Direct numerical simulation of spatially developing highly compressible mixing layer: Structural evolution and turbulent statistics

Direct numerical simulation of a spatially developing supersonic mixing layer with a convective Mach number of 1.0 is conducted. The present work focuses on the structural evolution and the turbulent statistics, and both instantaneous and time-averaged data are utilized to obtain further insight int...

Full description

Saved in:
Bibliographic Details
Published inPhysics of fluids (1994) Vol. 31; no. 3
Main Authors Zhang, Dongdong, Tan, Jianguo, Yao, Xiao
Format Journal Article
LanguageEnglish
Published Melville American Institute of Physics 01.03.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Direct numerical simulation of a spatially developing supersonic mixing layer with a convective Mach number of 1.0 is conducted. The present work focuses on the structural evolution and the turbulent statistics, and both instantaneous and time-averaged data are utilized to obtain further insight into the dynamical behaviors of the flow. The full development process of instability, including the shear action at the flow early stage, the generation of kinds of typical vortex structures in the flow transition region, and the establishment of self-similar turbulence, is clearly presented. The formation and evolution mechanisms of multiple ring-like vortices are reported and analyzed using the Helmholtz first law in compressible mixing layers, and the role they play in the mixing process in the flow transition stage is researched. The mean velocity distribution and the turbulent intensities are found to have close relations with the evolution of the multiple ring-like vortices. The presence of multiple ring-like vortices leads to local strong ejection and sweep regions that create pockets of partially mixed fluid near the tips of the vortices, which contributes much to the huge energy and momentum transfer of the upper and lower streams. Some anisotropy coefficients and turbulent structure parameters are described and analyzed to better reveal the effects of multiple ring-like vortices on flow behaviors. Our results indicate that with the increase in compressibility, though in a fully turbulent region, mixing layer growth and turbulent intensities are both suppressed, the appearance of multiple ring-like vortices and their evolutions can significantly promote mixing in the transition stage, which is usually ignored by previous researchers. Therefore, employing flow control methods to extend the flow transition stage and help sustain multiple ring-like vortices over a longer distance is a possible technique to enhance mixing.
AbstractList Direct numerical simulation of a spatially developing supersonic mixing layer with a convective Mach number of 1.0 is conducted. The present work focuses on the structural evolution and the turbulent statistics, and both instantaneous and time-averaged data are utilized to obtain further insight into the dynamical behaviors of the flow. The full development process of instability, including the shear action at the flow early stage, the generation of kinds of typical vortex structures in the flow transition region, and the establishment of self-similar turbulence, is clearly presented. The formation and evolution mechanisms of multiple ring-like vortices are reported and analyzed using the Helmholtz first law in compressible mixing layers, and the role they play in the mixing process in the flow transition stage is researched. The mean velocity distribution and the turbulent intensities are found to have close relations with the evolution of the multiple ring-like vortices. The presence of multiple ring-like vortices leads to local strong ejection and sweep regions that create pockets of partially mixed fluid near the tips of the vortices, which contributes much to the huge energy and momentum transfer of the upper and lower streams. Some anisotropy coefficients and turbulent structure parameters are described and analyzed to better reveal the effects of multiple ring-like vortices on flow behaviors. Our results indicate that with the increase in compressibility, though in a fully turbulent region, mixing layer growth and turbulent intensities are both suppressed, the appearance of multiple ring-like vortices and their evolutions can significantly promote mixing in the transition stage, which is usually ignored by previous researchers. Therefore, employing flow control methods to extend the flow transition stage and help sustain multiple ring-like vortices over a longer distance is a possible technique to enhance mixing.
Author Zhang, Dongdong
Yao, Xiao
Tan, Jianguo
Author_xml – sequence: 1
  givenname: Dongdong
  surname: Zhang
  fullname: Zhang, Dongdong
  organization: Science and Technology on Scramjet Laboratory, National University of Defense Technology, Changsha, Hunan 410073, People’s Republic of China
– sequence: 2
  givenname: Jianguo
  surname: Tan
  fullname: Tan, Jianguo
  organization: Science and Technology on Scramjet Laboratory, National University of Defense Technology, Changsha, Hunan 410073, People’s Republic of China
– sequence: 3
  givenname: Xiao
  surname: Yao
  fullname: Yao, Xiao
  organization: Science and Technology on Scramjet Laboratory, National University of Defense Technology, Changsha, Hunan 410073, People’s Republic of China
