 2020; 61
CR24
CR23
Sanaat, Mirsadeghi, Razeghi, Ginovart, Zaidi (CR29) 2021; 48
Rostomian, Madison, Rabinovici, Jagust (CR8) 2011; 52
CR22
Perani (CR16) 2014; 6
Garibotto, Morbelli, Pagani (CR5) 2016; 43
Chetelat (CR4) 2020; 19
Rolls, Huang, Lin, Feng, Joliot (CR21) 2020; 206
Choi, Lee (CR14) 2018; 59
Ottoy (CR7) 2019; 15
Heurling, Leuzy, Zimmer, Lubberink, Nordberg (CR27) 2016; 43
Pemberton (CR1) 2022; 49
Boehringer, Sanaat, Arabi, Zaidi (CR9) 2023; 14
Son (CR32) 2020; 45
AH Rostomian (6755_CR8) 2011; 52
S Kaviani (6755_CR11) 2023; 110
R Wang (6755_CR15) 2021; 48
ET Rolls (6755_CR21) 2020; 206
A Sanaat (6755_CR10) 2022; 43
A Dodich (6755_CR20) 2020; 47
6755_CR22
A Sanaat (6755_CR13) 2022; 35
6755_CR24
6755_CR23
A Sanaat (6755_CR29) 2021; 48
H Zaidi (6755_CR12) 2021; 23
IT Hsiao (6755_CR19) 2012; 39
HG Pemberton (6755_CR1) 2022; 49
D Perani (6755_CR16) 2014; 6
6755_CR26
A Gjedde (6755_CR33) 2013; 5
V Garibotto (6755_CR5) 2016; 43
M Jenkinson (6755_CR25) 2012; 62
J Schmitt (6755_CR18) 2021; 13
AD Joshi (6755_CR28) 2014; 4
M Jueptner (6755_CR35) 1995; 2
CM Clark (6755_CR2) 2011; 305
H Choi (6755_CR14) 2018; 59
K Heurling (6755_CR27) 2016; 43
AS Boehringer (6755_CR9) 2023; 14
DH Silverman (6755_CR34) 2004; 45
A Sanaat (6755_CR30) 2021; 48
J Ottoy (6755_CR7) 2019; 15
G Chetelat (6755_CR4) 2020; 19
GD Rabinovici (6755_CR3) 2010; 133
SH Son (6755_CR32) 2020; 45
C Boccalini (6755_CR6) 2022; 64
A Sanaat (6755_CR31) 2020; 61
E Guedj (6755_CR17) 2022; 49
References_xml – volume: 52
  start-page: 173
  issue: 2
  year: 2011
  end-page: 179
  ident: CR8
  article-title: Early 11C-PIB frames and 18F-FDG PET measures are comparable: a study validated in a cohort of AD and FTLD patients
  publication-title: J Nucl Med
  doi: 10.2967/jnumed.110.082057
– volume: 61
  start-page: 1388
  issue: 9
  year: 2020
  end-page: 1396
  ident: CR31
  article-title: Projection space implementation of deep learning-guided low-dose brain PET imaging improves performance over implementation in image space
  publication-title: J Nucl Med
  doi: 10.2967/jnumed.119.239327
– ident: CR22
– volume: 59
  start-page: 1111
  issue: 7
  year: 2018
  end-page: 1117
  ident: CR14
  article-title: Generation of structural MR images from amyloid PET: Application to MR-less quantification
  publication-title: J Nucl Med
  doi: 10.2967/jnumed.117.199414
– volume: 47
  start-page: 247
  issue: 2
  year: 2020
  end-page: 255
  ident: CR20
  article-title: The A/T/N model applied through imaging biomarkers in a memory clinic
  publication-title: Eur J Nucl Med Mol Imaging
  doi: 10.1007/s00259-019-04536-9
– volume: 305
  start-page: 275
  issue: 3
  year: 2011
  end-page: 283
  ident: CR2
  article-title: Use of florbetapir-PET for imaging beta-amyloid pathology
  publication-title: JAMA
  doi: 10.1001/jama.2010.2008
– volume: 14
  start-page: 141
  issue: 1
  year: 2023
  ident: CR9
  article-title: An active learning approach to train a deep learning algorithm for tumor segmentation from brain MR images
  publication-title: Insights Into Imaging
  doi: 10.1186/s13244-023-01487-6
– volume: 2
  start-page: 148
  issue: 2
  year: 1995
  end-page: 156
  ident: CR35
  article-title: Review: does measurement of regional cerebral blood flow reflect synaptic activity? Implications for PET and fMRI
  publication-title: Neuroimage
  doi: 10.1006/nimg.1995.1017
– volume: 39
  start-page: 613
  issue: 4
  year: 2012
  end-page: 620
  ident: CR19
  article-title: Correlation of early-phase 18F-florbetapir (AV-45/Amyvid) PET images to FDG images: preliminary studies
