Can conservation agriculture increase soil carbon sequestration? A modelling approach

[Display omitted] •SOC changes were simulated in three sites with contrasting soils and climates.•Conventional tillage (Conv − R and Conv + R) led to SOC decline in all sites.•No-tillage (NT) could slightly increase the annual SOC in all sites.•C sequestration rate of 0.4% yr−1 is achievable under c...

Full description

Saved in:
Bibliographic Details
Published inGeoderma Vol. 369; p. 114298
Main Authors Valkama, Elena, Kunypiyaeva, Gulya, Zhapayev, Rauan, Karabayev, Muratbek, Zhusupbekov, Erbol, Perego, Alessia, Schillaci, Calogero, Sacco, Dario, Moretti, Barbara, Grignani, Carlo, Acutis, Marco
Format Journal Article
LanguageEnglish
Published Elsevier B.V 15.06.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] •SOC changes were simulated in three sites with contrasting soils and climates.•Conventional tillage (Conv − R and Conv + R) led to SOC decline in all sites.•No-tillage (NT) could slightly increase the annual SOC in all sites.•C sequestration rate of 0.4% yr−1 is achievable under conservation agriculture (CA)•Cover crops (in CA + CC) would allow a higher annual sequestration rate. Conservation agriculture (CA) involves complex and interactive processes that ultimately determine soil carbon (C) storage, making it difficult to identify clear patterns. To solve these problems, we used the ARMOSA process-based crop model to simulate the contribution of different CA components (minimum soil disturbance, permanent soil cover with crop residues and/or cover crops, and diversification of plant species) to soil organic carbon stock (SOC) sequestration at 0–30 cm soil depth and to compare it with SOC evolution under conventional agricultural practices. We simulated SOC changes in three sites located in Central Asia (Almalybak, Kazakhstan), Northern Europe (Jokioinen, Finland) and Southern Europe (Lombriasco, Italy), which have contrasting soils, organic carbon contents, climates, crops and management intensity. Simulations were carried out for the current climate conditions (1998–2017) and future climatic scenario (period 2020–2040, scenario Representative Concentration Pathway RCP 6.0). Five cropping systems were simulated: conventional systems under ploughing with monoculture and residues removed (Conv − R) or residues retained (Conv + R); no-tillage (NT); CA and CA with a cover crop, Italian ryegrass (CA + CC). In Conv − R, Conv + R and NT, the simulated monocultures were spring barley in Almalybak and Jokioinen, and maize in Lombriasco. In all sites, conventional systems led to SOC decline of 170–1000 kg ha−1 yr−1, whereas NT can slightly increase the SOC. CA and CA + CC have the potential for a C sequestration rate of 0.4% yr−1 or higher in Almalybak and Jokioinen, and thus, the objective of the “4 per 1000” initiative can be achieved. Cover crops (in CA + CC) have a potential for a C sequestration rate of 0.36–0.5% yr−1 in Southern Finland and in Southern Kazakhstan under the current climate conditions, and their role will grow in importance in the future. Even if in Lombriasco it was not possible to meet the “4 per 1000”, there was a SOC increase under CA and CA + CC. In conclusion, the simultaneous adoption of all the three CA principles becomes more and more relevant in order to accomplish soil C sequestration as an urgent action to combat climate change and to ensure food security.
AbstractList Conservation agriculture (CA) involves complex and interactive processes that ultimately determine soil carbon (C) storage, making it difficult to identify clear patterns. To solve these problems, we used the ARMOSA process-based crop model to simulate the contribution of different CA components (minimum soil disturbance, permanent soil cover with crop residues and/or cover crops, and diversification of plant species) to soil organic carbon stock (SOC) sequestration at 0–30 cm soil depth and to compare it with SOC evolution under conventional agricultural practices. We simulated SOC changes in three sites located in Central Asia (Almalybak, Kazakhstan), Northern Europe (Jokioinen, Finland) and Southern Europe (Lombriasco, Italy), which have contrasting soils, organic carbon contents, climates, crops and management intensity. Simulations were carried out for the current climate conditions (1998–2017) and future climatic scenario (period 2020–2040, scenario Representative Concentration Pathway RCP 6.0).Five cropping systems were simulated: conventional systems under ploughing with monoculture and residues removed (Conv − R) or residues retained (Conv + R); no-tillage (NT); CA and CA with a cover crop, Italian ryegrass (CA + CC). In Conv − R, Conv + R and NT, the simulated monocultures were spring barley in Almalybak and Jokioinen, and maize in Lombriasco. In all sites, conventional systems led to SOC decline of 170–1000 kg ha⁻¹ yr⁻¹, whereas NT can slightly increase the SOC. CA and CA + CC have the potential for a C sequestration rate of 0.4% yr⁻¹ or higher in Almalybak and Jokioinen, and thus, the objective of the “4 per 1000” initiative can be achieved. Cover crops (in CA + CC) have a potential for a C sequestration rate of 0.36–0.5% yr⁻¹ in Southern Finland and in Southern Kazakhstan under the current climate conditions, and their role will grow in importance in the future. Even if in Lombriasco it was not possible to meet the “4 per 1000”, there was a SOC increase under CA and CA + CC. In conclusion, the simultaneous adoption of all the three CA principles becomes more and more relevant in order to accomplish soil C sequestration as an urgent action to combat climate change and to ensure food security.
[Display omitted] •SOC changes were simulated in three sites with contrasting soils and climates.•Conventional tillage (Conv − R and Conv + R) led to SOC decline in all sites.•No-tillage (NT) could slightly increase the annual SOC in all sites.•C sequestration rate of 0.4% yr−1 is achievable under conservation agriculture (CA)•Cover crops (in CA + CC) would allow a higher annual sequestration rate. Conservation agriculture (CA) involves complex and interactive processes that ultimately determine soil carbon (C) storage, making it difficult to identify clear patterns. To solve these problems, we used the ARMOSA process-based crop model to simulate the contribution of different CA components (minimum soil disturbance, permanent soil cover with crop residues and/or cover crops, and diversification of plant species) to soil organic carbon stock (SOC) sequestration at 0–30 cm soil depth and to compare it with SOC evolution under conventional agricultural practices. We simulated SOC changes in three sites located in Central Asia (Almalybak, Kazakhstan), Northern Europe (Jokioinen, Finland) and Southern Europe (Lombriasco, Italy), which have contrasting soils, organic carbon contents, climates, crops and management intensity. Simulations were carried out for the current climate conditions (1998–2017) and future climatic scenario (period 2020–2040, scenario Representative Concentration Pathway RCP 6.0). Five cropping systems were simulated: conventional systems under ploughing with monoculture and residues removed (Conv − R) or residues retained (Conv + R); no-tillage (NT); CA and CA with a cover crop, Italian ryegrass (CA + CC). In Conv − R, Conv + R and NT, the simulated monocultures were spring barley in Almalybak and Jokioinen, and maize in Lombriasco. In all sites, conventional systems led to SOC decline of 170–1000 kg ha−1 yr−1, whereas NT can slightly increase the SOC. CA and CA + CC have the potential for a C sequestration rate of 0.4% yr−1 or higher in Almalybak and Jokioinen, and thus, the objective of the “4 per 1000” initiative can be achieved. Cover crops (in CA + CC) have a potential for a C sequestration rate of 0.36–0.5% yr−1 in Southern Finland and in Southern Kazakhstan under the current climate conditions, and their role will grow in importance in the future. Even if in Lombriasco it was not possible to meet the “4 per 1000”, there was a SOC increase under CA and CA + CC. In conclusion, the simultaneous adoption of all the three CA principles becomes more and more relevant in order to accomplish soil C sequestration as an urgent action to combat climate change and to ensure food security.
