The PI3K/Akt1 pathway enhances steady-state levels of FANCL
Fanconi anemia hematopoietic stem cells display poor self-renewal capacity when subjected to a variety of cellular stress. This phenotype raises the question of whether the Fanconi anemia proteins are stabilized or recruited as part of a stress response and protect against stem cell loss. Here we pr...
Saved in:
Published in | Molecular biology of the cell Vol. 24; no. 16; pp. 2582 - 2592 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
The American Society for Cell Biology
15.08.2013
|
Subjects | |
Online Access | Get full text |
ISSN | 1059-1524 1939-4586 1939-4586 |
DOI | 10.1091/mbc.e13-03-0144 |
Cover
Abstract | Fanconi anemia hematopoietic stem cells display poor self-renewal capacity when subjected to a variety of cellular stress. This phenotype raises the question of whether the Fanconi anemia proteins are stabilized or recruited as part of a stress response and protect against stem cell loss. Here we provide evidence that FANCL, the E3 ubiquitin ligase of the Fanconi anemia pathway, is constitutively targeted for degradation by the proteasome. We confirm biochemically that FANCL is polyubiquitinated with Lys-48–linked chains. Evaluation of a series of N-terminal–deletion mutants showed that FANCL's E2-like fold may direct ubiquitination. In addition, our studies showed that FANCL is stabilized in a complex with axin1 when glycogen synthase kinase-3β is overexpressed. This result leads us to investigate the potential regulation of FANCL by upstream signaling pathways known to regulate glycogen synthase kinase-3β. We report that constitutively active, myristoylated-Akt increases FANCL protein level by reducing polyubiquitination of FANCL. Two-dimensional PAGE analysis shows that acidic forms of FANCL, some of which are phospho-FANCL, are not subject to polyubiquitination. These results indicate that a signal transduction pathway involved in self-renewal and survival of hematopoietic stem cells also functions to stabilize FANCL and suggests that FANCL participates directly in support of stem cell function. |
---|---|
AbstractList | Fanconi anemia hematopoietic stem cells display poor self-renewal capacity when subjected to a variety of cellular stress. This phenotype raises the question of whether the Fanconi anemia proteins are stabilized or recruited as part of a stress response and protect against stem cell loss. Here we provide evidence that FANCL, the E3 ubiquitin ligase of the Fanconi anemia pathway, is constitutively targeted for degradation by the proteasome. We confirm biochemically that FANCL is polyubiquitinated with Lys-48-linked chains. Evaluation of a series of N-terminal-deletion mutants showed that FANCL's E2-like fold may direct ubiquitination. In addition, our studies showed that FANCL is stabilized in a complex with axin1 when glycogen synthase kinase-3β is overexpressed. This result leads us to investigate the potential regulation of FANCL by upstream signaling pathways known to regulate glycogen synthase kinase-3β. We report that constitutively active, myristoylated-Akt increases FANCL protein level by reducing polyubiquitination of FANCL. Two-dimensional PAGE analysis shows that acidic forms of FANCL, some of which are phospho-FANCL, are not subject to polyubiquitination. These results indicate that a signal transduction pathway involved in self-renewal and survival of