Direct numerical simulation of spatially developing highly compressible mixing layer: Structural evolution and turbulent statistics
Direct numerical simulation of a spatially developing supersonic mixing layer with a convective Mach number of 1.0 is conducted. The present work focuses on the structural evolution and the turbulent statistics, and both instantaneous and time-averaged data are utilized to obtain further insight int...
Saved in:
Published in | Physics of fluids (1994) Vol. 31; no. 3 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Melville
American Institute of Physics
01.03.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Direct numerical simulation of a spatially developing supersonic mixing layer with a convective Mach number of 1.0 is conducted. The present work focuses on the structural evolution and the turbulent statistics, and both instantaneous and time-averaged data are utilized to obtain further insight into the dynamical behaviors of the flow. The full development process of instability, including the shear action at the flow early stage, the generation of kinds of typical vortex structures in the flow transition region, and the establishment of self-similar turbulence, is clearly presented. The formation and evolution mechanisms of multiple ring-like vortices are reported and analyzed using the Helmholtz first law in compressible mixing layers, and the role they play in the mixing process in the flow transition stage is researched. The mean velocity distribution and the turbulent intensities are found to have close relations with the evolution of the multiple ring-like vortices. The presence of multiple ring-like vortices leads to local strong ejection and sweep regions that create pockets of partially mixed fluid near the tips of the vortices, which contributes much to the huge energy and momentum transfer of the upper and lower streams. Some anisotropy coefficients and turbulent structure parameters are described and analyzed to better reveal the effects of multiple ring-like vortices on flow behaviors. Our results indicate that with the increase in compressibility, though in a fully turbulent region, mixing layer growth and turbulent intensities are both suppressed, the appearance of multiple ring-like vortices and their evolutions can significantly promote mixing in the transition stage, which is usually ignored by previous researchers. Therefore, employing flow control methods to extend the flow transition stage and help sustain multiple ring-like vortices over a longer distance is a possible technique to enhance mixing. |
---|---|
AbstractList | Direct numerical simulation of a spatially developing supersonic mixing layer with a convective Mach number of 1.0 is conducted. The present work focuses on the structural evolution and the turbulent statistics, and both instantaneous and time-averaged data are utilized to obtain further insight into the dynamical behaviors of the flow. The full development process of instability, including the shear action at the flow early stage, the generation of kinds of typical vortex structures in the flow transition region, and the establishment of self-similar turbulence, is clearly presented. The formation and evolution mechanisms of multiple ring-like vortices are reported and analyzed using the Helmholtz first law in compressible mixing layers, and the role they play in the mixing process in the flow transition stage is researched. The mean velocity distribution and the turbulent intensities are found to have close relations with the evolution of the multiple ring-like vortices. The presence of multiple ring-like vortices leads to local strong ejection and sweep regions that create pockets of partially mixed fluid near the tips of the vortices, which contributes much to the huge energy and momentum transfer of the upper and lower streams. Some anisotropy coefficients and turbulent structure parameters are described and analyzed to better reveal the effects of multiple ring-like vortices on flow behaviors. Our results indicate that with the increase in compressibility, though in a fully turbulent region, mixing layer growth and turbulent intensities are both suppressed, the appearance of multiple ring-like vortices and their evolutions can significantly promote mixing in the transition stage, which is usually ignored by previous researchers. Therefore, employing flow control methods to extend the flow transition stage and help sustain multiple ring-like vortices over a longer distance is a possible technique to enhance mixing. |
Author | Zhang, Dongdong Yao, Xiao Tan, Jianguo |
Author_xml | – sequence: 1 givenname: Dongdong surname: Zhang fullname: Zhang, Dongdong organization: Science and Technology on Scramjet Laboratory, National University of Defense Technology, Changsha, Hunan 410073, People’s Republic of China – sequence: 2 givenname: Jianguo surname: Tan fullname: Tan, Jianguo organization: Science and Technology on Scramjet Laboratory, National University of Defense Technology, Changsha, Hunan 410073, People’s Republic of China – sequence: 3 givenname: Xiao surname: Yao fullname: Yao, Xiao organization: Science and Technology on Scramjet Laboratory, National University of Defense Technology, Changsha, Hunan 410073, People’s Republic of China |