  publication-title: Eur J Nucl Med Mol Imaging
  doi: 10.1007/s00259-011-2051-2
– volume: 23
  start-page: 249
  year: 2021
  end-page: 276
  ident: CR12
  article-title: Quantitative molecular positron emission tomography imaging using advanced deep learning techniques
  publication-title: Annu Rev Biomed Eng
  doi: 10.1146/annurev-bioeng-082420-020343
– volume: 49
  start-page: 632
  issue: 2
  year: 2022
  end-page: 651
  ident: CR17
  article-title: EANM procedure guidelines for brain PET imaging using [(18)F]FDG, version 3
  publication-title: Eur J Nucl Med Mol Imaging
  doi: 10.1007/s00259-021-05603-w
– volume: 13
  start-page: 661284
  year: 2021
  ident: CR18
  article-title: Dual-Phase β-Amyloid PET captures neuronal injury and amyloidosis in corticobasal syndrome
  publication-title: Front Aging Neurosci
  doi: 10.3389/fnagi.2021.661284
– volume: 43
  start-page: 5032
  issue: 16
  year: 2022
  end-page: 5043
  ident: CR10
  article-title: Deep-TOF-PET: Deep learning-guided generation of time-of-flight from non-TOF brain PET images in the image and projection domains
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.26068
– volume: 48
  start-page: 5115
  issue: 9
  year: 2021
  end-page: 5129
  ident: CR15
  article-title: Generation of synthetic PET images of synaptic density and amyloid from (18) F-FDG images using deep learning
  publication-title: Med Phys
  doi: 10.1002/mp.15073
– volume: 45
  start-page: e8
  issue: 1
  year: 2020
  end-page: e14
  ident: CR32
  article-title: Early-Phase 18F-Florbetaben PET as an alternative modality for 18F-FDG PET
  publication-title: Clin Nucl Med
  doi: 10.1097/rlu.0000000000002768
– volume: 43
  start-page: 362
  issue: 2
  year: 2016
  end-page: 373
  ident: CR27
  article-title: Imaging β-amyloid using [18F]flutemetamol positron emission tomography: from dosimetry to clinical diagnosis
  publication-title: Eur J Nucl Med Mol Imaging
  doi: 10.1007/s00259-015-3208-1
– ident: CR23
– volume: 43
  start-page: 1300
  issue: 7
  year: 2016
  end-page: 3
  ident: CR5
  article-title: Dual-phase amyloid PET: hitting two birds with one stone
  publication-title: Eur J Nucl Med Mol Imaging
  doi: 10.1007/s00259-016-3393-6
– volume: 64
  start-page: 266
  issue: 2
  year: 2022
  end-page: 273
  ident: CR6
  article-title: Early-phase (18)F-Florbetapir and (18)F-Flutemetamol images as proxies of brain metabolism in a memory clinic setting
  publication-title: J Nucl Med
  doi: 10.2967/jnumed.122.264256
– volume: 4
  start-page: 4
  issue: 1
  year: 2014
  ident: CR28
  article-title: Radiation dosimetry of florbetapir F 18
  publication-title: EJNMMI Res
  doi: 10.1186/2191-219x-4-4
– volume: 48
  start-page: 5059
  issue: 9
  year: 2021
  end-page: 5071
  ident: CR29
  article-title: Fast dynamic brain PET imaging using stochastic variational prediction for recurrent frame generation
  publication-title: Med Phys
  doi: 10.1002/mp.15063
– volume: 206
  start-page: 116189
  year: 2020
  ident: CR21
  article-title: Automated anatomical labelling atlas 3
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2019.116189
– volume: 19
  start-page: 951
  issue: 11
  year: 2020
  end-page: 962
  ident: CR4
  article-title: Amyloid-PET and (18)F-FDG-PET in the diagnostic investigation of Alzheimer's disease and other dementias
  publication-title: Lancet Neurol
  doi: 10.1016/S1474-4422(20)30314-8
– volume: 133
  start-page: 512
  issue: Pt 2
  year: 2010
  end-page: 528
  ident: CR3
  article-title: "Increased metabolic vulnerability in early-onset Alzheimer's disease is not related to amyloid burden