BookMark eNp9kE1LxDAQhoMo6K4e_AcBTwrdTZpt2nqT9RMED-q5pMl0N5I2NUkX9-wft_uhgoqnGWaeeQbeAdptbAMIHVMyooSzMR0lJEuTCdlBB5RkeZRyzndXfUoizhndRwPvXwghLI_5AXq_1A5kwE1Xg9NSGOx13RkRtG2wrbBv-1YYs8QKFmBsq5sZnuvZvJ9IW7cOvNelAVzrt9XKiCW4c_wYXCdD53ofLKzp1jrRKNzPys5AE7APvdkHLf0h2quE8XC0rUP0fH31NL2N7h9u7qYX95FkOQsRUykknGc0jRWBCbAEpFRlkpK4ElIBj6tMZELlVJVUcppVWULzMmZUJTCRwIboZONtnX3twIfixXau6V8WMc1JmsZZnvfUeENJZ713UBVSh3UewQltCkqKVdIFLbZJ9xenPy5ap2vhln-yZxvWf1q_4IV132DRquo_-Lf5A4g9oCc
CODEN PHFLE6
CitedBy_id crossref_primary_10_1016_j_ast_2022_107492
crossref_primary_10_1063_5_0025138
crossref_primary_10_1016_j_ast_2021_106888
crossref_primary_10_1016_j_ast_2023_108308
crossref_primary_10_1063_5_0086492
crossref_primary_10_3390_s23031646
crossref_primary_10_1016_j_fuel_2021_121030
crossref_primary_10_1063_5_0153408
crossref_primary_10_1134_S0015462821050074
crossref_primary_10_1016_j_actaastro_2021_06_022
crossref_primary_10_1017_jfm_2022_977
crossref_primary_10_1134_S2070048224700194
crossref_primary_10_3390_app112412127
crossref_primary_10_1063_5_0019299
crossref_primary_10_1063_5_0107197
crossref_primary_10_1063_1_5099469
crossref_primary_10_1063_1_5110788
crossref_primary_10_1063_5_0048584
crossref_primary_10_1063_1_5145276
crossref_primary_10_1063_5_0044025
crossref_primary_10_1103_PhysRevE_103_053108
crossref_primary_10_1063_5_0025838
crossref_primary_10_1063_5_0101342
crossref_primary_10_1017_S0962492920000057
crossref_primary_10_1063_5_0128560
crossref_primary_10_1063_5_0068010
crossref_primary_10_1063_1_5110990
crossref_primary_10_1063_5_0034346
crossref_primary_10_1063_5_0108460
crossref_primary_10_1063_5_0140632
crossref_primary_10_1063_5_0241297
crossref_primary_10_1017_jfm_2020_350
crossref_primary_10_1016_j_ast_2021_106545
crossref_primary_10_1016_j_csite_2021_100893
crossref_primary_10_1063_5_0090686
crossref_primary_10_1063_5_0258016
crossref_primary_10_1016_j_actaastro_2019_09_036
crossref_primary_10_1063_5_0030071
crossref_primary_10_1063_5_0147675
crossref_primary_10_1016_j_actaastro_2020_04_037
crossref_primary_10_1063_5_0149851
crossref_primary_10_1007_s00162_019_00507_w
crossref_primary_10_7498_aps_69_20190681
crossref_primary_10_1063_5_0243146
crossref_primary_10_1016_j_ast_2021_106993
crossref_primary_10_1016_j_applthermaleng_2020_115653
crossref_primary_10_1063_5_0148331
crossref_primary_10_20948_mm_2024_02_01
crossref_primary_10_1063_1_5138681
crossref_primary_10_1017_jfm_2020_932
crossref_primary_10_1063_5_0233788
Cites_doi 10.1017/s0022112095000085
10.2514/3.10519
10.1017/s0022112004001727
10.1017/s0022112065001520
10.1017/s0022112071000417
10.1017/s0022112076002590
10.1063/1.4966683
10.2514/3.14896
10.1063/1.857849
10.1016/j.compfluid.2010.07.016
10.1017/s0022112003003872
10.1017/s0022112003004403
10.1063/1.5051015
10.1017/s0022112001006978
10.1007/bf00187228
10.1088/1468-5248/1/1/011
10.1017/s0022112098003887
10.1007/s12650-013-0173-2
10.1063/1.869458
10.1017/s002211207400190x
10.1080/14685240600806256
10.1017/s0022112000003177
10.1007/bf02897166
10.1063/1.5002111
10.1017/s0022112091001684
10.1017/s0022112091003397
10.2514/3.10412
10.1016/0894-1777(94)90107-4
10.2514/3.5932
10.2514/3.10617
10.1063/1.1761268
10.1016/j.actaastro.2017.12.010
10.1063/1.5047395
10.1017/s0022112088003325
10.1017/s0022112000001622
10.1007/s10915-010-9429-3
10.1063/1.4979054
10.1063/1.5004500
10.1017/s0022112007008129
10.1063/1.5004473
10.2514/3.11891
10.1006/jcph.1996.0130
10.2514/3.60135
10.1017/s0022112094000030
10.1115/1.3650566
10.1016/j.actaastro.2018.11.018
10.1017/s0022112082002973
10.1146/annurev.fl.26.010194.001235
10.1016/j.compfluid.2014.11.026
10.1016/j.actaastro.2015.09.001
10.1017/jfm.2012.400
10.1063/1.4968527
10.1016/0021-9991(88)90177-5
10.1016/j.ijheatfluidflow.2006.03.028
10.1017/s0022112009006624
10.2514/3.10437
10.1080/14685248.2010.498425
10.1063/1.5011708
10.1016/j.actaastro.2018.08.036
ContentType Journal Article
Copyright Author(s)
2019 Author(s). Published under license by AIP Publishing.
Copyright_xml – notice: Author(s)
– notice: 2019 Author(s). Published under license by AIP Publishing.
DBID AAYXX
CITATION
8FD
H8D
L7M
DOI 10.1063/1.5087540
DatabaseName CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitleList
CrossRef
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Physics
EISSN 1089-7666
ExternalDocumentID 10_1063_1_5087540
GrantInformation_xml – fundername: Graduate Student Research Innovation Project of Hunan Province
  grantid: CX2016B001
– fundername: National Natural Science Foundation of China
  grantid: 11272351; 91441121
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID -~X
0ZJ
1UP
2-P
29O
2WC
4.4
5VS
6TJ
AAAAW
AABDS
AAEUA
AAPUP
AAYIH
ABJNI
ACBRY
ACGFS
ACLYJ
ACNCT
ACZLF
ADCTM
AEJMO
AENEX
AFATG
AFFNX
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AIDUJ
AJJCW
AJQPL
ALEPV
ALMA_UNASSIGNED_HOLDINGS
ATXIE
AWQPM
BPZLN
CS3
DU5
EBS
EJD
ESX
F5P
FDOHQ
FFFMQ
HAM
H~9
M6X
M71
M73
NEUPN
NPSNA
O-B
P2P
RDFOP
RIP
RNS
ROL
RQS
SC5
TN5
UCJ
UQL
WH7
XJT
~02
AAGWI
AAYXX
ABJGX
ADMLS
BDMKI
CITATION
8FD
H8D
L7M
ID FETCH-LOGICAL-c393t-3d7e5668172d0e4e35eccdb5702facde62f8a8ad91db1c618f8519b231d5e4ce3
ISSN 1070-6631
IngestDate Mon Jun 30 06:17:47 EDT 2025
Tue Jul 01 03:20:21 EDT 2025
Thu Apr 24 22:52:57 EDT 2025
Fri Jun 21 00:14:43 EDT 2024
Sun Jul 14 10:54:25 EDT 2019
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License Published under license by AIP Publishing.
