Differences in cover crop contributions to phosphorus uptake by ryegrass in two soils with low and moderate P status
•Cover crop residues contributed 18–42 % of the total P uptake of ryegrass.•The cover crop P contribution was lower compared that from mineral fertilizer.•The effects of cover crops are correlated with P concentration and C:P ratio. Growing evidence has emerged that cover crops may be able to improv...
Saved in:
Published in | Geoderma Vol. 426; p. 116075 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
15.11.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Cover crop residues contributed 18–42 % of the total P uptake of ryegrass.•The cover crop P contribution was lower compared that from mineral fertilizer.•The effects of cover crops are correlated with P concentration and C:P ratio.
Growing evidence has emerged that cover crops may be able to improve phosphorus (P) cycling and contribute to the P nutrition of the subsequent crop. This could be particularly important in farming systems, with limited access to inputs and where low soil P availability has been identified. In a pot experiment using soils labelled with radioactive 33P, we examined how a range of cover crop residues directly contribute to P uptake of ryegrass, as well as how they affect P uptake of ryegrass from the soil P pool. Two soils with a low and a moderate P status (6.3 and 15.3 mg Olsen-P kg−1 soil) were chosen for the pot experiment as models for soils that are gradually becoming depleted in available P.
Residues from five cover crop species (buckwheat (Fagopyrum esculentum Moench), oilseed radish (Raphanus sativus L.), garden sorrel (Rumex acetosa L.), white lupine (Lupinus albus L.) and hairy vetch (Vicia villosa Roth)) showed a wide species-dependent variability in P concentration (3.4–8.8 mg P g-1 DM) and other quality traits. Cover crop residues contributed less to ryegrass growth and P uptake than the water-soluble P fertilizer. At the same P application dose, cover crops contributed 0.4–2.3 mg P kg−1 soil (18–42 %) to the total P uptake of ryegrass depending on species and soil P status, whereas mineral P fertilizer contributed up to 5.2 mg P kg−1 soil (46 %). In the low P soil, application of sorrel and radish significantly increased the P uptake of ryegrass compared to the control without P (by 93 and 75 %, respectively), whereas in the moderate P soil, sorrel and vetch increased the uptake (by 61 and 43 %, respectively). The cover crop effects on P uptake of ryegrass correlated significantly but only moderately well with their P concentration, content of water-extractable P and C:P ratio (R2 = 0.4, R2 = 0.4 and R2 = 0.5, respectively). As expected, the contribution of mineral fertilizer to P uptake of ryegrass was lower in the low P soil with a higher P sorption capacity compared to the moderate P soil, whereas the contribution of cover crops residues in these two soils was species-dependent. Addition of mineral fertilizer resulted in a greater uptake of soil P compared to the control whereas buckwheat and lupin with highest C:P ratios gave rise to a substantially smaller uptake of soil P, which is an indication of microbial P immobilization. Our study demonstrated that cover crop residues may contribute to the P nutrition of the subsequent crop, in some cases substantially, depending on the quality of the residues and the soil P status. |
---|---|
AbstractList | •Cover crop residues contributed 18–42 % of the total P uptake of ryegrass.•The cover crop P contribution was lower compared that from mineral fertilizer.•The effects of cover crops are correlated with P concentration and C:P ratio.
Growing evidence has emerged that cover crops may be able to improve phosphorus (P) cycling and contribute to the P nutrition of the subsequent crop. This could be particularly important in farming systems, with limited access to inputs and where low soil P availability has been identified. In a pot experiment using soils labelled with radioactive 33P, we examined how a range of cover crop residues directly contribute to P uptake of ryegrass, as well as how they affect P uptake of ryegrass from the soil P pool. Two soils with a low and a moderate P status (6.3 and 15.3 mg Olsen-P kg−1 soil) were chosen for the pot experiment as models for soils that are gradually becoming depleted in available P.