  publication-title: Brain
  doi: 10.1093/brain/awp326
– volume: 15
  start-page: 1172
  issue: 9
  year: 2019
  end-page: 1182
  ident: CR7
  article-title: (18)F-FDG PET, the early phases and the delivery rate of (18)F-AV45 PET as proxies of cerebral blood flow in Alzheimer's disease: Validation against (15)O-H(2)O PET
  publication-title: Alzheimers Dement
  doi: 10.1016/j.jalz.2019.05.010
– volume: 5
  start-page: 70
  year: 2013
  ident: CR33
  article-title: Blood-brain transfer of Pittsburgh compound B in humans
  publication-title: Front Aging Neurosci
  doi: 10.3389/fnagi.2013.00070
– volume: 62
  start-page: 782
  issue: 2
  year: 2012
  end-page: 790
  ident: CR25
  article-title: FSL
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.09.015
– volume: 110
  start-page: 102315
  year: 2023
  ident: CR11
  article-title: Image reconstruction using UNET-transformer network for fast and low-dose PET scans
  publication-title: Comput Med Imag Graph
  doi: 10.1016/j.compmedimag.2023.102315
– volume: 49
  start-page: 3508
  issue: 10
  year: 2022
  end-page: 3528
  ident: CR1
  article-title: Quantification of amyloid PET for future clinical use: a state-of-the-art review
  publication-title: Eur J Nucl Med Mol Imaging
  doi: 10.1007/s00259-022-05784-y
– volume: 6
  start-page: 445
  year: 2014
  end-page: 454
  ident: CR16
  article-title: Validation of an optimized SPM procedure for FDG-PET in dementia diagnosis in a clinical setting
  publication-title: Neuroimage Clin
  doi: 10.1016/j.nicl.2014.10.009
– ident: CR26
– ident: CR24
– volume: 48
  start-page: 2405
  issue: 8
  year: 2021
  end-page: 2415
  ident: CR30
  article-title: Deep learning-assisted ultra-fast/low-dose whole-body PET/CT imaging
  publication-title: Eur J Nucl Med Mol Imaging
  doi: 10.1007/s00259-020-05167-1
– volume: 45
  start-page: 594
  issue: 4
  year: 2004
  end-page: 607
  ident: CR34
  article-title: Brain 18F-FDG PET in the diagnosis of neurodegenerative dementias: comparison with perfusion SPECT and with clinical evaluations lacking nuclear imaging
  publication-title: J Nucl Med
– volume: 35
  start-page: 469
  issue: 3
  year: 2022
  end-page: 481
  ident: CR13
  article-title: Robust-deep: A method for increasing brain imaging datasets to improve deep learning models’ performance and robustness
  publication-title: J Digit Imaging
  doi: 10.1007/s10278-021-00536-0
– volume: 48
  start-page: 5059
  issue: 9
  year: 2021
  ident: 6755_CR29
  publication-title: Med Phys
  doi: 10.1002/mp.15063
– volume: 59
  start-page: 1111
  issue: 7
  year: 2018
  ident: 6755_CR14
  publication-title: J Nucl Med
  doi: 10.2967/jnumed.117.199414
– volume: 6
  start-page: 445
  year: 2014
  ident: 6755_CR16
  publication-title: Neuroimage Clin
  doi: 10.1016/j.nicl.2014.10.009
– volume: 305
  start-page: 275
  issue: 3
  year: 2011
  ident: 6755_CR2
  publication-title: JAMA
  doi: 10.1001/jama.2010.2008
– volume: 13
  start-page: 661284
  year: 2021
  ident: 6755_CR18
  publication-title: Front Aging Neurosci
  doi: 10.3389/fnagi.2021.661284
– volume: 52
  start-page: 173
  issue: 2
  year: 2011
  ident: 6755_CR8
  publication-title: J Nucl Med
  doi: 10.2967/jnumed.110.082057
– ident: 6755_CR26
  doi: 10.1177/0146645314558019
– volume: 61
  start-page: 1388
  issue: 9
  year: 2020
  ident: 6755_CR31
  publication-title: J Nucl Med
  doi: 10.2967/jnumed.119.239327
– volume: 206
  start-page: 116189
  year: 2020
  ident: 6755_CR21
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2019.116189