BookMark | eNp9kE1LxDAQhoMo6K4e_AcBTwrdTZpt2nqT9RMED-q5pMl0N5I2NUkX9-wft_uhgoqnGWaeeQbeAdptbAMIHVMyooSzMR0lJEuTCdlBB5RkeZRyzndXfUoizhndRwPvXwghLI_5AXq_1A5kwE1Xg9NSGOx13RkRtG2wrbBv-1YYs8QKFmBsq5sZnuvZvJ9IW7cOvNelAVzrt9XKiCW4c_wYXCdD53ofLKzp1jrRKNzPys5AE7APvdkHLf0h2quE8XC0rUP0fH31NL2N7h9u7qYX95FkOQsRUykknGc0jRWBCbAEpFRlkpK4ElIBj6tMZELlVJVUcppVWULzMmZUJTCRwIboZONtnX3twIfixXau6V8WMc1JmsZZnvfUeENJZ713UBVSh3UewQltCkqKVdIFLbZJ9xenPy5ap2vhln-yZxvWf1q_4IV132DRquo_-Lf5A4g9oCc |
CODEN | PHFLE6 |
CitedBy_id | crossref_primary_10_1016_j_ast_2022_107492 crossref_primary_10_1063_5_0025138 crossref_primary_10_1016_j_ast_2021_106888 crossref_primary_10_1016_j_ast_2023_108308 crossref_primary_10_1063_5_0086492 crossref_primary_10_3390_s23031646 crossref_primary_10_1016_j_fuel_2021_121030 crossref_primary_10_1063_5_0153408 crossref_primary_10_1134_S0015462821050074 crossref_primary_10_1016_j_actaastro_2021_06_022 crossref_primary_10_1017_jfm_2022_977 crossref_primary_10_1134_S2070048224700194 crossref_primary_10_3390_app112412127 crossref_primary_10_1063_5_0019299 crossref_primary_10_1063_5_0107197 crossref_primary_10_1063_1_5099469 crossref_primary_10_1063_1_5110788 crossref_primary_10_1063_5_0048584 crossref_primary_10_1063_1_5145276 crossref_primary_10_1063_5_0044025 crossref_primary_10_1103_PhysRevE_103_053108 crossref_primary_10_1063_5_0025838 crossref_primary_10_1063_5_0101342 crossref_primary_10_1017_S0962492920000057 crossref_primary_10_1063_5_0128560 crossref_primary_10_1063_5_0068010 crossref_primary_10_1063_1_5110990 crossref_primary_10_1063_5_0034346 crossref_primary_10_1063_5_0108460 crossref_primary_10_1063_5_0140632 crossref_primary_10_1063_5_0241297 crossref_primary_10_1017_jfm_2020_350 crossref_primary_10_1016_j_ast_2021_106545 crossref_primary_10_1016_j_csite_2021_100893 crossref_primary_10_1063_5_0090686 crossref_primary_10_1063_5_0258016 crossref_primary_10_1016_j_actaastro_2019_09_036 crossref_primary_10_1063_5_0030071 crossref_primary_10_1063_5_0147675 crossref_primary_10_1016_j_actaastro_2020_04_037 crossref_primary_10_1063_5_0149851 crossref_primary_10_1007_s00162_019_00507_w crossref_primary_10_7498_aps_69_20190681 crossref_primary_10_1063_5_0243146 crossref_primary_10_1016_j_ast_2021_106993 crossref_primary_10_1016_j_applthermaleng_2020_115653 crossref_primary_10_1063_5_0148331 crossref_primary_10_20948_mm_2024_02_01 crossref_primary_10_1063_1_5138681 crossref_primary_10_1017_jfm_2020_932 crossref_primary_10_1063_5_0233788 |
Cites_doi | 10.1017/s0022112095000085 10.2514/3.10519 10.1017/s0022112004001727 10.1017/s0022112065001520 10.1017/s0022112071000417 10.1017/s0022112076002590 10.1063/1.4966683 10.2514/3.14896 10.1063/1.857849 10.1016/j.compfluid.2010.07.016 10.1017/s0022112003003872 10.1017/s0022112003004403 10.1063/1.5051015 10.1017/s0022112001006978 10.1007/bf00187228 10.1088/1468-5248/1/1/011 10.1017/s0022112098003887 10.1007/s12650-013-0173-2 10.1063/1.869458 10.1017/s002211207400190x 10.1080/14685240600806256 10.1017/s0022112000003177 10.1007/bf02897166 10.1063/1.5002111 10.1017/s0022112091001684 10.1017/s0022112091003397 10.2514/3.10412 10.1016/0894-1777(94)90107-4 10.2514/3.5932 10.2514/3.10617 10.1063/1.1761268 10.1016/j.actaastro.2017.12.010 10.1063/1.5047395 10.1017/s0022112088003325 10.1017/s0022112000001622 10.1007/s10915-010-9429-3 10.1063/1.4979054 10.1063/1.5004500 10.1017/s0022112007008129 10.1063/1.5004473 10.2514/3.11891 10.1006/jcph.1996.0130 10.2514/3.60135 10.1017/s0022112094000030 10.1115/1.3650566 10.1016/j.actaastro.2018.11.018 10.1017/s0022112082002973 10.1146/annurev.fl.26.010194.001235 10.1016/j.compfluid.2014.11.026 10.1016/j.actaastro.2015.09.001 10.1017/jfm.2012.400 10.1063/1.4968527 10.1016/0021-9991(88)90177-5 10.1016/j.ijheatfluidflow.2006.03.028 10.1017/s0022112009006624 10.2514/3.10437 10.1080/14685248.2010.498425 10.1063/1.5011708 10.1016/j.actaastro.2018.08.036 |
ContentType | Journal Article |
Copyright | Author(s) 2019 Author(s). Published under license by AIP Publishing. |
Copyright_xml | – notice: Author(s) – notice: 2019 Author(s). Published under license by AIP Publishing. |
DBID | AAYXX CITATION 8FD H8D L7M |
DOI | 10.1063/1.5087540 |
DatabaseName | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | CrossRef Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Physics |
EISSN | 1089-7666 |
ExternalDocumentID | 10_1063_1_5087540 |
GrantInformation_xml | – fundername: Graduate Student Research Innovation Project of Hunan Province grantid: CX2016B001 – fundername: National Natural Science Foundation of China grantid: 11272351; 91441121 funderid: http://dx.doi.org/10.13039/501100001809 |
GroupedDBID | -~X 0ZJ 1UP 2-P 29O 2WC 4.4 5VS 6TJ AAAAW AABDS AAEUA AAPUP AAYIH ABJNI ACBRY ACGFS ACLYJ ACNCT ACZLF ADCTM AEJMO AENEX AFATG AFFNX AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AIDUJ AJJCW AJQPL ALEPV ALMA_UNASSIGNED_HOLDINGS ATXIE AWQPM BPZLN CS3 DU5 EBS EJD ESX F5P FDOHQ FFFMQ HAM H~9 M6X M71 M73 NEUPN NPSNA O-B P2P RDFOP RIP RNS ROL RQS SC5 TN5 UCJ UQL WH7 XJT ~02 AAGWI AAYXX ABJGX ADMLS BDMKI CITATION 8FD H8D L7M |
ID | FETCH-LOGICAL-c393t-3d7e5668172d0e4e35eccdb5702facde62f8a8ad91db1c618f8519b231d5e4ce3 |
ISSN | 1070-6631 |