1070-6631/2019/31(3)/036102/20/$30.00
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c393t-3d7e5668172d0e4e35eccdb5702facde62f8a8ad91db1c618f8519b231d5e4ce3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2190772899
PQPubID 2050667
PageCount 20
ParticipantIDs proquest_journals_2190772899
scitation_primary_10_1063_1_5087540
crossref_primary_10_1063_1_5087540
crossref_citationtrail_10_1063_1_5087540
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20190300
2019-03-01
20190301
PublicationDateYYYYMMDD 2019-03-01
PublicationDate_xml – month: 03
  year: 2019
  text: 20190300
PublicationDecade 2010
PublicationPlace Melville
PublicationPlace_xml – name: Melville
PublicationTitle Physics of fluids (1994)
PublicationYear 2019
Publisher American Institute of Physics
Publisher_xml – name: American Institute of Physics
References Sandham, Reynolds (c37) 1990; 28
Dimotakis, Brown (c3) 1976; 78
Pantano, Sarkar, Williams (c14) 2003; 481
Lele (c62) 1994; 26
Michalke (c36) 1965; 23
Wu, Moin (c23) 2009; 630
Dubief, Delcayre (c41) 2000; 1
Brown, Roshko (c2) 1974; 64
Samimy, Elliott (c26) 1990; 28
Goebel, Dutton, Krier, Renie (c51) 1990; 8
Debisschop, Chambres, Bonnet (c28) 1994; 9
Arms, Hama (c48) 1965; 8
Fu, Ma, Zhang (c13) 2000; 43
Iyer, Rajan (c35) 2015; 109
Urban, Mungal (c57) 2001; 431
Foss, Zaman (c20) 1999; 382
Harsha, Lee (c65) 1970; 8
Papamoschou, Roshko (c8) 1988; 197
Shu, Osher (c33) 1988; 77
Zhang, Tan, Li (c11) 2017; 111
Bradshaw, Ferriss (c66) 1971; 46
Chaudhuri, Hadjadj, Chinnayya, Palerm (c49) 2010; 47
Lu, Wu (c5) 1991; 3
Freund, Lele, Moin (c58) 2000; 421
Barre, Quine, Dussauge (c27) 1994; 259
Ren, Wang, Zheng (c7) 2018; 30
Watanabe, Mungal (c21) 2005; 522
Dolling (c47) 2001; 39
Herrin, Dutton (c63) 1997; 9
Zhou, He, Shen (c17) 2012; 711
Bell, Mehta (c4) 1990; 28
Zhang, Tan, Lv, Li (c32)
Wang, Shi, Zhang (c24) 2013; 16
Reese, Weber (c6) 2016; 28
Olsen, Dutton (c56) 2003; 486
Zhang, Tan, Li, Hou (c50) 2018; 144
Sarkar (c59) 1995; 282
Pantano, Sarkar (c55) 2002; 451
Liu, Chen, Zhang, Lin (c25) 2018; 30
Jiang, Shu (c34) 1996; 126
Fu, Li (c43) 2006; 27
Zhang, Tan, Lv (c10) 2015; 117
Oster, Wygnanski (c53) 1982; 123
Guo, Borodulin, Kachanov, Wang (c54) 2010; 11
Tan, Zhang, Lv (c29) 2018; 152
Nygaard, Glezer (c19) 1991; 231
Takamure, Ito, Sakai, Iwano, Hayase (c60) 2018; 30
Bogdanoff (c9) 1983; 21
Goebel, Dutton (c30) 1991; 29
Zhang, Tan, Hou (c44) 2017; 110
Gruber, Messersmith, Dutton (c31) 1993; 31
Sabin (c39) 1965; 87
Sandham, Reynolds (c12) 1991; 224
Simon, Deck, Guillen, Sagaut, Merlen (c64) 2007; 591
Wang, Wang, Zhao (c22) 2016; 28
Mahle, Sesterhenn, Friedrich (c15) 2007; 8
Fang, Shen, Sun, Hu (c45) 2018; 30
Nagata, Watanabe, Nagata (c16) 2018; 30
Chen, Liu (c46) 2011; 40
(2023062822385646300_c51) 1990; 8
(2023062822385646300_c64) 2007; 591
(2023062822385646300_c66) 1971; 46
(2023062822385646300_c62) 1994; 26
(2023062822385646300_c12) 1991; 224
(2023062822385646300_c37) 1990; 28
(2023062822385646300_c48) 1965; 8
(2023062822385646300_c42) 2010
(2023062822385646300_c43) 2006; 27
(2023062822385646300_c27) 1994; 259
(2023062822385646300_c26) 1990; 28
(2023062822385646300_c9) 1983; 21
(2023062822385646300_c2) 1974; 64
(2023062822385646300_c54) 2010; 11
(2023062822385646300_c1) 1971
(2023062822385646300_c49) 2010; 47
(2023062822385646300_c14) 2003; 481
(2023062822385646300_c63) 1997; 9
(2023062822385646300_c57) 2001; 431
(2023062822385646300_c15) 2007; 8
(2023062822385646300_c39) 1965; 87
(2023062822385646300_c45) 2018; 30
(2023062822385646300_c4) 1990; 28
(2023062822385646300_c44) 2017; 110
2023062822385646300_c32
(2023062822385646300_c34) 1996; 126
(2023062822385646300_c10) 2015; 117
(2023062822385646300_c17) 2012; 711
(2023062822385646300_c24) 2013; 16
(2023062822385646300_c19) 1991; 231
(2023062822385646300_c20) 1999; 382
(2023062822385646300_c61) 2011
(2023062822385646300_c55) 2002; 451
(2023062822385646300_c36) 1965; 23
(2023062822385646300_c41) 2000; 1
(2023062822385646300_c53) 1982; 123
(2023062822385646300_c33) 1988; 77
(2023062822385646300_c5) 1991; 3
(2023062822385646300_c59) 1995; 282
(2023062822385646300_c47) 2001; 39
(2023062822385646300_c50) 2018; 144
(2023062822385646300_c31) 1993; 31
(2023062822385646300_c6) 2016; 28
(2023062822385646300_c28) 1994; 9
(2023062822385646300_c23) 2009; 630
(2023062822385646300_c22) 2016; 28
(2023062822385646300_c29) 2018; 152
(2023062822385646300_c21) 2005; 522
2023062822385646300_c52
(2023062822385646300_c60) 2018; 30
(2023062822385646300_c7) 2018; 30
(2023062822385646300_c56) 2003; 486
(2023062822385646300_c11) 2017; 111
(2023062822385646300_c30) 1991; 29
(2023062822385646300_c16) 2018; 30
(2023062822385646300_c35) 2015; 109
2023062822385646300_c18
(2023062822385646300_c46) 2011; 40
(2023062822385646300_c38) 1963
(2023062822385646300_c65) 1970; 8
(2023062822385646300_c13) 2000; 43
(2023062822385646300_c3) 1976; 78
(2023062822385646300_c40) 2011
(2023062822385646300_c58) 2000; 421
(2023062822385646300_c8) 1988; 197
(2023062822385646300_c25) 2018; 30
References_xml – volume: 64
  start-page: 775
  year: 1974
  ident: c2
  article-title: On density effects and large structure in turbulent mixing layers
  publication-title: J. Fluid Mech.