– ident: 6755_CR23
  doi: 10.1109/ICCV48922.2021.00986
– volume: 48
  start-page: 2405
  issue: 8
  year: 2021
  ident: 6755_CR30
  publication-title: Eur J Nucl Med Mol Imaging
  doi: 10.1007/s00259-020-05167-1
– volume: 5
  start-page: 70
  year: 2013
  ident: 6755_CR33
  publication-title: Front Aging Neurosci
  doi: 10.3389/fnagi.2013.00070
– volume: 19
  start-page: 951
  issue: 11
  year: 2020
  ident: 6755_CR4
  publication-title: Lancet Neurol
  doi: 10.1016/S1474-4422(20)30314-8
– ident: 6755_CR24
– volume: 2
  start-page: 148
  issue: 2
  year: 1995
  ident: 6755_CR35
  publication-title: Neuroimage
  doi: 10.1006/nimg.1995.1017
– volume: 45
  start-page: e8
  issue: 1
  year: 2020
  ident: 6755_CR32
  publication-title: Clin Nucl Med
  doi: 10.1097/rlu.0000000000002768
– volume: 133
  start-page: 512
  issue: Pt 2
  year: 2010
  ident: 6755_CR3
  publication-title: Brain
  doi: 10.1093/brain/awp326
– volume: 43
  start-page: 5032
  issue: 16
  year: 2022
  ident: 6755_CR10
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.26068
– volume: 15
  start-page: 1172
  issue: 9
  year: 2019
  ident: 6755_CR7
  publication-title: Alzheimers Dement
  doi: 10.1016/j.jalz.2019.05.010
– volume: 48
  start-page: 5115
  issue: 9
  year: 2021
  ident: 6755_CR15
  publication-title: Med Phys
  doi: 10.1002/mp.15073
– volume: 35
  start-page: 469
  issue: 3
  year: 2022
  ident: 6755_CR13
  publication-title: J Digit Imaging
  doi: 10.1007/s10278-021-00536-0
– volume: 23
  start-page: 249
  year: 2021
  ident: 6755_CR12
  publication-title: Annu Rev Biomed Eng
  doi: 10.1146/annurev-bioeng-082420-020343
– volume: 64
  start-page: 266
  issue: 2
  year: 2022
  ident: 6755_CR6
  publication-title: J Nucl Med
  doi: 10.2967/jnumed.122.264256
– ident: 6755_CR22
– volume: 49
  start-page: 632
  issue: 2
  year: 2022
  ident: 6755_CR17
  publication-title: Eur J Nucl Med Mol Imaging
  doi: 10.1007/s00259-021-05603-w
– volume: 110
  start-page: 102315
  year: 2023
  ident: 6755_CR11
  publication-title: Comput Med Imag Graph
  doi: 10.1016/j.compmedimag.2023.102315
– volume: 47
  start-page: 247
  issue: 2
  year: 2020
  ident: 6755_CR20
  publication-title: Eur J Nucl Med Mol Imaging
  doi: 10.1007/s00259-019-04536-9
– volume: 45
  start-page: 594
  issue: 4
  year: 2004
  ident: 6755_CR34
  publication-title: J Nucl Med
– volume: 49
  start-page: 3508
  issue: 10
  year: 2022
  ident: 6755_CR1
  publication-title: Eur J Nucl Med Mol Imaging
  doi: 10.1007/s00259-022-05784-y
– volume: 62
  start-page: 782
  issue: 2
  year: 2012
  ident: 6755_CR25
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.09.015
– volume: 43
  start-page: 1300
  issue: 7
  year: 2016
  ident: 6755_CR5
  publication-title: Eur J Nucl Med Mol Imaging
  doi: 10.1007/s00259-016-3393-6
– volume: 4
  start-page: 4
  issue: 1
  year: 2014
  ident: 6755_CR28
  publication-title: EJNMMI Res
  doi: 10.1186/2191-219x-4-4
– volume: 39
  start-page: 613
  issue: 4
  year: 2012
  ident: 6755_CR19
  publication-title: Eur J Nucl Med Mol Imaging
  doi: 10.1007/s00259-011-2051-2
– volume: 14
  start-page: 141
  issue: 1
  year: 2023
  ident: 6755_CR9
  publication-title: Insights Into Imaging
  doi: 10.1186/s13244-023-01487-6
– volume: 43
  start-page: 362
  issue: 2
  year: 2016
  ident: 6755_CR27
  publication-title: Eur J Nucl Med Mol Imaging
  doi: 10.1007/s00259-015-3208-1
SSID ssj0018289
Score 2.4532168
Snippet Introduction Amyloid-β (Aβ) plaques is a significant hallmark of Alzheimer's disease (AD), detectable via amyloid-PET imaging. The...
