Can conservation agriculture increase soil carbon sequestration? A modelling approach
[Display omitted] •SOC changes were simulated in three sites with contrasting soils and climates.•Conventional tillage (Conv − R and Conv + R) led to SOC decline in all sites.•No-tillage (NT) could slightly increase the annual SOC in all sites.•C sequestration rate of 0.4% yr−1 is achievable under c...
Saved in:
Published in | Geoderma Vol. 369; p. 114298 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
15.06.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•SOC changes were simulated in three sites with contrasting soils and climates.•Conventional tillage (Conv − R and Conv + R) led to SOC decline in all sites.•No-tillage (NT) could slightly increase the annual SOC in all sites.•C sequestration rate of 0.4% yr−1 is achievable under conservation agriculture (CA)•Cover crops (in CA + CC) would allow a higher annual sequestration rate.
Conservation agriculture (CA) involves complex and interactive processes that ultimately determine soil carbon (C) storage, making it difficult to identify clear patterns. To solve these problems, we used the ARMOSA process-based crop model to simulate the contribution of different CA components (minimum soil disturbance, permanent soil cover with crop residues and/or cover crops, and diversification of plant species) to soil organic carbon stock (SOC) sequestration at 0–30 cm soil depth and to compare it with SOC evolution under conventional agricultural practices. We simulated SOC changes in three sites located in Central Asia (Almalybak, Kazakhstan), Northern Europe (Jokioinen, Finland) and Southern Europe (Lombriasco, Italy), which have contrasting soils, organic carbon contents, climates, crops and management intensity. Simulations were carried out for the current climate conditions (1998–2017) and future climatic scenario (period 2020–2040, scenario Representative Concentration Pathway RCP 6.0).
Five cropping systems were simulated: conventional systems under ploughing with monoculture and residues removed (Conv − R) or residues retained (Conv + R); no-tillage (NT); CA and CA with a cover crop, Italian ryegrass (CA + CC). In Conv − R, Conv + R and NT, the simulated monocultures were spring barley in Almalybak and Jokioinen, and maize in Lombriasco. In all sites, conventional systems led to SOC decline of 170–1000 kg ha−1 yr−1, whereas NT can slightly increase the SOC. CA and CA + CC have the potential for a C sequestration rate of 0.4% yr−1 or higher in Almalybak and Jokioinen, and thus, the objective of the “4 per 1000” initiative can be achieved. Cover crops (in CA + CC) have a potential for a C sequestration rate of 0.36–0.5% yr−1 in Southern Finland and in Southern Kazakhstan under the current climate conditions, and their role will grow in importance in the future. Even if in Lombriasco it was not possible to meet the “4 per 1000”, there was a SOC increase under CA and CA + CC. In conclusion, the simultaneous adoption of all the three CA principles becomes more and more relevant in order to accomplish soil C sequestration as an urgent action to combat climate change and to ensure food security. |
---|---|
AbstractList | Conservation agriculture (CA) involves complex and interactive processes that ultimately determine soil carbon (C) storage, making it difficult to identify clear patterns. To solve these problems, we used the ARMOSA process-based crop model to simulate the contribution of different CA components (minimum soil disturbance, permanent soil cover with crop residues and/or cover crops, and diversification of plant species) to soil organic carbon stock (SOC) sequestration at 0–30 cm soil depth and to compare it with SOC evolution under conventional agricultural practices. We simulated SOC changes in three sites located in Central Asia (Almalybak, Kazakhstan), Northern Europe (Jokioinen, Finland) and Southern Europe (Lombriasco, Italy), which have contrasting soils, organic carbon contents, climates, crops and management intensity. Simulations were carried out for the current climate conditions (1998–2017) and future climatic scenario (period 2020–2040, scenario Representative Concentration Pathway RCP 6.0).Five cropping systems were simulated: conventional systems under ploughing with monoculture and residues removed (Conv − R) or residues retained (Conv + R); no-tillage (NT); CA and CA with a cover crop, Italian ryegrass (CA + CC). In Conv − R, Conv + R and NT, the simulated monocultures were spring barley in Almalybak and Jokioinen, and maize in Lombriasco. In all sites, conventional systems led to SOC decline of 170–1000 kg ha⁻¹ yr⁻¹, whereas NT can slightly increase the SOC. CA and CA + CC have the potential for a C sequestration rate of 0.4% yr⁻¹ or higher in Almalybak and Jokioinen, and thus, the objective of the “4 per 1000” initiative can be achieved. Cover crops (in CA + CC) have a potential for a C sequestration rate of 0.36–0.5% yr⁻¹ in Southern Finland and in Southern Kazakhstan under the current climate conditions, and their role will grow in importance in the future. Even if in Lombriasco it was not possible to meet the “4 per 1000”, there was a SOC increase under CA and CA + CC. In conclusion, the simultaneous adoption of all the three CA principles becomes more and more relevant in order to accomplish soil C sequestration as an urgent action to combat climate change and to ensure food security. [Display omitted] •SOC changes were simulated in three sites with contrasting soils and climates.•Conventional tillage (Conv − R and Conv + R) led to SOC decline in all sites.•No-tillage (NT) could slightly increase the annual SOC in all sites.•C sequestration rate of 0.4% yr−1 is achievable under conservation agriculture (CA)•Cover crops (in CA + CC) would allow a higher annual sequestration rate. Conservation agriculture (CA) involves complex and interactive processes that ultimately determine soil carbon (C) storage, making it difficult to identify clear patterns. To solve these problems, we used the ARMOSA process-based crop model to simulate the contribution of different CA components (minimum soil disturbance, permanent soil cover with crop residues and/or cover crops, and diversification of plant species) to soil organic carbon stock (SOC) sequestration at 0–30 cm soil depth and to compare it with SOC evolution under conventional agricultural practices. We simulated SOC changes in three sites located in Central Asia (Almalybak, Kazakhstan), Northern Europe (Jokioinen, Finland) and Southern Europe (Lombriasco, Italy), which have contrasting soils, organic carbon contents, climates, crops and management intensity. Simulations were carried out for the current climate conditions (1998–2017) and future climatic scenario (period 2020–2040, scenario Representative Concentration Pathway RCP 6.0). Five cropping systems were simulated: conventional systems under ploughing with monoculture and residues removed (Conv − R) or residues retained (Conv + R); no-tillage (NT); CA and CA with a cover crop, Italian ryegrass (CA + CC). In Conv − R, Conv + R and NT, the simulated monocultures were spring barley in Almalybak and Jokioinen, and maize in Lombriasco. In all sites, conventional systems led to SOC decline of 170–1000 kg ha−1 yr−1, whereas NT can slightly increase the SOC. CA and CA + CC have the potential for a C sequestration rate of 0.4% yr−1 or higher in Almalybak and Jokioinen, and thus, the objective of the “4 per 1000” initiative can be achieved. Cover crops (in CA + CC) have a potential for a C sequestration rate of 0.36–0.5% yr−1 in Southern Finland and in Southern Kazakhstan under the current climate conditions, and their role will grow in importance in the future. Even if in Lombriasco it was not possible to meet the “4 per 1000”, there was a SOC increase under CA and CA + CC. In conclusion, the simultaneous adoption of all the three CA principles becomes more and more relevant in order to accomplish soil C sequestration as an urgent action to combat climate change and to ensure food security. |
ArticleNumber | 114298 |
Author | Schillaci, Calogero Grignani, Carlo Kunypiyaeva, Gulya Perego, Alessia Valkama, Elena Zhapayev, Rauan Zhusupbekov, Erbol Karabayev, Muratbek Acutis, Marco Sacco, Dario Moretti, Barbara |