hematopoietic stem cells also functions to stabilize FANCL and suggests that FANCL participates directly in support of stem cell function. Fanconi anemia hematopoietic stem cells display poor self-renewal capacity when subjected to a variety of cellular stress. This phenotype raises the question of whether the Fanconi anemia proteins are stabilized or recruited as part of a stress response and protect against stem cell loss. Here we provide evidence that FANCL, the E3 ubiquitin ligase of the Fanconi anemia pathway, is constitutively targeted for degradation by the proteasome. We confirm biochemically that FANCL is polyubiquitinated with Lys-48-linked chains. Evaluation of a series of N-terminal-deletion mutants showed that FANCL's E2-like fold may direct ubiquitination. In addition, our studies showed that FANCL is stabilized in a complex with axin1 when glycogen synthase kinase-3β is overexpressed. This result leads us to investigate the potential regulation of FANCL by upstream signaling pathways known to regulate glycogen synthase kinase-3β. We report that constitutively active, myristoylated-Akt increases FANCL protein level by reducing polyubiquitination of FANCL. Two-dimensional PAGE analysis shows that acidic forms of FANCL, some of which are phospho-FANCL, are not subject to polyubiquitination. These results indicate that a signal transduction pathway involved in self-renewal and survival of hematopoietic stem cells also functions to stabilize FANCL and suggests that FANCL participates directly in support of stem cell function.Fanconi anemia hematopoietic stem cells display poor self-renewal capacity when subjected to a variety of cellular stress. This phenotype raises the question of whether the Fanconi anemia proteins are stabilized or recruited as part of a stress response and protect against stem cell loss. Here we provide evidence that FANCL, the E3 ubiquitin ligase of the Fanconi anemia pathway, is constitutively targeted for degradation by the proteasome. We confirm biochemically that FANCL is polyubiquitinated with Lys-48-linked chains. Evaluation of a series of N-terminal-deletion mutants showed that FANCL's E2-like fold may direct ubiquitination. In addition, our studies showed that FANCL is stabilized in a complex with axin1 when glycogen synthase kinase-3β is overexpressed. This result leads us to investigate the potential regulation of FANCL by upstream signaling pathways known to regulate glycogen synthase kinase-3β. We report that constitutively active, myristoylated-Akt increases FANCL protein level by reducing polyubiquitination of FANCL. Two-dimensional PAGE analysis shows that acidic forms of FANCL, some of which are phospho-FANCL, are not subject to polyubiquitination. These results indicate that a signal transduction pathway involved in self-renewal and survival of hematopoietic stem cells also functions to stabilize FANCL and suggests that FANCL participates directly in support of stem cell function. The Fanconi anemia pathway supports hematopoietic stem cell survival in response to inflammatory and metabolic stress. We show that polyubiquitination and proteasome degradation of FANCL is inhibited by Akt1 activation, revealing a potentially important mechanism for the maintenance of stem cell function. Fanconi anemia hematopoietic stem cells display poor self-renewal capacity when subjected to a variety of cellular stress. This