ArticleNumber 114298
Author Schillaci, Calogero
Grignani, Carlo
Kunypiyaeva, Gulya
Perego, Alessia
Valkama, Elena
Zhapayev, Rauan
Zhusupbekov, Erbol
Karabayev, Muratbek
Acutis, Marco
Sacco, Dario
Moretti, Barbara
Author_xml – sequence: 1
  givenname: Elena
  surname: Valkama
  fullname: Valkama, Elena
  organization: Natural Resources Institute Finland (Luke), Bioeconomy and Environment, Finland
– sequence: 2
  givenname: Gulya
  surname: Kunypiyaeva
  fullname: Kunypiyaeva, Gulya
  organization: CIMMYT-Kazakhstan, Kazakhstan
– sequence: 3
  givenname: Rauan
  surname: Zhapayev
  fullname: Zhapayev, Rauan
  organization: Kazakh Research Institute of Agriculture and Plant Growing, Kazakhstan
– sequence: 4
  givenname: Muratbek
  surname: Karabayev
  fullname: Karabayev, Muratbek
  organization: CIMMYT-Kazakhstan, Kazakhstan
– sequence: 5
  givenname: Erbol
  surname: Zhusupbekov
  fullname: Zhusupbekov, Erbol
  organization: Kazakh Research Institute of Agriculture and Plant Growing, Kazakhstan
– sequence: 6
  givenname: Alessia
  surname: Perego
  fullname: Perego, Alessia
  organization: Department of Agricultural and Environmental Sciences – Production, Landscape, Agroenergy, University of Milan, Italy
– sequence: 7
  givenname: Calogero
  surname: Schillaci
  fullname: Schillaci, Calogero
  organization: Department of Agricultural and Environmental Sciences – Production, Landscape, Agroenergy, University of Milan, Italy
– sequence: 8
  givenname: Dario
  surname: Sacco
  fullname: Sacco, Dario
  organization: Environmental Agronomy, Department of Agricultural, Forest and Food Sciences, University of Turin, Italy
– sequence: 9
  givenname: Barbara
  surname: Moretti
  fullname: Moretti, Barbara
  organization: Environmental Agronomy, Department of Agricultural, Forest and Food Sciences, University of Turin, Italy
– sequence: 10
  givenname: Carlo
  surname: Grignani
  fullname: Grignani, Carlo
  organization: Environmental Agronomy, Department of Agricultural, Forest and Food Sciences, University of Turin, Italy
– sequence: 11
  givenname: Marco
  surname: Acutis
  fullname: Acutis, Marco
  email: marco.acutis@unimi.it
  organization: Department of Agricultural and Environmental Sciences – Production, Landscape, Agroenergy, University of Milan, Italy
BookMark eNqFkE1LAzEQhoNUsFb_guzRy9Z8dJNdELQUv6DgxZ7DbHa2pmyTmmwL_nvTVi9eehoyPO_M5LkkA-cdEnLD6JhRJu9W4yX6BsMaxpzy1GQTXpVnZMhKxXPJi2pAhjSRuaKSXZDLGFfpqRI7JIsZuMx4FzHsoLfeZbAM1my7fhsws84EhIhZ9LbLDIQ6ARG_thj7cMAfsmm2Ttu7zrplBptN8GA-r8h5C13E6986Iovnp4_Zaz5_f3mbTee5EZXoc9GoCgsBUDeqlpTzCQhD5QRMy4qWt6ZWAGiUaCvZirZoJqqhJS-hUKyStRQjcnucm9YejtJrG006Bhz6bdRclKUqBGM8ofKImuBjDNjqTbBrCN-aUb33qFf6z6Pee9RHjyl4_y9obH_4e1Jgu9Pxx2Mck4edxaCjsegMNjag6XXj7akRP-Z0lvg
CitedBy_id crossref_primary_10_1016_j_apsoil_2023_105088
crossref_primary_10_1016_j_csag_2024_100037
crossref_primary_10_1016_j_ccst_2022_100065
crossref_primary_10_1016_j_still_2020_104818
crossref_primary_10_1080_01904167_2024_2424322
crossref_primary_10_3390_agronomy14081768
crossref_primary_10_3390_plants12142742
crossref_primary_10_1007_s11119_024_10153_w
crossref_primary_10_3390_su16187907
crossref_primary_10_1016_j_envsoft_2023_105932
crossref_primary_10_1016_j_geoderma_2020_114891
crossref_primary_10_1016_j_jrurstud_2024_103329
crossref_primary_10_1016_j_ijagro_2025_100037
crossref_primary_10_1002_ldr_5114
crossref_primary_10_1016_j_catena_2022_106089
crossref_primary_10_3390_agronomy14010164
crossref_primary_10_3390_su16041612
crossref_primary_10_3390_su13179857
crossref_primary_10_1016_j_still_2023_105916
crossref_primary_10_1016_j_ecolmodel_2023_110327
crossref_primary_10_1007_s13593_024_00961_9
crossref_primary_10_1016_j_soisec_2020_100002
crossref_primary_10_1088_1748_9326_ad0517
crossref_primary_10_3390_agronomy10070973
crossref_primary_10_3390_soilsystems7040082
crossref_primary_10_1016_j_catena_2022_106708
crossref_primary_10_3390_agronomy11020226
crossref_primary_10_3390_su16052027
crossref_primary_10_1007_s10661_023_11673_0
crossref_primary_10_1016_j_agee_2023_108677
crossref_primary_10_4081_ija_2021_1781
crossref_primary_10_1016_j_still_2021_104940
crossref_primary_10_1016_j_still_2023_105863
crossref_primary_10_1007_s13593_022_00818_z
crossref_primary_10_3389_fenvs_2022_826786
crossref_primary_10_18016_ksutarimdoga_vi_1428787
crossref_primary_10_1016_j_scitotenv_2021_146609
crossref_primary_10_3390_agriculture11010039
crossref_primary_10_3390_agronomy12020331
crossref_primary_10_1002_ecs2_4985
crossref_primary_10_3390_agriculture13030683
crossref_primary_10_1002_ldr_5021
crossref_primary_10_3390_su12239808
crossref_primary_10_1016_j_scitotenv_2021_148169
crossref_primary_10_1111_sum_13050
crossref_primary_10_1016_j_scitotenv_2020_143116
crossref_primary_10_1016_j_soilbio_2022_108551
crossref_primary_10_1088_2515_7620_ad9436
crossref_primary_10_3390_agronomy13071721
crossref_primary_10_3390_ijerph19106200
crossref_primary_10_1016_j_agsy_2024_103870
crossref_primary_10_3390_agronomy12092011
crossref_primary_10_1007_s11104_022_05626_8
crossref_primary_10_1007_s40333_022_0095_8
crossref_primary_10_3390_agronomy11050882
crossref_primary_10_3390_land12061215
crossref_primary_10_17221_291_2023_PSE
crossref_primary_10_1016_j_scitotenv_2021_149220
crossref_primary_10_1080_03650340_2022_2068795
crossref_primary_10_3389_fsufs_2023_904570
crossref_primary_10_1016_j_scitotenv_2022_155443
crossref_primary_10_3390_su16030953
crossref_primary_10_1002_ldr_4954
crossref_primary_10_1016_j_geoderma_2021_115355
crossref_primary_10_1016_j_still_2024_106315
crossref_primary_10_3390_su13148059
crossref_primary_10_1002_agj2_21279
crossref_primary_10_1080_17538947_2021_1953161
crossref_primary_10_3390_rs14164064
crossref_primary_10_1016_j_still_2023_105849
crossref_primary_10_1016_j_jenvman_2024_122882
crossref_primary_10_3390_soilsystems6040087
Cites_doi 10.1016/S0022-1694(00)00393-0
10.1016/j.agee.2011.12.010
10.1016/j.agee.2016.01.047
10.1016/S0167-1987(99)00074-4
10.1016/0022-1694(70)90255-6
10.1080/00207233.2018.1494927
10.1016/j.eja.2019.125948
10.1002/ldr.1055
10.1890/13-0616.1
10.1016/j.cj.2014.06.006
10.1186/s13750-016-0079-2
10.1111/sum.12030
10.1002/joc.3711
10.1016/j.agsy.2018.06.018
10.1007/s13593-014-0271-0
10.1016/j.agee.2016.11.007
10.1016/j.energy.2011.03.075
10.1080/07352680902776358
10.1111/gcb.12137
10.1016/S0167-1987(02)00027-2
10.2134/agronj2016.12.0735
10.5194/essd-7-349-2015
10.1016/j.still.2019.04.020
10.1016/j.geoderma.2017.01.002
10.1175/1520-0477(1981)062<0599:JAQMP>2.0.CO;2
10.1016/j.agsy.2018.10.008
10.1016/j.agrformet.2012.11.017
10.1016/j.eja.2016.11.009
10.1016/j.scitotenv.2017.11.116
10.1016/j.agee.2010.08.006
10.1023/A:1009766510274
10.1016/j.agee.2016.07.008
10.1016/j.eja.2016.06.006
10.1111/j.1365-2389.1996.tb01386.x
10.13031/2013.23153
10.1016/j.agee.2014.10.024
10.1038/nclimate2292
10.1016/j.agee.2016.01.005
10.2136/vzj2007.0060
10.1016/0167-8809(87)90099-5
10.1016/j.still.2011.05.001
10.2136/sssaj2012.0221
10.1016/0168-1923(84)90017-0
10.1016/j.scitotenv.2014.07.002
10.1017/S0021859600081089
10.1016/j.agee.2013.10.010
10.17951/pjss.2015.48.1.47
10.2134/agronj2002.1222
10.2489/jswc.71.1.20A
10.1186/s40100-019-0126-8
10.1007/978-3-319-11620-4_22
10.1016/j.still.2015.01.015
10.1016/j.geoderma.2018.05.037
10.2136/sssaj2010.0430
10.1093/comjnl/7.4.308
10.1016/j.agee.2016.07.022
10.1016/j.ecolmodel.2016.02.013
10.1016/j.still.2015.05.006
10.3354/cr01322
10.1007/s00704-015-1650-4
10.1016/j.envsoft.2015.08.017
10.1016/j.energy.2017.01.069
10.1016/j.envpol.2018.07.068
10.2136/sssaj2002.1930
10.1016/0378-4290(87)90087-6
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright_xml – notice: 2020 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.geoderma.2020.114298
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1872-6259
ExternalDocumentID 10_1016_j_geoderma_2020_114298
S0016706119324668
GeographicLocations Italy
Northern European region
Kazakhstan
Finland
Southern European region
GeographicLocations_xml – name: Finland
– name: Southern European region
– name: Northern European region
– name: Kazakhstan
– name: Italy
GroupedDBID --K
--M
-DZ
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATLK
AAXUO
ABFRF
ABGRD
ABJNI
ABMAC
ABQEM
ABQYD
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADQTV
AEBSH
AEFWE
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BKOJK
BLXMC
CBWCG
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IMUCA
J1W
KOM
LW9
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SAB
SDF
SDG
SES
SPC
SPCBC
SSA
SSE
SSZ
T5K
~02
~G-
29H
AAHBH
AALCJ
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEGFY
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
GROUPED_DOAJ
HLV
HMA
HMC
HVGLF
HZ~
H~9
K-O
OHT
R2-
RIG
SEN
SEP
SEW
SSH
VH1
WUQ
XPP
Y6R
ZMT
7S9
L.6
ID FETCH-LOGICAL-c393t-3d79e53aabd7b60224a3c064acf15f2fcb7aaec73f96f3f5d47d0828a57196b63
IEDL.DBID .~1
ISSN 0016-7061
IngestDate Thu Jul 10 17:36:14 EDT 2025
Thu Apr 24 23:05:46 EDT 2025
Tue Jul 01 04:04:52 EDT 2025
Fri Feb 23 02:50:26 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Conservation agriculture
Climate change
Crop diversification
Soil tillage
Cover crops
ARMOSA model
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c393t-3d79e53aabd7b60224a3c064acf15f2fcb7aaec73f96f3f5d47d0828a57196b63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0016706119324668
PQID 2388753112
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2388753112
crossref_primary_10_1016_j_geoderma_2020_114298
crossref_citationtrail_10_1016_j_geoderma_2020_114298
elsevier_sciencedirect_doi_10_1016_j_geoderma_2020_114298
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-06-15
PublicationDateYYYYMMDD 2020-06-15
PublicationDate_xml – month: 06
  year: 2020
  text: 2020-06-15
  day: 15
PublicationDecade 2020
PublicationTitle Geoderma
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Sheehy, Regina, Alakukku, Six (b0355) 2015; 150
Moriasi, Arnold, Van Liew, Bingner, Harmel, Veith (b0250) 2007; 50
FAO, 2017. Conservation Agriculture. FAO, 2p. http://www.fao.org/documents/card/en/c/981ab2a0-f3c6-4de3-a058-f0df6658e69f/.