Residues from five cover crop species (buckwheat (Fagopyrum esculentum Moench), oilseed radish (Raphanus sativus L.), garden sorrel (Rumex acetosa L.), white lupine (Lupinus albus L.) and hairy vetch (Vicia villosa Roth)) showed a wide species-dependent variability in P concentration (3.4–8.8 mg P g-1 DM) and other quality traits. Cover crop residues contributed less to ryegrass growth and P uptake than the water-soluble P fertilizer. At the same P application dose, cover crops contributed 0.4–2.3 mg P kg−1 soil (18–42 %) to the total P uptake of ryegrass depending on species and soil P status, whereas mineral P fertilizer contributed up to 5.2 mg P kg−1 soil (46 %). In the low P soil, application of sorrel and radish significantly increased the P uptake of ryegrass compared to the control without P (by 93 and 75 %, respectively), whereas in the moderate P soil, sorrel and vetch increased the uptake (by 61 and 43 %, respectively). The cover crop effects on P uptake of ryegrass correlated significantly but only moderately well with their P concentration, content of water-extractable P and C:P ratio (R2 = 0.4, R2 = 0.4 and R2 = 0.5, respectively). As expected, the contribution of mineral fertilizer to P uptake of ryegrass was lower in the low P soil with a higher P sorption capacity compared to the moderate P soil, whereas the contribution of cover crops residues in these two soils was species-dependent. Addition of mineral fertilizer resulted in a greater uptake of soil P compared to the control whereas buckwheat and lupin with highest C:P ratios gave rise to a substantially smaller uptake of soil P, which is an indication of microbial P immobilization. Our study demonstrated that cover crop residues may contribute to the P nutrition of the subsequent crop, in some cases substantially, depending on the quality of the residues and the soil P status. Growing evidence has emerged that cover crops may be able to improve phosphorus (P) cycling and contribute to the P nutrition of the subsequent crop. This could be particularly important in farming systems, with limited access to inputs and where low soil P availability has been identified. In a pot experiment using soils labelled with radioactive ³³P, we examined how a range of cover crop residues directly contribute to P uptake of ryegrass, as well as how they affect P uptake of ryegrass from the soil P pool. Two soils with a low and a moderate P status (6.3 and 15.3 mg Olsen-P kg⁻¹ soil) were chosen for the pot experiment as models for soils that are gradually becoming depleted in available P. Residues from five cover crop species (buckwheat (Fagopyrum esculentum Moench), oilseed radish (Raphanus sativus L.), garden sorrel (Rumex acetosa L.), white lupine (Lupinus albus L.) and hairy vetch (Vicia villosa Roth)) showed a wide species-dependent variability in P concentration (3.4–8.8 mg P g⁻¹ DM) and other quality traits. Cover crop residues contributed less to ryegrass growth and P uptake than the water-soluble P fertilizer. At the same P application dose, cover crops contributed 0.4–2.3 mg P kg⁻¹ soil (18–42 %) to the total P uptake of ryegrass depending on species and soil P status, whereas mineral P fertilizer contributed up to 5.2 mg P kg⁻¹ soil (46 %). In the low P soil, application of sorrel and radish significantly increased the P uptake of ryegrass compared to the control without P (by 93 and 75 %, respectively), whereas in the moderate P soil, sorrel and vetch increased the uptake (by 61 and 43 %, respectively). The cover crop effects on P uptake of ryegrass correlated significantly but only moderately well with their P concentration, content of water-extractable P and C:P ratio (R² = 0.4, R² = 0.4 and R² = 0.5, respectively). As expected, the contribution of mineral fertilizer to P uptake of ryegrass was lower in the low P soil with a higher P sorption capacity compared to the moderate P soil, whereas the contribution of cover crops residues in these two soils was species-dependent. Addition of mineral fertilizer resulted in a greater uptake of soil P compared to the control whereas buckwheat and lupin with highest C:P ratios gave rise to a substantially smaller uptake of soil P, which is an indication of microbial P immobilization. Our study demonstrated that cover crop residues may contribute to the P nutrition of the subsequent crop, in some cases substantially, depending on the quality of the residues and the soil P status. |
ArticleNumber | 116075 |
Author | Gómez-Muñoz, Beatriz Müller-Stöver, Dorette Magid, Jakob Hansen, Veronika Oberson, Astrid |