phenotype raises the question of whether the Fanconi anemia proteins are stabilized or recruited as part of a stress response and protect against stem cell loss. Here we provide evidence that FANCL, the E3 ubiquitin ligase of the Fanconi anemia pathway, is constitutively targeted for degradation by the proteasome. We confirm biochemically that FANCL is polyubiquitinated with Lys-48–linked chains. Evaluation of a series of N-terminal–deletion mutants showed that FANCL's E2-like fold may direct ubiquitination. In addition, our studies showed that FANCL is stabilized in a complex with axin1 when glycogen synthase kinase-3β is overexpressed. This result leads us to investigate the potential regulation of FANCL by upstream signaling pathways known to regulate glycogen synthase kinase-3β. We report that constitutively active, myristoylated-Akt increases FANCL protein level by reducing polyubiquitination of FANCL. Two-dimensional PAGE analysis shows that acidic forms of FANCL, some of which are phospho-FANCL, are not subject to polyubiquitination. These results indicate that a signal transduction pathway involved in self-renewal and survival of hematopoietic stem cells also functions to stabilize FANCL and suggests that FANCL participates directly in support of stem cell function. |
Author | Dao, Kim-Hien T. Rotelli, Michael D. Rantala, Juha Brown, Brieanna R. Bagby, Grover C. Tognon, Cristina Druker, Brian J. Yates, Jane E. Tyner, Jeffrey W. |
Author_xml | – sequence: 1 givenname: Kim-Hien T. surname: Dao fullname: Dao, Kim-Hien T. organization: Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97239 – sequence: 2 givenname: Michael D. surname: Rotelli fullname: Rotelli, Michael D. organization: Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97239 – sequence: 3 givenname: Brieanna R. surname: Brown fullname: Brown, Brieanna R. organization: Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97239 – sequence: 4 givenname: Jane E. surname: Yates fullname: Yates, Jane E. organization: Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97239, Northwest VA Cancer Research Center, VA Medical Center Portland, Portland, OR 97239 – sequence: 5 givenname: Juha surname: Rantala fullname: Rantala, Juha organization: Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR 97239 – sequence: 6 givenname: Cristina surname: Tognon fullname: Tognon, Cristina organization: Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97239 – sequence: 7 givenname: Jeffrey W. surname: Tyner fullname: Tyner, Jeffrey W. organization: Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97239, Department of Cell and Developmental Biology, Oregon Health and Science University, Portland, OR 97239 – sequence: 8 givenname: Brian J. surname: Druker fullname: Druker, Brian J. organization: Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97239, Howard Hughes Medical Institute, Oregon Health and Science University, Portland, OR 97239 – sequence: 9 givenname: Grover C. surname: Bagby fullname: Bagby, Grover C. organization: Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97239, Northwest VA Cancer Research Center, VA Medical Center Portland, Portland, OR 97239 |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23783032$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kVFLwzAUhYNMnJs--yZ99KVbbpM0DYIwhtPhUB_mc0jTO1ft2tl0k_17MzaHCsKFBPKdc8M5HdIqqxIJuQDaA6qgv0htD4GF1A9wfkROQTEVcpHELX-nQoUgIt4mHefe6BaJ5QlpR0wmjLLolFxP5xg8j9lDf_DeQLA0zfzTbAIs56a06ALXoMk2oWtMg0GBayxcUM2C0eBxODkjxzNTODzfn13yMrqdDu_DydPdeDiYhJYp1oQsllRyRUFiDKlJGQUBgEDTLAaWiBmPoyxObZwIxUXGUxNJlUpjBZNMUMm65Gbnu1ylC8wslk1tCr2s84WpN7oyuf79UuZz_VqtNZOcKwHe4GpvUFcfK3SNXuTOYlGYEquV08AjziLBk8Sjlz93HZZ8J-aB_g6wdeVcjbMDAlRvO9G-E-070dSPD9wrxB-FzX2cebX9bF78q_sCoq6OVw |