Nash, Sutcliffe (b0260) 1970; 10
Potma Gonçalves, de Moraes Sá, Mishra, Ferreira Furlan, Ferreira, Inagaki, Romaniw, de Oliveira Ferreira, Briedis (b0315) 2018; 243
Strullu, Beaudoin, Thiébeau, Julier, Mary, Ruget, Ripoche, Rakotovololona, Louarn (b0375) 2020; 112
Karabayev, Morgounov, Braun, Wall, Sayre, Zelenskiy, Zhapayev, Akhmetova, Dvurechenskii, Iskandarova, Friedrich, Fileccia, Guadagni (b0195) 2014; 4
Sinclair, Muchow, Ludlow, Leach, Lawn, Foale (b0360) 1987; 17
Groenendijk, Heinen, Klammler, Fank, Kupfersberger, Pisinaras, Gemitzi, PeñaHarod, García-Prats, Pulido-Velazquez, Perego, Acutis, Trevisan (b0150) 2014; 499
Harris, Jones, Osborn, Lister (b0165) 2014; 34
Perego, Rocca, Cattivelli, Tabaglio, Fiorini, Barbieri, Schillaci, Chiodini, Brenna, Acutis (b0285) 2019; 168
Barančíková, Makovníková (b0055) 2016; 48
Batjes (b0065) 1996; 47
Pisante, Stagnari, Grant (b0305) 2012; 7
Poeplau, Don (b0310) 2015; 200
Du, Angers, Ren, Zhang, Li (b0115) 2017; 236
Lal (b0215) 2016; 71
Le Quéré, Moriarty, Andrew, Canadell, Sitch, Korsbakken, Friedlingstein, Peters, Andres, Boden, Houghton, House, Keeling, Tans, Arneth, Bakker, Barbero, Bopp, Chang, Chevallier, Chini, Ciais, Fader, Feely, Gkritzalis, Harris, Hauck, Ilyina, Jain, Kato, Kitidis, Klein Goldewijk, Koven, Landschützer, Lauvset, Lefèvre, Lenton, Lima, Metzl, Millero, Munro, Murata, Nabel, Nakaoka, Nojiri, O’Brien, Olsen, Ono, Pérez, Pfeil, Pierrot, Poulter, Rehder, Rödenbeck, Saito, Schuster, Schwinger, Séférian, Steinhoff, Stocker, Sutton, Takahashi, Tilbrook, van der Laan-Luijkx, van der Werf, van Heuven, Vandemark, Viovy, Wiltshire, Zaehle, Zeng (b0220) 2015; 7
Minasny, Malone, McBratney, Angers, Arrouays, Chambers, Chaplot, Chen, Cheng, Das, Field, Gimona, Hedley, Hong, Mandal, Marchant, Martin, McConkey, Mulder, O'Rourke, Richer-de-ForgesInakwu, Odeh, Padarian, Paustian, Pan, Poggio, Savin, Stolbovoy, Stockmann, Sulaeman, Tsui, Vågen, van Wesemael, Winowiecki (b0245) 2017; 292
Acutis, Confalonieri (b0010) 2006; 11–3
Autret, Mary, Chenu, Balabane, Girardin, Bertrand, Grandeau, Beaudoin (b0040) 2016; 232
Ogle, Swan, Paustian (b0270) 2012; 149
Bellocchi, Acutis, Fila, Donatelli (b0070) 2002; 94
Fox (b0130) 1981; 62
McDaniel, Tiemann, Grandy (b0240) 2014; 24
Barbera, Poma, Gristina, Novara, Egli (b0060) 2012; 23
Duveiller, Donatelli, Fumagalli, Zucchini, Nelson, Baruth (b0120) 2017; 127
Powlson, Stirling, Thierfelder, White, Jat (b0325) 2016; 220
Kabiri, Raiesi, Ghazavi (b0190) 2016; 232
Palm, Blanco-Canqui, DeClerck, Gatere, Grace (b0275) 2014; 187
Stöckle, C.O., Nelson, R., Donatelli, M., Castellvì, F., 2001. ClimGen: a flexible weather generation program. 2nd Int. Symp. Model. Crop. Syst., 16-18 July, Florence, Italy.
Sanna, Bellocchi, Fumagalli, Acutis (b0350) 2015; 73
Kibet, Blanco-Canqui, Jasa (b0205) 2016; 155
Laflen, Elliot, Flanagan, Meyer, Nearing (b0210) 1997; 52
Ball, Scott, Parker (b0050) 1999; 53
Franzluebbers (b0135) 2002; 66
Rádics, Jóri, Fenyvesi (b0330) 2014; 4
Heikkinen, Ketoja, Nuutinen, Regina (b0170) 2013; 19
Pirttioja, Carter, Fronzek, Bindi, Hoffmann, Palosuo, Ruiz-Ramos, Tao, Trnka, Acutis, Asseng, Baranowski, Basso, Bodin, Buis, Cammarano, Deligios, Destain, Dumont, Ewert, Ferrise, François, Gaiser, Hlavinka, Jacquemin, Kersebaum, Kollas, Krzyszczak, Lorite, Minet, Minguez, Montesino, Moriondo, Müller, Nendel, Öztürk, Perego, Rodríguez, Ruane, Ruget, Sanna, Semenov, Slawinski, Stratonovitch, Supit, Waha, Wang, Wu, Zhao, Rötter (b0295) 2015; 65
Zhang, Li, Gregorich, McLaughlin, Zhang, Guo, Liang, Fan, Sun (b0395) 2018; 330
Luo, Wang, Sun (b0225) 2010; 139
Ruis, Blanco-Canqui (b0340) 2017; 109
Zheng, Jiang, Chen, Sun, Feng, Deng, Song, Zhang (b0405) 2014; 2
Stajnko, Lakota, Vučajnk, Bernik (b0365) 2009; 18
Christensen, B.O., Drews, M., Hesselbjerg Christensen, J., Dethloff, K., Ketelsen, K., Hebestadt, I., Rinke, A., 2007. The HIRHAM Regional Climate Model. Version 5 (beta). Danish Climate Centre, Danish Meteorological Institute. Denmark. Danish Meteorological Institute. Technical Report, No. 06-17.
Anonymous, 1992. Soils. Methods for determination of organic matter. GOST 26213-91. State Committee for Standardization and Metrology of the USSA. Moscow, p.8 http://docs.cntd.ru/document/1200023481 (In Russian).
Pisante M., Stagnari F., Acutis M., Bindi M. Brilli L., Di Stefano V., Carozzi M., 2015. Conservation Agriculture and Climate Change, in.:Farooq, M., Siddique, K.H.M. (Eds.), Conservation Agriculture. Springer, Cham, pp. 579-620. DOI 10.1007/978-3-319-11620-4_22.
Bristow, Campbell (b0085) 1984; 31
Kassam, Friedrich, Derpsch (b0200) 2019; 76
Nelder, Mead (b0265) 1965; 7
Allen R.G., Pereira L.S., Raes D., Smith, M.,1998. Crop Evapotranspiration: Guidelines for computing crop water requirements. Irrigation and Drainage Paper 56, Food and Agriculture Organization of the United Nations, Rome, 300 p.
Alluvione, Moretti, Sacco, Grignani (b0025) 2011; 36
Mazzoncini, Sapkota, Bàrberi, Antichi, Risalit (b0235) 2011; 114
Badagliacca, Benítez, Amato, Badalucco, Giambalvo, Laudicina, Ruisi (b0045) 2018; 619–620
Reicosky (b0335) 1997; 49
ISTAT, 2011, Istat (Italian Statistic Board). 6° Censimento dell’agricoltura – 6th Agriculture Census. Istat, Rome Italy (2011).
Muhammad, Sainju, Zhao, Khan, Ghimire, Fu, Wang (b0255) 2019; 192
Confalonieri, Bregaglio, Acutis (b0095) 2016; 328
Powlson, D.S., Stirling, C,M., Jat, M.L., Gerard, B.G., Palm, C.A., Sanchez, P.A., Cassman, K.G., 2014. Limited potential of no-till agriculture for climate change mitigation. Nat. Clim. Change 4, 678–683. doi: 10.1038/nclimate2292.
Haddaway, Hedlund, Jackson, Kätterer, Lugato, Thomsen, Jørgensen, Isberg (b0160) 2017; 6
Perrin, Michel, Andréassian (b0290) 2001; 242
West, Post (b0385) 2002; 66
Blanco-Canqui, Mikha, Presley, Claassen (b0080) 2011; 75
Bellocchi, Rivington, Matthews, Acutis (b0075) 2015; 35
Johnsson, Bergstrom, Jansson, Paustian (b0185) 1987; 18
Abdalla, Osborne, Lanigan, Forristal, Williams, Smith, Jones (b0005) 2013; 29
Zhao, Liu, Pu, Zhang, Xue, Ren, Zhao, Chen, Lal, Zhang (b0400) 2017; 84
Yli-Viikari, A. (Ed.). 2019. Maaseutuohjelman (2014–2020) ympäristöarviointi. Luonnonvara- ja biotalouden tutkimus 63/2019. Luonnonvarakeskus, Helsinki (In Finnish with English abstract). https://jukuri.luke.fi/handle/10024/544713.
Dalzell, Johnson, Tallaksen, Allan, Barbour (b0105) 2013; 77
Marandola, Belliggiano, Romagnoli, Ievoli (b0230) 2019; 7
Houshyar, Grundmann (b0175) 2017; 122
van Dam, Groenendijk, Hendriks, Kroes (b0380) 2008; 7
Sándor, Barcza, Acutis, Doro, Hidy, Köchy, Minet, Lellei-Kovács, Ma, Perego, Rolinksi, Ruget, Sanna, Seddaiu, Wu, Bellocchi (b0345) 2017; 88
González-Sánchez, E.J., Moreno-García, M., Kassam, A., Holgado-Cabrera, A., Triviño- Tarradas, P., Carbonell-Bojollo, R., Pisante, M., Veroz-González, O., Basch, G., 2017. Conservation Agriculture: Making Climate Change Mitigation and Adaptation Real in Europe, ed. European Conservation Agriculture Federation (ECAF), 154p. doi: 10.13140/RG.2.2.13611.13604.