Author_xml | – sequence: 1 givenname: Veronika surname: Hansen fullname: Hansen, Veronika email: veha@plen.ku.dk organization: University of Copenhagen, Department of Plant and Environmental Sciences, Thorvaldsensvej 40, 1821 Frederiksberg, Denmark – sequence: 2 givenname: Dorette surname: Müller-Stöver fullname: Müller-Stöver, Dorette organization: University of Copenhagen, Department of Plant and Environmental Sciences, Thorvaldsensvej 40, 1821 Frederiksberg, Denmark – sequence: 3 givenname: Beatriz surname: Gómez-Muñoz fullname: Gómez-Muñoz, Beatriz organization: University of Copenhagen, Department of Plant and Environmental Sciences, Thorvaldsensvej 40, 1821 Frederiksberg, Denmark – sequence: 4 givenname: Astrid surname: Oberson fullname: Oberson, Astrid organization: Department of Environmental Systems Science, ETH Zürich, Eschikon 33, 8315 Lindau, Switzerland – sequence: 5 givenname: Jakob surname: Magid fullname: Magid, Jakob organization: University of Copenhagen, Department of Plant and Environmental Sciences, Thorvaldsensvej 40, 1821 Frederiksberg, Denmark |
BookMark | eNqFkU1P4zAQhi0EEgX2LyAfuaRrO4mdSBxYsR8gIcGBPVuuM2ld0jh4nFb99zgULlw4WGNL7zPyPHNGjnvfAyGXnM054_Lner4E30DYmLlgQsw5l0yVR2TGKyUyKcr6mMxYSmaKSX5KzhDX6amYYDMSf7u2hQC9BaSup9ZvIVAb_JCufQxuMUbne6TR02HlMZ0wIh2HaF6ALvY07GEZDL7Dcecpetch3bm4op3fUdM3dDP9zkSgTxSjiSNekJPWdAg_Puo5-f_3z_PtXfbw-O_-9tdDZvM6j1kuSl4KLoWsbaWKuhS2UbBgbV61dWWtKSpe8zw30JZVbUVtJGOWcVMUbaFEkZ-Tq0PfIfjXETDqjUMLXWd68CNqoXiVF1JJlqLyEE2jIwZo9RDcxoS95kxPmvVaf2rWk2Z90JzA6y-gdWlIN8kzrvsevzngkDxsHQSN1k3baFwAG3Xj3Xct3gCY8qCr |
CitedBy_id | crossref_primary_10_25100_iyc_v25i3_13019 crossref_primary_10_1016_j_still_2024_106096 crossref_primary_10_3389_fpls_2024_1356224 crossref_primary_10_3390_agronomy13020499 crossref_primary_10_1007_s11104_023_06136_x crossref_primary_10_3390_su16135329 crossref_primary_10_1002_sae2_70035 crossref_primary_10_3390_agronomy13092326 crossref_primary_10_3390_su152015091 crossref_primary_10_1007_s10705_023_10333_6 crossref_primary_10_1016_j_geoderma_2022_115939 |
Cites_doi | 10.1007/s11104-012-1216-5 10.1002/agg2.20111 10.1007/s11104-018-3810-7 10.1007/s11104-008-9730-1 10.1007/s10705-017-9894-2 10.1016/j.soilbio.2014.03.003 10.1007/s11104-011-0880-1 10.1002/elsc.201100085 10.1080/03650340.2017.1308493 10.1016/j.soilbio.2012.04.012 10.1007/s11104-010-0390-6 10.1016/j.geoderma.2019.113909 10.2134/agronj2016.03.0168 10.1071/SR9880323 10.1016/j.soilbio.2018.04.003 10.1007/s11104-013-1716-y 10.2136/sssaj2014.09.0369 10.2134/jeq1977.00472425000600020007x 10.4141/P00-093 10.1007/s10705-020-10101-w 10.1016/j.eja.2017.02.006 10.1007/s11104-006-0021-4 10.1023/B:PLSO.0000016565.14718.4b 10.1016/S0065-2113(02)79005-6 10.1023/A:1014958029905 10.1016/j.agee.2021.107392 10.1080/01904160801926517 10.1016/j.soilbio.2012.01.031 10.1007/s11104-015-2477-6 10.1016/j.soilbio.2009.01.023 10.1016/j.geoderma.2014.04.028 10.1007/s11104-013-1968-6 |
ContentType | Journal Article |
Copyright | 2022 The Authors |
Copyright_xml | – notice: 2022 The Authors |
DBID | 6I. AAFTH AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.geoderma.2022.116075 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 1872-6259 |
ExternalDocumentID | 10_1016_j_geoderma_2022_116075 S0016706122003822 |
GroupedDBID | --K --M -DZ -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JM 9JN AABNK AABVA AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AATLK AAXUO ABFRF ABGRD ABJNI ABMAC ABQEM ABQYD ABYKQ ACDAQ ACGFO ACGFS ACIUM ACLVX ACRLP ACSBN ADBBV ADEZE ADQTV AEBSH AEFWE AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BKOJK BLXMC CBWCG CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IMUCA J1W KOM LW9 LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SAB SDF SDG SES SPC SPCBC SSA SSE SSZ T5K ~02 ~G- 29H AAHBH AALCJ AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABFNM ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEGFY AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 GROUPED_DOAJ HLV HMA HMC HVGLF HZ~ H~9 K-O OHT R2- RIG SEN SEP SEW SSH VH1 WUQ XPP Y6R ZMT 7S9 L.6 |
ID | FETCH-LOGICAL-c393t-32515216269c874952cd7eb0f38f98cca4819133aef589c29a600c01a44f47243 |
IEDL.DBID | .~1 |
ISSN | 0016-7061 |
IngestDate | Fri Jul 11 10:49:29 EDT 2025 Tue Jul 01 04:04:58 EDT 2025 Thu Apr 24 23:05:11 EDT 2025 Fri Feb 23 02:40:03 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Phosphorus uptake Isotopic labelling Cover crops Soil phosphorus status |
Language | English |
License | This is an open access article under the CC BY license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c393t-32515216269c874952cd7eb0f38f98cca4819133aef589c29a600c01a44f47243 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0016706122003822 |
PQID | 2718346760 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_2718346760 crossref_primary_10_1016_j_geoderma_2022_116075 crossref_citationtrail_10_1016_j_geoderma_2022_116075 elsevier_sciencedirect_doi_10_1016_j_geoderma_2022_116075 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-11-15 |