CitedBy_id | crossref_primary_10_1038_s41417_024_00797_1 crossref_primary_10_1016_S1474_4422_14_70171_1 crossref_primary_10_1016_j_bbadis_2022_166453 crossref_primary_10_1038_s41419_020_03082_9 crossref_primary_10_1038_s41467_025_56967_8 |
Cites_doi | 10.1038/ng1241 10.1056/NEJM198910263211707 10.1523/JNEUROSCI.4474-04.2005 10.1089/10430349950016988 10.2174/1389450110607011377 10.1016/0006-291X(85)90391-2 10.1182/blood-2008-03-147090 10.1016/j.bcmd.2008.02.004 10.1016/S0092-8674(01)00374-9 10.4161/cc.3.2.656 10.1074/jbc.M111.244632 10.1182/blood-2002-07-2069 10.1073/pnas.0900189106 10.1038/mt.2009.26 10.1016/j.bbamcr.2012.08.017 10.1146/annurev-genet-102108-134222 10.18632/oncotarget.240 10.1182/blood-2011-11-388355 10.1182/blood-2011-07-366203 10.1038/nsmb.1759 10.1182/blood-2004-03-1094 10.1371/journal.ppat.1000619 10.1038/sj.mt.6300033 10.1002/jlb.52.3.357 10.1074/jbc.M511411200 10.1038/cdd.2011.16 10.1182/blood.V94.1.1.413k03_1_8 10.1038/nsmb.2173 10.1038/nature10192 10.1182/blood-2009-10-246694 10.1172/JCI58321 10.1172/JCI31772 10.3390/microarrays2020097 10.1002/ajh.2830420211 10.4049/jimmunol.147.8.2586 10.1093/emboj/16.13.3797 10.1016/j.molcel.2008.12.003 10.1038/nprot.2010.9 10.1182/blood-2006-03-007997 10.1046/j.1537-2995.1990.30891020324.x 10.1182/blood-2003-01-0114 10.1242/jcs.003152 10.1111/j.1365-2443.2007.01054.x 10.1038/nature11368 10.1182/blood-2004-06-2483 10.1182/blood.V83.5.1216.1216 |
ContentType | Journal Article |
Copyright | 2013 Dao This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License ( ). 2013 |
Copyright_xml | – notice: 2013 Dao This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License ( ). 2013 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1091/mbc.e13-03-0144 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1939-4586 |
EndPage | 2592 |
ExternalDocumentID | PMC3744951 23783032 10_1091_mbc_e13_03_0144 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NCI NIH HHS grantid: 4R00CA151457 – fundername: NCATS NIH HHS grantid: UL1 TR000128 – fundername: Howard Hughes Medical Institute – fundername: NCI NIH HHS grantid: R01 CA138237 – fundername: NCI NIH HHS grantid: P30 CA069533 – fundername: NCI NIH HHS grantid: 1R01CA138237 – fundername: NHLBI NIH HHS grantid: 5P01 HL048546 – fundername: NHLBI NIH HHS grantid: K08 HL111280 – fundername: NCI NIH HHS grantid: R00 CA151457 – fundername: NHLBI NIH HHS grantid: P01 HL048546 |
GroupedDBID | --- 123 18M 29M 2WC 34G 39C 4.4 5RE 5VS AAYXX ABDNZ ABSQV ACGFO ADBBV ADNWM AEILP AENEX AFHIN AFOSN ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL CITATION CS3 D0L DIK DU5 E3Z EBS EJD F5P F9R GX1 H13 HH5 HYE IH2 INIJC KQ8 R0Z RPM SJN TCB TR2 W8F WOQ YHG YKV YNT YQT YWH .GJ 3O- 53G ACYGS AFFNX C1A CGR CUY CVF ECM EIF IAO IGS IHR ITC NPM OHT ZGI ZXP 7X8 5PM |
ID | FETCH-LOGICAL-c393t-3670749017e61bab301511e10bd61385f462d6bc685945d4ba279b7ac53735073 |
ISSN | 1059-1524 1939-4586 |
IngestDate | Thu Aug 21 18:43:16 EDT 2025 Fri Sep 05 11:10:16 EDT 2025 Thu Apr 03 06:54:35 EDT 2025 Tue Jul 01 02:18:55 EDT 2025 Thu Apr 24 22:56:54 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 16 |