Perego, Giussani, Sanna, Fumagalli, Carozzi, Alfieri, Brenna, Acutis (b0280) 2013; 3
Corsi, S., Friedrich, T., Kassam, A., Pisante, M., De Moraes Sà J., 2012. Soil Organic Carbon Accumulation and Greenhouse Gas Emission Reductions from Conservation Agriculture: A literature review. Integrated Crop Management Vol.16-2012. FAO, Rome.
de Wit, Boogaard, Fumagalli, Janssen, Knapen, van Kraalingen, Supit, van der Wijngaart, van Diepen (b0110) 2019; 168
Guardia, Tellez-Rio, García-Marco, Martin-Lammerding, Tenorio, Ibáñez, Vallejo (b0155) 2016; 221
Addiscott, Whitmore (b0015) 1987; 109
Govaerts, Verhulst, Castellanos-Navarrete, Sayre, Dixon, Dendooven (b0145) 2009; 28
Angulo, Rötter, Lock, Enders, Fronzek, Ewert (b0030) 2013; 170
Alluvione (10.1016/j.geoderma.2020.114298_b0025) 2011; 36
de Wit (10.1016/j.geoderma.2020.114298_b0110) 2019; 168
Le Quéré (10.1016/j.geoderma.2020.114298_b0220) 2015; 7
10.1016/j.geoderma.2020.114298_b0390
Stajnko (10.1016/j.geoderma.2020.114298_b0365) 2009; 18
Addiscott (10.1016/j.geoderma.2020.114298_b0015) 1987; 109
Barančíková (10.1016/j.geoderma.2020.114298_b0055) 2016; 48
Poeplau (10.1016/j.geoderma.2020.114298_b0310) 2015; 200
West (10.1016/j.geoderma.2020.114298_b0385) 2002; 66
Perrin (10.1016/j.geoderma.2020.114298_b0290) 2001; 242
10.1016/j.geoderma.2020.114298_b0430
Abdalla (10.1016/j.geoderma.2020.114298_b0005) 2013; 29
10.1016/j.geoderma.2020.114298_b0035
Bellocchi (10.1016/j.geoderma.2020.114298_b0070) 2002; 94
Badagliacca (10.1016/j.geoderma.2020.114298_b0045) 2018; 619–620
10.1016/j.geoderma.2020.114298_b0435
Mazzoncini (10.1016/j.geoderma.2020.114298_b0235) 2011; 114
Confalonieri (10.1016/j.geoderma.2020.114298_b0095) 2016; 328
Franzluebbers (10.1016/j.geoderma.2020.114298_b0135) 2002; 66
Haddaway (10.1016/j.geoderma.2020.114298_b0160) 2017; 6
Heikkinen (10.1016/j.geoderma.2020.114298_b0170) 2013; 19
Perego (10.1016/j.geoderma.2020.114298_b0280) 2013; 3
Strullu (10.1016/j.geoderma.2020.114298_b0375) 2020; 112
Acutis (10.1016/j.geoderma.2020.114298_b0010) 2006; 11–3
Ruis (10.1016/j.geoderma.2020.114298_b0340) 2017; 109
Bristow (10.1016/j.geoderma.2020.114298_b0085) 1984; 31
Duveiller (10.1016/j.geoderma.2020.114298_b0120) 2017; 127
Batjes (10.1016/j.geoderma.2020.114298_b0065) 1996; 47
10.1016/j.geoderma.2020.114298_b0320
10.1016/j.geoderma.2020.114298_b0440
Harris (10.1016/j.geoderma.2020.114298_b0165) 2014; 34
Barbera (10.1016/j.geoderma.2020.114298_b0060) 2012; 23
Bellocchi (10.1016/j.geoderma.2020.114298_b0075) 2015; 35
Pirttioja (10.1016/j.geoderma.2020.114298_b0295) 2015; 65
10.1016/j.geoderma.2020.114298_b0125
Groenendijk (10.1016/j.geoderma.2020.114298_b0150) 2014; 499
Guardia (10.1016/j.geoderma.2020.114298_b0155) 2016; 221
Rádics (10.1016/j.geoderma.2020.114298_b0330) 2014; 4
Zhang (10.1016/j.geoderma.2020.114298_b0395) 2018; 330
Reicosky (10.1016/j.geoderma.2020.114298_b0335) 1997; 49
Pisante (10.1016/j.geoderma.2020.114298_b0305) 2012; 7
Powlson (10.1016/j.geoderma.2020.114298_b0325) 2016; 220
Kibet (10.1016/j.geoderma.2020.114298_b0205) 2016; 155
Lal (10.1016/j.geoderma.2020.114298_b0215) 2016; 71
Marandola (10.1016/j.geoderma.2020.114298_b0230) 2019; 7
Potma Gonçalves (10.1016/j.geoderma.2020.114298_b0315) 2018; 243
Sinclair (10.1016/j.geoderma.2020.114298_b0360) 1987; 17
Perego (10.1016/j.geoderma.2020.114298_b0285) 2019; 168
Zheng (10.1016/j.geoderma.2020.114298_b0405) 2014; 2
Moriasi (10.1016/j.geoderma.2020.114298_b0250) 2007; 50
Sheehy (10.1016/j.geoderma.2020.114298_b0355) 2015; 150
10.1016/j.geoderma.2020.114298_b0370
Kassam (10.1016/j.geoderma.2020.114298_b0200) 2019; 76
10.1016/j.geoderma.2020.114298_b0410
Johnsson (10.1016/j.geoderma.2020.114298_b0185) 1987; 18
Ogle (10.1016/j.geoderma.2020.114298_b0270) 2012; 149
Minasny (10.1016/j.geoderma.2020.114298_b0245) 2017; 292
Zhao (10.1016/j.geoderma.2020.114298_b0400) 2017; 84
Nelder (10.1016/j.geoderma.2020.114298_b0265) 1965; 7
Du (10.1016/j.geoderma.2020.114298_b0115) 2017; 236
Ball (10.1016/j.geoderma.2020.114298_b0050) 1999; 53
Fox (10.1016/j.geoderma.2020.114298_b0130) 1981; 62
van Dam (10.1016/j.geoderma.2020.114298_b0380) 2008; 7
Blanco-Canqui (10.1016/j.geoderma.2020.114298_b0080) 2011; 75
Houshyar (10.1016/j.geoderma.2020.114298_b0175) 2017; 122
Sándor (10.1016/j.geoderma.2020.114298_b0345) 2017; 88
Govaerts (10.1016/j.geoderma.2020.114298_b0145) 2009; 28
Muhammad (10.1016/j.geoderma.2020.114298_b0255) 2019; 192
10.1016/j.geoderma.2020.114298_b0090
10.1016/j.geoderma.2020.114298_b0180
Dalzell (10.1016/j.geoderma.2020.114298_b0105) 2013; 77
Autret (10.1016/j.geoderma.2020.114298_b0040) 2016; 232
Luo (10.1016/j.geoderma.2020.114298_b0225) 2010; 139
10.1016/j.geoderma.2020.114298_b0140
10.1016/j.geoderma.2020.114298_b0020
10.1016/j.geoderma.2020.114298_b0100
10.1016/j.geoderma.2020.114298_b0300
10.1016/j.geoderma.2020.114298_b0420
10.1016/j.geoderma.2020.114298_b0425
Laflen (10.1016/j.geoderma.2020.114298_b0210) 1997; 52
Angulo (10.1016/j.geoderma.2020.114298_b0030) 2013; 170
10.1016/j.geoderma.2020.114298_b0415
Sanna (10.1016/j.geoderma.2020.114298_b0350) 2015; 73
Kabiri (10.1016/j.geoderma.2020.114298_b0190) 2016; 232
Palm (10.1016/j.geoderma.2020.114298_b0275) 2014; 187
Karabayev (10.1016/j.geoderma.2020.114298_b0195) 2014; 4
McDaniel (10.1016/j.geoderma.2020.114298_b0240) 2014; 24
Nash (10.1016/j.geoderma.2020.114298_b0260) 1970; 10
References_xml – reference: Christensen, B.O., Drews, M., Hesselbjerg Christensen, J., Dethloff, K., Ketelsen, K., Hebestadt, I., Rinke, A., 2007. The HIRHAM Regional Climate Model. Version 5 (beta). Danish Climate Centre, Danish Meteorological Institute. Denmark. Danish Meteorological Institute. Technical Report, No. 06-17.
– volume: 499
  start-page: 463
  year: 2014
  end-page: 480
  ident: b0150
  article-title: Performance assessment of nitrate leaching models for highly vulnerable soils used in low-input farming based on lysimeter data
  publication-title: Sci. Total Environ.
– reference: Pisante M., Stagnari F., Acutis M., Bindi M. Brilli L., Di Stefano V., Carozzi M., 2015. Conservation Agriculture and Climate Change, in.:Farooq, M., Siddique, K.H.M. (Eds.), Conservation Agriculture. Springer, Cham, pp. 579-620. DOI 10.1007/978-3-319-11620-4_22.
– volume: 220
  start-page: 164
  year: 2016
  end-page: 174
  ident: b0325
  article-title: Does conservation agriculture deliver climate change mitigation through soil carbon sequestration in tropical agro-ecosystems?
  publication-title: Agr. Ecosys. Environ.
– volume: 73
  start-page: 286
  year: 2015
  end-page: 304
  ident: b0350
  article-title: A new method for analysing the interrelationship between performance indicators with an application to agrometeorological models
  publication-title: Environ. Modell. Softw.
– volume: 35
  start-page: 589
  year: 2015
  end-page: 605
  ident: b0075
  article-title: Deliberative processes for comprehensive evaluation of agroecological models. A review
  publication-title: Agron. Sustain. Dev.
– reference: ISTAT, 2011, Istat (Italian Statistic Board). 6° Censimento dell’agricoltura – 6th Agriculture Census. Istat, Rome Italy (2011).
– volume: 36
  start-page: 4468
  year: 2011
  end-page: 4481
  ident: b0025
  article-title: EUE (energy use efficiency) of cropping systems for a sustainable agriculture
  publication-title: Energy
– volume: 10
  start-page: 282
  year: 1970
  end-page: 290
  ident: b0260
  article-title: River flow forecasting through conceptual models part I—A discussion of principles
  publication-title: J. Hydrol.
– volume: 150
  start-page: 107
  year: 2015
  end-page: 113
  ident: b0355
  article-title: Impact of no-till and reduced tillage on aggregation and aggregate-associated carbon in Northern European agroecosystems
  publication-title: Soil Till. Res.
– volume: 18
  start-page: 711
  year: 2009
  end-page: 716
  ident: b0365
  article-title: Effects of different tillage systems on fuel savings and reduction of CO
  publication-title: Pol. J. Environ. Stud.
– reference: FAO, 2017. Conservation Agriculture. FAO, 2p. http://www.fao.org/documents/card/en/c/981ab2a0-f3c6-4de3-a058-f0df6658e69f/.
– volume: 31
  start-page: 159
  year: 1984
  end-page: 166
  ident: b0085
  article-title: On the relationship between incoming solar radiation and daily maximum and minimum temperature
  publication-title: Agr. Forest Meteorol.