Author_xml | – sequence: 1 givenname: Elena surname: Valkama fullname: Valkama, Elena organization: Natural Resources Institute Finland (Luke), Bioeconomy and Environment, Finland – sequence: 2 givenname: Gulya surname: Kunypiyaeva fullname: Kunypiyaeva, Gulya organization: CIMMYT-Kazakhstan, Kazakhstan – sequence: 3 givenname: Rauan surname: Zhapayev fullname: Zhapayev, Rauan organization: Kazakh Research Institute of Agriculture and Plant Growing, Kazakhstan – sequence: 4 givenname: Muratbek surname: Karabayev fullname: Karabayev, Muratbek organization: CIMMYT-Kazakhstan, Kazakhstan – sequence: 5 givenname: Erbol surname: Zhusupbekov fullname: Zhusupbekov, Erbol organization: Kazakh Research Institute of Agriculture and Plant Growing, Kazakhstan – sequence: 6 givenname: Alessia surname: Perego fullname: Perego, Alessia organization: Department of Agricultural and Environmental Sciences – Production, Landscape, Agroenergy, University of Milan, Italy – sequence: 7 givenname: Calogero surname: Schillaci fullname: Schillaci, Calogero organization: Department of Agricultural and Environmental Sciences – Production, Landscape, Agroenergy, University of Milan, Italy – sequence: 8 givenname: Dario surname: Sacco fullname: Sacco, Dario organization: Environmental Agronomy, Department of Agricultural, Forest and Food Sciences, University of Turin, Italy – sequence: 9 givenname: Barbara surname: Moretti fullname: Moretti, Barbara organization: Environmental Agronomy, Department of Agricultural, Forest and Food Sciences, University of Turin, Italy – sequence: 10 givenname: Carlo surname: Grignani fullname: Grignani, Carlo organization: Environmental Agronomy, Department of Agricultural, Forest and Food Sciences, University of Turin, Italy – sequence: 11 givenname: Marco surname: Acutis fullname: Acutis, Marco email: marco.acutis@unimi.it organization: Department of Agricultural and Environmental Sciences – Production, Landscape, Agroenergy, University of Milan, Italy |
BookMark | eNqFkE1LAzEQhoNUsFb_guzRy9Z8dJNdELQUv6DgxZ7DbHa2pmyTmmwL_nvTVi9eehoyPO_M5LkkA-cdEnLD6JhRJu9W4yX6BsMaxpzy1GQTXpVnZMhKxXPJi2pAhjSRuaKSXZDLGFfpqRI7JIsZuMx4FzHsoLfeZbAM1my7fhsws84EhIhZ9LbLDIQ6ARG_thj7cMAfsmm2Ttu7zrplBptN8GA-r8h5C13E6986Iovnp4_Zaz5_f3mbTee5EZXoc9GoCgsBUDeqlpTzCQhD5QRMy4qWt6ZWAGiUaCvZirZoJqqhJS-hUKyStRQjcnucm9YejtJrG006Bhz6bdRclKUqBGM8ofKImuBjDNjqTbBrCN-aUb33qFf6z6Pee9RHjyl4_y9obH_4e1Jgu9Pxx2Mck4edxaCjsegMNjag6XXj7akRP-Z0lvg |
CitedBy_id | crossref_primary_10_1016_j_apsoil_2023_105088 crossref_primary_10_1016_j_csag_2024_100037 crossref_primary_10_1016_j_ccst_2022_100065 crossref_primary_10_1016_j_still_2020_104818 crossref_primary_10_1080_01904167_2024_2424322 crossref_primary_10_3390_agronomy14081768 crossref_primary_10_3390_plants12142742 crossref_primary_10_1007_s11119_024_10153_w crossref_primary_10_3390_su16187907 crossref_primary_10_1016_j_envsoft_2023_105932 crossref_primary_10_1016_j_geoderma_2020_114891 crossref_primary_10_1016_j_jrurstud_2024_103329 crossref_primary_10_1016_j_ijagro_2025_100037 crossref_primary_10_1002_ldr_5114 crossref_primary_10_1016_j_catena_2022_106089 crossref_primary_10_3390_agronomy14010164 crossref_primary_10_3390_su16041612 crossref_primary_10_3390_su13179857 crossref_primary_10_1016_j_still_2023_105916 crossref_primary_10_1016_j_ecolmodel_2023_110327 crossref_primary_10_1007_s13593_024_00961_9 crossref_primary_10_1016_j_soisec_2020_100002 crossref_primary_10_1088_1748_9326_ad0517 crossref_primary_10_3390_agronomy10070973 crossref_primary_10_3390_soilsystems7040082 crossref_primary_10_1016_j_catena_2022_106708 crossref_primary_10_3390_agronomy11020226 crossref_primary_10_3390_su16052027 crossref_primary_10_1007_s10661_023_11673_0 crossref_primary_10_1016_j_agee_2023_108677 crossref_primary_10_4081_ija_2021_1781 crossref_primary_10_1016_j_still_2021_104940 crossref_primary_10_1016_j_still_2023_105863 crossref_primary_10_1007_s13593_022_00818_z crossref_primary_10_3389_fenvs_2022_826786 crossref_primary_10_18016_ksutarimdoga_vi_1428787 crossref_primary_10_1016_j_scitotenv_2021_146609 crossref_primary_10_3390_agriculture11010039 crossref_primary_10_3390_agronomy12020331 crossref_primary_10_1002_ecs2_4985 crossref_primary_10_3390_agriculture13030683 crossref_primary_10_1002_ldr_5021 crossref_primary_10_3390_su12239808 crossref_primary_10_1016_j_scitotenv_2021_148169 crossref_primary_10_1111_sum_13050 crossref_primary_10_1016_j_scitotenv_2020_143116 crossref_primary_10_1016_j_soilbio_2022_108551 crossref_primary_10_1088_2515_7620_ad9436 crossref_primary_10_3390_agronomy13071721 crossref_primary_10_3390_ijerph19106200 crossref_primary_10_1016_j_agsy_2024_103870 crossref_primary_10_3390_agronomy12092011 crossref_primary_10_1007_s11104_022_05626_8 crossref_primary_10_1007_s40333_022_0095_8 crossref_primary_10_3390_agronomy11050882 crossref_primary_10_3390_land12061215 crossref_primary_10_17221_291_2023_PSE crossref_primary_10_1016_j_scitotenv_2021_149220 crossref_primary_10_1080_03650340_2022_2068795 crossref_primary_10_3389_fsufs_2023_904570 crossref_primary_10_1016_j_scitotenv_2022_155443 crossref_primary_10_3390_su16030953 crossref_primary_10_1002_ldr_4954 crossref_primary_10_1016_j_geoderma_2021_115355 crossref_primary_10_1016_j_still_2024_106315 crossref_primary_10_3390_su13148059 crossref_primary_10_1002_agj2_21279 crossref_primary_10_1080_17538947_2021_1953161 crossref_primary_10_3390_rs14164064 crossref_primary_10_1016_j_still_2023_105849 crossref_primary_10_1016_j_jenvman_2024_122882 crossref_primary_10_3390_soilsystems6040087 |
Cites_doi | 10.1016/S0022-1694(00)00393-0 10.1016/j.agee.2011.12.010 10.1016/j.agee.2016.01.047 10.1016/S0167-1987(99)00074-4 10.1016/0022-1694(70)90255-6 10.1080/00207233.2018.1494927 10.1016/j.eja.2019.125948 10.1002/ldr.1055 10.1890/13-0616.1 10.1016/j.cj.2014.06.006 10.1186/s13750-016-0079-2 10.1111/sum.12030 10.1002/joc.3711 10.1016/j.agsy.2018.06.018 10.1007/s13593-014-0271-0 10.1016/j.agee.2016.11.007 10.1016/j.energy.2011.03.075 10.1080/07352680902776358 10.1111/gcb.12137 10.1016/S0167-1987(02)00027-2 10.2134/agronj2016.12.0735 10.5194/essd-7-349-2015 10.1016/j.still.2019.04.020 10.1016/j.geoderma.2017.01.002 10.1175/1520-0477(1981)062<0599:JAQMP>2.0.CO;2 10.1016/j.agsy.2018.10.008 10.1016/j.agrformet.2012.11.017 10.1016/j.eja.2016.11.009 10.1016/j.scitotenv.2017.11.116 10.1016/j.agee.2010.08.006 10.1023/A:1009766510274 10.1016/j.agee.2016.07.008 10.1016/j.eja.2016.06.006 10.1111/j.1365-2389.1996.tb01386.x 10.13031/2013.23153 10.1016/j.agee.2014.10.024 10.1038/nclimate2292 10.1016/j.agee.2016.01.005 10.2136/vzj2007.0060 10.1016/0167-8809(87)90099-5 10.1016/j.still.2011.05.001 10.2136/sssaj2012.0221 10.1016/0168-1923(84)90017-0 10.1016/j.scitotenv.2014.07.002 10.1017/S0021859600081089 10.1016/j.agee.2013.10.010 10.17951/pjss.2015.48.1.47 10.2134/agronj2002.1222 10.2489/jswc.71.1.20A 10.1186/s40100-019-0126-8 10.1007/978-3-319-11620-4_22 10.1016/j.still.2015.01.015 10.1016/j.geoderma.2018.05.037 10.2136/sssaj2010.0430 10.1093/comjnl/7.4.308 10.1016/j.agee.2016.07.022 10.1016/j.ecolmodel.2016.02.013 10.1016/j.still.2015.05.006 10.3354/cr01322 10.1007/s00704-015-1650-4 10.1016/j.envsoft.2015.08.017 10.1016/j.energy.2017.01.069 10.1016/j.envpol.2018.07.068 10.2136/sssaj2002.1930 10.1016/0378-4290(87)90087-6 |
ContentType | Journal Article |
Copyright | 2020 Elsevier B.V. |
Copyright_xml | – notice: 2020 Elsevier B.V. |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.geoderma.2020.114298 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 1872-6259 |
ExternalDocumentID | 10_1016_j_geoderma_2020_114298 S0016706119324668 |
GeographicLocations | Italy Northern European region Kazakhstan Finland Southern European region |
GeographicLocations_xml | – name: Finland – name: Southern European region – name: Northern European region – name: Kazakhstan – name: Italy |
GroupedDBID | --K --M -DZ -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AATLK AAXUO ABFRF ABGRD ABJNI ABMAC ABQEM ABQYD ABYKQ ACDAQ ACGFO ACGFS ACIUM ACLVX ACRLP ACSBN ADBBV ADEZE ADQTV AEBSH AEFWE AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BKOJK BLXMC CBWCG CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IMUCA J1W KOM LW9 LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SAB SDF SDG SES SPC SPCBC SSA SSE SSZ T5K ~02 ~G- 29H AAHBH AALCJ AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABFNM ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEGFY AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 GROUPED_DOAJ HLV HMA HMC HVGLF HZ~ H~9 K-O OHT R2- RIG SEN SEP SEW SSH VH1 WUQ XPP Y6R ZMT 7S9 L.6 |
ID | FETCH-LOGICAL-c393t-3d79e53aabd7b60224a3c064acf15f2fcb7aaec73f96f3f5d47d0828a57196b63 |
IEDL.DBID | .~1 |
ISSN | 0016-7061 |
IngestDate | Thu Jul 10 17:36:14 EDT 2025 Thu Apr 24 23:05:46 EDT 2025 Tue Jul 01 04:04:52 EDT 2025 Fri Feb 23 02:50:26 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Conservation agriculture Climate change Crop diversification Soil tillage Cover crops ARMOSA model |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c393t-3d79e53aabd7b60224a3c064acf15f2fcb7aaec73f96f3f5d47d0828a57196b63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0016706119324668 |