Amyloid-β (Aβ) plaques is a significant hallmark of Alzheimer's disease (AD), detectable via amyloid-PET imaging. The Fluorine-18-Fluorodeoxyglucose ([ F]FDG)...
IntroductionAmyloid-β (Aβ) plaques is a significant hallmark of Alzheimer's disease (AD), detectable via amyloid-PET imaging. The...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 3518
SubjectTerms Aged
Alzheimer Disease - diagnostic imaging
Alzheimer Disease - metabolism
Alzheimer's disease
Aniline Compounds
Benzothiazoles
Biomarkers
Brain mapping
Cardiology
Cognitive Dysfunction - diagnostic imaging
Cognitive Dysfunction - metabolism
Correlation analysis
Data analysis
Deep Learning
Dementia disorders
Ethylene Glycols
Female
Fluorine
Fluorine isotopes
Fluorodeoxyglucose F18
Glucose metabolism
Humans
Image Processing, Computer-Assisted
Imaging
Male
Medical imaging
Medicine
Medicine & Public Health
Middle Aged
Neurodegenerative diseases
Neuroimaging
Nuclear Medicine
Oncology
Original
Original Article
Orthopedics
Positron emission
Positron emission tomography
Positron-Emission Tomography - methods
Radiation dosage
Radioactive tracers
Radiology
Radiopharmaceuticals
Similarity
Synthesis
β-Amyloid
Title A deep learning model for generating [18F]FDG PET Images from early-phase [18F]Florbetapir and [18F]Flutemetamol PET images
URI https://link.springer.com/article/10.1007/s00259-024-06755-1
https://www.ncbi.nlm.nih.gov/pubmed/38861183
https://www.proquest.com/docview/3111720287
https://pubmed.ncbi.nlm.nih.gov/PMC11445334
Volume 51
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS-QwEB5EQe7l8NS7651KHnzzAtsmaZvHdc_6AxThFASRkh-zunBbF61P_vM3yXZXVs8HX9MwLZ1J5vuYzBeAXSWlN8Y7bvKh4FJbxTVKwzNiQIRfM-9laE4-PcuPLuXJlbrqZHJCL8yr-n0Q-ySAzimT8IBtFSems6JSkYcIHuSDecUgMIdArogQ8ILiuGuQ-b-NxST0Blm-PSD5qkoak0-1Bp871Mj6Uzd_gSVs1mH1tKuLb8Bzn3nECevugLhl8YIbRoCU3UZd6XC4mV2nZXVT_T5k5wcX7HhMO8kjC-0lDIPKMZ_cUUbrJhGLt9iayeiBmcbPBp9aHNPo-P5vNDGKJjbhT3VwMTji3bUK3AktWi68drQqU-ukzgpPKTtK2hh0uucJz_UcKsy8HrrQZl2g8gGWOGuLYaFy8RWWm_sGvwNLrTcoC2VSZ2RPos6stqXBHAmFolIJ7M3-cj2ZamfUc5Xk6JOafFJHn9RpAlszR9TdOnqsBW3FRUYYqEjg29Qnc1OiLHOiRyKBcsFb8wlBOXvxSTO6iwraRAJl6EFO4NfMsS_vfP8Tf3xs-k_4lIWgi0f_tmC5fXjCbYIwrd2BlX61v3-2E2P4H8lQ55Q