PublicationDateYYYYMMDD | 2022-11-15 |
PublicationDate_xml | – month: 11 year: 2022 text: 2022-11-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Geoderma |
PublicationYear | 2022 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Maltais-Landry, Frossard (b0085) 2015; 393 Lindedam, Magid, Poulsen, Luxhoi (b0065) 2009; 41 Nachimuthu, Guppy, Kristiansen, Lockwood (b0100) 2009; 314 van der Bom, Nunes, Raymond, Hansen, Bonnichsen, Magid, Nybroe, Jensen (b0155) 2018; 122 Achat, Sperandio, Daumer, Santellani, Prud’Homme, Akhtar, Morel (b0005) 2014; 232–234 Damon, Bowden, Rose, Rengel (b0030) 2014; 74 Fordham, Schwertmann (bib166) 1977; 6 Reuter, Edwards, Wilhelm (b0130) 1997 Traoré, Kiba, Bünemann, Obersib (bib169) 2020; 3 RStudio Team (b0135) 2017 R Core Team (b0120) 2017 van der Bom, McLaren, Doolette, Magid, Frossard, Oberson, Jensen (b0150) 2019; 355 de Oliveira, Comin, Tiecher, Piccin, Somavilla, Loss, Lourenzi, Kürtz, Brunetto (b0035) 2017; 41 Hansen, Eriksen, Jensen, Thorup-Kristensen, Magid (b0060) 2021; 313 Simpson, Oberson, Culvenor, Ryan, Veneklaas, Lambers, Lynch, Ryan, Delhaize, Smith, Smith, Harvey, Richardson (b0140) 2011; 1–2 Varela, Barraco, Gili, Taboada, Rubio (bib170) 2017; 109 Zhu, He, Smith, Smith (b0165) 2002; 239 Nanzer, Oberson, Berger, Berset, Hermann, Frossard (b0105) 2014; 377 Magid, Luxhøi, Lyshede (b0080) 2004; 258 Maltais-Landry, Scow, Brennan, Vitousek (b0090) 2015; 79 Vanzolini, Galantini, Martínez, Suñer (b0160) 2017; 63 Bünemann, Oberson, Liebisch, Keller, Annaheim, Huguenin-Elie, Frossard (b0020) 2012; 51 Hallama, Pekrun, Lambers, Kandeler (b0055) 2019; 434 Thorup-Kristensen, Magid, Jensen (bib168) 2003; 79 Noack, McLaughlin, Smernik, McBeath, Armstrong (b0110) 2012; 359 Möller, Müller (bib167) 2012; 12 Eichler-Löbermann, Köhne, Kowalski, Schnug (b0040) 2008; 31 Grant, Flaten, Tomasiewicz, Sheppard (b0050) 2001; 81 Liu, Khalaf, Ulén, Bergkvist (b0070) 2013; 371 McLaughlin, Alston, Martin (b0095) 1988; 26 Cooper, Reed, Hortenhuber, Lindenthal, Loes, Mader, Magid, Oberson, Kolbe, Moeller (b0025) 2018; 110 Oberson, Tagmann, Langmeier, Dubois, Mäder, Frossard (b0115) 2010; 334 Reimer, Hartmann, Oelofse, Magid, Bünemann, Möller (b0125) 2020; 118 Bayon, Weisskopf, Martinoia, Jansa, Frossard, Keller, Föllmi, Gobat (b0015) 2006; 283 van der Bom, Magid, Jensen (b0145) 2017; 86 Alamgir, McNeill, Tang, Marschner (b0010) 2012; 49 Maltais-Landry (10.1016/j.geoderma.2022.116075_b0090) 2015; 79 de Oliveira (10.1016/j.geoderma.2022.116075_b0035) 2017; 41 Alamgir (10.1016/j.geoderma.2022.116075_b0010) 2012; 49 Liu (10.1016/j.geoderma.2022.116075_b0070) 2013; 371 Möller (10.1016/j.geoderma.2022.116075_bib167) 2012; 12 Nachimuthu (10.1016/j.geoderma.2022.116075_b0100) 2009; 314 Vanzolini (10.1016/j.geoderma.2022.116075_b0160) 2017; 63 Maltais-Landry (10.1016/j.geoderma.2022.116075_b0085) 2015; 393 Eichler-Löbermann (10.1016/j.geoderma.2022.116075_b0040) 2008; 31 R Core Team (10.1016/j.geoderma.2022.116075_b0120) 2017 van der Bom (10.1016/j.geoderma.2022.116075_b0155) 2018; 122 Traoré (10.1016/j.geoderma.2022.116075_bib169) 2020; 3 Zhu (10.1016/j.geoderma.2022.116075_b0165) 2002; 239 Varela (10.1016/j.geoderma.2022.116075_bib170) 2017; 109 RStudio Team (10.1016/j.geoderma.2022.116075_b0135) 2017 Nanzer (10.1016/j.geoderma.2022.116075_b0105) 2014; 377 Grant (10.1016/j.geoderma.2022.116075_b0050) 2001; 81 Simpson (10.1016/j.geoderma.2022.116075_b0140) 2011; 1–2 Achat (10.1016/j.geoderma.2022.116075_b0005) 2014; 232–234 McLaughlin (10.1016/j.geoderma.2022.116075_b0095) 1988; 26 Hallama (10.1016/j.geoderma.2022.116075_b0055) 2019; 434 Oberson (10.1016/j.geoderma.2022.116075_b0115) 2010; 334 van der Bom (10.1016/j.geoderma.2022.116075_b0145) 2017; 86 Damon (10.1016/j.geoderma.2022.116075_b0030) 2014; 74 Hansen (10.1016/j.geoderma.2022.116075_b0060) 2021; 313 van der Bom (10.1016/j.geoderma.2022.116075_b0150) 2019; 355 Cooper (10.1016/j.geoderma.2022.116075_b0025) 2018; 110 Thorup-Kristensen (10.1016/j.geoderma.2022.116075_bib168) 2003; 79 Bayon (10.1016/j.geoderma.2022.116075_b0015) 2006; 283 Lindedam (10.1016/j.geoderma.2022.116075_b0065) 2009; 41 Magid (10.1016/j.geoderma.2022.116075_b0080) 2004; 258 Fordham (10.1016/j.geoderma.2022.116075_bib166) 1977; 6 Noack (10.1016/j.geoderma.2022.116075_b0110) 2012; 359 Bünemann (10.1016/j.geoderma.2022.116075_b0020) 2012; 51 Reimer (10.1016/j.geoderma.2022.116075_b0125) 2020; 118 Reuter (10.1016/j.geoderma.2022.116075_b0130) 1997 |