PQID | 2388753112 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_2388753112 crossref_primary_10_1016_j_geoderma_2020_114298 crossref_citationtrail_10_1016_j_geoderma_2020_114298 elsevier_sciencedirect_doi_10_1016_j_geoderma_2020_114298 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-06-15 |
PublicationDateYYYYMMDD | 2020-06-15 |
PublicationDate_xml | – month: 06 year: 2020 text: 2020-06-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Geoderma |
PublicationYear | 2020 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Sheehy, Regina, Alakukku, Six (b0355) 2015; 150 Moriasi, Arnold, Van Liew, Bingner, Harmel, Veith (b0250) 2007; 50 FAO, 2017. Conservation Agriculture. FAO, 2p. http://www.fao.org/documents/card/en/c/981ab2a0-f3c6-4de3-a058-f0df6658e69f/. Nash, Sutcliffe (b0260) 1970; 10 Potma Gonçalves, de Moraes Sá, Mishra, Ferreira Furlan, Ferreira, Inagaki, Romaniw, de Oliveira Ferreira, Briedis (b0315) 2018; 243 Strullu, Beaudoin, Thiébeau, Julier, Mary, Ruget, Ripoche, Rakotovololona, Louarn (b0375) 2020; 112 Karabayev, Morgounov, Braun, Wall, Sayre, Zelenskiy, Zhapayev, Akhmetova, Dvurechenskii, Iskandarova, Friedrich, Fileccia, Guadagni (b0195) 2014; 4 Sinclair, Muchow, Ludlow, Leach, Lawn, Foale (b0360) 1987; 17 Groenendijk, Heinen, Klammler, Fank, Kupfersberger, Pisinaras, Gemitzi, PeñaHarod, García-Prats, Pulido-Velazquez, Perego, Acutis, Trevisan (b0150) 2014; 499 Harris, Jones, Osborn, Lister (b0165) 2014; 34 Perego, Rocca, Cattivelli, Tabaglio, Fiorini, Barbieri, Schillaci, Chiodini, Brenna, Acutis (b0285) 2019; 168 Barančíková, Makovníková (b0055) 2016; 48 Batjes (b0065) 1996; 47 Pisante, Stagnari, Grant (b0305) 2012; 7 Poeplau, Don (b0310) 2015; 200 Du, Angers, Ren, Zhang, Li (b0115) 2017; 236 Lal (b0215) 2016; 71 Le Quéré, Moriarty, Andrew, Canadell, Sitch, Korsbakken, Friedlingstein, Peters, Andres, Boden, Houghton, House, Keeling, Tans, Arneth, Bakker, Barbero, Bopp, Chang, Chevallier, Chini, Ciais, Fader, Feely, Gkritzalis, Harris, Hauck, Ilyina, Jain, Kato, Kitidis, Klein Goldewijk, Koven, Landschützer, Lauvset, Lefèvre, Lenton, Lima, Metzl, Millero, Munro, Murata, Nabel, Nakaoka, Nojiri, O’Brien, Olsen, Ono, Pérez, Pfeil, Pierrot, Poulter, Rehder, Rödenbeck, Saito, Schuster, Schwinger, Séférian, Steinhoff, Stocker, Sutton, Takahashi, Tilbrook, van der Laan-Luijkx, van der Werf, van Heuven, Vandemark, Viovy, Wiltshire, Zaehle, Zeng (b0220) 2015; 7 Minasny, Malone, McBratney, Angers, Arrouays, Chambers, Chaplot, Chen, Cheng, Das, Field, Gimona, Hedley, Hong, Mandal, Marchant, Martin, McConkey, Mulder, O'Rourke, Richer-de-ForgesInakwu, Odeh, Padarian, Paustian, Pan, Poggio, Savin, Stolbovoy, Stockmann, Sulaeman, Tsui, Vågen, van Wesemael, Winowiecki (b0245) 2017; 292 Acutis, Confalonieri (b0010) 2006; 11–3 Autret, Mary, Chenu, Balabane, Girardin, Bertrand, Grandeau, Beaudoin (b0040) 2016; 232 Ogle, Swan, Paustian (b0270) 2012; 149 Bellocchi, Acutis, Fila, Donatelli (b0070) 2002; 94 Fox (b0130) 1981; 62 McDaniel, Tiemann, Grandy (b0240) 2014; 24 Barbera, Poma, Gristina, Novara, Egli (b0060) 2012; 23 Duveiller, Donatelli, Fumagalli, Zucchini, Nelson, Baruth (b0120) 2017; 127 Powlson, Stirling, Thierfelder, White, Jat (b0325) 2016; 220 Kabiri, Raiesi, Ghazavi (b0190) 2016; 232 Palm, Blanco-Canqui, DeClerck, Gatere, Grace (b0275) 2014; 187 Stöckle, C.O., Nelson, R., Donatelli, M., Castellvì, F., 2001. ClimGen: a flexible weather generation program. 2nd Int. Symp. Model. Crop. Syst., 16-18 July, Florence, Italy. Sanna, Bellocchi, Fumagalli, Acutis (b0350) 2015; 73 Kibet, Blanco-Canqui, Jasa (b0205) 2016; 155 Laflen, Elliot, Flanagan, Meyer, Nearing (b0210) 1997; 52 Ball, Scott, Parker (b0050) 1999; 53 Franzluebbers (b0135) 2002; 66 Rádics, Jóri, Fenyvesi (b0330) 2014; 4 Heikkinen, Ketoja, Nuutinen, Regina (b0170) 2013; 19 Pirttioja, Carter, Fronzek, Bindi, Hoffmann, Palosuo, Ruiz-Ramos, Tao, Trnka, Acutis, Asseng, Baranowski, Basso, Bodin, Buis, Cammarano, Deligios, Destain, Dumont, Ewert, Ferrise, François, Gaiser, Hlavinka, Jacquemin, Kersebaum, Kollas, Krzyszczak, Lorite, Minet, Minguez, Montesino, Moriondo, Müller, Nendel, Öztürk, Perego, Rodríguez, Ruane, Ruget, Sanna, Semenov, Slawinski, Stratonovitch, Supit, Waha, Wang, Wu, Zhao, Rötter (b0295) 2015; 65 Zhang, Li, Gregorich, McLaughlin, Zhang, Guo, Liang, Fan, Sun (b0395) 2018; 330 Luo, Wang, Sun (b0225) 2010; 139 Ruis, Blanco-Canqui (b0340) 2017; 109 Zheng, Jiang, Chen, Sun, Feng, Deng, Song, Zhang (b0405) 2014; 2 Stajnko, Lakota, Vučajnk, Bernik (b0365) 2009; 18 Christensen, B.O., Drews, M., Hesselbjerg Christensen, J., Dethloff, K., Ketelsen, K., Hebestadt, I., Rinke, A., 2007. The HIRHAM Regional Climate Model. Version 5 (beta). Danish Climate Centre, Danish Meteorological Institute. Denmark. Danish Meteorological Institute. Technical Report, No. 06-17. Anonymous, 1992. Soils. Methods for determination of organic matter. GOST 26213-91. State Committee for Standardization and Metrology of the USSA. Moscow, p.8 http://docs.cntd.ru/document/1200023481 (In Russian). Pisante M., Stagnari F., Acutis M., Bindi M. Brilli L., Di Stefano V., Carozzi M., 2015. Conservation Agriculture and Climate Change, in.:Farooq, M., Siddique, K.H.M. (Eds.), Conservation Agriculture. Springer, Cham, pp. 579-620. DOI 10.1007/978-3-319-11620-4_22. Bristow, Campbell (b0085) 1984; 31 Kassam, Friedrich, Derpsch (b0200) 2019; 76 Nelder, Mead (b0265) 1965; 7 Allen R.G., Pereira L.S., Raes D., Smith, M.,1998. Crop Evapotranspiration: Guidelines for computing crop water requirements. Irrigation and Drainage Paper 56, Food and Agriculture Organization of the United Nations, Rome, 300 p. Alluvione, Moretti, Sacco, Grignani (b0025) 2011; 36 Mazzoncini, Sapkota, Bàrberi, Antichi, Risalit (b0235) 2011; 114 Badagliacca, Benítez, Amato, Badalucco, Giambalvo, Laudicina, Ruisi (b0045) 2018; 619–620 Reicosky (b0335) 1997; 49 ISTAT, 2011, Istat (Italian Statistic Board). 6° Censimento dell’agricoltura – 6th Agriculture Census. Istat, Rome Italy (2011). Muhammad, Sainju, Zhao, Khan, Ghimire, Fu, Wang (b0255) 2019; 192 Confalonieri, Bregaglio, Acutis (b0095) 2016; 328 Powlson, D.S., Stirling, C,M., Jat, M.L., Gerard, B.G., Palm, C.A., Sanchez, P.A., Cassman, K.G., 2014. Limited potential of no-till agriculture for climate change mitigation. Nat. Clim. Change 4, 678–683. doi: 10.1038/nclimate2292. Haddaway, Hedlund, Jackson, Kätterer, Lugato, Thomsen, Jørgensen, Isberg (b0160) 2017; 6 Perrin, Michel, Andréassian (b0290) 2001; 242 West, Post (b0385) 2002; 66 Blanco-Canqui, Mikha, Presley, Claassen (b0080) 2011; 75 Bellocchi, Rivington, Matthews, Acutis (b0075) 2015; 35 Johnsson, Bergstrom, Jansson, Paustian (b0185) 1987; 18 Abdalla, Osborne, Lanigan, Forristal, Williams, Smith, Jones (b0005) 2013; 29 Zhao, Liu, Pu, Zhang, Xue, Ren, Zhao, Chen, Lal, Zhang (b0400) 2017; 84 Yli-Viikari, A. (Ed.). 2019. Maaseutuohjelman (2014–2020) ympäristöarviointi. Luonnonvara- ja biotalouden tutkimus 63/2019. Luonnonvarakeskus, Helsinki (In Finnish with English abstract). https://jukuri.luke.fi/handle/10024/544713. Dalzell, Johnson, Tallaksen, Allan, Barbour (b0105) 2013; 77 Marandola, Belliggiano, Romagnoli, Ievoli (b0230) 2019; 7 Houshyar, Grundmann (b0175) 2017; 122 van Dam, Groenendijk, Hendriks, Kroes (b0380) 2008; 7 Sándor, Barcza, Acutis, Doro, Hidy, Köchy, Minet, Lellei-Kovács, Ma, Perego, Rolinksi, Ruget, Sanna, Seddaiu, Wu, Bellocchi (b0345) 2017; 88 González-Sánchez, E.J., Moreno-García, M., Kassam, A., Holgado-Cabrera, A., Triviño- Tarradas, P., Carbonell-Bojollo, R., Pisante, M., Veroz-González, O., Basch, G., 2017. Conservation Agriculture: Making Climate Change Mitigation and Adaptation Real in Europe, ed. European Conservation Agriculture Federation (ECAF), 154p. doi: 10.13140/RG.2.2.13611.13604. Perego, Giussani, Sanna, Fumagalli, Carozzi, Alfieri, Brenna, Acutis (b0280) 2013; 3 Corsi, S., Friedrich, T., Kassam, A., Pisante, M., De Moraes Sà J., 2012. Soil Organic Carbon Accumulation and Greenhouse Gas Emission Reductions from Conservation Agriculture: A literature review. Integrated Crop Management Vol.16-2012. FAO, Rome. de Wit, Boogaard, Fumagalli, Janssen, Knapen, van Kraalingen, Supit, van der Wijngaart, van Diepen (b0110) 2019; 168 Guardia, Tellez-Rio, García-Marco, Martin-Lammerding, Tenorio, Ibáñez, Vallejo (b0155) 2016; 221 Addiscott, Whitmore (b0015) 1987; 109 Govaerts, Verhulst, Castellanos-Navarrete, Sayre, Dixon, Dendooven (b0145) 2009; 28 Angulo, Rötter, Lock, Enders, Fronzek, Ewert (b0030) 2013; 170 Alluvione (10.1016/j.geoderma.2020.114298_b0025) 2011; 36 de Wit (10.1016/j.geoderma.2020.114298_b0110) 2019; 168 Le Quéré (10.1016/j.geoderma.2020.114298_b0220) 2015; 7 10.1016/j.geoderma.2020.114298_b0390 Stajnko (10.1016/j.geoderma.2020.114298_b0365) 2009; 18 