IngestDate | Mon Jun 30 06:17:47 EDT 2025 Tue Jul 01 03:20:21 EDT 2025 Thu Apr 24 22:52:57 EDT 2025 Fri Jun 21 00:14:43 EDT 2024 Sun Jul 14 10:54:25 EDT 2019 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | Published under license by AIP Publishing. 1070-6631/2019/31(3)/036102/20/$30.00 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c393t-3d7e5668172d0e4e35eccdb5702facde62f8a8ad91db1c618f8519b231d5e4ce3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2190772899 |
PQPubID | 2050667 |
PageCount | 20 |
ParticipantIDs | proquest_journals_2190772899 scitation_primary_10_1063_1_5087540 crossref_primary_10_1063_1_5087540 crossref_citationtrail_10_1063_1_5087540 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20190300 2019-03-01 20190301 |
PublicationDateYYYYMMDD | 2019-03-01 |
PublicationDate_xml | – month: 03 year: 2019 text: 20190300 |
PublicationDecade | 2010 |
PublicationPlace | Melville |
PublicationPlace_xml | – name: Melville |
PublicationTitle | Physics of fluids (1994) |
PublicationYear | 2019 |
Publisher | American Institute of Physics |
Publisher_xml | – name: American Institute of Physics |
References | Sandham, Reynolds (c37) 1990; 28 Dimotakis, Brown (c3) 1976; 78 Pantano, Sarkar, Williams (c14) 2003; 481 Lele (c62) 1994; 26 Michalke (c36) 1965; 23 Wu, Moin (c23) 2009; 630 Dubief, Delcayre (c41) 2000; 1 Brown, Roshko (c2) 1974; 64 Samimy, Elliott (c26) 1990; 28 Goebel, Dutton, Krier, Renie (c51) 1990; 8 Debisschop, Chambres, Bonnet (c28) 1994; 9 Arms, Hama (c48) 1965; 8 Fu, Ma, Zhang (c13) 2000; 43 Iyer, Rajan (c35) 2015; 109 Urban, Mungal (c57) 2001; 431 Foss, Zaman (c20) 1999; 382 Harsha, Lee (c65) 1970; 8 Papamoschou, Roshko (c8) 1988; 197 Shu, Osher (c33) 1988; 77 Zhang, Tan, Li (c11) 2017; 111 Bradshaw, Ferriss (c66) 1971; 46 Chaudhuri, Hadjadj, Chinnayya, Palerm (c49) 2010; 47 Lu, Wu (c5) 1991; 3 Freund, Lele, Moin (c58) 2000; 421 Barre, Quine, Dussauge (c27) 1994; 259 Ren, Wang, Zheng (c7) 2018; 30 Watanabe, Mungal (c21) 2005; 522 Dolling (c47) 2001; 39 Herrin, Dutton (c63) 1997; 9 Zhou, He, Shen (c17) 2012; 711 Bell, Mehta (c4) 1990; 28 Zhang, Tan, Lv, Li (c32) Wang, Shi, Zhang (c24) 2013; 16 Reese, Weber (c6) 2016; 28 Olsen, Dutton (c56) 2003; 486 Zhang, Tan, Li, Hou (c50) 2018; 144 Sarkar (c59) 1995; 282 Pantano, Sarkar (c55) 2002; 451 Liu, Chen, Zhang, Lin (c25) 2018; 30 Jiang, Shu (c34) 1996; 126 Fu, Li (c43) 2006; 27 Zhang, Tan, Lv (c10) 2015; 117 Oster, Wygnanski (c53) 1982; 123 Guo, Borodulin, Kachanov, Wang (c54) 2010; 11 Tan, Zhang, Lv (c29) 2018; 152 Nygaard, Glezer (c19) 1991; 231 Takamure, Ito, Sakai, Iwano, Hayase (c60) 2018; 30 Bogdanoff (c9) 1983; 21 Goebel, Dutton (c30) 1991; 29 Zhang, Tan, Hou (c44) 2017; 110 Gruber, Messersmith, Dutton (c31) 1993; 31 Sabin (c39) 1965; 87 Sandham, Reynolds (c12) 1991; 224 Simon, Deck, Guillen, Sagaut, Merlen (c64) 2007; 591 Wang, Wang, Zhao (c22) 2016; 28 Mahle, Sesterhenn, Friedrich (c15) 2007; 8 Fang, Shen, Sun, Hu (c45) 2018; 30 Nagata, Watanabe, Nagata (c16) 2018; 30 Chen, Liu (c46) 2011; 40 (2023062822385646300_c51) 1990; 8 (2023062822385646300_c64) 2007; 591 (2023062822385646300_c66) 1971; 46 (2023062822385646300_c62) 1994; 26 (2023062822385646300_c12) 1991; 224 (2023062822385646300_c37) 1990; 28 (2023062822385646300_c48) 1965; 8 (2023062822385646300_c42) 2010 (2023062822385646300_c43) 2006; 27 (2023062822385646300_c27) 1994; 259 (2023062822385646300_c26) 1990; 28 (2023062822385646300_c9) 1983; 21 (2023062822385646300_c2) 1974; 64 (2023062822385646300_c54) 2010; 11 (2023062822385646300_c1) 1971 (2023062822385646300_c49) 2010; 47 (2023062822385646300_c14) 2003; 481 (2023062822385646300_c63) 1997; 9 (2023062822385646300_c57) 2001; 431 (2023062822385646300_c15) 2007; 8 (2023062822385646300_c39) 1965; 87 (2023062822385646300_c45) 2018; 30 (2023062822385646300_c4) 1990; 28 (2023062822385646300_c44) 2017; 110 2023062822385646300_c32 (2023062822385646300_c34) 1996; 126 (2023062822385646300_c10) 2015; 117 (2023062822385646300_c17) 2012; 711 (2023062822385646300_c24) 2013; 16 (2023062822385646300_c19) 1991; 231 (2023062822385646300_c20) 1999; 382 (2023062822385646300_c61) 2011 (2023062822385646300_c55) 2002; 451 (2023062822385646300_c36) 1965; 23 (2023062822385646300_c41) 2000; 1 (2023062822385646300_c53) 1982; 123 (2023062822385646300_c33) 1988; 77 (2023062822385646300_c5) 1991; 3 (2023062822385646300_c59) 1995; 282 (2023062822385646300_c47) 2001; 39 (2023062822385646300_c50) 2018; 144 (2023062822385646300_c31) 1993; 31 (2023062822385646300_c6) 2016; 28 (2023062822385646300_c28) 1994; 9 (2023062822385646300_c23) 2009; 630 (2023062822385646300_c22) 2016; 28 (2023062822385646300_c29) 2018; 152 (2023062822385646300_c21) 2005; 522 2023062822385646300_c52 (2023062822385646300_c60) 2018; 30 (2023062822385646300_c7) 2018; 30 (2023062822385646300_c56) 2003; 486 (2023062822385646300_c11) 2017; 111 (2023062822385646300_c30) 1991; 29 (2023062822385646300_c16) 2018; 30 (2023062822385646300_c35) 2015; 109 2023062822385646300_c18 (2023062822385646300_c46) 2011; 40 (2023062822385646300_c38) 1963 (2023062822385646300_c65) 1970; 8 (2023062822385646300_c13) 2000; 43 (2023062822385646300_c3) 1976; 78 (2023062822385646300_c40) 2011 (2023062822385646300_c58) 2000; 421 (2023062822385646300_c8) 1988; 197 (2023062822385646300_c25) 2018; 30 |