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT-MwEB0hkIALApaFAAs-cFssNYmdxEdUKGWhaKUtEtJqFfljCpVoqCCc-POM3bSrAnvYq2NNoozteU8z8wxwJIVwWjvLdTZIuVBGcoVC84QYEOHXxDnhm5N711n3Rvy4lbeNTI7vhXmXv_dinwTQOUUS7rGt5MR0lgQxZV--187as4yBZw6eXBEh4Dmt46ZB5nMb80HoA7L8WCD5Lksagk9nHdYa1MhOJm7egAWsNmG51-TFv8DrCXOIY9bcAXHHwgU3jAApuwu60r64mf2Oi86fzuk5-3nWZxcjOkmemW8vYehVjvn4niJaM4lYvMFaj4dPTFduOvhS44hGR48PwcQwmNiCX52zfrvLm2sVuE1VWvPUKUu7MjZWqCR3FLKDpI1Gq1qO8FzLosTEqYH1bdY5SudhiTUmH-QyS7_CYvVY4Q6w2DiNIpc6tlq0BKrEKFNozJBQKEoZwffpXy7HE-2McqaSHHxSkk_K4JMyjmB_6oiy2UfPZUpHcZ4QBsoj2J74ZGYqLYqM6FEaQTHnrdkEr5w9_6Qa3gcFbSKBwvcgR3A8dezfd_77E3f_b_ohrHT7vavy6uL6cg9WE78AQxngPizWTy_4jeBMbQ7COn4DhfrpBQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB1VICEuVUtLmxaKD70Vi01iJ_ERLQRoC0IqSEhVFfljFlZiQwTh1D_fsTdJu1AOXB1rEuXZnvc0Hwb4LIVwWjvLdTZJuVBGcoVC84QUEPHXxDnhi5OPT7LDc_H1Ql78U8Ufst37kOS8psF3aarbncZNdobCN--qFSf_wj3jlZz0zzIplRCoHWfjIY7g9YSXXCQTeE6ruyub-b-NRdf0iG8-Tpt8EDsNLql8BS87Lsl25-C_hhdYr8HKcRctfwO_d5lDbFh3M8QlC9feMKKp7DJ0m_Ypz-xnXJS_yr0Ddrp_xo5mdL7cMV90wtD3PubNFfm5bhJpe4Otbqa3TNeuH7xvcUajs5vrYGIaTLyFH-X-2fiQd5ctcJuqtOWpU5b2amysUEnuyJGHRjcarRo5YnkjixITpybWF1_nKJ0nK9aYfJLLLF2HpfqmxvfAYuM0ilzq2GoxEqgSo0yhMUPipihlBF_6v1w1844a1dA7OWBSESZVwKSKI9jogai63XVXpXRA5wkxozyCd3NMBlNpUWQkmtIIigW0hgm-n_bik3p6FfpqkzQUvjI5gu0e2L_vfPoTPzxv-hasnO6V1fejk28fYTXx6y_kBm7AUnt7j5vEcVrzKSzjP_NJ8Uw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+deep+learning+model+for+generating+%5B+18+F%5DFDG+PET+Images+from+early-phase+%5B+18+F%5DFlorbetapir+and+%5B+18+F%5DFlutemetamol+PET+images&rft.jtitle=European+journal+of+nuclear+medicine+and+molecular+imaging&rft.au=Sanaat%2C+Amirhossein&rft.au=Boccalini%2C+Cecilia&rft.au=Mathoux%2C+Gregory&rft.au=Perani%2C+Daniela&rft.date=2024-10-01&rft.eissn=1619-7089&rft.volume=51&rft.issue=12&rft.spage=3518&rft_id=info:doi/10.1007%2Fs00259-024-06755-1&rft_id=info%3Apmid%2F38861183&rft.externalDocID=38861183
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1619-7070&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1619-7070&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1619-7070&client=summon