Addiscott (10.1016/j.geoderma.2020.114298_b0015) 1987; 109 Barančíková (10.1016/j.geoderma.2020.114298_b0055) 2016; 48 Poeplau (10.1016/j.geoderma.2020.114298_b0310) 2015; 200 West (10.1016/j.geoderma.2020.114298_b0385) 2002; 66 Perrin (10.1016/j.geoderma.2020.114298_b0290) 2001; 242 10.1016/j.geoderma.2020.114298_b0430 Abdalla (10.1016/j.geoderma.2020.114298_b0005) 2013; 29 10.1016/j.geoderma.2020.114298_b0035 Bellocchi (10.1016/j.geoderma.2020.114298_b0070) 2002; 94 Badagliacca (10.1016/j.geoderma.2020.114298_b0045) 2018; 619–620 10.1016/j.geoderma.2020.114298_b0435 Mazzoncini (10.1016/j.geoderma.2020.114298_b0235) 2011; 114 Confalonieri (10.1016/j.geoderma.2020.114298_b0095) 2016; 328 Franzluebbers (10.1016/j.geoderma.2020.114298_b0135) 2002; 66 Haddaway (10.1016/j.geoderma.2020.114298_b0160) 2017; 6 Heikkinen (10.1016/j.geoderma.2020.114298_b0170) 2013; 19 Perego (10.1016/j.geoderma.2020.114298_b0280) 2013; 3 Strullu (10.1016/j.geoderma.2020.114298_b0375) 2020; 112 Acutis (10.1016/j.geoderma.2020.114298_b0010) 2006; 11–3 Ruis (10.1016/j.geoderma.2020.114298_b0340) 2017; 109 Bristow (10.1016/j.geoderma.2020.114298_b0085) 1984; 31 Duveiller (10.1016/j.geoderma.2020.114298_b0120) 2017; 127 Batjes (10.1016/j.geoderma.2020.114298_b0065) 1996; 47 10.1016/j.geoderma.2020.114298_b0320 10.1016/j.geoderma.2020.114298_b0440 Harris (10.1016/j.geoderma.2020.114298_b0165) 2014; 34 Barbera (10.1016/j.geoderma.2020.114298_b0060) 2012; 23 Bellocchi (10.1016/j.geoderma.2020.114298_b0075) 2015; 35 Pirttioja (10.1016/j.geoderma.2020.114298_b0295) 2015; 65 10.1016/j.geoderma.2020.114298_b0125 Groenendijk (10.1016/j.geoderma.2020.114298_b0150) 2014; 499 Guardia (10.1016/j.geoderma.2020.114298_b0155) 2016; 221 Rádics (10.1016/j.geoderma.2020.114298_b0330) 2014; 4 Zhang (10.1016/j.geoderma.2020.114298_b0395) 2018; 330 Reicosky (10.1016/j.geoderma.2020.114298_b0335) 1997; 49 Pisante (10.1016/j.geoderma.2020.114298_b0305) 2012; 7 Powlson (10.1016/j.geoderma.2020.114298_b0325) 2016; 220 Kibet (10.1016/j.geoderma.2020.114298_b0205) 2016; 155 Lal (10.1016/j.geoderma.2020.114298_b0215) 2016; 71 Marandola (10.1016/j.geoderma.2020.114298_b0230) 2019; 7 Potma Gonçalves (10.1016/j.geoderma.2020.114298_b0315) 2018; 243 Sinclair (10.1016/j.geoderma.2020.114298_b0360) 1987; 17 Perego (10.1016/j.geoderma.2020.114298_b0285) 2019; 168 Zheng (10.1016/j.geoderma.2020.114298_b0405) 2014; 2 Moriasi (10.1016/j.geoderma.2020.114298_b0250) 2007; 50 Sheehy (10.1016/j.geoderma.2020.114298_b0355) 2015; 150 10.1016/j.geoderma.2020.114298_b0370 Kassam (10.1016/j.geoderma.2020.114298_b0200) 2019; 76 10.1016/j.geoderma.2020.114298_b0410 Johnsson (10.1016/j.geoderma.2020.114298_b0185) 1987; 18 Ogle (10.1016/j.geoderma.2020.114298_b0270) 2012; 149 Minasny (10.1016/j.geoderma.2020.114298_b0245) 2017; 292 Zhao (10.1016/j.geoderma.2020.114298_b0400) 2017; 84 Nelder (10.1016/j.geoderma.2020.114298_b0265) 1965; 7 Du (10.1016/j.geoderma.2020.114298_b0115) 2017; 236 Ball (10.1016/j.geoderma.2020.114298_b0050) 1999; 53 Fox (10.1016/j.geoderma.2020.114298_b0130) 1981; 62 van Dam (10.1016/j.geoderma.2020.114298_b0380) 2008; 7 Blanco-Canqui (10.1016/j.geoderma.2020.114298_b0080) 2011; 75 Houshyar (10.1016/j.geoderma.2020.114298_b0175) 2017; 122 Sándor (10.1016/j.geoderma.2020.114298_b0345) 2017; 88 Govaerts (10.1016/j.geoderma.2020.114298_b0145) 2009; 28 Muhammad (10.1016/j.geoderma.2020.114298_b0255) 2019; 192 10.1016/j.geoderma.2020.114298_b0090 10.1016/j.geoderma.2020.114298_b0180 Dalzell (10.1016/j.geoderma.2020.114298_b0105) 2013; 77 Autret (10.1016/j.geoderma.2020.114298_b0040) 2016; 232 Luo (10.1016/j.geoderma.2020.114298_b0225) 2010; 139 10.1016/j.geoderma.2020.114298_b0140 10.1016/j.geoderma.2020.114298_b0020 10.1016/j.geoderma.2020.114298_b0100 10.1016/j.geoderma.2020.114298_b0300 10.1016/j.geoderma.2020.114298_b0420 10.1016/j.geoderma.2020.114298_b0425 Laflen (10.1016/j.geoderma.2020.114298_b0210) 1997; 52 Angulo (10.1016/j.geoderma.2020.114298_b0030) 2013; 170 10.1016/j.geoderma.2020.114298_b0415 Sanna (10.1016/j.geoderma.2020.114298_b0350) 2015; 73 Kabiri (10.1016/j.geoderma.2020.114298_b0190) 2016; 232 Palm (10.1016/j.geoderma.2020.114298_b0275) 2014; 187 Karabayev (10.1016/j.geoderma.2020.114298_b0195) 2014; 4 McDaniel (10.1016/j.geoderma.2020.114298_b0240) 2014; 24 Nash (10.1016/j.geoderma.2020.114298_b0260) 1970; 10 |
References_xml | – reference: Christensen, B.O., Drews, M., Hesselbjerg Christensen, J., Dethloff, K., Ketelsen, K., Hebestadt, I., Rinke, A., 2007. The HIRHAM Regional Climate Model. Version 5 (beta). Danish Climate Centre, Danish Meteorological Institute. Denmark. Danish Meteorological Institute. Technical Report, No. 06-17. – volume: 499 start-page: 463 year: 2014 end-page: 480 ident: b0150 article-title: Performance assessment of nitrate leaching models for highly vulnerable soils used in low-input farming based on lysimeter data publication-title: Sci. Total Environ. – reference: Pisante M., Stagnari F., Acutis M., Bindi M. Brilli L., Di Stefano V., Carozzi M., 2015. Conservation Agriculture and Climate Change, in.:Farooq, M., Siddique, K.H.M. (Eds.), Conservation Agriculture. Springer, Cham, pp. 579-620. DOI 10.1007/978-3-319-11620-4_22. – volume: 220 start-page: 164 year: 2016 end-page: 174 ident: b0325 article-title: Does conservation agriculture deliver climate change mitigation through soil carbon sequestration in tropical agro-ecosystems? publication-title: Agr. Ecosys. Environ. – volume: 73 start-page: 286 year: 2015 end-page: 304 ident: b0350 article-title: A new method for analysing the interrelationship between performance indicators with an application to agrometeorological models publication-title: Environ. Modell. Softw. – volume: 35 start-page: 589 year: 2015 end-page: 605 ident: b0075 article-title: Deliberative processes for comprehensive evaluation of agroecological models. A review publication-title: Agron. Sustain. Dev. – reference: ISTAT, 2011, Istat (Italian Statistic Board). 6° Censimento dell’agricoltura – 6th Agriculture Census. Istat, Rome Italy (2011). – volume: 36 start-page: 4468 year: 2011 end-page: 4481 ident: b0025 article-title: EUE (energy use efficiency) of cropping systems for a sustainable agriculture publication-title: Energy – volume: 10 start-page: 282 year: 1970 end-page: 290 ident: b0260 article-title: River flow forecasting through conceptual models part I—A discussion of principles publication-title: J. Hydrol. – volume: 150 start-page: 107 year: 2015 end-page: 113 ident: b0355 article-title: Impact of no-till and reduced tillage on aggregation and aggregate-associated carbon in Northern European agroecosystems publication-title: Soil Till. Res. – volume: 18 start-page: 711 year: 2009 end-page: 716 ident: b0365 article-title: Effects of different tillage systems on fuel savings and reduction of CO publication-title: Pol. J. Environ. Stud. – reference: FAO, 2017. Conservation Agriculture. FAO, 2p. http://www.fao.org/documents/card/en/c/981ab2a0-f3c6-4de3-a058-f0df6658e69f/. – volume: 31 start-page: 159 year: 1984 end-page: 166 ident: b0085 article-title: On the relationship between incoming solar radiation and daily maximum and minimum temperature publication-title: Agr. Forest Meteorol. – volume: 4 start-page: 761 year: 2014 end-page: 765 ident: b0195 article-title: Effective approaches to wheat improvement in Kazakhstan: breeding and conservation agriculture publication-title: J. Agric. Sci. Tech. B – volume: 170 start-page: 32 year: 2013 end-page: 46 ident: b0030 article-title: Implication of crop model calibration strategies for assessing regional impacts of climate change in Europe publication-title: Agric. Forest Meteorol. – volume: 109 start-page: 141 year: 1987 end-page: 157 ident: b0015 article-title: Computer simulation of changes in soil mineral nitrogen and crop nitrogen during autumn, winter and spring publication-title: J. Agr. Sci. – reference: Stöckle, C.O., Nelson, R., Donatelli, M., Castellvì, F., 2001. ClimGen: a flexible weather generation program. 