References_xml | – volume: 118 start-page: 273 year: 2020 end-page: 291 ident: b0125 article-title: Reliance on biological nitrogen fixation depletes soil phosphorus and potassium reserves publication-title: Nutr. Cycl. Agroecosyst. – volume: 51 start-page: 84 year: 2012 end-page: 95 ident: b0020 article-title: Rapid microbial phosphorus immobilization dominates gross phosphorus fluxes in a grassland soil with low inorganic phosphorus availability publication-title: Soil Biol. Biochem. – volume: 314 start-page: 303 year: 2009 end-page: 310 ident: b0100 article-title: Isotopic tracing of phosphorus uptake in corn from 33P labelled legume residues and 32P labelled fertilisers applied to a sandy loam soil publication-title: Plant Soil – volume: 6 start-page: 136 year: 1977 end-page: 140 ident: bib166 article-title: Composition and Reactions of Liquid Manure (Gülle), with Particular Reference to Phosphate: II. Solid Phase Components publication-title: J. Environ. Qual. – volume: 49 start-page: 70 year: 2012 end-page: 77 ident: b0010 article-title: Changes in soil P pools during legume residue decomposition publication-title: Soil Biol. Biochem. – volume: 355 start-page: 113909 year: 2019 ident: b0150 article-title: Influence of long-term phosphorus fertilisation history on the availability and chemical nature of soil phosphorus publication-title: Geoderma – volume: 41 start-page: 1040 year: 2009 end-page: 1049 ident: b0065 article-title: Tissue architecture and soil fertility controls on decomposer communities and decomposition of roots publication-title: Soil Biol. Biochem. – volume: 79 start-page: 227 year: 2003 end-page: 302 ident: bib168 article-title: Catch crops and green manures as biological tools in nitrogen management in temperate zones publication-title: Adv. Agron. – volume: 109 start-page: 317 year: 2017 end-page: 326 ident: bib170 article-title: Biomass decomposition and phosphorus release from residues of cover crops under no-tillage publication-title: Agron. J. – volume: 110 start-page: 227 year: 2018 end-page: 239 ident: b0025 article-title: Phosphorus availability on many organically managed farms in Europe publication-title: Nutr. Cycl. Agroecosyst. – volume: 377 start-page: 439 year: 2014 end-page: 456 ident: b0105 article-title: The plant availability of phosphorus from thermo-chemically treated sewage sludge ashes as studied by 33P labeling techniques publication-title: Plant Soil – volume: 63 start-page: 1864 year: 2017 end-page: 1874 ident: b0160 article-title: Changes in soil pH and phosphorus availability during decomposition of cover crop residues publication-title: Arch. Agron. Soil Sci. – volume: 41 start-page: 1 year: 2017 end-page: 16 ident: b0035 article-title: Release of phosphorus forms from cover crop residues in agroecological no-till onion production publication-title: Rev. Bras. Cienc. do Solo – volume: 258 start-page: 351 year: 2004 end-page: 365 ident: b0080 article-title: Decomposition of plant residues at low temperatures separates turnover of nitrogen and energy rich tissue components in time publication-title: Plant Soil – start-page: 81 year: 1997 end-page: 284 ident: b0130 article-title: Temperate and tropical crops publication-title: Plant analysis an Interpretation Manual – volume: 31 start-page: 659 year: 2008 end-page: 676 ident: b0040 article-title: Effect of catch cropping on phosphorus bioavailability in comparison to organic and inorganic fertilization publication-title: J. Plant Nutr. – volume: 79 start-page: 688 year: 2015 end-page: 697 ident: b0090 article-title: Long-term effects of compost and cover crops on coil phosphorus in two california agroecosystems publication-title: Soil Sci. Soc. Am. J. – year: 2017 ident: b0135 article-title: RStudio: Integreated Development for R – volume: 393 start-page: 193 year: 2015 end-page: 205 ident: b0085 article-title: Similar phosphorus transfer from cover crop residues and water-soluble mineral fertilizer to soils and a subsequent crop publication-title: Plant Soil – volume: 283 start-page: 309 year: 2006 end-page: 321 ident: b0015 article-title: Soil phosphorus uptake by continuously cropped Lupinus albus: A new microcosm design publication-title: Plant Soil – volume: 74 start-page: 127 year: 2014 end-page: 137 ident: b0030 article-title: Crop residue contributions to phosphorus pools in agricultural soils: A review publication-title: Soil Biol. Biochem. – volume: 3 start-page: 1 year: 2020 end-page: 17 ident: bib169 article-title: Nitrogen and phosphorus uptake from isotope‐labeled fertilizers by sorghum and soil microorganisms publication-title: Agrosystems, Geosci. Environ. – volume: 371 start-page: 543 year: 2013 end-page: 557 ident: b0070 article-title: Potential phosphorus release from catch crop shoots and roots after freezing-thawing publication-title: Plant Soil – volume: 86 start-page: 12 year: 2017 end-page: 23 ident: b0145 article-title: Long-term P and K fertilisation strategies and balances affect soil availability indices, crop yield depression risk and N use publication-title: Eur. J. Agron. – volume: 239 start-page: 1 year: 2002 end-page: 8 ident: b0165 article-title: Buckwheat (Fagopyrum esculentum Moench) has high capacity to take up phosphorus (P) from a calcium (Ca)-bound source publication-title: Plant Soil – volume: 232–234 start-page: 24 year: 2014 end-page: 33 ident: b0005 article-title: Plant-availability of phosphorus recycled from pig manures and dairy effluents as assessed by isotopic labeling techniques publication-title: Geoderma – volume: 1–2 start-page: 89 year: 2011 end-page: 120 ident: b0140 article-title: Strategies and agronomic interventions to improve the phosphorus-use efficiency of farming systems publication-title: Plant Soil – volume: 434 start-page: 7 year: 2019 end-page: 45 ident: b0055 article-title: Hidden miners – the roles of cover crops and soil microorganisms in phosphorus cycling through agroecosystems publication-title: Plant Soil – volume: 81 start-page: 211 year: 2001 end-page: 224 ident: b0050 article-title: The importance of early season phosphorus nutrition publication-title: Can. J. Plant Sci. – year: 2017 ident: b0120 article-title: R: A language and environment for statistical computing – volume: 334 start-page: 391 year: 2010 end-page: 407 ident: b0115 article-title: Fresh and residual phosphorus uptake by ryegrass from soils with different fertilization histories publication-title: Plant Soil – volume: 313 start-page: 107392 year: 2021 ident: b0060 article-title: Towards integrated cover crop management: N, P and S release from aboveground and belowground residues publication-title: Agric. Ecosyst. Environ. – volume: 122 start-page: 91 year: 2018 end-page: 103 ident: b0155 article-title: Long-term fertilisation form, level and duration affect the diversity, structure and functioning of soil microbial communities in the field publication-title: Soil Biol. Biochem. – volume: 26 start-page: 323 year: 1988 end-page: 331 ident: b0095 article-title: Phosphorus cycling in wheat-pasture rotations. I. the source of phosphorus taken up by wheat publication-title: Aust. J. Soil Res. – volume: 12 start-page: 242 year: 2012 end-page: 257 ident: bib167 article-title: Effects of anaerobic digestion on digestate nutrient availability and crop growth: A review publication-title: Eng. Life Sci. – volume: 359 start-page: 375 year: 2012 end-page: 385 ident: b0110 article-title: Crop residue phosphorus: Speciation and potential bio-availability publication-title: Plant Soil – volume: 359 start-page: 375 year: 2012 ident: 10.1016/j.geoderma.2022.116075_b0110 article-title: Crop residue phosphorus: Speciation and potential bio-availability publication-title: Plant Soil doi: 10.1007/s11104-012-1216-5 – volume: 3 start-page: 1 year: 2020 ident: 10.1016/j.geoderma.2022.116075_bib169 article-title: Nitrogen and phosphorus uptake from isotope‐labeled fertilizers by sorghum and soil microorganisms publication-title: Agrosystems, Geosci. Environ. doi: 10.1002/agg2.20111 – volume: 434 start-page: 7 year: 2019 ident: 10.1016/j.geoderma.2022.116075_b0055 article-title: Hidden miners – the roles of cover crops and soil microorganisms in phosphorus cycling through agroecosystems publication-title: Plant Soil doi: 10.1007/s11104-018-3810-7 – volume: 314 start-page: 303 year: 2009 ident: 10.1016/j.geoderma.2022.116075_b0100 article-title: Isotopic tracing of phosphorus uptake in corn from 33P labelled legume residues and 32P labelled fertilisers applied to a sandy loam soil publication-title: Plant Soil doi: 10.1007/s11104-008-9730-1 – volume: 110 start-page: 227 year: 2018 ident: 10.1016/j.geoderma.2022.116075_b0025 article-title: Phosphorus availability on many organically managed farms in Europe publication-title: Nutr. Cycl. Agroecosyst. doi: 10.1007/s10705-017-9894-2 – volume: 41 start-page: 1 year: 2017 ident: 10.1016/j.geoderma.2022.116075_b0035 article-title: Release of phosphorus forms from cover crop residues in agroecological no-till onion production publication-title: Rev. Bras. Cienc. do Solo – volume: 74 start-page: 127 year: 2014 ident: 10.1016/j.geoderma.2022.116075_b0030 article-title: Crop residue contributions to phosphorus pools in agricultural soils: A review publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2014.03.003 – volume: 1–2 start-page: 89 year: 2011 ident: 10.1016/j.geoderma.2022.116075_b0140 article-title: Strategies and agronomic interventions to improve the phosphorus-use efficiency of farming systems publication-title: Plant Soil doi: 10.1007/s11104-011-0880-1 – volume: 12 start-page: 242 year: 2012 ident: 10.1016/j.geoderma.2022.116075_bib167 article-title: Effects of anaerobic digestion on digestate nutrient availability and crop growth: A review publication-title: Eng. Life Sci. doi: 10.1002/elsc.201100085 – year: 2017 ident: 10.1016/j.geoderma.2022.116075_b0135 – volume: 63 start-page: 1864 year: 2017 ident: 10.1016/j.geoderma.2022.116075_b0160 