– volume: 21
  start-page: 926
  year: 1983
  ident: c9
  article-title: Compressibility effects in turbulent shear layers
  publication-title: AIAA J.
– volume: 23
  start-page: 521
  year: 1965
  ident: c36
  article-title: On spatially growing disturbances in an inviscid shear layer
  publication-title: J. Fluid Mech.
– volume: 77
  start-page: 439
  year: 1988
  ident: c33
  article-title: Efficient implementation of essentially non-oscillatory shock-capturing schemes
  publication-title: J. Comput. Phys.
– volume: 144
  start-page: 30
  year: 2018
  ident: c50
  article-title: Detailed experimental investigations on flow behaviors and velocity field properties of a supersonic mixing layer
  publication-title: Acta Astronaut.
– volume: 29
  start-page: 538
  year: 1991
  ident: c30
  article-title: Experimental study of compressible turbulent mixing layers
  publication-title: AIAA J.
– volume: 126
  start-page: 202
  year: 1996
  ident: c34
  article-title: Efficient implementation of weighted ENO schemes
  publication-title: J. Comput. Phys.
– volume: 30
  start-page: 015109
  year: 2018
  ident: c60
  article-title: Momentum transport process in the quasi self-similar region of free shear mixing layer
  publication-title: Phys. Fluids
– volume: 47
  start-page: 170
  year: 2010
  ident: c49
  article-title: Numerical study of compressible mixing layers using high-order WENO schemes
  publication-title: J. Sci. Comput.
– volume: 421
  start-page: 229
  year: 2000
  ident: c58
  article-title: Compressibility effects in a turbulent annular mixing layer. Part 1. Turbulence and growth rate
  publication-title: J. Fluid Mech.
– volume: 282
  start-page: 163
  year: 1995
  ident: c59
  article-title: The stabilizing effect of compressibility in turbulent shear flow
  publication-title: J. Fluid Mech.
– volume: 231
  start-page: 257
  year: 1991
  ident: c19
  article-title: Evolution of streamwise vortices and generation of small-scale motion in a plane mixing layer
  publication-title: J. Fluid Mech.
– volume: 9
  start-page: 147
  year: 1994
  ident: c28
  article-title: Velocity field characteristics in supersonic mixing layers
  publication-title: Exp. Therm. Fluid Sci.
– volume: 486
  start-page: 51
  year: 2003
  ident: c56
  article-title: Planar velocity measurements in a weakly compressible mixing layer
  publication-title: J. Fluid Mech.
– volume: 78
  start-page: 535
  year: 1976
  ident: c3
  article-title: The mixing layer at high Reynolds numbers: Large structure dynamics and entrainment
  publication-title: J. Fluid Mech.
– volume: 28
  start-page: 439
  year: 1990
  ident: c26
  article-title: Effects of compressibility on the characteristics of free shear layers
  publication-title: AIAA J.
– volume: 87
  start-page: 421
  year: 1965
  ident: c39
  article-title: An analytical and experimental investigation of the plane, incompressible, turbulent free-shear layer with arbitrary velocity ratio and pressure gradient
  publication-title: Trans. ASME
– volume: 8
  start-page: 1508
  year: 1970
  ident: c65
  article-title: Correlation between turbulent shear stress and turbulent kinetic energy
  publication-title: AIAA J.
– volume: 30
  start-page: 036101
  year: 2018
  ident: c7
  article-title: Numerical analysis on interactions of vortex, shock wave, and exothermal reaction in a supersonic planar shear layer laden with droplets
  publication-title: Phys. Fluids
– volume: 109
  start-page: 113
  year: 2015
  ident: c35
  article-title: Simulation of spatial high-speed mixing layers using LES
  publication-title: Comput. Fluids
– volume: 16
  start-page: 219
  year: 2013
  ident: c24
  article-title: Visualization of large-scale structures in spatially developing compressible mixing layers
  publication-title: J. Visualization
– volume: 30
  start-page: 105109
  year: 2018
  ident: c16
  article-title: Turbulent/non-turbulent interfaces in temporally evolving compressible planar jets
  publication-title: Phys. Fluids
– volume: 481
  start-page: 291
  year: 2003
  ident: c14
  article-title: Mixing of a conserved scalar in a turbulent reacting shear layer
  publication-title: J. Fluid Mech.
– volume: 197
  start-page: 453
  year: 1988
  ident: c8
  article-title: The compressible turbulent shear layer: An experimental study
  publication-title: J. Fluid Mech.
– volume: 28
  start-page: 116101
  year: 2016
  ident: c22
  article-title: On the impact of adverse pressure gradient on the supersonic turbulent boundary layer
  publication-title: Phys. Fluids
– volume: 8
  start-page: 553
  year: 1965
  ident: c48
  article-title: Localized-induction concept on a curved vortex and motion of an elliptic vortex ring
  publication-title: Phys. Fluids
– volume: 451
  start-page: 329
  year: 2002
  ident: c55
  article-title: A study of compressibility effects in the high-speed turbulent shear layer using direct simulation
  publication-title: J. Fluid Mech.
– volume: 111
  start-page: 114103
  year: 2017
  ident: c11
  article-title: Structural characteristics of supersonic mixing enhanced by introducing streamwise vortices
  publication-title: Appl. Phys. Lett.
– volume: 39
  start-page: 1517
  year: 2001
  ident: c47
  article-title: Fifty years of shock-wave/boundary-layer interaction research: What next?
  publication-title: AIAA J.