– volume: 4
  start-page: 761
  year: 2014
  end-page: 765
  ident: b0195
  article-title: Effective approaches to wheat improvement in Kazakhstan: breeding and conservation agriculture
  publication-title: J. Agric. Sci. Tech. B
– volume: 170
  start-page: 32
  year: 2013
  end-page: 46
  ident: b0030
  article-title: Implication of crop model calibration strategies for assessing regional impacts of climate change in Europe
  publication-title: Agric. Forest Meteorol.
– volume: 109
  start-page: 141
  year: 1987
  end-page: 157
  ident: b0015
  article-title: Computer simulation of changes in soil mineral nitrogen and crop nitrogen during autumn, winter and spring
  publication-title: J. Agr. Sci.
– reference: Stöckle, C.O., Nelson, R., Donatelli, M., Castellvì, F., 2001. ClimGen: a flexible weather generation program. 2nd Int. Symp. Model. Crop. Syst., 16-18 July, Florence, Italy.
– volume: 112
  year: 2020
  ident: b0375
  article-title: Simulation using the STICS model of C&N dynamics in alfalfa from sowing to crop destruction
  publication-title: Eur. J. Agron.
– volume: 4
  start-page: 37
  year: 2014
  end-page: 44
  ident: b0330
  article-title: Soil CO
  publication-title: Int. J. Appl. Sci. Tech.
– volume: 330
  start-page: 204
  year: 2018
  end-page: 211
  ident: b0395
  article-title: No-tillage with continuous maize cropping enhances soil aggregation and organic carbon storage in Northeast China
  publication-title: Geoderma
– volume: 19
  start-page: 1456
  year: 2013
  end-page: 1469
  ident: b0170
  article-title: Declining trend of carbon in Finnish cropland soils in 1974–2009
  publication-title: Global Change Biol.
– volume: 24
  start-page: 560
  year: 2014
  end-page: 570
  ident: b0240
  article-title: Does agricultural crop diversity enhance soil microbial biomass and organic matter dynamics? A meta-analysis
  publication-title: Ecol. Appl.
– volume: 187
  start-page: 87
  year: 2014
  end-page: 105
  ident: b0275
  article-title: Conservation agriculture and ecosystem services: an overview
  publication-title: Agr. Ecosys. Environ.
– volume: 34
  start-page: 623
  year: 2014
  end-page: 642
  ident: b0165
  article-title: Updated high-resolution grids of monthly climatic observations – the CRU TS3.10 Dataset
  publication-title: Int. J. Climatol.
– reference: Allen R.G., Pereira L.S., Raes D., Smith, M.,1998. Crop Evapotranspiration: Guidelines for computing crop water requirements. Irrigation and Drainage Paper 56, Food and Agriculture Organization of the United Nations, Rome, 300 p.
– volume: 232
  start-page: 73
  year: 2016
  end-page: 84
  ident: b0190
  article-title: Tillage effects on soil microbial biomass, SOM mineralization and enzyme activity in a semi-arid Calcixerepts
  publication-title: Agr. Ecosys. Environ.
– volume: 292
  start-page: 59
  year: 2017
  end-page: 86
  ident: b0245
  article-title: Soil carbon 4 per mille
  publication-title: Geoderma.
– volume: 221
  start-page: 187
  year: 2016
  end-page: 197
  ident: b0155
  article-title: Effect of tillage and crop (cereal versus legume) on greenhouse gas emissions and Global Warming Potential in a non-irrigated Mediterranean field
  publication-title: Agr. Ecosys. Environ.
– volume: 242
  start-page: 275
  year: 2001
  end-page: 301
  ident: b0290
  article-title: Does a large number of parameters enhance model performance? Comparative assessment of common catchment model structures on 429 catchments
  publication-title: J. Hydrol.
– volume: 77
  start-page: 1349
  year: 2013
  end-page: 1356
  ident: b0105
  article-title: Simulated impacts of crop residue removal and tillage on soil organic matter maintenance
  publication-title: Soil Sci. Soc. Am. J.
– volume: 65
  start-page: 87
  year: 2015
  end-page: 105
  ident: b0295
  article-title: Temperature and precipitation effects on wheat yield across a European transect: A crop model ensemble analysis using impact response surfaces
  publication-title: Clim. Res.
– volume: 168
  start-page: 154
  year: 2019
  end-page: 167
  ident: b0110
  article-title: 25 years of the WOFOST cropping systems model
  publication-title: Agr. Syst.
– volume: 7
  start-page: 640
  year: 2008
  end-page: 653
  ident: b0380
  article-title: Advances of modeling water flow in variably saturated soils with SWAP
  publication-title: Vadose Zone J.
– volume: 84
  start-page: 67
  year: 2017
  end-page: 75
  ident: b0400
  article-title: Crop yields under no-till farming in China: a meta-analysis
  publication-title: Eur. J. Agron.
– volume: 6
  start-page: 1
  year: 2017
  end-page: 48
  ident: b0160
  article-title: How does tillage intensity affect soil organic carbon? A systematic review
  publication-title: Environ. Evid.
– volume: 50
  start-page: 885
  year: 2007
  end-page: 900
  ident: b0250
  article-title: Model evaluation guidelines for systematic quantification of accuracy in watershed simulations
  publication-title: Trans. ASABE
– volume: 11–3
  start-page: 26
  year: 2006
  end-page: 34
  ident: b0010
  article-title: Optimization algorithms for calibrating cropping systems simulation models. A case study with simplex-derived methods integrated in the WARM simulation environment
  publication-title: Ital. J. Agrometeorol.
– volume: 52
  start-page: 96
  year: 1997
  end-page: 102
  ident: b0210
  article-title: WEPP-predicting water erosion using a process-based model
  publication-title: J. Soil Water Conserv.
– reference: Yli-Viikari, A. (Ed.). 2019. Maaseutuohjelman (2014–2020) ympäristöarviointi. Luonnonvara- ja biotalouden tutkimus 63/2019. Luonnonvarakeskus, Helsinki (In Finnish with English abstract). https://jukuri.luke.fi/handle/10024/544713.
– volume: 155
  start-page: 78
  year: 2016
  end-page: 84
  ident: b0205
  article-title: Long-term tillage impacts on soil organic matter components and related properties on a Typic Argiudoll
  publication-title: Soil Till. Res.
– reference: Powlson, D.S., Stirling, C,M., Jat, M.L., Gerard, B.G., Palm, C.A., Sanchez, P.A., Cassman, K.G., 2014. Limited potential of no-till agriculture for climate change mitigation. Nat. Clim. Change 4, 678–683. doi: 10.1038/nclimate2292.
– volume: 88
  start-page: 22
  year: 2017
  end-page: 40
  ident: b0345
  article-title: Multi-model simulation of soil temperature, soil water content and biomass in Euro-Mediterranean grasslands: Uncertainties and ensemble performance
  publication-title: Eur. J. Agron.
– volume: 149
  start-page: 37
  year: 2012
  end-page: 49
  ident: b0270
  article-title: No-till management impacts on crop productivity, carbon input and soil carbon sequestration
  publication-title: Agr. Ecosys. Environ.
– volume: 232
  start-page: 150
  year: 2016
  end-page: 164
  ident: b0040
  article-title: Alternative arable cropping systems: a key to increase soil organic carbon storage? Results from a 16-year field experiment
  publication-title: Agr. Ecosyst. Environ.
– reference: González-Sánchez, E.J., Moreno-García, M., Kassam, A., Holgado-Cabrera, A., Triviño- Tarradas, P., Carbonell-Bojollo, R., Pisante, M., Veroz-González, O., Basch, G., 2017. Conservation Agriculture: Making Climate Change Mitigation and Adaptation Real in Europe, ed. European Conservation Agriculture Federation (ECAF), 154p. doi: 10.13140/RG.2.2.13611.13604.
– volume: 94
  start-page: 1222
  year: 2002
  end-page: 1233
  ident: b0070
  article-title: An indicator of solar radiation model performance based on a fuzzy expert system
  publication-title: Agron. J.
– volume: 122
  start-page: 11
  year: 2017
  end-page: 24
  ident: b0175
  article-title: Environmental impacts of energy use in wheat tillage systems: a comparative life cycle assessment (LCA) study in Iran
  publication-title: Energy
– volume: 109
  start-page: 1785
  year: 2017
  end-page: 1805
  ident: b0340
  article-title: Cover crops could offset crop residue removal effects on soil carbon and other properties: a review
  publication-title: Agron. J.
– volume: 23
  start-page: 82
  year: 2012
  end-page: 91
  ident: b0060
  article-title: Long-term cropping systems and tillage management effects on soil organic carbon stock and steady state level of C sequestration rates in a semiarid environment
  publication-title: Land Degrad. Dev.
– volume: 47
  start-page: 151
  year: 1996
  end-page: 163
  ident: b0065
  article-title: Total carbon and nitrogen in the soils of the world
  publication-title: Eur. J. Soil Sci.
– volume: 71
  start-page: 20A
  year: 2016
  end-page: 25A
  ident: b0215
  article-title: Beyond COP 21: potential and challenges of the “4 per Thousand” initiative
  publication-title: J. Soil Water Conserv.
– volume: 3
  start-page: 23
  year: 2013
  end-page: 38
  ident: b0280
  article-title: The ARMOSA simulation crop model: overall features, calibration and validation results
  publication-title: Ital. J. Agrometeorol.
– volume: 48
  start-page: 47
  year: 2016
  end-page: 56
  ident: b0055
  article-title: Comparison of two methods of soil organic carbon determination
  publication-title: Pol. J. Soil Sci.
– volume: 66
  start-page: 197
  year: 2002
  end-page: 205
  ident: b0135
  article-title: Water infiltration and soil structure related to organic matter and its stratification with depth
  publication-title: Soil Till. Res.
– volume: 192
  start-page: 103
  year: 2019
  end-page: 112
  ident: b0255
  article-title: Regulation of soil CO
  publication-title: Soil Till. Res.
– volume: 7
  start-page: 7
  year: 2019
  ident: b0230
  article-title: The spread of no-till in conservation agriculture systems in Italy: indications for rural development policy-making
  publication-title: Agr. Food Econ.
– volume: 7
  start-page: 300
  year: 2012
  end-page: 311
  ident: b0305
  article-title: Agricultural innovations for sustainable crop production intensification
  publication-title: Ital. J. Agron.
– volume: 2
  start-page: 289
  year: 2014
  end-page: 296
  ident: b0405
  article-title: The impacts of conservation agriculture on crop yield in China depend on specific practices, crops and cropping regions
  publication-title: Crop J.
– volume: 29
  start-page: 199
  year: 2013
  end-page: 209
  ident: b0005
  article-title: Conservation tillage systems: a review of its consequences for greenhouse gas emissions
  publication-title: Soil Use Manage.