article-title: Changes in soil pH and phosphorus availability during decomposition of cover crop residues publication-title: Arch. Agron. Soil Sci. doi: 10.1080/03650340.2017.1308493 – volume: 51 start-page: 84 year: 2012 ident: 10.1016/j.geoderma.2022.116075_b0020 article-title: Rapid microbial phosphorus immobilization dominates gross phosphorus fluxes in a grassland soil with low inorganic phosphorus availability publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2012.04.012 – volume: 334 start-page: 391 year: 2010 ident: 10.1016/j.geoderma.2022.116075_b0115 article-title: Fresh and residual phosphorus uptake by ryegrass from soils with different fertilization histories publication-title: Plant Soil doi: 10.1007/s11104-010-0390-6 – volume: 355 start-page: 113909 year: 2019 ident: 10.1016/j.geoderma.2022.116075_b0150 article-title: Influence of long-term phosphorus fertilisation history on the availability and chemical nature of soil phosphorus publication-title: Geoderma doi: 10.1016/j.geoderma.2019.113909 – volume: 109 start-page: 317 year: 2017 ident: 10.1016/j.geoderma.2022.116075_bib170 article-title: Biomass decomposition and phosphorus release from residues of cover crops under no-tillage publication-title: Agron. J. doi: 10.2134/agronj2016.03.0168 – volume: 26 start-page: 323 year: 1988 ident: 10.1016/j.geoderma.2022.116075_b0095 article-title: Phosphorus cycling in wheat-pasture rotations. I. the source of phosphorus taken up by wheat publication-title: Aust. J. Soil Res. doi: 10.1071/SR9880323 – volume: 122 start-page: 91 year: 2018 ident: 10.1016/j.geoderma.2022.116075_b0155 article-title: Long-term fertilisation form, level and duration affect the diversity, structure and functioning of soil microbial communities in the field publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2018.04.003 – volume: 371 start-page: 543 year: 2013 ident: 10.1016/j.geoderma.2022.116075_b0070 article-title: Potential phosphorus release from catch crop shoots and roots after freezing-thawing publication-title: Plant Soil doi: 10.1007/s11104-013-1716-y – volume: 79 start-page: 688 year: 2015 ident: 10.1016/j.geoderma.2022.116075_b0090 article-title: Long-term effects of compost and cover crops on coil phosphorus in two california agroecosystems publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2014.09.0369 – volume: 6 start-page: 136 year: 1977 ident: 10.1016/j.geoderma.2022.116075_bib166 article-title: Composition and Reactions of Liquid Manure (Gülle), with Particular Reference to Phosphate: II. Solid Phase Components publication-title: J. Environ. Qual. doi: 10.2134/jeq1977.00472425000600020007x – volume: 81 start-page: 211 year: 2001 ident: 10.1016/j.geoderma.2022.116075_b0050 article-title: The importance of early season phosphorus nutrition publication-title: Can. J. Plant Sci. doi: 10.4141/P00-093 – volume: 118 start-page: 273 year: 2020 ident: 10.1016/j.geoderma.2022.116075_b0125 article-title: Reliance on biological nitrogen fixation depletes soil phosphorus and potassium reserves publication-title: Nutr. Cycl. Agroecosyst. doi: 10.1007/s10705-020-10101-w – volume: 86 start-page: 12 year: 2017 ident: 10.1016/j.geoderma.2022.116075_b0145 article-title: Long-term P and K fertilisation strategies and balances affect soil availability indices, crop yield depression risk and N use publication-title: Eur. J. Agron. doi: 10.1016/j.eja.2017.02.006 – start-page: 81 year: 1997 ident: 10.1016/j.geoderma.2022.116075_b0130 article-title: Temperate and tropical crops – volume: 283 start-page: 309 year: 2006 ident: 10.1016/j.geoderma.2022.116075_b0015 article-title: Soil phosphorus uptake by continuously cropped Lupinus albus: A new microcosm design publication-title: Plant Soil doi: 10.1007/s11104-006-0021-4 – volume: 258 start-page: 351 year: 2004 ident: 10.1016/j.geoderma.2022.116075_b0080 article-title: Decomposition of plant residues at low temperatures separates turnover of nitrogen and energy rich tissue components in time publication-title: Plant Soil doi: 10.1023/B:PLSO.0000016565.14718.4b – volume: 79 start-page: 227 year: 2003 ident: 10.1016/j.geoderma.2022.116075_bib168 article-title: Catch crops and green manures as biological tools in nitrogen management in temperate zones publication-title: Adv. Agron. doi: 10.1016/S0065-2113(02)79005-6 – volume: 239 start-page: 1 year: 2002 ident: 10.1016/j.geoderma.2022.116075_b0165 article-title: Buckwheat (Fagopyrum esculentum Moench) has high capacity to take up phosphorus (P) from a calcium (Ca)-bound source publication-title: Plant Soil doi: 10.1023/A:1014958029905 – volume: 313 start-page: 107392 year: 2021 ident: 10.1016/j.geoderma.2022.116075_b0060 article-title: Towards integrated cover crop management: N, P and S release from aboveground and belowground residues