– volume: 30
  start-page: 044102
  year: 2018
  ident: c25
  article-title: Physical effects of magnetic fields on the Kelvin-Helmholtz instability in a free shear layer
  publication-title: Phys. Fluids
– volume: 8
  start-page: N1
  year: 2007
  ident: c15
  article-title: Turbulent mixing in temporal compressible shear layers involving detailed diffusion processes
  publication-title: J. Turbul.
– volume: 8
  start-page: 263
  year: 1990
  ident: c51
  article-title: Mean and turbulent velocity measurements of supersonic mixing layers
  publication-title: Exp. Fluids
– volume: 152
  start-page: 310
  year: 2018
  ident: c29
  article-title: A review on enhanced mixing methods in supersonic mixing layer flows
  publication-title: Acta Astronaut.
– volume: 28
  start-page: 2034
  year: 1990
  ident: c4
  article-title: Development of a two-stream mixing layer from tripped and untripped boundary layers
  publication-title: AIAA J.
– volume: 1
  start-page: N11
  year: 2000
  ident: c41
  article-title: On coherent-vortex identification in turbulence
  publication-title: J. Turbul.
– volume: 43
  start-page: 421
  year: 2000
  ident: c13
  article-title: Direct numerical simulation of transition and turbulence in compressible mixing layer
  publication-title: Sci. China, Ser. A: Math.
– volume: 30
  start-page: 116101
  year: 2018
  ident: c45
  article-title: Effects of oblique shock waves on turbulent structures and statistics of supersonic mixing layers
  publication-title: Phys. Fluids
– volume: 3
  start-page: 3046
  year: 1991
  ident: c5
  article-title: On the shock enhancement of confined supersonic mixing flows
  publication-title: Phys. Fluids
– volume: 711
  start-page: 437
  year: 2012
  ident: c17
  article-title: Direct numerical simulation of a spatially developing compressible plane mixing layer: Flow structures and mean flow properties
  publication-title: J. Fluid Mech.
– volume: 27
  start-page: 895
  year: 2006
  ident: c43
  article-title: Numerical simulation of compressible mixing layers
  publication-title: Int. J. Heat Fluid Flow
– volume: 110
  start-page: 124101
  year: 2017
  ident: c44
  article-title: Structural and mixing characteristics influenced by streamwise vortices in supersonic flow
  publication-title: Appl. Phys. Lett.
– volume: 31
  start-page: 2061
  year: 1993
  ident: c31
  article-title: Three-dimensional velocity field in a compressible mixing layer
  publication-title: AIAA J.
– volume: 591
  start-page: 215
  year: 2007
  ident: c64
  article-title: Compressible mixing layer past an axisymmetric trailing edge
  publication-title: J. Fluid Mech.
– volume: 28
  start-page: 114102
  year: 2016
  ident: c6
  article-title: Numerical investigation of 3D effects on a 2D-dominated shocked mixing layer
  publication-title: Phys. Fluids
– volume: 26
  start-page: 211
  year: 1994
  ident: c62
  article-title: Compressibility effects on turbulence
  publication-title: Annu. Rev. Fluid Mech.
– ident: c32
  article-title: Characterization of flow mixing and structural topology in supersonic planar mixing layer
  publication-title: Acta Astronaut.
– volume: 259
  start-page: 47
  year: 1994
  ident: c27
  article-title: Compressibility effects on the structure of supersonic mixing layers: Experimental results
  publication-title: J. Fluid Mech.
– volume: 9
  start-page: 3502
  year: 1997
  ident: c63
  article-title: The turbulence structure of a reattaching axisymmetric compressible free shear layer
  publication-title: Phys. Fluids
– volume: 123
  start-page: 91
  year: 1982
  ident: c53
  article-title: The forced mixing layer between parallel streams
  publication-title: J. Fluid Mech.
– volume: 28
  start-page: 618
  year: 1990
  ident: c37
  article-title: Compressible mixing layer: Linear theory and direct simulation
  publication-title: AIAA J.
– volume: 522
  start-page: 141
  year: 2005
  ident: c21
  article-title: Velocity fields in mixing-enhanced compressible shear layers
  publication-title: J. Fluid Mech.
– volume: 117
  start-page: 440
  year: 2015
  ident: c10
  article-title: Investigation on flow and mixing characteristics of supersonic mixing layer induced by forced vibration of cantilever
  publication-title: Acta Astronaut.
– volume: 11
  start-page: N34
  year: 2010
  ident: c54
  article-title: Nature of sweep and ejection events in transitional and turbulent boundary layers
  publication-title: J. Turbul.
– volume: 40
  start-page: 28
  year: 2011
  ident: c46
  article-title: Numerical study on mechanisms of second sweep and positive spikes in transitional flow on a flat plate
  publication-title: Comput. Fluids
– volume: 382
  start-page: 307
  year: 1999
  ident: c20
  article-title: Large- and small-scale vortical motions in a shear layer perturbed by tabs
  publication-title: J. Fluid Mech.
– volume: 224
  start-page: 133
  year: 1991
  ident: c12
  article-title: Three dimensional simulations of large eddies in the compressible mixing layer
  publication-title: J. Fluid Mech.
– volume: 46
  start-page: 83
  year: 1971
  ident: c66
  article-title: Calculation of boundary layer development using the turbulent energy equation: Compressible flow on adiabatic walls
  publication-title: J. Fluid Mech.
– volume: 431
  start-page: 189
  year: 2001
  ident: c57
  article-title: Planar velocity measurements in compressible mixing layers
  publication-title: J. Fluid Mech.
– volume: 630
  start-page: 5
  year: 2009
  ident: c23
  article-title: Direct numerical simulation of turbulence in a nominally zero-pressure-gradient flat-plate boundary layer
  publication-title: J. Fluid Mech.