2nd Int. Symp. Model. Crop. Syst., 16-18 July, Florence, Italy. – volume: 112 year: 2020 ident: b0375 article-title: Simulation using the STICS model of C&N dynamics in alfalfa from sowing to crop destruction publication-title: Eur. J. Agron. – volume: 4 start-page: 37 year: 2014 end-page: 44 ident: b0330 article-title: Soil CO publication-title: Int. J. Appl. Sci. Tech. – volume: 330 start-page: 204 year: 2018 end-page: 211 ident: b0395 article-title: No-tillage with continuous maize cropping enhances soil aggregation and organic carbon storage in Northeast China publication-title: Geoderma – volume: 19 start-page: 1456 year: 2013 end-page: 1469 ident: b0170 article-title: Declining trend of carbon in Finnish cropland soils in 1974–2009 publication-title: Global Change Biol. – volume: 24 start-page: 560 year: 2014 end-page: 570 ident: b0240 article-title: Does agricultural crop diversity enhance soil microbial biomass and organic matter dynamics? A meta-analysis publication-title: Ecol. Appl. – volume: 187 start-page: 87 year: 2014 end-page: 105 ident: b0275 article-title: Conservation agriculture and ecosystem services: an overview publication-title: Agr. Ecosys. Environ. – volume: 34 start-page: 623 year: 2014 end-page: 642 ident: b0165 article-title: Updated high-resolution grids of monthly climatic observations – the CRU TS3.10 Dataset publication-title: Int. J. Climatol. – reference: Allen R.G., Pereira L.S., Raes D., Smith, M.,1998. Crop Evapotranspiration: Guidelines for computing crop water requirements. Irrigation and Drainage Paper 56, Food and Agriculture Organization of the United Nations, Rome, 300 p. – volume: 232 start-page: 73 year: 2016 end-page: 84 ident: b0190 article-title: Tillage effects on soil microbial biomass, SOM mineralization and enzyme activity in a semi-arid Calcixerepts publication-title: Agr. Ecosys. Environ. – volume: 292 start-page: 59 year: 2017 end-page: 86 ident: b0245 article-title: Soil carbon 4 per mille publication-title: Geoderma. – volume: 221 start-page: 187 year: 2016 end-page: 197 ident: b0155 article-title: Effect of tillage and crop (cereal versus legume) on greenhouse gas emissions and Global Warming Potential in a non-irrigated Mediterranean field publication-title: Agr. Ecosys. Environ. – volume: 242 start-page: 275 year: 2001 end-page: 301 ident: b0290 article-title: Does a large number of parameters enhance model performance? Comparative assessment of common catchment model structures on 429 catchments publication-title: J. Hydrol. – volume: 77 start-page: 1349 year: 2013 end-page: 1356 ident: b0105 article-title: Simulated impacts of crop residue removal and tillage on soil organic matter maintenance publication-title: Soil Sci. Soc. Am. J. – volume: 65 start-page: 87 year: 2015 end-page: 105 ident: b0295 article-title: Temperature and precipitation effects on wheat yield across a European transect: A crop model ensemble analysis using impact response surfaces publication-title: Clim. Res. – volume: 168 start-page: 154 year: 2019 end-page: 167 ident: b0110 article-title: 25 years of the WOFOST cropping systems model publication-title: Agr. Syst. – volume: 7 start-page: 640 year: 2008 end-page: 653 ident: b0380 article-title: Advances of modeling water flow in variably saturated soils with SWAP publication-title: Vadose Zone J. – volume: 84 start-page: 67 year: 2017 end-page: 75 ident: b0400 article-title: Crop yields under no-till farming in China: a meta-analysis publication-title: Eur. J. Agron. – volume: 6 start-page: 1 year: 2017 end-page: 48 ident: b0160 article-title: How does tillage intensity affect soil organic carbon? A systematic review publication-title: Environ. Evid. – volume: 50 start-page: 885 year: 2007 end-page: 900 ident: b0250 article-title: Model evaluation guidelines for systematic quantification of accuracy in watershed simulations publication-title: Trans. ASABE – volume: 11–3 start-page: 26 year: 2006 end-page: 34 ident: b0010 article-title: Optimization algorithms for calibrating cropping systems simulation models. A case study with simplex-derived methods integrated in the WARM simulation environment publication-title: Ital. J. Agrometeorol. – volume: 52 start-page: 96 year: 1997 end-page: 102 ident: b0210 article-title: WEPP-predicting water erosion using a process-based model publication-title: J. Soil Water Conserv. – reference: Yli-Viikari, A. (Ed.). 2019. Maaseutuohjelman (2014–2020) ympäristöarviointi. Luonnonvara- ja biotalouden tutkimus 63/2019. Luonnonvarakeskus, Helsinki (In Finnish with English abstract). https://jukuri.luke.fi/handle/10024/544713. – volume: 155 start-page: 78 year: 2016 end-page: 84 ident: b0205 article-title: Long-term tillage impacts on soil organic matter components and related properties on a Typic Argiudoll publication-title: Soil Till. Res. – reference: Powlson, D.S., Stirling, C,M., Jat, M.L., Gerard, B.G., Palm, C.A., Sanchez, P.A., Cassman, K.G., 2014. Limited potential of no-till agriculture for climate change mitigation. Nat. Clim. Change 4, 678–683. doi: 10.1038/nclimate2292. – volume: 88 start-page: 22 year: 2017 end-page: 40 ident: b0345 article-title: Multi-model simulation of soil temperature, soil water content and biomass in Euro-Mediterranean grasslands: Uncertainties and ensemble performance publication-title: Eur. J. Agron. – volume: 149 start-page: 37 year: 2012 end-page: 49 ident: b0270 article-title: No-till management impacts on crop productivity, carbon input and soil carbon sequestration publication-title: Agr. Ecosys. Environ. – volume: 232 start-page: 150 year: 2016 end-page: 164 ident: b0040 article-title: Alternative arable cropping systems: a key to increase soil organic carbon storage? Results from a 16-year field experiment publication-title: Agr. Ecosyst. Environ. – reference: González-Sánchez, E.J., Moreno-García, M., Kassam, A., Holgado-Cabrera, A., Triviño- Tarradas, P., Carbonell-Bojollo, R., Pisante, M., Veroz-González, O., Basch, G., 2017. Conservation Agriculture: Making Climate Change Mitigation and Adaptation Real in Europe, ed. European Conservation Agriculture Federation (ECAF), 154p. doi: 10.13140/RG.2.2.13611.13604. – volume: 94 start-page: 1222 year: 2002 end-page: 1233 ident: b0070 article-title: An indicator of solar radiation model performance based on a fuzzy expert system publication-title: Agron. J. – volume: 122 start-page: 11 year: 2017 end-page: 24 ident: b0175 article-title: Environmental impacts of energy use in wheat tillage systems: a comparative life cycle assessment (LCA) study in Iran publication-title: Energy – volume: 109 start-page: 1785 year: 2017 end-page: 1805 ident: b0340 article-title: Cover crops could offset crop residue removal effects on soil carbon and other properties: a review publication-title: Agron. J. – volume: 23 start-page: 82 year: 2012 end-page: 91 ident: b0060 article-title: Long-term cropping systems and tillage management effects on soil organic carbon stock and steady state level of C sequestration rates in a semiarid environment publication-title: Land Degrad. Dev. – volume: 47 start-page: 151 year: 1996 end-page: 163 ident: b0065 article-title: Total carbon and nitrogen in the soils of the world publication-title: Eur. J. Soil Sci. – volume: 71 start-page: 20A year: 2016 end-page: 25A ident: b0215 article-title: Beyond COP 21: potential and challenges of the “4 per Thousand” initiative publication-title: J. Soil Water Conserv. – volume: 3 start-page: 23 year: 2013 end-page: 38 ident: b0280 article-title: The ARMOSA simulation crop model: overall features, calibration and validation results publication-title: Ital. J. Agrometeorol. – volume: 48 start-page: 47 year: 2016 end-page: 56 ident: b0055 article-title: Comparison of two methods of soil organic carbon determination publication-title: Pol. J. Soil Sci. – volume: 66 start-page: 197 year: 2002 end-page: 205 ident: b0135 article-title: Water infiltration and soil structure related to organic matter and its stratification with depth publication-title: Soil Till. Res. – volume: 192 start-page: 103 year: 2019 end-page: 112 ident: b0255 article-title: Regulation of soil CO publication-title: Soil Till. Res. – volume: 7 start-page: 7 year: 2019 ident: b0230 article-title: The spread of no-till in conservation agriculture systems in Italy: indications for rural development policy-making publication-title: Agr. Food Econ. – volume: 7 start-page: 300 year: 2012 end-page: 311 ident: b0305 article-title: Agricultural innovations for sustainable crop production intensification publication-title: Ital. J. Agron. – volume: 2 start-page: 289 year: 2014 end-page: 296 ident: b0405 article-title: The impacts of conservation agriculture on crop yield in China depend on specific practices, crops and cropping regions publication-title: Crop J. – volume: 29 start-page: 199 year: 2013 end-page: 209 ident: b0005 article-title: Conservation tillage systems: a review of its consequences for greenhouse gas emissions publication-title: Soil Use Manage. – reference: Anonymous, 1992. Soils. Methods for determination of organic matter. GOST 26213-91. State Committee for Standardization and Metrology of the USSA. Moscow, p.8 http://docs.cntd.ru/document/1200023481 (In Russian). – volume: 328 start-page: 72 year: 2016 end-page: 77 ident: b0095 article-title: Quantifying uncertainty in crop model predictions due to the uncertainty in the observations used for calibration publication-title: Ecol. Model. – volume: 236 start-page: 1 year: 2017 end-page: 11 ident: b0115 article-title: The effect of no-till on organic C storage in Chinese soils should not be overemphasized: a meta-analysis publication-title: Agr. Ecosys. Environ. – volume: 62 start-page: 599 year: 1981 end-page: 609 ident: b0130 article-title: Judging air quality model performance: a summary of the AMS workshop on dispersion models performance publication-title: Bull. Am. Meteorol. Soc. – volume: 76 start-page: 29 year: 2019 end-page: 51 ident: b0200 article-title: Global spread of conservation agriculture publication-title: Int. J. Environ. Studies – volume: 17 start-page: 121 year: 1987 end-page: 140 ident: b0360 article-title: Field and model analysis of the effect of water deficits on carbon and nitrogen accumulation by soybean, cowpea and black gram publication-title: Field Crops Res. – volume: 619–620 start-page: 18 year: 2018 end-page: 27 ident: b0045 article-title: Long-term effects of contrasting tillage on soil organic carbon, nitrous oxide and ammonia emissions in a Mediterranean Vertisol under different crop sequences publication-title: Sci. Total Environ. – volume: 7 start-page: 349 year: 2015 end-page: 396 ident: b0220 article-title: Global Carbon Budget 2015 publication-title: Earth Syst. Sci. Data – volume: 243 start-page: 940 year: 2018 end-page: 952 ident: b0315 article-title: Soil carbon inventory to quantify the impact of land use change to mitigate greenhouse gas emissions and ecosystem services publication-title: Environ. Pollut. – volume: 18 start-page: 333 year: 1987 end-page: 356 ident: b0185 article-title: Simulated nitrogen dynamics and losses in a layered agricultural soil publication-title: Agr. Ecosys. Environ. – volume: 114 start-page: 165 year: 2011 end-page: 174 ident: b0235 article-title: Long-term effect of tillage, nitrogen fertilization and cover crops on soil organic carbon and total nitrogen content publication-title: Soil Till. Res. – volume: 49 start-page: 273 year: 1997 end-page: 285 ident: b0335 article-title: Tillage-induced CO publication-title: Nutr. Cycl. Agroecosys. – volume: 7 start-page: 308 year: 1965 end-page: 313 ident: b0265 article-title: A simplex method for function minimization publication-title: Comput. J. – reference: Corsi, S., Friedrich, T., Kassam, A., Pisante, M., De Moraes Sà J., 2012. Soil Organic Carbon Accumulation and Greenhouse Gas Emission Reductions from Conservation Agriculture: A literature review. Integrated Crop Management Vol.16-2012. FAO, Rome. – volume: 139 start-page: 224 year: 2010 end-page: 231 ident: b0225 article-title: Can no-tillage stimulate carbon sequestration in agricultural soils? A meta-analysis of paired experiments publication-title: Agr. Ecosys. Environ. – volume: 168 start-page: 73 year: 2019 end-page: 87 ident: b0285 article-title: Agro-environmental aspects of conservation agriculture compared to conventional systems: a 3-year experience on 20 farms in the Po valley (Northern Italy) publication-title: Agr. Syst. – volume: 53 start-page: 29 year: 1999 end-page: 39 ident: b0050 article-title: Field N publication-title: Soil Till. Res. – volume: 127 start-page: 573 year: 2017 end-page: 585 ident: b0120 article-title: A dataset of future daily weather data for crop modelling over Europe derived from climate change scenarios publication-title: Theor. Appl. Climatol. – volume: 200 start-page: 33 year: 2015 end-page: 41 ident: b0310 article-title: Carbon sequestration in agricultural soils via cultivation of cover crops – a meta-analysis publication-title: Agr. Ecosys. Environ. – volume: 66 start-page: 1930 year: 2002 end-page: 1946 ident: b0385 article-title: Soil organic carbon sequestration rates by tillage and crop rotation: a global data analysis publication-title: Soil Sci. Soc. Am. J. – volume: 28 start-page: 97 year: 2009 end-page: 122 ident: b0145 article-title: Conservation agriculture and soil carbon sequestration: between myth and farmer reality publication-title: Crit. Rev. Plant Sci – volume: 75 start-page: 1471 year: 2011 end-page: 1482 ident: b0080 article-title: Addition of cover crops enhances no-till potential for improving soil physical properties publication-title: Soil Sci. Soc. Am. J. – volume: 242 start-page: 275 year: 2001 ident: 10.1016/j.geoderma.2020.114298_b0290 article-title: Does a large number of parameters enhance model performance? Comparative assessment of common catchment model structures on 429 catchments publication-title: J. Hydrol. doi: 10.1016/S0022-1694(00)00393-0 – volume: 149 start-page: 37 year: 2012 ident: 10.1016/j.geoderma.2020.114298_b0270 article-title: No-till management impacts on crop productivity, carbon input and soil carbon sequestration publication-title: Agr. Ecosys. Environ. doi: 10.1016/j.agee.2011.12.010 – volume: 221 start-page: 187 year: 2016 ident: 10.1016/j.geoderma.2020.114298_b0155 article-title: Effect of tillage and crop (cereal versus legume) on greenhouse gas emissions and Global Warming Potential in a non-irrigated Mediterranean field publication-title: Agr. Ecosys. Environ. doi: 10.1016/j.agee.2016.01.047 – volume: 53 start-page: 29 year: 1999 ident: 10.1016/j.geoderma.2020.114298_b0050 article-title: Field N2O, CO2 and CH4 fluxes in relation to tillage, compaction and soil quality in Scotland publication-title: Soil Till. Res. doi: 10.1016/S0167-1987(99)00074-4 – volume: 10 start-page: 282 year: 1970 ident: 10.1016/j.geoderma.2020.114298_b0260 article-title: River flow forecasting through conceptual models part I—A discussion of principles publication-title: J. Hydrol. doi: 10.1016/0022-1694(70)90255-6 – volume: 76 start-page: 29 year: 2019 ident: 10.1016/j.geoderma.2020.114298_b0200 article-title: Global spread of conservation agriculture publication-title: Int. J. Environ. Studies doi: 10.1080/00207233.2018.1494927 – volume: 112 year: 2020 ident: 10.1016/j.geoderma.2020.114298_b0375 article-title: Simulation using the STICS model of C&N dynamics in alfalfa from sowing to crop destruction publication-title: Eur. J. Agron. doi: 10.1016/j.eja.2019.125948 – volume: 23 start-page: 82 year: 2012 ident: 10.1016/j.geoderma.2020.114298_b0060 article-title: Long-term cropping systems and tillage management effects on soil organic carbon stock and steady state level of C sequestration rates in a semiarid environment publication-title: Land Degrad. Dev. doi: 10.1002/ldr.1055 – volume: 24 start-page: 560 year: 2014 ident: 10.1016/j.geoderma.2020.114298_b0240 article-title: Does agricultural crop diversity enhance soil microbial biomass and organic matter dynamics? A meta-analysis publication-title: Ecol. Appl. doi: 10.1890/13-0616.1 – volume: 3 start-page: 23 year: 2013 ident: 10.1016/j.geoderma.2020.114298_b0280 article-title: The ARMOSA simulation crop model: overall features, calibration and validation results publication-title: Ital. J. Agrometeorol. – ident: 10.1016/j.geoderma.2020.114298_b0435 – volume: 2 start-page: 289 year: 2014 ident: 10.1016/j.geoderma.2020.114298_b0405 article-title: The impacts of conservation agriculture on crop yield in China depend on specific practices, crops and cropping regions publication-title: Crop J. doi: 10.1016/j.cj.2014.06.006 – volume: 6 start-page: 1 issue: 30 year: 2017 ident: 10.1016/j.geoderma.2020.114298_b0160 article-title: How does tillage intensity affect soil organic carbon? A systematic review publication-title: Environ. Evid. doi: 10.1186/s13750-016-0079-2 – volume: 29 start-page: 199 year: 2013 ident: 10.1016/j.geoderma.2020.114298_b0005 article-title: Conservation tillage systems: a review of its consequences for greenhouse gas emissions publication-title: Soil Use Manage. doi: 10.1111/sum.12030 – volume: 34 start-page: 623 year: 2014 ident: 10.1016/j.geoderma.2020.114298_b0165 article-title: Updated high-resolution grids of monthly climatic observations – the CRU TS3.10 Dataset publication-title: Int. J. Climatol. doi: 10.1002/joc.3711 – ident: 10.1016/j.geoderma.2020.114298_b0020 – volume: 18 start-page: 711 year: 2009 ident: 10.1016/j.geoderma.2020.114298_b0365 article-title: Effects of different tillage systems on fuel savings and reduction of CO2 emissions in production of silage corn in Eastern Slovenia publication-title: Pol. J. Environ. Stud. – volume: 168 start-page: 154 year: 2019 ident: 10.1016/j.geoderma.2020.114298_b0110 article-title: 25 years of the WOFOST cropping systems model publication-title: Agr. Syst. doi: 10.1016/j.agsy.2018.06.018 – volume: 35 start-page: 589 year: 2015 ident: 10.1016/j.geoderma.2020.114298_b0075 article-title: Deliberative processes for comprehensive evaluation of agroecological models. A review publication-title: Agron. Sustain. Dev. doi: 10.1007/s13593-014-0271-0 – volume: 236 start-page: 