publication-title: Agric. Ecosyst. Environ. doi: 10.1016/j.agee.2021.107392 – volume: 31 start-page: 659 year: 2008 ident: 10.1016/j.geoderma.2022.116075_b0040 article-title: Effect of catch cropping on phosphorus bioavailability in comparison to organic and inorganic fertilization publication-title: J. Plant Nutr. doi: 10.1080/01904160801926517 – year: 2017 ident: 10.1016/j.geoderma.2022.116075_b0120 – volume: 49 start-page: 70 year: 2012 ident: 10.1016/j.geoderma.2022.116075_b0010 article-title: Changes in soil P pools during legume residue decomposition publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2012.01.031 – volume: 393 start-page: 193 year: 2015 ident: 10.1016/j.geoderma.2022.116075_b0085 article-title: Similar phosphorus transfer from cover crop residues and water-soluble mineral fertilizer to soils and a subsequent crop publication-title: Plant Soil doi: 10.1007/s11104-015-2477-6 – volume: 41 start-page: 1040 year: 2009 ident: 10.1016/j.geoderma.2022.116075_b0065 article-title: Tissue architecture and soil fertility controls on decomposer communities and decomposition of roots publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2009.01.023 – volume: 232–234 start-page: 24 year: 2014 ident: 10.1016/j.geoderma.2022.116075_b0005 article-title: Plant-availability of phosphorus recycled from pig manures and dairy effluents as assessed by isotopic labeling techniques publication-title: Geoderma doi: 10.1016/j.geoderma.2014.04.028 – volume: 377 start-page: 439 year: 2014 ident: 10.1016/j.geoderma.2022.116075_b0105 article-title: The plant availability of phosphorus from thermo-chemically treated sewage sludge ashes as studied by 33P labeling techniques publication-title: Plant Soil doi: 10.1007/s11104-013-1968-6 |
SSID | ssj0017020 |
Score | 2.4553964 |
Snippet | •Cover crop residues contributed 18–42 % of the total P uptake of ryegrass.•The cover crop P contribution was lower compared that from mineral fertilizer.•The... Growing evidence has emerged that cover crops may be able to improve phosphorus (P) cycling and contribute to the P nutrition of the subsequent crop. This... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 116075 |
SubjectTerms | buckwheat Cover crops Fagopyrum esculentum Isotopic labelling Lolium Lupinus albus nutrition oilseeds phosphorus phosphorus fertilizers Phosphorus uptake radishes Raphanus sativus Rumex acetosa soil Soil phosphorus status soluble phosphorus sorption sorrel species Vicia villosa |
Title | Differences in cover crop contributions to phosphorus uptake by ryegrass in two soils with low and moderate P status |
URI | https://dx.doi.org/10.1016/j.geoderma.2022.116075 https://www.proquest.com/docview/2718346760 |
Volume | 426 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwELUQvcChKgUELawGiWu6ju18HVdQtC0CcQCJmxU7Dl26SlabRKgXfjszWWdFUSUOPeSQKBNFHnvejD3zhrFTx22UuMIEJpYYoORlgXYwK4LISKtSjAfS_vT86jqe3qmf99H9BjsbamEordLb_pVN7621fzL2ozlezGZU4xvGCSE05VchzlEFu0poln97Xqd5hAn31IxhHNDbr6qEH1FH1HCs5x8SAq1HzCnf8N8A9cZU9_hz8Yl99I4jTFb_tsM2XPWZbU8elp48w-2y9tx3O8G1D7MKLKVnAvXogj4j3be2aqCtYfGrbvBadg10izb_7cD8AfS_H5boTZNw-1RDU8_mDdBWLczrJ8irAqhzDrFLwA1QLVLX7LG7i--3Z9PAd1UIrMxkG0j0aBCzMZDJbJpgfCRskTjDS5mWWWqJ5RxjOClzV0ZpZkWWo09keZgrVapEKLnPNqu6cgcMuLLGlVbwzFolSmGsTHIiquRGoZvGD1k0DKW2nnKcOl_M9ZBb9qgHFWhSgV6p4JCN13KLFenGuxLZoCn91_TRiAzvyp4MqtW4tujAJK9c3TVaIHBLRJKYf_mP739lW3RHBYxhdMQ222XnjtGTac2on6oj9mHy43J6_QK0KvQc |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELZgewAOFeUh6HOQeg3r2M7ruKJF2xYQB5C4WbHj0KWrZLVJhHrpb-9M1kEUVeLAIZckjiJPPN9MPPN9jH123EaJK0xgYokJSl4W6AezIoiMtCrFfCDtd8_PL-Lptfp-E92ssZOhF4bKKr3vX_n03lv7M2M_m-PFbEY9vmGcEEJTfRXi3Dp7pXD5kozB8Z-HOo8w4Z6bMYwDuv1Rm_AdGokUx3oCIiHQfcScCg7_j1BPfHUPQKfb7LWPHGGyerk3bM1VO2xrcrv07Blul7VfvNwJLn6YVWCpPhNIpAv6knSvbdVAW8PiZ93gsewa6BZt_suB-Q0YgN8uMZymwe19DU09mzdA_2phXt9DXhVA0jlELwGXQM1IXbPHrk-_Xp1MAy-rEFiZyTaQGNIgaGMmk9k0wQRJ2CJxhpcyLbPUEs05JnFS5q6M0syKLMegyPIwV6pUiVByn42qunIHDLiyxpVW8MxaJUphrExyYqrkRmGcxg9ZNEyltp5znKQv5nooLrvTgwk0mUCvTHDIxg_jFivWjWdHZIOl9D_fj0ZoeHbs0WBajYuLdkzyytVdowUit0QoifnbFzz_E9uYXp2f6bNvFz_esU26Qt2MYfSejdpl5z5gWNOaj_1n-xdHcfWq |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Differences+in+cover+crop+contributions+to+phosphorus+uptake+by+ryegrass+in+two+soils+with+low+and+moderate+P+status&rft.jtitle=Geoderma&rft.au=Hansen%2C+Veronika&rft.au=M%C3%BCller-St%C3%B6ver%2C+Dorette&rft.au=G%C3%B3mez-Mu%C3%B1oz%2C+Beatriz&rft.au=Oberson%2C+Astrid&rft.date=2022-11-15&rft.issn=0016-7061&rft.volume=426&rft.spage=116075&rft_id=info:doi/10.1016%2Fj.geoderma.2022.116075&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_geoderma_2022_116075 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7061&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7061&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7061&client=summon |