– volume: 282
  start-page: 163
  year: 1995
  ident: 2023062822385646300_c59
  article-title: The stabilizing effect of compressibility in turbulent shear flow
  publication-title: J. Fluid Mech.
  doi: 10.1017/s0022112095000085
– volume: 28
  start-page: 2034
  year: 1990
  ident: 2023062822385646300_c4
  article-title: Development of a two-stream mixing layer from tripped and untripped boundary layers
  publication-title: AIAA J.
  doi: 10.2514/3.10519
– volume: 522
  start-page: 141
  year: 2005
  ident: 2023062822385646300_c21
  article-title: Velocity fields in mixing-enhanced compressible shear layers
  publication-title: J. Fluid Mech.
  doi: 10.1017/s0022112004001727
– volume: 23
  start-page: 521
  year: 1965
  ident: 2023062822385646300_c36
  article-title: On spatially growing disturbances in an inviscid shear layer
  publication-title: J. Fluid Mech.
  doi: 10.1017/s0022112065001520
– volume: 46
  start-page: 83
  year: 1971
  ident: 2023062822385646300_c66
  article-title: Calculation of boundary layer development using the turbulent energy equation: Compressible flow on adiabatic walls
  publication-title: J. Fluid Mech.
  doi: 10.1017/s0022112071000417
– volume: 78
  start-page: 535
  year: 1976
  ident: 2023062822385646300_c3
  article-title: The mixing layer at high Reynolds numbers: Large structure dynamics and entrainment
  publication-title: J. Fluid Mech.
  doi: 10.1017/s0022112076002590
– volume: 28
  start-page: 114102
  issue: 11
  year: 2016
  ident: 2023062822385646300_c6
  article-title: Numerical investigation of 3D effects on a 2D-dominated shocked mixing layer
  publication-title: Phys. Fluids
  doi: 10.1063/1.4966683
– volume: 39
  start-page: 1517
  year: 2001
  ident: 2023062822385646300_c47
  article-title: Fifty years of shock-wave/boundary-layer interaction research: What next?
  publication-title: AIAA J.
  doi: 10.2514/3.14896
– volume: 3
  start-page: 3046
  year: 1991
  ident: 2023062822385646300_c5
  article-title: On the shock enhancement of confined supersonic mixing flows
  publication-title: Phys. Fluids
  doi: 10.1063/1.857849
– volume: 40
  start-page: 28
  year: 2011
  ident: 2023062822385646300_c46
  article-title: Numerical study on mechanisms of second sweep and positive spikes in transitional flow on a flat plate
  publication-title: Comput. Fluids
  doi: 10.1016/j.compfluid.2010.07.016
– year: 2010
  ident: 2023062822385646300_c42
  article-title: Study of mechanism of ring-like vortex formation in late flow transition
– volume: 481
  start-page: 291
  year: 2003
  ident: 2023062822385646300_c14
  article-title: Mixing of a conserved scalar in a turbulent reacting shear layer
  publication-title: J. Fluid Mech.
  doi: 10.1017/s0022112003003872
– volume: 486
  start-page: 51
  year: 2003
  ident: 2023062822385646300_c56
  article-title: Planar velocity measurements in a weakly compressible mixing layer
  publication-title: J. Fluid Mech.
  doi: 10.1017/s0022112003004403
– volume: 30
  start-page: 116101
  year: 2018
  ident: 2023062822385646300_c45
  article-title: Effects of oblique shock waves on turbulent structures and statistics of supersonic mixing layers
  publication-title: Phys. Fluids
  doi: 10.1063/1.5051015
– volume: 451
  start-page: 329
  year: 2002
  ident: 2023062822385646300_c55
  article-title: A study of compressibility effects in the high-speed turbulent shear layer using direct simulation
  publication-title: J. Fluid Mech.
  doi: 10.1017/s0022112001006978
– volume: 8
  start-page: 263
  year: 1990
  ident: 2023062822385646300_c51
  article-title: Mean and turbulent velocity measurements of supersonic mixing layers
  publication-title: Exp. Fluids
  doi: 10.1007/bf00187228
– volume: 1
  start-page: N11
  year: 2000
  ident: 2023062822385646300_c41
  article-title: On coherent-vortex identification in turbulence
  publication-title: J. Turbul.
  doi: 10.1088/1468-5248/1/1/011
– volume: 382
  start-page: 307
  year: 1999
  ident: 2023062822385646300_c20
  article-title: Large- and small-scale vortical motions in a shear layer perturbed by tabs
  publication-title: J. Fluid Mech.
  doi: 10.1017/s0022112098003887
– volume: 16
  start-page: 219
  year: 2013
  ident: 2023062822385646300_c24
  article-title: Visualization of large-scale structures in spatially developing compressible mixing layers
  publication-title: J. Visualization
  doi: 10.1007/s12650-013-0173-2
– volume: 9
  start-page: 3502
  year: 1997
  ident: 2023062822385646300_c63
  article-title: The turbulence structure of a reattaching axisymmetric compressible free shear layer
  publication-title: Phys. Fluids
  doi: 10.1063/1.869458
– volume: 64
  start-page: 775
  year: 1974
  ident: 2023062822385646300_c2
  article-title: On density effects and large structure in turbulent mixing layers
  publication-title: J. Fluid Mech.
  doi: 10.1017/s002211207400190x
– volume: 8
  start-page: N1
  year: 2007
  ident: 2023062822385646300_c15
  article-title: Turbulent mixing in temporal compressible shear layers involving detailed diffusion processes
  publication-title: J. Turbul.
  doi: 10.1080/14685240600806256
– volume: 431
  start-page: 189
  year: 2001
  ident: 2023062822385646300_c57
  article-title: Planar velocity measurements in compressible mixing layers
  publication-title: J. Fluid Mech.
  doi: 10.1017/s0022112000003177
– volume: 43
  start-page: 421
  issue: 4
  year: 2000
  ident: 2023062822385646300_c13
  article-title: Direct numerical simulation of transition and turbulence in compressible mixing layer
  publication-title: Sci. China, Ser. A: Math.
  doi: 10.1007/bf02897166
– volume: 111
  start-page: 114103
  year: 2017
  ident: 2023062822385646300_c11
  article-title: Structural characteristics of supersonic mixing enhanced by introducing streamwise vortices
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.5002111
– volume: 224
  start-page: 133
  year: 1991
  ident: 2023062822385646300_c12
  article-title: Three dimensional simulations of large eddies in the compressible mixing layer
  publication-title: J. Fluid Mech.