Language | English |
License | “ASCB®,” “The American Society for Cell Biology®,” and “Molecular Biology of the Cell®” are registered trademarks of The American Society of Cell Biology. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c393t-3670749017e61bab301511e10bd61385f462d6bc685945d4ba279b7ac53735073 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC3744951 |
PMID | 23783032 |
PQID | 1424325488 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3744951 proquest_miscellaneous_1424325488 pubmed_primary_23783032 crossref_primary_10_1091_mbc_e13_03_0144 crossref_citationtrail_10_1091_mbc_e13_03_0144 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-08-15 |
PublicationDateYYYYMMDD | 2013-08-15 |
PublicationDate_xml | – month: 08 year: 2013 text: 2013-08-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Molecular biology of the cell |
PublicationTitleAlternate | Mol Biol Cell |
PublicationYear | 2013 |
Publisher | The American Society for Cell Biology |
Publisher_xml | – name: The American Society for Cell Biology |
References | Abrahamsson AE (B2) 2009; 106 Zhang X (B46) 2007; 120 Kockeritz L (B20) 2006; 7 Meetei AR (B31) 2003; 35 Tulpule A (B43) 2010; 115 Kelly PF (B19) 2007; 15 Korkina LG (B21) 1992; 52 Meetei AR (B32) 2004; 3 Moldovan GL (B33) 2009; 43 Dao KH (B9) 2012; 120 Aberle H (B1) 1997; 16 Rosado IV (B37) 2011; 18 Li X (B29) 2005; 105 Kee Y (B18) 2012; 122 Garaycoechea JI (B12) 2012; 489 Auerbach AD (B4) 1990; 30 Livingston CM (B28) 2009; 5 Larghero J (B23) 2002; 100 Rantala J (B35) 2013; 2 Alpi AF (B3) 2008; 32 Broxmeyer HE (B5) 1991; 147 Schultz JC (B40) 1993; 42 Gurtan AM (B14) 2006; 281 Polak R (B34) 2012; 119 Scarpa M (B39) 1985; 130 Seki S (B41) 2007; 12 Dajani R (B8) 2001; 105 Zhang X (B45) 2008; 112 Cole AR (B7) 2010; 17 Raya A (B36) 2010; 5 Martelli AM (B30) 2012; 1823 Langevin F (B22) 2011; 475 Dufour C (B11) 2003; 102 Rosselli F (B38) 1994; 83 Haneline LS (B15) 1999; 94 Hodson C (B16) 2011; 286 Li X (B25) 2004; 104 de Bie P (B10) 2011; 18 Liu JM (B27) 1999; 10 Lim KL (B26) 2005; 25 Gluckman E (B13) 1989; 321 Si Y (B42) 2006; 108 Jacome A (B17) 2009; 17 Li J (B24) 2007; 117 Yilmaz OH (B44) 2008; 41 Chappell WH (B6) 2011; 2 |
References_xml | – volume: 35 start-page: 165 year: 2003 ident: B31 publication-title: Nat Genet doi: 10.1038/ng1241 – volume: 321 start-page: 1174 year: 1989 ident: B13 publication-title: N Engl J Med doi: 10.1056/NEJM198910263211707 – volume: 25 start-page: 2002 year: 2005 ident: B26 publication-title: J Neurosci doi: 10.1523/JNEUROSCI.4474-04.2005 – volume: 10 start-page: 2337 year: 1999 ident: B27 publication-title: Hum Gene Ther doi: 10.1089/10430349950016988 – volume: 7 start-page: 1377 year: 2006 ident: B20 publication-title: Curr Drug Targets doi: 10.2174/1389450110607011377 – volume: 130 start-page: 127 year: 1985 ident: B39 publication-title: Biochem Biophys Res Commun doi: 10.1016/0006-291X(85)90391-2 – volume: 112 start-page: 1683 year: 2008 ident: B45 publication-title: Blood doi: 10.1182/blood-2008-03-147090 – volume: 41 start-page: 73 year: 2008 ident: B44 publication-title: Blood Cells Mol Dis doi: 10.1016/j.bcmd.2008.02.004 – volume: 105 start-page: 721 year: 2001 ident: B8 publication-title: Cell doi: 10.1016/S0092-8674(01)00374-9 – volume: 3 start-page: 179 year: 2004 ident: B32 publication-title: Cell Cycle doi: 10.4161/cc.3.2.656 – volume: 286 