– reference: Anonymous, 1992. Soils. Methods for determination of organic matter. GOST 26213-91. State Committee for Standardization and Metrology of the USSA. Moscow, p.8 http://docs.cntd.ru/document/1200023481 (In Russian).
– volume: 328
  start-page: 72
  year: 2016
  end-page: 77
  ident: b0095
  article-title: Quantifying uncertainty in crop model predictions due to the uncertainty in the observations used for calibration
  publication-title: Ecol. Model.
– volume: 236
  start-page: 1
  year: 2017
  end-page: 11
  ident: b0115
  article-title: The effect of no-till on organic C storage in Chinese soils should not be overemphasized: a meta-analysis
  publication-title: Agr. Ecosys. Environ.
– volume: 62
  start-page: 599
  year: 1981
  end-page: 609
  ident: b0130
  article-title: Judging air quality model performance: a summary of the AMS workshop on dispersion models performance
  publication-title: Bull. Am. Meteorol. Soc.
– volume: 76
  start-page: 29
  year: 2019
  end-page: 51
  ident: b0200
  article-title: Global spread of conservation agriculture
  publication-title: Int. J. Environ. Studies
– volume: 17
  start-page: 121
  year: 1987
  end-page: 140
  ident: b0360
  article-title: Field and model analysis of the effect of water deficits on carbon and nitrogen accumulation by soybean, cowpea and black gram
  publication-title: Field Crops Res.
– volume: 619–620
  start-page: 18
  year: 2018
  end-page: 27
  ident: b0045
  article-title: Long-term effects of contrasting tillage on soil organic carbon, nitrous oxide and ammonia emissions in a Mediterranean Vertisol under different crop sequences
  publication-title: Sci. Total Environ.
– volume: 7
  start-page: 349
  year: 2015
  end-page: 396
  ident: b0220
  article-title: Global Carbon Budget 2015
  publication-title: Earth Syst. Sci. Data
– volume: 243
  start-page: 940
  year: 2018
  end-page: 952
  ident: b0315
  article-title: Soil carbon inventory to quantify the impact of land use change to mitigate greenhouse gas emissions and ecosystem services
  publication-title: Environ. Pollut.
– volume: 18
  start-page: 333
  year: 1987
  end-page: 356
  ident: b0185
  article-title: Simulated nitrogen dynamics and losses in a layered agricultural soil
  publication-title: Agr. Ecosys. Environ.
– volume: 114
  start-page: 165
  year: 2011
  end-page: 174
  ident: b0235
  article-title: Long-term effect of tillage, nitrogen fertilization and cover crops on soil organic carbon and total nitrogen content
  publication-title: Soil Till. Res.
– volume: 49
  start-page: 273
  year: 1997
  end-page: 285
  ident: b0335
  article-title: Tillage-induced CO
  publication-title: Nutr. Cycl. Agroecosys.
– volume: 7
  start-page: 308
  year: 1965
  end-page: 313
  ident: b0265
  article-title: A simplex method for function minimization
  publication-title: Comput. J.
– reference: Corsi, S., Friedrich, T., Kassam, A., Pisante, M., De Moraes Sà J., 2012. Soil Organic Carbon Accumulation and Greenhouse Gas Emission Reductions from Conservation Agriculture: A literature review. Integrated Crop Management Vol.16-2012. FAO, Rome.
– volume: 139
  start-page: 224
  year: 2010
  end-page: 231
  ident: b0225
  article-title: Can no-tillage stimulate carbon sequestration in agricultural soils? A meta-analysis of paired experiments
  publication-title: Agr. Ecosys. Environ.
– volume: 168
  start-page: 73
  year: 2019
  end-page: 87
  ident: b0285
  article-title: Agro-environmental aspects of conservation agriculture compared to conventional systems: a 3-year experience on 20 farms in the Po valley (Northern Italy)
  publication-title: Agr. Syst.
– volume: 53
  start-page: 29
  year: 1999
  end-page: 39
  ident: b0050
  article-title: Field N
  publication-title: Soil Till. Res.
– volume: 127
  start-page: 573
  year: 2017
  end-page: 585
  ident: b0120
  article-title: A dataset of future daily weather data for crop modelling over Europe derived from climate change scenarios
  publication-title: Theor. Appl. Climatol.
– volume: 200
  start-page: 33
  year: 2015
  end-page: 41
  ident: b0310
  article-title: Carbon sequestration in agricultural soils via cultivation of cover crops – a meta-analysis
  publication-title: Agr. Ecosys. Environ.
– volume: 66
  start-page: 1930
  year: 2002
  end-page: 1946
  ident: b0385
  article-title: Soil organic carbon sequestration rates by tillage and crop rotation: a global data analysis
  publication-title: Soil Sci. Soc. Am. J.
– volume: 28
  start-page: 97
  year: 2009
  end-page: 122
  ident: b0145
  article-title: Conservation agriculture and soil carbon sequestration: between myth and farmer reality
  publication-title: Crit. Rev. Plant Sci
– volume: 75
  start-page: 1471
  year: 2011
  end-page: 1482
  ident: b0080
  article-title: Addition of cover crops enhances no-till potential for improving soil physical properties
  publication-title: Soil Sci. Soc. Am. J.
– volume: 242
  start-page: 275
  year: 2001
  ident: 10.1016/j.geoderma.2020.114298_b0290
  article-title: Does a large number of parameters enhance model performance? Comparative assessment of common catchment model structures on 429 catchments
  publication-title: J. Hydrol.
  doi: 10.1016/S0022-1694(00)00393-0
– volume: 149
  start-page: 37
  year: 2012
  ident: 10.1016/j.geoderma.2020.114298_b0270
  article-title: No-till management impacts on crop productivity, carbon input and soil carbon sequestration
  publication-title: Agr. Ecosys. Environ.
  doi: 10.1016/j.agee.2011.12.010
– volume: 221
  start-page: 187
  year: 2016
  ident: 10.1016/j.geoderma.2020.114298_b0155
  article-title: Effect of tillage and crop (cereal versus legume) on greenhouse gas emissions and Global Warming Potential in a non-irrigated Mediterranean field
  publication-title: Agr. Ecosys. Environ.
  doi: 10.1016/j.agee.2016.01.047
– volume: 53
  start-page: 29
  year: 1999
  ident: 10.1016/j.geoderma.2020.114298_b0050
  article-title: Field N2O, CO2 and CH4 fluxes in relation to tillage, compaction and soil quality in Scotland
  publication-title: Soil Till. Res.
  doi: 10.1016/S0167-1987(99)00074-4
– volume: 10
  start-page: 282
  year: 1970
  ident: 10.1016/j.geoderma.2020.114298_b0260
  article-title: River flow forecasting through conceptual models part I—A discussion of principles
  publication-title: J. Hydrol.
  doi: 10.1016/0022-1694(70)90255-6
– volume: 76
  start-page: 29
  year: 2019
  ident: 10.1016/j.geoderma.2020.114298_b0200
  article-title: Global spread of conservation agriculture
  publication-title: Int. J. Environ. Studies
  doi: 10.1080/00207233.2018.1494927
– volume: 112
  year: 2020
  ident: 10.1016/j.geoderma.2020.114298_b0375
  article-title: Simulation using the STICS model of C&N dynamics in alfalfa from sowing to crop destruction
  publication-title: Eur. J. Agron.
  doi: 10.1016/j.eja.2019.125948
– volume: 23
  start-page: 82
  year: 2012
  ident: 10.1016/j.geoderma.2020.114298_b0060
  article-title: Long-term cropping systems and tillage management effects on soil organic carbon stock and steady state level of C sequestration rates in a semiarid environment
  publication-title: Land Degrad. Dev.
  doi: 10.1002/ldr.1055
– volume: 24
  start-page: 560
  year: 2014
  ident: 10.1016/j.geoderma.2020.114298_b0240
  article-title: Does agricultural crop diversity enhance soil microbial biomass and organic matter dynamics? A meta-analysis
  publication-title: Ecol. Appl.
  doi: 10.1890/13-0616.1
– volume: 3
  start-page: 23
  year: 2013
  ident: 10.1016/j.geoderma.2020.114298_b0280
  article-title: The ARMOSA simulation crop model: overall features, calibration and validation results
  publication-title: Ital. J. Agrometeorol.
– ident: 10.1016/j.geoderma.2020.114298_b0435
– volume: 2
  start-page: 289
  year: 2014
  ident: 10.1016/j.geoderma.2020.114298_b0405
  article-title: The impacts of conservation agriculture on crop yield in China depend on specific practices, crops and cropping regions
  publication-title: Crop J.
  doi: 10.1016/j.cj.2014.06.006
– volume: 6
  start-page: 1
  issue: 30
  year: 2017
  ident: 10.1016/j.geoderma.2020.114298_b0160
  article-title: How does tillage intensity affect soil organic carbon? A systematic review
  publication-title: Environ. Evid.
  doi: 10.1186/s13750-016-0079-2
– volume: 29
  start-page: 199
  year: 2013
  ident: 10.1016/j.geoderma.2020.114298_b0005
  article-title: Conservation tillage systems: a review of its consequences for greenhouse gas emissions
  publication-title: Soil Use Manage.
  doi: 10.1111/sum.12030
– volume: 34
  start-page: 623
  year: 2014
  ident: 10.1016/j.geoderma.2020.114298_b0165
  article-title: Updated high-resolution grids of monthly climatic observations – the CRU TS3.10 Dataset
  publication-title: Int. J. Climatol.
  doi: 10.1002/joc.3711
– ident: 10.1016/j.geoderma.2020.114298_b0020
– volume: 18
  start-page: 711
  year: 2009
  ident: 10.1016/j.geoderma.2020.114298_b0365
  article-title: Effects of different tillage systems on fuel savings and reduction of CO2 emissions in production of silage corn in Eastern Slovenia
  publication-title: Pol. J. Environ. Stud.