  doi: 10.1017/s0022112091001684
– volume: 231
  start-page: 257
  year: 1991
  ident: 2023062822385646300_c19
  article-title: Evolution of streamwise vortices and generation of small-scale motion in a plane mixing layer
  publication-title: J. Fluid Mech.
  doi: 10.1017/s0022112091003397
– volume: 28
  start-page: 439
  year: 1990
  ident: 2023062822385646300_c26
  article-title: Effects of compressibility on the characteristics of free shear layers
  publication-title: AIAA J.
  doi: 10.2514/3.10412
– volume: 9
  start-page: 147
  year: 1994
  ident: 2023062822385646300_c28
  article-title: Velocity field characteristics in supersonic mixing layers
  publication-title: Exp. Therm. Fluid Sci.
  doi: 10.1016/0894-1777(94)90107-4
– volume: 8
  start-page: 1508
  year: 1970
  ident: 2023062822385646300_c65
  article-title: Correlation between turbulent shear stress and turbulent kinetic energy
  publication-title: AIAA J.
  doi: 10.2514/3.5932
– volume: 29
  start-page: 538
  year: 1991
  ident: 2023062822385646300_c30
  article-title: Experimental study of compressible turbulent mixing layers
  publication-title: AIAA J.
  doi: 10.2514/3.10617
– volume: 8
  start-page: 553
  year: 1965
  ident: 2023062822385646300_c48
  article-title: Localized-induction concept on a curved vortex and motion of an elliptic vortex ring
  publication-title: Phys. Fluids
  doi: 10.1063/1.1761268
– volume: 144
  start-page: 30
  year: 2018
  ident: 2023062822385646300_c50
  article-title: Detailed experimental investigations on flow behaviors and velocity field properties of a supersonic mixing layer
  publication-title: Acta Astronaut.
  doi: 10.1016/j.actaastro.2017.12.010
– volume-title: The Theory of Turbulent Jets
  year: 1963
  ident: 2023062822385646300_c38
– volume: 30
  start-page: 105109
  year: 2018
  ident: 2023062822385646300_c16
  article-title: Turbulent/non-turbulent interfaces in temporally evolving compressible planar jets
  publication-title: Phys. Fluids
  doi: 10.1063/1.5047395
– volume: 197
  start-page: 453
  year: 1988
  ident: 2023062822385646300_c8
  article-title: The compressible turbulent shear layer: An experimental study
  publication-title: J. Fluid Mech.
  doi: 10.1017/s0022112088003325
– volume: 421
  start-page: 229
  year: 2000
  ident: 2023062822385646300_c58
  article-title: Compressibility effects in a turbulent annular mixing layer. Part 1. Turbulence and growth rate
  publication-title: J. Fluid Mech.
  doi: 10.1017/s0022112000001622
– volume: 47
  start-page: 170
  year: 2010
  ident: 2023062822385646300_c49
  article-title: Numerical study of compressible mixing layers using high-order WENO schemes
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-010-9429-3
– volume: 110
  start-page: 124101
  year: 2017
  ident: 2023062822385646300_c44
  article-title: Structural and mixing characteristics influenced by streamwise vortices in supersonic flow
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4979054
– volume: 30
  start-page: 015109
  year: 2018
  ident: 2023062822385646300_c60
  article-title: Momentum transport process in the quasi self-similar region of free shear mixing layer
  publication-title: Phys. Fluids
  doi: 10.1063/1.5004500
– volume: 591
  start-page: 215
  year: 2007
  ident: 2023062822385646300_c64
  article-title: Compressible mixing layer past an axisymmetric trailing edge
  publication-title: J. Fluid Mech.
  doi: 10.1017/s0022112007008129
– year: 1971
  ident: 2023062822385646300_c1
  article-title: Statistical investigation of pressure and velocity fields in the turbulent two-stream mixing layer
– volume: 30
  start-page: 044102
  year: 2018
  ident: 2023062822385646300_c25
  article-title: Physical effects of magnetic fields on the Kelvin-Helmholtz instability in a free shear layer
  publication-title: Phys. Fluids
  doi: 10.1063/1.5004473
– volume: 31
  start-page: 2061
  year: 1993
  ident: 2023062822385646300_c31
  article-title: Three-dimensional velocity field in a compressible mixing layer
  publication-title: AIAA J.
  doi: 10.2514/3.11891
– volume: 126
  start-page: 202
  year: 1996
  ident: 2023062822385646300_c34
  article-title: Efficient implementation of weighted ENO schemes
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.1996.0130
– year: 2011
  ident: 2023062822385646300_c40
  article-title: Large eddy simulations of 2-D and 3-D spatially developing mixing layers
– volume: 21
  start-page: 926
  year: 1983
  ident: 2023062822385646300_c9
  article-title: Compressibility effects in turbulent shear layers
  publication-title: AIAA J.
  doi: 10.2514/3.60135
– volume: 259
  start-page: 47
  year: 1994
  ident: 2023062822385646300_c27
  article-title: Compressibility effects on the structure of supersonic mixing layers: Experimental results
  publication-title: J. Fluid Mech.
  doi: 10.1017/s0022112094000030
– volume: 87
  start-page: 421
  year: 1965
  ident: 2023062822385646300_c39
  article-title: An analytical and experimental investigation of the plane, incompressible, turbulent free-shear layer with arbitrary velocity ratio and pressure gradient
  publication-title: Trans. ASME
  doi: 10.1115/1.3650566
– ident: 2023062822385646300_c32
  article-title: Characterization of flow mixing and structural topology in supersonic planar mixing layer
  publication-title: Acta Astronaut.
  doi: 10.1016/j.actaastro.2018.11.018
– volume: 123
  start-page: 91
  year: 1982
  ident: 2023062822385646300_c53
  article-title: The forced mixing layer between parallel streams
  publication-title: J. Fluid Mech.
  doi: 10.1017/s0022112082002973
– volume: 26
  start-page: 211
  year: 1994
  ident: 2023062822385646300_c62
  article-title: Compressibility effects on turbulence
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev.fl.26.010194.001235
– ident: 2023062822385646300_c18
– volume: 109
  start-page: 113
  year: 2015
  ident: 2023062822385646300_c35
  article-title: Simulation of spatial high-speed mixing layers using LES
  publication-title: Comput. Fluids
  doi: 10.1016/j.compfluid.2014.11.026
– volume: 117
  start-page: 440
  year: 2015
  ident: 2023062822385646300_c10
  article-title: Investigation on flow and mixing characteristics of supersonic mixing layer induced by forced vibration of cantilever
  publication-title: Acta Astronaut.