References_xml | – volume: 64 start-page: 775 year: 1974 ident: c2 article-title: On density effects and large structure in turbulent mixing layers publication-title: J. Fluid Mech. – volume: 21 start-page: 926 year: 1983 ident: c9 article-title: Compressibility effects in turbulent shear layers publication-title: AIAA J. – volume: 23 start-page: 521 year: 1965 ident: c36 article-title: On spatially growing disturbances in an inviscid shear layer publication-title: J. Fluid Mech. – volume: 77 start-page: 439 year: 1988 ident: c33 article-title: Efficient implementation of essentially non-oscillatory shock-capturing schemes publication-title: J. Comput. Phys. – volume: 144 start-page: 30 year: 2018 ident: c50 article-title: Detailed experimental investigations on flow behaviors and velocity field properties of a supersonic mixing layer publication-title: Acta Astronaut. – volume: 29 start-page: 538 year: 1991 ident: c30 article-title: Experimental study of compressible turbulent mixing layers publication-title: AIAA J. – volume: 126 start-page: 202 year: 1996 ident: c34 article-title: Efficient implementation of weighted ENO schemes publication-title: J. Comput. Phys. – volume: 30 start-page: 015109 year: 2018 ident: c60 article-title: Momentum transport process in the quasi self-similar region of free shear mixing layer publication-title: Phys. Fluids – volume: 47 start-page: 170 year: 2010 ident: c49 article-title: Numerical study of compressible mixing layers using high-order WENO schemes publication-title: J. Sci. Comput. – volume: 421 start-page: 229 year: 2000 ident: c58 article-title: Compressibility effects in a turbulent annular mixing layer. Part 1. Turbulence and growth rate publication-title: J. Fluid Mech. – volume: 282 start-page: 163 year: 1995 ident: c59 article-title: The stabilizing effect of compressibility in turbulent shear flow publication-title: J. Fluid Mech. – volume: 231 start-page: 257 year: 1991 ident: c19 article-title: Evolution of streamwise vortices and generation of small-scale motion in a plane mixing layer publication-title: J. Fluid Mech. – volume: 9 start-page: 147 year: 1994 ident: c28 article-title: Velocity field characteristics in supersonic mixing layers publication-title: Exp. Therm. Fluid Sci. – volume: 486 start-page: 51 year: 2003 ident: c56 article-title: Planar velocity measurements in a weakly compressible mixing layer publication-title: J. Fluid Mech. – volume: 78 start-page: 535 year: 1976 ident: c3 article-title: The mixing layer at high Reynolds numbers: Large structure dynamics and entrainment publication-title: J. Fluid Mech. – volume: 28 start-page: 439 year: 1990 ident: c26 article-title: Effects of compressibility on the characteristics of free shear layers publication-title: AIAA J. – volume: 87 start-page: 421 year: 1965 ident: c39 article-title: An analytical and experimental investigation of the plane, incompressible, turbulent free-shear layer with arbitrary velocity ratio and pressure gradient publication-title: Trans. ASME – volume: 8 start-page: 1508 year: 1970 ident: c65 article-title: Correlation between turbulent shear stress and turbulent kinetic energy publication-title: AIAA J. – volume: 30 start-page: 036101 year: 2018 ident: c7 article-title: Numerical analysis on interactions of vortex, shock wave, and exothermal reaction in a supersonic planar shear layer laden with droplets publication-title: Phys. Fluids – volume: 109 start-page: 113 year: 2015 ident: c35 article-title: Simulation of spatial high-speed mixing layers using LES publication-title: Comput. Fluids – volume: 16 start-page: 219 year: 2013 ident: c24 article-title: Visualization of large-scale structures in spatially developing compressible mixing layers publication-title: J. Visualization – volume: 30 start-page: 105109 year: 2018 ident: c16 article-title: Turbulent/non-turbulent interfaces in temporally evolving compressible planar jets publication-title: Phys. Fluids – volume: 481 start-page: 291 year: 2003 ident: c14 article-title: Mixing of a conserved scalar in a turbulent reacting shear layer publication-title: J. Fluid Mech. – volume: 197 start-page: 453 year: 1988 ident: c8 article-title: The compressible turbulent shear layer: An experimental study publication-title: J. Fluid Mech. – volume: 28 start-page: 116101 year: 2016 ident: c22 article-title: On the impact of adverse pressure gradient on the supersonic turbulent boundary layer publication-title: Phys. Fluids – volume: 8 start-page: 553 year: 1965 ident: c48 article-title: Localized-induction concept on a curved vortex and motion of an elliptic vortex ring publication-title: Phys. Fluids – volume: 451 start-page: 329 year: 2002 ident: c55 article-title: A study of compressibility effects in the high-speed turbulent shear layer using direct simulation publication-title: J. Fluid Mech. – volume: 111 start-page: 114103 year: 2017 ident: c11 article-title: Structural characteristics of supersonic mixing enhanced by introducing streamwise vortices publication-title: Appl. Phys. Lett. – volume: 39 start-page: 1517 year: 2001 ident: c47 article-title: Fifty years of shock-wave/boundary-layer interaction research: What next? publication-title: AIAA J. – volume: 30 start-page: 044102 year: 2018 ident: c25 article-title: Physical effects of magnetic fields on the Kelvin-Helmholtz instability in a free shear layer publication-title: Phys. Fluids – volume: 8 start-page: N1 year: 2007 ident: c15 article-title: Turbulent mixing in temporal compressible shear layers involving detailed diffusion processes publication-title: J. Turbul. – volume: 8 start-page: 263 year: 1990 ident: c51 