– volume: 168
  start-page: 154
  year: 2019
  ident: 10.1016/j.geoderma.2020.114298_b0110
  article-title: 25 years of the WOFOST cropping systems model
  publication-title: Agr. Syst.
  doi: 10.1016/j.agsy.2018.06.018
– volume: 35
  start-page: 589
  year: 2015
  ident: 10.1016/j.geoderma.2020.114298_b0075
  article-title: Deliberative processes for comprehensive evaluation of agroecological models. A review
  publication-title: Agron. Sustain. Dev.
  doi: 10.1007/s13593-014-0271-0
– volume: 236
  start-page: 1
  year: 2017
  ident: 10.1016/j.geoderma.2020.114298_b0115
  article-title: The effect of no-till on organic C storage in Chinese soils should not be overemphasized: a meta-analysis
  publication-title: Agr. Ecosys. Environ.
  doi: 10.1016/j.agee.2016.11.007
– volume: 36
  start-page: 4468
  year: 2011
  ident: 10.1016/j.geoderma.2020.114298_b0025
  article-title: EUE (energy use efficiency) of cropping systems for a sustainable agriculture
  publication-title: Energy
  doi: 10.1016/j.energy.2011.03.075
– volume: 28
  start-page: 97
  year: 2009
  ident: 10.1016/j.geoderma.2020.114298_b0145
  article-title: Conservation agriculture and soil carbon sequestration: between myth and farmer reality
  publication-title: Crit. Rev. Plant Sci.
  doi: 10.1080/07352680902776358
– ident: 10.1016/j.geoderma.2020.114298_b0370
– volume: 19
  start-page: 1456
  year: 2013
  ident: 10.1016/j.geoderma.2020.114298_b0170
  article-title: Declining trend of carbon in Finnish cropland soils in 1974–2009
  publication-title: Global Change Biol.
  doi: 10.1111/gcb.12137
– ident: 10.1016/j.geoderma.2020.114298_b0035
– volume: 66
  start-page: 197
  year: 2002
  ident: 10.1016/j.geoderma.2020.114298_b0135
  article-title: Water infiltration and soil structure related to organic matter and its stratification with depth
  publication-title: Soil Till. Res.
  doi: 10.1016/S0167-1987(02)00027-2
– ident: 10.1016/j.geoderma.2020.114298_b0440
– volume: 109
  start-page: 1785
  year: 2017
  ident: 10.1016/j.geoderma.2020.114298_b0340
  article-title: Cover crops could offset crop residue removal effects on soil carbon and other properties: a review
  publication-title: Agron. J.
  doi: 10.2134/agronj2016.12.0735
– ident: 10.1016/j.geoderma.2020.114298_b0140
– volume: 7
  start-page: 349
  year: 2015
  ident: 10.1016/j.geoderma.2020.114298_b0220
  article-title: Global Carbon Budget 2015
  publication-title: Earth Syst. Sci. Data
  doi: 10.5194/essd-7-349-2015
– volume: 192
  start-page: 103
  year: 2019
  ident: 10.1016/j.geoderma.2020.114298_b0255
  article-title: Regulation of soil CO2 and N2O emissions by cover crops: a meta-analysis
  publication-title: Soil Till. Res.
  doi: 10.1016/j.still.2019.04.020
– volume: 292
  start-page: 59
  year: 2017
  ident: 10.1016/j.geoderma.2020.114298_b0245
  article-title: Soil carbon 4 per mille
  publication-title: Geoderma.
  doi: 10.1016/j.geoderma.2017.01.002
– volume: 62
  start-page: 599
  year: 1981
  ident: 10.1016/j.geoderma.2020.114298_b0130
  article-title: Judging air quality model performance: a summary of the AMS workshop on dispersion models performance
  publication-title: Bull. Am. Meteorol. Soc.
  doi: 10.1175/1520-0477(1981)062<0599:JAQMP>2.0.CO;2
– volume: 168
  start-page: 73
  year: 2019
  ident: 10.1016/j.geoderma.2020.114298_b0285
  article-title: Agro-environmental aspects of conservation agriculture compared to conventional systems: a 3-year experience on 20 farms in the Po valley (Northern Italy)
  publication-title: Agr. Syst.
  doi: 10.1016/j.agsy.2018.10.008
– volume: 170
  start-page: 32
  year: 2013
  ident: 10.1016/j.geoderma.2020.114298_b0030
  article-title: Implication of crop model calibration strategies for assessing regional impacts of climate change in Europe
  publication-title: Agric. Forest Meteorol.
  doi: 10.1016/j.agrformet.2012.11.017
– volume: 4
  start-page: 37
  year: 2014
  ident: 10.1016/j.geoderma.2020.114298_b0330
  article-title: Soil CO2 emission induced by tillage machines
  publication-title: Int. J. Appl. Sci. Tech.
– volume: 84
  start-page: 67
  year: 2017
  ident: 10.1016/j.geoderma.2020.114298_b0400
  article-title: Crop yields under no-till farming in China: a meta-analysis
  publication-title: Eur. J. Agron.
  doi: 10.1016/j.eja.2016.11.009
– ident: 10.1016/j.geoderma.2020.114298_b0430
– volume: 619–620
  start-page: 18
  year: 2018
  ident: 10.1016/j.geoderma.2020.114298_b0045
  article-title: Long-term effects of contrasting tillage on soil organic carbon, nitrous oxide and ammonia emissions in a Mediterranean Vertisol under different crop sequences
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2017.11.116
– volume: 139
  start-page: 224
  year: 2010
  ident: 10.1016/j.geoderma.2020.114298_b0225
  article-title: Can no-tillage stimulate carbon sequestration in agricultural soils? A meta-analysis of paired experiments
  publication-title: Agr. Ecosys. Environ.
  doi: 10.1016/j.agee.2010.08.006
– ident: 10.1016/j.geoderma.2020.114298_b0390
– ident: 10.1016/j.geoderma.2020.114298_b0090
– volume: 49
  start-page: 273
  year: 1997
  ident: 10.1016/j.geoderma.2020.114298_b0335
  article-title: Tillage-induced CO2 emission from soil
  publication-title: Nutr. Cycl. Agroecosys.
  doi: 10.1023/A:1009766510274
– volume: 7
  start-page: 300
  year: 2012
  ident: 10.1016/j.geoderma.2020.114298_b0305
  article-title: Agricultural innovations for sustainable crop production intensification
  publication-title: Ital. J. Agron.
– volume: 232
  start-page: 150
  year: 2016
  ident: 10.1016/j.geoderma.2020.114298_b0040
  article-title: Alternative arable cropping systems: a key to increase soil organic carbon storage? Results from a 16-year field experiment
  publication-title: Agr. Ecosyst. Environ.
  doi: 10.1016/j.agee.2016.07.008
– volume: 88
  start-page: 22
  year: 2017
  ident: 10.1016/j.geoderma.2020.114298_b0345
  article-title: Multi-model simulation of soil temperature, soil water content and biomass in Euro-Mediterranean grasslands: Uncertainties and ensemble performance
  publication-title: Eur. J. Agron.
  doi: 10.1016/j.eja.2016.06.006
– volume: 47
  start-page: 151
  year: 1996
  ident: 10.1016/j.geoderma.2020.114298_b0065
  article-title: Total carbon and nitrogen in the soils of the world
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/j.1365-2389.1996.tb01386.x
– volume: 50
  start-page: 885
  issue: 3
  year: 2007
  ident: 10.1016/j.geoderma.2020.114298_b0250
  article-title: Model evaluation guidelines for systematic quantification of accuracy in watershed simulations
  publication-title: Trans. ASABE
  doi: 10.13031/2013.23153
– volume: 200
  start-page: 33
  year: 2015
  ident: 10.1016/j.geoderma.2020.114298_b0310
  article-title: Carbon sequestration in agricultural soils via cultivation of cover crops – a meta-analysis
  publication-title: Agr. Ecosys. Environ.
  doi: 10.1016/j.agee.2014.10.024
– ident: 10.1016/j.geoderma.2020.114298_b0320
  doi: 10.1038/nclimate2292
– volume: 220
  start-page: 164
  year: 2016
  ident: 10.1016/j.geoderma.2020.114298_b0325
  article-title: Does conservation agriculture deliver climate change mitigation through soil carbon sequestration in tropical agro-ecosystems?
  publication-title: Agr. Ecosys. Environ.
  doi: 10.1016/j.agee.2016.01.005
– ident: 10.1016/j.geoderma.2020.114298_b0420
– volume: 7
  start-page: 640
  year: 2008
  ident: 10.1016/j.geoderma.2020.114298_b0380
  article-title: Advances of modeling water flow in variably saturated soils with SWAP
  publication-title: Vadose Zone J.
  doi: 10.2136/vzj2007.0060
– volume: 18
  start-page: 333
  year: 1987
  ident: 10.1016/j.geoderma.2020.114298_b0185
  article-title: Simulated nitrogen dynamics and losses in a layered agricultural soil
  publication-title: Agr. Ecosys. Environ.
  doi: 10.1016/0167-8809(87)90099-5
– volume: 52
  start-page: 96
  year: 1997
  ident: 10.1016/j.geoderma.2020.114298_b0210
  article-title: WEPP-predicting water erosion using a process-based model
  publication-title: J. Soil Water Conserv.
– volume: 114
  start-page: 165
  year: 2011
  ident: 10.1016/j.geoderma.2020.114298_b0235
  article-title: Long-term effect of tillage, nitrogen fertilization and cover crops on soil organic carbon and total nitrogen content
  publication-title: Soil Till. Res.
  doi: 10.1016/j.still.2011.05.001
– volume: 77
  start-page: 1349
  year: 2013
  ident: 10.1016/j.geoderma.2020.114298_b0105
  article-title: Simulated impacts of crop residue removal and tillage on soil organic matter maintenance
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2012.0221
– volume: 31
  start-page: 159
  year: 1984
  ident: 10.1016/j.geoderma.2020.114298_b0085
  article-title: On the relationship between incoming solar radiation and daily maximum and minimum temperature
  publication-title: Agr. Forest Meteorol.
  doi: 10.1016/0168-1923(84)90017-0
– volume: 499
  start-page: 463
  year: 2014
  ident: 10.1016/j.geoderma.2020.114298_b0150
  article-title: Performance assessment of nitrate leaching models for highly vulnerable soils used in low-input farming based on lysimeter data
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2014.07.002
– volume: 109
  start-page: 141
  year: 1987
  ident: 10.1016/j.geoderma.2020.114298_b0015
  article-title: Computer simulation of changes in soil mineral nitrogen and crop nitrogen during autumn, winter and spring
  publication-title: J. Agr. Sci.
  doi: 10.1017/S0021859600081089
– volume: 187
  start-page: 87
  year: 2014
  ident: 10.1016/j.geoderma.2020.114298_b0275
  article-title: Conservation agriculture and ecosystem services: an overview
  publication-title: Agr. Ecosys. Environ.