  doi: 10.1016/j.actaastro.2015.09.001
– volume: 711
  start-page: 437
  year: 2012
  ident: 2023062822385646300_c17
  article-title: Direct numerical simulation of a spatially developing compressible plane mixing layer: Flow structures and mean flow properties
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2012.400
– volume: 28
  start-page: 116101
  issue: 11
  year: 2016
  ident: 2023062822385646300_c22
  article-title: On the impact of adverse pressure gradient on the supersonic turbulent boundary layer
  publication-title: Phys. Fluids
  doi: 10.1063/1.4968527
– volume: 77
  start-page: 439
  year: 1988
  ident: 2023062822385646300_c33
  article-title: Efficient implementation of essentially non-oscillatory shock-capturing schemes
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(88)90177-5
– volume: 27
  start-page: 895
  year: 2006
  ident: 2023062822385646300_c43
  article-title: Numerical simulation of compressible mixing layers
  publication-title: Int. J. Heat Fluid Flow
  doi: 10.1016/j.ijheatfluidflow.2006.03.028
– volume: 630
  start-page: 5
  year: 2009
  ident: 2023062822385646300_c23
  article-title: Direct numerical simulation of turbulence in a nominally zero-pressure-gradient flat-plate boundary layer
  publication-title: J. Fluid Mech.
  doi: 10.1017/s0022112009006624
– volume: 28
  start-page: 618
  year: 1990
  ident: 2023062822385646300_c37
  article-title: Compressible mixing layer: Linear theory and direct simulation
  publication-title: AIAA J.
  doi: 10.2514/3.10437
– ident: 2023062822385646300_c52
– volume: 11
  start-page: N34
  year: 2010
  ident: 2023062822385646300_c54
  article-title: Nature of sweep and ejection events in transitional and turbulent boundary layers
  publication-title: J. Turbul.
  doi: 10.1080/14685248.2010.498425
– volume: 30
  start-page: 036101
  issue: 3
  year: 2018
  ident: 2023062822385646300_c7
  article-title: Numerical analysis on interactions of vortex, shock wave, and exothermal reaction in a supersonic planar shear layer laden with droplets
  publication-title: Phys. Fluids
  doi: 10.1063/1.5011708
– volume: 152
  start-page: 310
  year: 2018
  ident: 2023062822385646300_c29
  article-title: A review on enhanced mixing methods in supersonic mixing layer flows
  publication-title: Acta Astronaut.
  doi: 10.1016/j.actaastro.2018.08.036
– year: 2011
  ident: 2023062822385646300_c61
  article-title: Large-eddy simulation of supersonic, turbulent mixing layers downstream of a splitter plate
SSID ssj0003926
Score 2.4929886
Snippet Direct numerical simulation of a spatially developing supersonic mixing layer with a convective Mach number of 1.0 is conducted. The present work focuses on...
SourceID proquest
crossref
scitation
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Anisotropy
Compressibility
Computational fluid dynamics
Computer simulation
Control methods
Direct numerical simulation
Dynamic stability
Ejection
Evolution
Flow control
Flow stability
Fluid dynamics
Fluid flow
Mach number
Mathematical models
Mixing layers (fluids)
Momentum transfer
Physics
Self-similarity
Turbulence
Velocity distribution
Vortices
Title Direct numerical simulation of spatially developing highly compressible mixing layer: Structural evolution and turbulent statistics
URI http://dx.doi.org/10.1063/1.5087540
https://www.proquest.com/docview/2190772899
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagFYILjwKiUNAIOCBVKUnsPMytoqAKUS5tpb1Fju2gSGlSsbsVcOWPM37ECdIKFS7RyutNtPm-jL-ZzIwJec1TxQupC_RNtIpYJnVUx1kdiViJRuD6rO0b05Mv-fE5-7TIFuMe7r66ZFUfyJ8b60r-B1UcQ1xNlew_IBtOigP4GfHFIyKMx2th7OzVfr92r126_WV74bfjMiJwabKlRdf9mJdGmf7EOGJSyW0KrKmcumi_m686gfrbhAhObVNZ25BDX_l_4FIt1wiCWadMCGLlejzP5a3NJ5U2O6Tp1q1yfaA4Z7OAQwhRHw39VzX4ldMGD1ydSGtCqEMwR8IGcxetGOYRClMUNaZoeaOKZiVCZeOGtB8reVTkbseV0RLTZMY4utHAo6IysYaDzHTiZ_FNsp2if4AGbvvw6OTzaViEUfblLt3UXXpsKpXTt-HHf0qRyb-4jeLD5UHMpMbZfXLX-whw6AB_QG7ofofc8_4CeGu83CG3_O1-SH45JkBgAkxMgKGBwASYmACOCTBnAjgmgGXCO5h4AIEHgDyAwAOYePCInH_8cPb-OPLba0SScrqKqCo0ivkSJayKNdP4XEqp6qyI00ZIpfO0KUUpFE9Uncg8KRtU57xGh0BlmklNH5Otfuj1EwJxTdGN4PhDRVnBZClpKiVCIJpcU8Z3yZvxTlfjvTVboHSVzYHIaZVUHpRd8jJMvXQNVzZN2hvhqvzzuKxw7Y2RCyXHy70KEP7tJBtmXQ3fphnVpWqeXutcz8idifl7ZAvh0c9Rra7qF56ZvwHkzJuW
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Direct+numerical+simulation+of+spatially+developing+highly+compressible+mixing+layer%3A+Structural+evolution+and+turbulent+statistics&rft.jtitle=Physics+of+fluids+%281994%29&rft.au=Zhang%2C+Dongdong&rft.au=Tan%2C+Jianguo&rft.au=Yao%2C+Xiao&rft.date=2019-03-01&rft.issn=1070-6631&rft.eissn=1089-7666&rft.volume=31&rft.issue=3&rft_id=info:doi/10.1063%2F1.5087540
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1070-6631&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1070-6631&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1070-6631&client=summon