article-title: Mean and turbulent velocity measurements of supersonic mixing layers publication-title: Exp. Fluids – volume: 152 start-page: 310 year: 2018 ident: c29 article-title: A review on enhanced mixing methods in supersonic mixing layer flows publication-title: Acta Astronaut. – volume: 28 start-page: 2034 year: 1990 ident: c4 article-title: Development of a two-stream mixing layer from tripped and untripped boundary layers publication-title: AIAA J. – volume: 1 start-page: N11 year: 2000 ident: c41 article-title: On coherent-vortex identification in turbulence publication-title: J. Turbul. – volume: 43 start-page: 421 year: 2000 ident: c13 article-title: Direct numerical simulation of transition and turbulence in compressible mixing layer publication-title: Sci. China, Ser. A: Math. – volume: 30 start-page: 116101 year: 2018 ident: c45 article-title: Effects of oblique shock waves on turbulent structures and statistics of supersonic mixing layers publication-title: Phys. Fluids – volume: 3 start-page: 3046 year: 1991 ident: c5 article-title: On the shock enhancement of confined supersonic mixing flows publication-title: Phys. Fluids – volume: 711 start-page: 437 year: 2012 ident: c17 article-title: Direct numerical simulation of a spatially developing compressible plane mixing layer: Flow structures and mean flow properties publication-title: J. Fluid Mech. – volume: 27 start-page: 895 year: 2006 ident: c43 article-title: Numerical simulation of compressible mixing layers publication-title: Int. J. Heat Fluid Flow – volume: 110 start-page: 124101 year: 2017 ident: c44 article-title: Structural and mixing characteristics influenced by streamwise vortices in supersonic flow publication-title: Appl. Phys. Lett. – volume: 31 start-page: 2061 year: 1993 ident: c31 article-title: Three-dimensional velocity field in a compressible mixing layer publication-title: AIAA J. – volume: 591 start-page: 215 year: 2007 ident: c64 article-title: Compressible mixing layer past an axisymmetric trailing edge publication-title: J. Fluid Mech. – volume: 28 start-page: 114102 year: 2016 ident: c6 article-title: Numerical investigation of 3D effects on a 2D-dominated shocked mixing layer publication-title: Phys. Fluids – volume: 26 start-page: 211 year: 1994 ident: c62 article-title: Compressibility effects on turbulence publication-title: Annu. Rev. Fluid Mech. – ident: c32 article-title: Characterization of flow mixing and structural topology in supersonic planar mixing layer publication-title: Acta Astronaut. – volume: 259 start-page: 47 year: 1994 ident: c27 article-title: Compressibility effects on the structure of supersonic mixing layers: Experimental results publication-title: J. Fluid Mech. – volume: 9 start-page: 3502 year: 1997 ident: c63 article-title: The turbulence structure of a reattaching axisymmetric compressible free shear layer publication-title: Phys. Fluids – volume: 123 start-page: 91 year: 1982 ident: c53 article-title: The forced mixing layer between parallel streams publication-title: J. Fluid Mech. – volume: 28 start-page: 618 year: 1990 ident: c37 article-title: Compressible mixing layer: Linear theory and direct simulation publication-title: AIAA J. – volume: 522 start-page: 141 year: 2005 ident: c21 article-title: Velocity fields in mixing-enhanced compressible shear layers publication-title: J. Fluid Mech. – volume: 117 start-page: 440 year: 2015 ident: c10 article-title: Investigation on flow and mixing characteristics of supersonic mixing layer induced by forced vibration of cantilever publication-title: Acta Astronaut. – volume: 11 start-page: N34 year: 2010 ident: c54 article-title: Nature of sweep and ejection events in transitional and turbulent boundary layers publication-title: J. Turbul. – volume: 40 start-page: 28 year: 2011 ident: c46 article-title: Numerical study on mechanisms of second sweep and positive spikes in transitional flow on a flat plate publication-title: Comput. Fluids – volume: 382 start-page: 307 year: 1999 ident: c20 article-title: Large- and small-scale vortical motions in a shear layer perturbed by tabs publication-title: J. Fluid Mech. – volume: 224 start-page: 133 year: 1991 ident: c12 article-title: Three dimensional simulations of large eddies in the compressible mixing layer publication-title: J. Fluid Mech. – volume: 46 start-page: 83 year: 1971 ident: c66 article-title: Calculation of boundary layer development using the turbulent energy equation: Compressible flow on adiabatic walls publication-title: J. Fluid Mech. – volume: 431 start-page: 189 year: 2001 ident: c57 article-title: Planar velocity measurements in compressible mixing layers publication-title: J. Fluid Mech. – volume: 630 start-page: 5 year: 2009 ident: c23 article-title: Direct numerical simulation of turbulence in a nominally zero-pressure-gradient flat-plate boundary layer publication-title: J. Fluid Mech. – volume: 282 start-page: 163 year: 1995 ident: 2023062822385646300_c59 article-title: The stabilizing effect of compressibility in turbulent shear flow publication-title: J. Fluid Mech. doi: 10.1017/s0022112095000085 – volume: 28 start-page: 2034 year: 1990 ident: 2023062822385646300_c4 article-title: Development of a two-stream mixing layer from tripped and untripped boundary layers publication-title: AIAA J. doi: 10.2514/3.10519 – volume: 522 