  doi: 10.1016/j.agee.2013.10.010
– ident: 10.1016/j.geoderma.2020.114298_b0410
– volume: 48
  start-page: 47
  year: 2016
  ident: 10.1016/j.geoderma.2020.114298_b0055
  article-title: Comparison of two methods of soil organic carbon determination
  publication-title: Pol. J. Soil Sci.
  doi: 10.17951/pjss.2015.48.1.47
– volume: 94
  start-page: 1222
  year: 2002
  ident: 10.1016/j.geoderma.2020.114298_b0070
  article-title: An indicator of solar radiation model performance based on a fuzzy expert system
  publication-title: Agron. J.
  doi: 10.2134/agronj2002.1222
– volume: 71
  start-page: 20A
  year: 2016
  ident: 10.1016/j.geoderma.2020.114298_b0215
  article-title: Beyond COP 21: potential and challenges of the “4 per Thousand” initiative
  publication-title: J. Soil Water Conserv.
  doi: 10.2489/jswc.71.1.20A
– volume: 7
  start-page: 7
  year: 2019
  ident: 10.1016/j.geoderma.2020.114298_b0230
  article-title: The spread of no-till in conservation agriculture systems in Italy: indications for rural development policy-making
  publication-title: Agr. Food Econ.
  doi: 10.1186/s40100-019-0126-8
– ident: 10.1016/j.geoderma.2020.114298_b0300
  doi: 10.1007/978-3-319-11620-4_22
– volume: 150
  start-page: 107
  year: 2015
  ident: 10.1016/j.geoderma.2020.114298_b0355
  article-title: Impact of no-till and reduced tillage on aggregation and aggregate-associated carbon in Northern European agroecosystems
  publication-title: Soil Till. Res.
  doi: 10.1016/j.still.2015.01.015
– volume: 11–3
  start-page: 26
  year: 2006
  ident: 10.1016/j.geoderma.2020.114298_b0010
  article-title: Optimization algorithms for calibrating cropping systems simulation models. A case study with simplex-derived methods integrated in the WARM simulation environment
  publication-title: Ital. J. Agrometeorol.
– volume: 330
  start-page: 204
  year: 2018
  ident: 10.1016/j.geoderma.2020.114298_b0395
  article-title: No-tillage with continuous maize cropping enhances soil aggregation and organic carbon storage in Northeast China
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2018.05.037
– volume: 75
  start-page: 1471
  year: 2011
  ident: 10.1016/j.geoderma.2020.114298_b0080
  article-title: Addition of cover crops enhances no-till potential for improving soil physical properties
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2010.0430
– volume: 7
  start-page: 308
  year: 1965
  ident: 10.1016/j.geoderma.2020.114298_b0265
  article-title: A simplex method for function minimization
  publication-title: Comput. J.
  doi: 10.1093/comjnl/7.4.308
– volume: 232
  start-page: 73
  year: 2016
  ident: 10.1016/j.geoderma.2020.114298_b0190
  article-title: Tillage effects on soil microbial biomass, SOM mineralization and enzyme activity in a semi-arid Calcixerepts
  publication-title: Agr. Ecosys. Environ.
  doi: 10.1016/j.agee.2016.07.022
– volume: 328
  start-page: 72
  year: 2016
  ident: 10.1016/j.geoderma.2020.114298_b0095
  article-title: Quantifying uncertainty in crop model predictions due to the uncertainty in the observations used for calibration
  publication-title: Ecol. Model.
  doi: 10.1016/j.ecolmodel.2016.02.013
– volume: 155
  start-page: 78
  year: 2016
  ident: 10.1016/j.geoderma.2020.114298_b0205
  article-title: Long-term tillage impacts on soil organic matter components and related properties on a Typic Argiudoll
  publication-title: Soil Till. Res.
  doi: 10.1016/j.still.2015.05.006
– ident: 10.1016/j.geoderma.2020.114298_b0415
– volume: 65
  start-page: 87
  year: 2015
  ident: 10.1016/j.geoderma.2020.114298_b0295
  article-title: Temperature and precipitation effects on wheat yield across a European transect: A crop model ensemble analysis using impact response surfaces
  publication-title: Clim. Res.
  doi: 10.3354/cr01322
– volume: 127
  start-page: 573
  year: 2017
  ident: 10.1016/j.geoderma.2020.114298_b0120
  article-title: A dataset of future daily weather data for crop modelling over Europe derived from climate change scenarios
  publication-title: Theor. Appl. Climatol.
  doi: 10.1007/s00704-015-1650-4
– ident: 10.1016/j.geoderma.2020.114298_b0125
– ident: 10.1016/j.geoderma.2020.114298_b0100
– volume: 73
  start-page: 286
  year: 2015
  ident: 10.1016/j.geoderma.2020.114298_b0350
  article-title: A new method for analysing the interrelationship between performance indicators with an application to agrometeorological models
  publication-title: Environ. Modell. Softw.
  doi: 10.1016/j.envsoft.2015.08.017
– volume: 4
  start-page: 761
  issue: 10
  year: 2014
  ident: 10.1016/j.geoderma.2020.114298_b0195
  article-title: Effective approaches to wheat improvement in Kazakhstan: breeding and conservation agriculture
  publication-title: J. Agric. Sci. Tech. B
– volume: 122
  start-page: 11
  year: 2017
  ident: 10.1016/j.geoderma.2020.114298_b0175
  article-title: Environmental impacts of energy use in wheat tillage systems: a comparative life cycle assessment (LCA) study in Iran
  publication-title: Energy
  doi: 10.1016/j.energy.2017.01.069
– ident: 10.1016/j.geoderma.2020.114298_b0180
– volume: 243
  start-page: 940
  year: 2018
  ident: 10.1016/j.geoderma.2020.114298_b0315
  article-title: Soil carbon inventory to quantify the impact of land use change to mitigate greenhouse gas emissions and ecosystem services
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2018.07.068
– ident: 10.1016/j.geoderma.2020.114298_b0425
– volume: 66
  start-page: 1930
  year: 2002
  ident: 10.1016/j.geoderma.2020.114298_b0385
  article-title: Soil organic carbon sequestration rates by tillage and crop rotation: a global data analysis
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2002.1930
– volume: 17
  start-page: 121
  year: 1987
  ident: 10.1016/j.geoderma.2020.114298_b0360
  article-title: Field and model analysis of the effect of water deficits on carbon and nitrogen accumulation by soybean, cowpea and black gram
  publication-title: Field Crops Res.
  doi: 10.1016/0378-4290(87)90087-6
SSID ssj0017020
Score 2.5647633
Snippet [Display omitted] •SOC changes were simulated in three sites with contrasting soils and climates.•Conventional tillage (Conv − R and Conv + R) led to SOC...
Conservation agriculture (CA) involves complex and interactive processes that ultimately determine soil carbon (C) storage, making it difficult to identify...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 114298
SubjectTerms agricultural conservation practice
ARMOSA model
carbon sequestration
carbon sinks
Climate change
climatic factors
Conservation agriculture
corn
Cover crops
Crop diversification
crop models
crop residues
cropping systems
disturbed soils
Finland
food security
Italy
Kazakhstan
Lolium multiflorum
no-tillage
Northern European region
plowing
simulation models
soil depth
soil organic carbon
Soil tillage
Southern European region
spring barley
Title Can conservation agriculture increase soil carbon sequestration? A modelling approach
URI https://dx.doi.org/10.1016/j.geoderma.2020.114298
https://www.proquest.com/docview/2388753112
Volume 369
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JasMwEBUhvbSH0pWmS1ChVzexZUn2qZjQkraQUwO5CVlLcQhOyHLtt1djy-kCJYcebY-MGUkzz_abNwjdOQidpDJiAVRdBjElOnCgngQRk1SH1CShrAiyIzYcxy8TOmmhQVMLA7RKH_vrmF5Fa3-m573ZWxQF1PiGjLt0BBAkZgwKfuOYwyq__9jSPELe99KMIQvA-luV8NTNETQcq_SHoko2N0qTvxLUr1Bd5Z-nI3TogSPO6mc7Ri1TnqCD7H3pxTPMKRoPZIkV0KP9h1Ysvy7jogSAuDJ4NS9mWMll7gwqJnUjnfuAM1x1xoESddyojZ-h8dPj22AY-LYJgSIpWQdE89RQImWuec4gR0uiHPKQyobURlblXEqjOLEps8RSHXMNQnaScrcdc0bOUbucl-YCYQBrSltrKZdx1Ke5gwuJjR2M0Ilxxh1EG18J5TXFobXFTDTksalofCzAx6L2cQf1tuMWtarGzhFpMxXix_oQLvTvHHvbzJ1wmwf-iMjSzDcr4fAKvK85zHn5j_tfoX04AgJZSK9Re73cmBsHVdZ5t1qLXbSXPb8OR589Tukz
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLZgHIAD4ineBIlrNdo0SXtC08S08dhpk3aL0jRBQ1M3beP_E7fpeEhoB65NHFV2Yn9t7M8Adw5CJ6mKeIBVl0HMaB44UE-DiCuWh8wkoSoTZPu8O4yfRmy0Ae26FgbTKr3vr3x66a39k6bXZnM2HmONb8iFC0cIQWLOk03YQnYq1oCtVu-5219dJoh7z84Y8gAFvhUKvzszYc-xkoIoKplzozT5K0b98tZlCOrsw57HjqRVvd4BbJjiEHZbb3PPn2GOYNhWBdGYIe3_tRL1NUzGBWLEhSGL6XhCtJpnbkKZTF2z5z6QFimb42CVOqkJx49h2HkctLuB75wQaJrSZUBzkRpGlcpykXEM04pqBz6UtiGzkdWZUMpoQW3KLbUsj0WOXHaKCXciM05PoFFMC3MKBPGazq21TKg4umeZQwyJjR2SyBPjJp8Bq3UltacVx-4WE1nnj73LWscSdSwrHZ9BcyU3q4g11kqktSnkjy0infdfK3tb206684OXIqow04-FdJAFP9kc7Dz_x_o3sN0dvL7Il17_-QJ2cATzyUJ2CY3l_MNcOeSyzK79zvwEO8Tr5A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Can+conservation+agriculture+increase+soil+carbon+sequestration%3F+A+modelling+approach&rft.jtitle=Geoderma&rft.au=Valkama%2C+Elena&rft.au=Kunypiyaeva%2C+Gulya&rft.au=Zhapayev%2C+Rauan&rft.au=Karabayev%2C+Muratbek&rft.date=2020-06-15&rft.issn=0016-7061&rft.volume=369+p.114298-&rft_id=info:doi/10.1016%2Fj.geoderma.2020.114298&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7061&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7061&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7061&client=summon