1 year: 2017 ident: 10.1016/j.geoderma.2020.114298_b0115 article-title: The effect of no-till on organic C storage in Chinese soils should not be overemphasized: a meta-analysis publication-title: Agr. Ecosys. Environ. doi: 10.1016/j.agee.2016.11.007 – volume: 36 start-page: 4468 year: 2011 ident: 10.1016/j.geoderma.2020.114298_b0025 article-title: EUE (energy use efficiency) of cropping systems for a sustainable agriculture publication-title: Energy doi: 10.1016/j.energy.2011.03.075 – volume: 28 start-page: 97 year: 2009 ident: 10.1016/j.geoderma.2020.114298_b0145 article-title: Conservation agriculture and soil carbon sequestration: between myth and farmer reality publication-title: Crit. Rev. Plant Sci. doi: 10.1080/07352680902776358 – ident: 10.1016/j.geoderma.2020.114298_b0370 – volume: 19 start-page: 1456 year: 2013 ident: 10.1016/j.geoderma.2020.114298_b0170 article-title: Declining trend of carbon in Finnish cropland soils in 1974–2009 publication-title: Global Change Biol. doi: 10.1111/gcb.12137 – ident: 10.1016/j.geoderma.2020.114298_b0035 – volume: 66 start-page: 197 year: 2002 ident: 10.1016/j.geoderma.2020.114298_b0135 article-title: Water infiltration and soil structure related to organic matter and its stratification with depth publication-title: Soil Till. Res. doi: 10.1016/S0167-1987(02)00027-2 – ident: 10.1016/j.geoderma.2020.114298_b0440 – volume: 109 start-page: 1785 year: 2017 ident: 10.1016/j.geoderma.2020.114298_b0340 article-title: Cover crops could offset crop residue removal effects on soil carbon and other properties: a review publication-title: Agron. J. doi: 10.2134/agronj2016.12.0735 – ident: 10.1016/j.geoderma.2020.114298_b0140 – volume: 7 start-page: 349 year: 2015 ident: 10.1016/j.geoderma.2020.114298_b0220 article-title: Global Carbon Budget 2015 publication-title: Earth Syst. Sci. Data doi: 10.5194/essd-7-349-2015 – volume: 192 start-page: 103 year: 2019 ident: 10.1016/j.geoderma.2020.114298_b0255 article-title: Regulation of soil CO2 and N2O emissions by cover crops: a meta-analysis publication-title: Soil Till. Res. doi: 10.1016/j.still.2019.04.020 – volume: 292 start-page: 59 year: 2017 ident: 10.1016/j.geoderma.2020.114298_b0245 article-title: Soil carbon 4 per mille publication-title: Geoderma. doi: 10.1016/j.geoderma.2017.01.002 – volume: 62 start-page: 599 year: 1981 ident: 10.1016/j.geoderma.2020.114298_b0130 article-title: Judging air quality model performance: a summary of the AMS workshop on dispersion models performance publication-title: Bull. Am. Meteorol. Soc. doi: 10.1175/1520-0477(1981)062<0599:JAQMP>2.0.CO;2 – volume: 168 start-page: 73 year: 2019 ident: 10.1016/j.geoderma.2020.114298_b0285 article-title: Agro-environmental aspects of conservation agriculture compared to conventional systems: a 3-year experience on 20 farms in the Po valley (Northern Italy) publication-title: Agr. Syst. doi: 10.1016/j.agsy.2018.10.008 – volume: 170 start-page: 32 year: 2013 ident: 10.1016/j.geoderma.2020.114298_b0030 article-title: Implication of crop model calibration strategies for assessing regional impacts of climate change in Europe publication-title: Agric. Forest Meteorol. doi: 10.1016/j.agrformet.2012.11.017 – volume: 4 start-page: 37 year: 2014 ident: 10.1016/j.geoderma.2020.114298_b0330 article-title: Soil CO2 emission induced by tillage machines publication-title: Int. J. Appl. Sci. Tech. – volume: 84 start-page: 67 year: 2017 ident: 10.1016/j.geoderma.2020.114298_b0400 article-title: Crop yields under no-till farming in China: a meta-analysis publication-title: Eur. J. Agron. doi: 10.1016/j.eja.2016.11.009 – ident: 10.1016/j.geoderma.2020.114298_b0430 – volume: 619–620 start-page: 18 year: 2018 ident: 10.1016/j.geoderma.2020.114298_b0045 article-title: Long-term effects of contrasting tillage on soil organic carbon, nitrous oxide and ammonia emissions in a Mediterranean Vertisol under different crop sequences publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.11.116 – volume: 139 start-page: 224 year: 2010 ident: 10.1016/j.geoderma.2020.114298_b0225 article-title: Can no-tillage stimulate carbon sequestration in agricultural soils? A meta-analysis of paired experiments publication-title: Agr. Ecosys. Environ. doi: 10.1016/j.agee.2010.08.006 – ident: 10.1016/j.geoderma.2020.114298_b0390 – ident: 10.1016/j.geoderma.2020.114298_b0090 – volume: 49 start-page: 273 year: 1997 ident: 10.1016/j.geoderma.2020.114298_b0335 article-title: Tillage-induced CO2 emission from soil publication-title: Nutr. Cycl. Agroecosys. doi: 10.1023/A:1009766510274 – volume: 7 start-page: 300 year: 2012 ident: 10.1016/j.geoderma.2020.114298_b0305 article-title: Agricultural innovations for sustainable crop production intensification publication-title: Ital. J. Agron. – volume: 232 start-page: 150 year: 2016 ident: 10.1016/j.geoderma.2020.114298_b0040 article-title: Alternative arable cropping systems: a key to increase soil organic carbon storage? Results from a 16-year field experiment publication-title: Agr. Ecosyst. Environ. doi: 10.1016/j.agee.2016.07.008 – volume: 88 start-page: 22 year: 2017 ident: 10.1016/j.geoderma.2020.114298_b0345 article-title: Multi-model simulation of soil temperature, soil water content and biomass in Euro-Mediterranean grasslands: Uncertainties and ensemble performance publication-title: Eur. J. Agron. doi: 10.1016/j.eja.2016.06.006 – volume: 47 start-page: 151 year: 1996 ident: 10.1016/j.geoderma.2020.114298_b0065 article-title: Total carbon and nitrogen in the soils of the world publication-title: Eur. J. Soil Sci. doi: 10.1111/j.1365-2389.1996.tb01386.x – volume: 50 start-page: 885 issue: 3 year: 2007 ident: 10.1016/j.geoderma.2020.114298_b0250 article-title: Model evaluation guidelines for systematic quantification of accuracy in watershed simulations publication-title: Trans. ASABE doi: 10.13031/2013.23153 – volume: 200 start-page: 33 year: 2015 ident: 10.1016/j.geoderma.2020.114298_b0310 article-title: Carbon sequestration in agricultural soils via cultivation of cover crops – a meta-analysis publication-title: Agr. Ecosys. Environ. doi: 10.1016/j.agee.2014.10.024 – ident: 10.1016/j.geoderma.2020.114298_b0320 doi: 10.1038/nclimate2292 – volume: 220 start-page: 164 year: 2016 ident: 10.1016/j.geoderma.2020.114298_b0325 article-title: Does conservation agriculture deliver climate change mitigation through soil carbon sequestration in tropical agro-ecosystems? publication-title: Agr. Ecosys. Environ. doi: 10.1016/j.agee.2016.01.005 – ident: 10.1016/j.geoderma.2020.114298_b0420 – volume: 7 start-page: 640 year: 2008 ident: 10.1016/j.geoderma.2020.114298_b0380 article-title: Advances of modeling water flow in variably saturated soils with SWAP publication-title: Vadose Zone J. doi: 10.2136/vzj2007.0060 – volume: 18 start-page: 333 year: 1987 ident: 10.1016/j.geoderma.2020.114298_b0185 article-title: Simulated nitrogen dynamics and losses in a layered agricultural soil publication-title: Agr. Ecosys. Environ. doi: 10.1016/0167-8809(87)90099-5 – volume: 52 start-page: 96 year: 1997 ident: 10.1016/j.geoderma.2020.114298_b0210 article-title: WEPP-predicting water erosion using a process-based model publication-title: J. Soil Water Conserv. – volume: 114 start-page: 165 year: 2011 ident: 10.1016/j.geoderma.2020.114298_b0235 article-title: Long-term effect of tillage, nitrogen fertilization and cover crops on soil organic carbon and total nitrogen content publication-title: Soil Till. Res. doi: 10.1016/j.still.2011.05.001 – volume: 77 start-page: 1349 year: 2013 ident: 10.1016/j.geoderma.2020.114298_b0105 article-title: Simulated impacts of crop residue removal and tillage on soil organic matter maintenance publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2012.0221 – volume: 31 start-page: 159 year: 1984 ident: 10.1016/j.geoderma.2020.114298_b0085 article-title: On the relationship between incoming solar radiation and daily maximum and minimum temperature publication-title: Agr. Forest Meteorol. doi: 10.1016/0168-1923(84)90017-0 – volume: 499 start-page: 463 year: 2014 ident: 10.1016/j.geoderma.2020.114298_b0150 article-title: Performance assessment of nitrate leaching models for highly vulnerable soils used in low-input farming based on lysimeter data publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2014.07.002 – volume: 109 start-page: 141 year: 1987 ident: 10.1016/j.geoderma.2020.114298_b0015 article-title: Computer simulation of changes in soil mineral nitrogen and crop nitrogen during autumn, winter and spring publication-title: J. Agr. Sci. doi: 10.1017/S0021859600081089 – volume: 187 start-page: 87 year: 2014 ident: 10.1016/j.geoderma.2020.114298_b0275 article-title: Conservation agriculture and ecosystem services: an overview