start-page: 141 year: 2005 ident: 2023062822385646300_c21 article-title: Velocity fields in mixing-enhanced compressible shear layers publication-title: J. Fluid Mech. doi: 10.1017/s0022112004001727 – volume: 23 start-page: 521 year: 1965 ident: 2023062822385646300_c36 article-title: On spatially growing disturbances in an inviscid shear layer publication-title: J. Fluid Mech. doi: 10.1017/s0022112065001520 – volume: 46 start-page: 83 year: 1971 ident: 2023062822385646300_c66 article-title: Calculation of boundary layer development using the turbulent energy equation: Compressible flow on adiabatic walls publication-title: J. Fluid Mech. doi: 10.1017/s0022112071000417 – volume: 78 start-page: 535 year: 1976 ident: 2023062822385646300_c3 article-title: The mixing layer at high Reynolds numbers: Large structure dynamics and entrainment publication-title: J. Fluid Mech. doi: 10.1017/s0022112076002590 – volume: 28 start-page: 114102 issue: 11 year: 2016 ident: 2023062822385646300_c6 article-title: Numerical investigation of 3D effects on a 2D-dominated shocked mixing layer publication-title: Phys. Fluids doi: 10.1063/1.4966683 – volume: 39 start-page: 1517 year: 2001 ident: 2023062822385646300_c47 article-title: Fifty years of shock-wave/boundary-layer interaction research: What next? publication-title: AIAA J. doi: 10.2514/3.14896 – volume: 3 start-page: 3046 year: 1991 ident: 2023062822385646300_c5 article-title: On the shock enhancement of confined supersonic mixing flows publication-title: Phys. Fluids doi: 10.1063/1.857849 – volume: 40 start-page: 28 year: 2011 ident: 2023062822385646300_c46 article-title: Numerical study on mechanisms of second sweep and positive spikes in transitional flow on a flat plate publication-title: Comput. Fluids doi: 10.1016/j.compfluid.2010.07.016 – year: 2010 ident: 2023062822385646300_c42 article-title: Study of mechanism of ring-like vortex formation in late flow transition – volume: 481 start-page: 291 year: 2003 ident: 2023062822385646300_c14 article-title: Mixing of a conserved scalar in a turbulent reacting shear layer publication-title: J. Fluid Mech. doi: 10.1017/s0022112003003872 – volume: 486 start-page: 51 year: 2003 ident: 2023062822385646300_c56 article-title: Planar velocity measurements in a weakly compressible mixing layer publication-title: J. Fluid Mech. doi: 10.1017/s0022112003004403 – volume: 30 start-page: 116101 year: 2018 ident: 2023062822385646300_c45 article-title: Effects of oblique shock waves on turbulent structures and statistics of supersonic mixing layers publication-title: Phys. Fluids doi: 10.1063/1.5051015 – volume: 451 start-page: 329 year: 2002 ident: 2023062822385646300_c55 article-title: A study of compressibility effects in the high-speed turbulent shear layer using direct simulation publication-title: J. Fluid Mech. doi: 10.1017/s0022112001006978 – volume: 8 start-page: 263 year: 1990 ident: 2023062822385646300_c51 article-title: Mean and turbulent velocity measurements of supersonic mixing layers publication-title: Exp. Fluids doi: 10.1007/bf00187228 – volume: 1 start-page: N11 year: 2000 ident: 2023062822385646300_c41 article-title: On coherent-vortex identification in turbulence publication-title: J. Turbul. doi: 10.1088/1468-5248/1/1/011 – volume: 382 start-page: 307 year: 1999 ident: 2023062822385646300_c20 article-title: Large- and small-scale vortical motions in a shear layer perturbed by tabs publication-title: J. Fluid Mech. doi: 10.1017/s0022112098003887 – volume: 16 start-page: 219 year: 2013 ident: 2023062822385646300_c24 article-title: Visualization of large-scale structures in spatially developing compressible mixing layers publication-title: J. Visualization doi: 10.1007/s12650-013-0173-2 – volume: 9 start-page: 3502 year: 1997 ident: 2023062822385646300_c63 article-title: The turbulence structure of a reattaching axisymmetric compressible free shear layer publication-title: Phys. Fluids doi: 10.1063/1.869458 – volume: 64 start-page: 775 year: 1974 ident: 2023062822385646300_c2 article-title: On density effects and large structure in turbulent mixing layers publication-title: J. Fluid Mech. doi: 10.1017/s002211207400190x – volume: 8 start-page: N1 year: 2007 ident: 2023062822385646300_c15 article-title: Turbulent mixing in temporal compressible shear layers involving detailed diffusion processes publication-title: J. Turbul. doi: 10.1080/14685240600806256 – volume: 431 start-page: 189 year: 2001 ident: 2023062822385646300_c57 article-title: Planar velocity measurements in compressible mixing layers publication-title: J. Fluid Mech. doi: 10.1017/s0022112000003177 – volume: 43 start-page: 421 issue: 4 year: 2000 ident: 2023062822385646300_c13 article-title: Direct numerical simulation of transition and turbulence in compressible mixing layer publication-title: Sci. China, Ser. A: Math. doi: 10.1007/bf02897166 – volume: 111 start-page: 114103 year: 2017 ident: 2023062822385646300_c11 article-title: Structural characteristics of supersonic mixing enhanced by introducing streamwise vortices publication-title: Appl. Phys. Lett. doi: 10.1063/1.5002111 – volume: 224 start-page: 133 year: 1991 ident: 2023062822385646300_c12 article-title: Three dimensional simulations of large eddies in the compressible mixing layer publication-title: J. Fluid Mech. doi: 10.1017/s0022112091001684 – volume: 231 