start-page: 32628 year: 2011 ident: B16 publication-title: J Biol Chem doi: 10.1074/jbc.M111.244632 – volume: 100 start-page: 3051 year: 2002 ident: B23 publication-title: Blood doi: 10.1182/blood-2002-07-2069 – volume: 106 start-page: 3925 year: 2009 ident: B2 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0900189106 – volume: 17 start-page: 1083 year: 2009 ident: B17 publication-title: Mol Ther doi: 10.1038/mt.2009.26 – volume: 1823 start-page: 2168 year: 2012 ident: B30 publication-title: Biochim Biophys Acta doi: 10.1016/j.bbamcr.2012.08.017 – volume: 43 start-page: 223 year: 2009 ident: B33 publication-title: Annu Rev Genet doi: 10.1146/annurev-genet-102108-134222 – volume: 2 start-page: 135 year: 2011 ident: B6 publication-title: Oncotarget doi: 10.18632/oncotarget.240 – volume: 120 start-page: 323 year: 2012 ident: B9 publication-title: Blood doi: 10.1182/blood-2011-11-388355 – volume: 119 start-page: 911 year: 2012 ident: B34 publication-title: Blood doi: 10.1182/blood-2011-07-366203 – volume: 17 start-page: 294 year: 2010 ident: B7 publication-title: Nat Struct Mol Biol doi: 10.1038/nsmb.1759 – volume: 104 start-page: 1204 year: 2004 ident: B25 publication-title: Blood doi: 10.1182/blood-2004-03-1094 – volume: 5 start-page: e1000619 year: 2009 ident: B28 publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1000619 – volume: 15 start-page: 211 year: 2007 ident: B19 publication-title: Mol Ther doi: 10.1038/sj.mt.6300033 – volume: 52 start-page: 357 year: 1992 ident: B21 publication-title: J Leukoc Biol doi: 10.1002/jlb.52.3.357 – volume: 281 start-page: 10896 year: 2006 ident: B14 publication-title: J Biol Chem doi: 10.1074/jbc.M511411200 – volume: 18 start-page: 1393 year: 2011 ident: B10 publication-title: Cell Death Differ doi: 10.1038/cdd.2011.16 – volume: 94 start-page: 1 year: 1999 ident: B15 publication-title: Blood doi: 10.1182/blood.V94.1.1.413k03_1_8 – volume: 18 start-page: 1432 year: 2011 ident: B37 publication-title: Nat Struct Mol Biol doi: 10.1038/nsmb.2173 – volume: 475 start-page: 53 year: 2011 ident: B22 publication-title: Nature doi: 10.1038/nature10192 – volume: 115 start-page: 3453 year: 2010 ident: B43 publication-title: Blood doi: 10.1182/blood-2009-10-246694 – volume: 122 start-page: 3799 year: 2012 ident: B18 publication-title: J Clin Invest doi: 10.1172/JCI58321 – volume: 117 start-page: 3283 year: 2007 ident: B24 publication-title: J Clin Invest doi: 10.1172/JCI31772 – volume: 2 start-page: 97 year: 2013 ident: B35 publication-title: Microarrays doi: 10.3390/microarrays2020097 – volume: 42 start-page: 196 year: 1993 ident: B40 publication-title: Am J Hematol doi: 10.1002/ajh.2830420211 – volume: 147 start-page: 2586 year: 1991 ident: B5 publication-title: J Immunol doi: 10.4049/jimmunol.147.8.2586 – volume: 16 start-page: 3797 year: 1997 ident: B1 publication-title: EMBO J doi: 10.1093/emboj/16.13.3797 – volume: 32 start-page: 767 year: 2008 ident: B3 publication-title: Mol Cell doi: 10.1016/j.molcel.2008.12.003 – volume: 5 start-page: 647 year: 2010 ident: B36 publication-title: Nat Protoc doi: 10.1038/nprot.2010.9 – volume: 108 start-page: 4283 year: 2006 ident: B42 publication-title: Blood doi: 10.1182/blood-2006-03-007997 – volume: 30 start-page: 682 year: 1990 ident: B4 publication-title: Transfusion doi: 10.1046/j.1537-2995.1990.30891020324.x – volume: 102 start-page: 2053 year: 2003 ident: B11 publication-title: Blood doi: 10.1182/blood-2003-01-0114 – volume: 120 start-page: 1572 year: 2007 ident: B46 publication-title: J Cell Sci doi: 10.1242/jcs.003152 – volume: 12 start-page: 299 year: 2007 ident: B41 publication-title: Genes Cells doi: 10.1111/j.1365-2443.2007.01054.x – volume: 489 start-page: 571 year: 2012 ident: B12 publication-title: Nature doi: 10.1038/nature11368 – volume: 105 start-page: 3465 year: 2005 ident: B29 publication-title: Blood doi: 10.1182/blood-2004-06-2483 – volume: 83 start-page: 1216 year: 1994 ident: B38 publication-title: Blood doi: 10.1182/blood.V83.5.1216.1216 |
SSID | ssj0014467 |
Score | 2.1235344 |
Snippet | Fanconi anemia hematopoietic stem cells display poor self-renewal capacity when subjected to a variety of cellular stress. This phenotype raises the question... The Fanconi anemia pathway supports hematopoietic stem cell survival in response to inflammatory and metabolic stress. We show that polyubiquitination and... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 2582 |
SubjectTerms | Axin Protein - genetics Axin Protein - metabolism Cell Line Enzyme Activation Fanconi Anemia - metabolism Fanconi Anemia Complementation Group L Protein - genetics Fanconi Anemia Complementation Group L Protein - metabolism Gene Expression Glycogen Synthase Kinase 3 - biosynthesis Glycogen Synthase Kinase 3 - genetics Glycogen Synthase Kinase 3 beta HEK293 Cells HeLa Cells Hematopoietic Stem Cells - metabolism Humans Phosphatidylinositol 3-Kinases - metabolism Proteasome Endopeptidase Complex - metabolism Protein Folding Proto-Oncogene Proteins c-akt - genetics Proto-Oncogene Proteins c-akt - metabolism RNA Interference RNA, Small Interfering Signal Transduction Ubiquitination |
Title | The PI3K/Akt1 pathway enhances steady-state levels of FANCL |
URI | https://www.ncbi.nlm.nih.gov/pubmed/23783032 https://www.proquest.com/docview/1424325488 https://pubmed.ncbi.nlm.nih.gov/PMC3744951 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9swEBZZx2AvY7-b_cKDPQyC0liSLZs9dSXBXdNsjASyJ2PZMilrnbE6jOyv351kO3bbQTcIJiiOHHQflzvpu-8IeQcpMvzxZCEdpSmnIghzGspMUQ6OMGPIGDMn-KczP1qIT0tv2esdt1hLm1IN09831pX8j1VhDOyKVbL_YNlmUhiA92BfuIKF4XprG3855icoivC9dFEkdfUr2Q50sUJjXg6MCbfUVA0NzpEfZJgbk8PZ0bQdlp7WTXIHtShTRR3Aff3dZrbZVj05u6ARNgdo6NVf10bWs8XC3_GImzT_I-TkSVEkO4biNwxzLVMXIt1xe_8Be0EE1FZgVi4zxLNkrxa0vmGs8rO2VrrGU8drerYB0TV3DsEMrOCFSodjfDAyv6xaZFc4e_Y5niym03g-Xs7vkLtMSnNiH0VNJoRZr7QEA_vDapWn0D24Mn03QLmWdVwlz7aikflD8qBKI5xDi4lHpKeLx-SebSy6fUI-ADIcRMYB4sKpcOHUuHDauHAsLpx17hhcPCWLyXh-FNGqTQZNechLihJ8UkBcJ7XvqkSBy4YoWrsjlUGsFni58Fnmq9QPvFB4mVAJk6GSSepxySEd4M_IXrEu9D5xOGabGNEFKRO-yBMdas_TkPTmKmdK98mwXps4rTTksZXJeWy5DG4Mixlrl8cjeMFi9sn75gs_rHzK3299Wy92DC4O8Q3oW28uYyzG5AxS66BPntvFbyZjXAYQhbE-kR2zNDegfHr3k-JsZWTUuRQC8osXt3juS3J_B_1XZK_8udGvIRgt1RsDsz9FNoPm |
linkProvider | ABC ChemistRy |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+PI3K%2FAkt1+pathway+enhances+steady-state+levels+of+FANCL&rft.jtitle=Molecular+biology+of+the+cell&rft.au=Dao%2C+Kim-Hien+T&rft.au=Rotelli%2C+Michael+D&rft.au=Brown%2C+Brieanna+R&rft.au=Yates%2C+Jane+E&rft.date=2013-08-15&rft.issn=1939-4586&rft.eissn=1939-4586&rft.volume=24&rft.issue=16&rft.spage=2582&rft_id=info:doi/10.1091%2Fmbc.E13-03-0144&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1059-1524&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1059-1524&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1059-1524&client=summon |