publication-title: Agr. Ecosys. Environ. doi: 10.1016/j.agee.2013.10.010 – ident: 10.1016/j.geoderma.2020.114298_b0410 – volume: 48 start-page: 47 year: 2016 ident: 10.1016/j.geoderma.2020.114298_b0055 article-title: Comparison of two methods of soil organic carbon determination publication-title: Pol. J. Soil Sci. doi: 10.17951/pjss.2015.48.1.47 – volume: 94 start-page: 1222 year: 2002 ident: 10.1016/j.geoderma.2020.114298_b0070 article-title: An indicator of solar radiation model performance based on a fuzzy expert system publication-title: Agron. J. doi: 10.2134/agronj2002.1222 – volume: 71 start-page: 20A year: 2016 ident: 10.1016/j.geoderma.2020.114298_b0215 article-title: Beyond COP 21: potential and challenges of the “4 per Thousand” initiative publication-title: J. Soil Water Conserv. doi: 10.2489/jswc.71.1.20A – volume: 7 start-page: 7 year: 2019 ident: 10.1016/j.geoderma.2020.114298_b0230 article-title: The spread of no-till in conservation agriculture systems in Italy: indications for rural development policy-making publication-title: Agr. Food Econ. doi: 10.1186/s40100-019-0126-8 – ident: 10.1016/j.geoderma.2020.114298_b0300 doi: 10.1007/978-3-319-11620-4_22 – volume: 150 start-page: 107 year: 2015 ident: 10.1016/j.geoderma.2020.114298_b0355 article-title: Impact of no-till and reduced tillage on aggregation and aggregate-associated carbon in Northern European agroecosystems publication-title: Soil Till. Res. doi: 10.1016/j.still.2015.01.015 – volume: 11–3 start-page: 26 year: 2006 ident: 10.1016/j.geoderma.2020.114298_b0010 article-title: Optimization algorithms for calibrating cropping systems simulation models. A case study with simplex-derived methods integrated in the WARM simulation environment publication-title: Ital. J. Agrometeorol. – volume: 330 start-page: 204 year: 2018 ident: 10.1016/j.geoderma.2020.114298_b0395 article-title: No-tillage with continuous maize cropping enhances soil aggregation and organic carbon storage in Northeast China publication-title: Geoderma doi: 10.1016/j.geoderma.2018.05.037 – volume: 75 start-page: 1471 year: 2011 ident: 10.1016/j.geoderma.2020.114298_b0080 article-title: Addition of cover crops enhances no-till potential for improving soil physical properties publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2010.0430 – volume: 7 start-page: 308 year: 1965 ident: 10.1016/j.geoderma.2020.114298_b0265 article-title: A simplex method for function minimization publication-title: Comput. J. doi: 10.1093/comjnl/7.4.308 – volume: 232 start-page: 73 year: 2016 ident: 10.1016/j.geoderma.2020.114298_b0190 article-title: Tillage effects on soil microbial biomass, SOM mineralization and enzyme activity in a semi-arid Calcixerepts publication-title: Agr. Ecosys. Environ. doi: 10.1016/j.agee.2016.07.022 – volume: 328 start-page: 72 year: 2016 ident: 10.1016/j.geoderma.2020.114298_b0095 article-title: Quantifying uncertainty in crop model predictions due to the uncertainty in the observations used for calibration publication-title: Ecol. Model. doi: 10.1016/j.ecolmodel.2016.02.013 – volume: 155 start-page: 78 year: 2016 ident: 10.1016/j.geoderma.2020.114298_b0205 article-title: Long-term tillage impacts on soil organic matter components and related properties on a Typic Argiudoll publication-title: Soil Till. Res. doi: 10.1016/j.still.2015.05.006 – ident: 10.1016/j.geoderma.2020.114298_b0415 – volume: 65 start-page: 87 year: 2015 ident: 10.1016/j.geoderma.2020.114298_b0295 article-title: Temperature and precipitation effects on wheat yield across a European transect: A crop model ensemble analysis using impact response surfaces publication-title: Clim. Res. doi: 10.3354/cr01322 – volume: 127 start-page: 573 year: 2017 ident: 10.1016/j.geoderma.2020.114298_b0120 article-title: A dataset of future daily weather data for crop modelling over Europe derived from climate change scenarios publication-title: Theor. Appl. Climatol. doi: 10.1007/s00704-015-1650-4 – ident: 10.1016/j.geoderma.2020.114298_b0125 – ident: 10.1016/j.geoderma.2020.114298_b0100 – volume: 73 start-page: 286 year: 2015 ident: 10.1016/j.geoderma.2020.114298_b0350 article-title: A new method for analysing the interrelationship between performance indicators with an application to agrometeorological models publication-title: Environ. Modell. Softw. doi: 10.1016/j.envsoft.2015.08.017 – volume: 4 start-page: 761 issue: 10 year: 2014 ident: 10.1016/j.geoderma.2020.114298_b0195 article-title: Effective approaches to wheat improvement in Kazakhstan: breeding and conservation agriculture publication-title: J. Agric. Sci. Tech. B – volume: 122 start-page: 11 year: 2017 ident: 10.1016/j.geoderma.2020.114298_b0175 article-title: Environmental impacts of energy use in wheat tillage systems: a comparative life cycle assessment (LCA) study in Iran publication-title: Energy doi: 10.1016/j.energy.2017.01.069 – ident: 10.1016/j.geoderma.2020.114298_b0180 – volume: 243 start-page: 940 year: 2018 ident: 10.1016/j.geoderma.2020.114298_b0315 article-title: Soil carbon inventory to quantify the impact of land use change to mitigate greenhouse gas emissions and ecosystem services publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2018.07.068 – ident: 10.1016/j.geoderma.2020.114298_b0425 – volume: 66 start-page: 1930 year: 2002 ident: 10.1016/j.geoderma.2020.114298_b0385 article-title: Soil organic carbon sequestration rates by tillage and crop rotation: a global data analysis publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2002.1930 – volume: 17 start-page: 121 year: 1987 ident: 10.1016/j.geoderma.2020.114298_b0360 article-title: Field and model analysis of the effect of water deficits on carbon and nitrogen accumulation by soybean, cowpea and black gram publication-title: Field Crops Res. doi: 10.1016/0378-4290(87)90087-6 |
SSID | ssj0017020 |
Score | 2.5647633 |
Snippet | [Display omitted]
•SOC changes were simulated in three sites with contrasting soils and climates.•Conventional tillage (Conv − R and Conv + R) led to SOC... Conservation agriculture (CA) involves complex and interactive processes that ultimately determine soil carbon (C) storage, making it difficult to identify... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 114298 |
SubjectTerms | agricultural conservation practice ARMOSA model carbon sequestration carbon sinks Climate change climatic factors Conservation agriculture corn Cover crops Crop diversification crop models crop residues cropping systems disturbed soils Finland food security Italy Kazakhstan Lolium multiflorum no-tillage Northern European region plowing simulation models soil depth soil organic carbon Soil tillage Southern European region spring barley |
Title | Can conservation agriculture increase soil carbon sequestration? A modelling approach |
URI | https://dx.doi.org/10.1016/j.geoderma.2020.114298 https://www.proquest.com/docview/2388753112 |
Volume | 369 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JasMwEBUhvbSH0pWmS1ChVzexZUn2qZjQkraQUwO5CVlLcQhOyHLtt1djy-kCJYcebY-MGUkzz_abNwjdOQidpDJiAVRdBjElOnCgngQRk1SH1CShrAiyIzYcxy8TOmmhQVMLA7RKH_vrmF5Fa3-m573ZWxQF1PiGjLt0BBAkZgwKfuOYwyq__9jSPELe99KMIQvA-luV8NTNETQcq_SHoko2N0qTvxLUr1Bd5Z-nI3TogSPO6mc7Ri1TnqCD7H3pxTPMKRoPZIkV0KP9h1Ysvy7jogSAuDJ4NS9mWMll7gwqJnUjnfuAM1x1xoESddyojZ-h8dPj22AY-LYJgSIpWQdE89RQImWuec4gR0uiHPKQyobURlblXEqjOLEps8RSHXMNQnaScrcdc0bOUbucl-YCYQBrSltrKZdx1Ke5gwuJjR2M0Ilxxh1EG18J5TXFobXFTDTksalofCzAx6L2cQf1tuMWtarGzhFpMxXix_oQLvTvHHvbzJ1wmwf-iMjSzDcr4fAKvK85zHn5j_tfoX04AgJZSK9Re73cmBsHVdZ5t1qLXbSXPb8OR589Tukz |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLZgHIAD4ineBIlrNdo0SXtC08S08dhpk3aL0jRBQ1M3beP_E7fpeEhoB65NHFV2Yn9t7M8Adw5CJ6mKeIBVl0HMaB44UE-DiCuWh8wkoSoTZPu8O4yfRmy0Ae26FgbTKr3vr3x66a39k6bXZnM2HmONb8iFC0cIQWLOk03YQnYq1oCtVu-5219dJoh7z84Y8gAFvhUKvzszYc-xkoIoKplzozT5K0b98tZlCOrsw57HjqRVvd4BbJjiEHZbb3PPn2GOYNhWBdGYIe3_tRL1NUzGBWLEhSGL6XhCtJpnbkKZTF2z5z6QFimb42CVOqkJx49h2HkctLuB75wQaJrSZUBzkRpGlcpykXEM04pqBz6UtiGzkdWZUMpoQW3KLbUsj0WOXHaKCXciM05PoFFMC3MKBPGazq21TKg4umeZQwyJjR2SyBPjJp8Bq3UltacVx-4WE1nnj73LWscSdSwrHZ9BcyU3q4g11kqktSnkjy0infdfK3tb206684OXIqow04-FdJAFP9kc7Dz_x_o3sN0dvL7Il17_-QJ2cATzyUJ2CY3l_MNcOeSyzK79zvwEO8Tr5A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Can+conservation+agriculture+increase+soil+carbon+sequestration%3F+A+modelling+approach&rft.jtitle=Geoderma&rft.au=Valkama%2C+Elena&rft.au=Kunypiyaeva%2C+Gulya&rft.au=Zhapayev%2C+Rauan&rft.au=Karabayev%2C+Muratbek&rft.date=2020-06-15&rft.issn=0016-7061&rft.volume=369+p.114298-&rft_id=info:doi/10.1016%2Fj.geoderma.2020.114298&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7061&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7061&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7061&client=summon |