start-page: 257 year: 1991 ident: 2023062822385646300_c19 article-title: Evolution of streamwise vortices and generation of small-scale motion in a plane mixing layer publication-title: J. Fluid Mech. doi: 10.1017/s0022112091003397 – volume: 28 start-page: 439 year: 1990 ident: 2023062822385646300_c26 article-title: Effects of compressibility on the characteristics of free shear layers publication-title: AIAA J. doi: 10.2514/3.10412 – volume: 9 start-page: 147 year: 1994 ident: 2023062822385646300_c28 article-title: Velocity field characteristics in supersonic mixing layers publication-title: Exp. Therm. Fluid Sci. doi: 10.1016/0894-1777(94)90107-4 – volume: 8 start-page: 1508 year: 1970 ident: 2023062822385646300_c65 article-title: Correlation between turbulent shear stress and turbulent kinetic energy publication-title: AIAA J. doi: 10.2514/3.5932 – volume: 29 start-page: 538 year: 1991 ident: 2023062822385646300_c30 article-title: Experimental study of compressible turbulent mixing layers publication-title: AIAA J. doi: 10.2514/3.10617 – volume: 8 start-page: 553 year: 1965 ident: 2023062822385646300_c48 article-title: Localized-induction concept on a curved vortex and motion of an elliptic vortex ring publication-title: Phys. Fluids doi: 10.1063/1.1761268 – volume: 144 start-page: 30 year: 2018 ident: 2023062822385646300_c50 article-title: Detailed experimental investigations on flow behaviors and velocity field properties of a supersonic mixing layer publication-title: Acta Astronaut. doi: 10.1016/j.actaastro.2017.12.010 – volume-title: The Theory of Turbulent Jets year: 1963 ident: 2023062822385646300_c38 – volume: 30 start-page: 105109 year: 2018 ident: 2023062822385646300_c16 article-title: Turbulent/non-turbulent interfaces in temporally evolving compressible planar jets publication-title: Phys. Fluids doi: 10.1063/1.5047395 – volume: 197 start-page: 453 year: 1988 ident: 2023062822385646300_c8 article-title: The compressible turbulent shear layer: An experimental study publication-title: J. Fluid Mech. doi: 10.1017/s0022112088003325 – volume: 421 start-page: 229 year: 2000 ident: 2023062822385646300_c58 article-title: Compressibility effects in a turbulent annular mixing layer. Part 1. Turbulence and growth rate publication-title: J. Fluid Mech. doi: 10.1017/s0022112000001622 – volume: 47 start-page: 170 year: 2010 ident: 2023062822385646300_c49 article-title: Numerical study of compressible mixing layers using high-order WENO schemes publication-title: J. Sci. Comput. doi: 10.1007/s10915-010-9429-3 – volume: 110 start-page: 124101 year: 2017 ident: 2023062822385646300_c44 article-title: Structural and mixing characteristics influenced by streamwise vortices in supersonic flow publication-title: Appl. Phys. Lett. doi: 10.1063/1.4979054 – volume: 30 start-page: 015109 year: 2018 ident: 2023062822385646300_c60 article-title: Momentum transport process in the quasi self-similar region of free shear mixing layer publication-title: Phys. Fluids doi: 10.1063/1.5004500 – volume: 591 start-page: 215 year: 2007 ident: 2023062822385646300_c64 article-title: Compressible mixing layer past an axisymmetric trailing edge publication-title: J. Fluid Mech. doi: 10.1017/s0022112007008129 – year: 1971 ident: 2023062822385646300_c1 article-title: Statistical investigation of pressure and velocity fields in the turbulent two-stream mixing layer – volume: 30 start-page: 044102 year: 2018 ident: 2023062822385646300_c25 article-title: Physical effects of magnetic fields on the Kelvin-Helmholtz instability in a free shear layer publication-title: Phys. Fluids doi: 10.1063/1.5004473 – volume: 31 start-page: 2061 year: 1993 ident: 2023062822385646300_c31 article-title: Three-dimensional velocity field in a compressible mixing layer publication-title: AIAA J. doi: 10.2514/3.11891 – volume: 126 start-page: 202 year: 1996 ident: 2023062822385646300_c34 article-title: Efficient implementation of weighted ENO schemes publication-title: J. Comput. Phys. doi: 10.1006/jcph.1996.0130 – year: 2011 ident: 2023062822385646300_c40 article-title: Large eddy simulations of 2-D and 3-D spatially developing mixing layers – volume: 21 start-page: 926 year: 1983 ident: 2023062822385646300_c9 article-title: Compressibility effects in turbulent shear layers publication-title: AIAA J. doi: 10.2514/3.60135 – volume: 259 start-page: 47 year: 1994 ident: 2023062822385646300_c27 article-title: Compressibility effects on the structure of supersonic mixing layers: Experimental results publication-title: J. Fluid Mech. doi: 10.1017/s0022112094000030 – volume: 87 start-page: 421 year: 1965 ident: 2023062822385646300_c39 article-title: An analytical and experimental investigation of the plane, incompressible, turbulent free-shear layer with arbitrary velocity ratio and pressure gradient publication-title: Trans. ASME doi: 10.1115/1.3650566 – ident: 2023062822385646300_c32 article-title: Characterization of flow mixing and structural topology in supersonic planar mixing layer publication-title: Acta Astronaut. doi: 10.1016/j.actaastro.2018.11.018 – volume: 123 start-page: 91 year: 1982 ident: 2023062822385646300_c53 article-title: The forced mixing layer between parallel streams publication-title: J. Fluid Mech. doi: 10.1017/s0022112082002973 – volume: 26 start-page: 211 year: 1994 ident: 2023062822385646300_c62 article-title: Compressibility effects on turbulence publication-title: Annu. Rev. Fluid Mech. doi: 10.1146/annurev.fl.26.010194.001235 – ident: 2023062822385646300_c18 – volume: 109 start-page: 113 year: 2015 ident: 2023062822385646300_c35 article-title: Simulation of spatial high-speed mixing layers using LES publication-title: Comput. Fluids doi: 10.1016/j.compfluid.2014.11.026 – volume: 117 start-page: 440 year: 2015 ident: 2023062822385646300_c10 article-title: Investigation on flow and mixing characteristics of supersonic mixing layer induced by forced vibration of cantilever publication-title: Acta Astronaut. doi: 10.1016/j.actaastro.2015.09.001 – volume: 711 start-page: 437 year: 2012 ident: 2023062822385646300_c17 article-title: Direct numerical simulation of a spatially developing compressible plane mixing layer: Flow structures and mean flow properties publication-title: J. Fluid Mech. doi: 10.1017/jfm.2012.400 – volume: 28 start-page: 116101 issue: 11 year: 2016 ident: 2023062822385646300_c22 article-title: On the impact of adverse pressure gradient on the supersonic turbulent boundary layer publication-title: Phys. Fluids doi: 10.1063/1.4968527 – volume: 77 start-page: 439 year: 1988 ident: 2023062822385646300_c33 article-title: Efficient implementation of essentially non-oscillatory shock-capturing schemes publication-title: J. Comput. Phys. doi: 10.1016/0021-9991(88)90177-5 – volume: 27 start-page: 895 year: 2006 ident: 2023062822385646300_c43 article-title: Numerical simulation of compressible mixing layers publication-title: Int. J. Heat Fluid Flow doi: 10.1016/j.ijheatfluidflow.2006.03.028 – volume: 630 start-page: 5 year: 2009 ident: 2023062822385646300_c23 article-title: Direct numerical simulation of turbulence in a nominally zero-pressure-gradient flat-plate boundary layer publication-title: J. Fluid Mech. doi: 10.1017/s0022112009006624 – volume: 28 start-page: 618 year: 1990 ident: 2023062822385646300_c37 article-title: Compressible mixing layer: Linear theory and direct simulation publication-title: AIAA J. doi: 10.2514/3.10437 – ident: 2023062822385646300_c52 – volume: 11 start-page: N34 year: 2010 ident: 2023062822385646300_c54 article-title: Nature of sweep and ejection events in transitional and turbulent boundary layers publication-title: J. Turbul. doi: 10.1080/14685248.2010.498425 – volume: 30 start-page: 036101 issue: 3 year: 2018 ident: 2023062822385646300_c7 article-title: Numerical analysis on interactions of vortex, shock wave, and exothermal reaction in a supersonic planar shear layer laden with droplets publication-title: Phys. Fluids doi: 10.1063/1.5011708 – volume: 152 start-page: 310 year: 2018 ident: 2023062822385646300_c29 article-title: A review on enhanced mixing methods in supersonic mixing layer flows publication-title: Acta Astronaut. doi: 10.1016/j.actaastro.2018.08.036 – year: 2011 ident: 2023062822385646300_c61 article-title: Large-eddy simulation of supersonic, turbulent mixing layers downstream of a splitter plate |
SSID | ssj0003926 |
Score | 2.4929886 |
Snippet | Direct numerical simulation of a spatially developing supersonic mixing layer with a convective Mach number of 1.0 is conducted. The present work focuses on... |
SourceID | proquest crossref scitation |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Anisotropy Compressibility Computational fluid dynamics Computer simulation Control methods Direct numerical simulation Dynamic stability Ejection Evolution Flow control Flow stability Fluid dynamics Fluid flow Mach number Mathematical models Mixing layers (fluids) Momentum transfer Physics Self-similarity Turbulence Velocity distribution Vortices |
Title | Direct numerical simulation of spatially developing highly compressible mixing layer: Structural evolution and turbulent statistics |
URI | http://dx.doi.org/10.1063/1.5087540 https://www.proquest.com/docview/2190772899 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagFYILjwKiUNAIOCBVKUnsPMytoqAKUS5tpb1Fju2gSGlSsbsVcOWPM37ECdIKFS7RyutNtPm-jL-ZzIwJec1TxQupC_RNtIpYJnVUx1kdiViJRuD6rO0b05Mv-fE5-7TIFuMe7r66ZFUfyJ8b60r-B1UcQ1xNlew_IBtOigP4GfHFIyKMx2th7OzVfr92r126_WV74bfjMiJwabKlRdf9mJdGmf7EOGJSyW0KrKmcumi_m686gfrbhAhObVNZ25BDX_l_4FIt1wiCWadMCGLlejzP5a3NJ5U2O6Tp1q1yfaA4Z7OAQwhRHw39VzX4ldMGD1ydSGtCqEMwR8IGcxetGOYRClMUNaZoeaOKZiVCZeOGtB8reVTkbseV0RLTZMY4utHAo6IysYaDzHTiZ_FNsp2if4AGbvvw6OTzaViEUfblLt3UXXpsKpXTt-HHf0qRyb-4jeLD5UHMpMbZfXLX-whw6AB_QG7ofofc8_4CeGu83CG3_O1-SH45JkBgAkxMgKGBwASYmACOCTBnAjgmgGXCO5h4AIEHgDyAwAOYePCInH_8cPb-OPLba0SScrqKqCo0ivkSJayKNdP4XEqp6qyI00ZIpfO0KUUpFE9Uncg8KRtU57xGh0BlmklNH5Otfuj1EwJxTdGN4PhDRVnBZClpKiVCIJpcU8Z3yZvxTlfjvTVboHSVzYHIaZVUHpRd8jJMvXQNVzZN2hvhqvzzuKxw7Y2RCyXHy70KEP7tJBtmXQ3fphnVpWqeXutcz8idifl7ZAvh0c9Rra7qF56ZvwHkzJuW |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Direct+numerical+simulation+of+spatially+developing+highly+compressible+mixing+layer%3A+Structural+evolution+and+turbulent+statistics&rft.jtitle=Physics+of+fluids+%281994%29&rft.au=Zhang%2C+Dongdong&rft.au=Tan%2C+Jianguo&rft.au=Yao%2C+Xiao&rft.date=2019-03-01&rft.issn=1070-6631&rft.eissn=1089-7666&rft.volume=31&rft.issue=3&rft_id=info:doi/10.1063%2F1.5087540 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1070-6631&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1070-6631&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1070-6631&client=summon |