Differences in cover crop contributions to phosphorus uptake by ryegrass in two soils with low and moderate P status

•Cover crop residues contributed 18–42 % of the total P uptake of ryegrass.•The cover crop P contribution was lower compared that from mineral fertilizer.•The effects of cover crops are correlated with P concentration and C:P ratio. Growing evidence has emerged that cover crops may be able to improv...

Full description

Saved in:
Bibliographic Details
Published inGeoderma Vol. 426; p. 116075
Main Authors Hansen, Veronika, Müller-Stöver, Dorette, Gómez-Muñoz, Beatriz, Oberson, Astrid, Magid, Jakob
Format Journal Article
LanguageEnglish
Published Elsevier B.V 15.11.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Cover crop residues contributed 18–42 % of the total P uptake of ryegrass.•The cover crop P contribution was lower compared that from mineral fertilizer.•The effects of cover crops are correlated with P concentration and C:P ratio. Growing evidence has emerged that cover crops may be able to improve phosphorus (P) cycling and contribute to the P nutrition of the subsequent crop. This could be particularly important in farming systems, with limited access to inputs and where low soil P availability has been identified. In a pot experiment using soils labelled with radioactive 33P, we examined how a range of cover crop residues directly contribute to P uptake of ryegrass, as well as how they affect P uptake of ryegrass from the soil P pool. Two soils with a low and a moderate P status (6.3 and 15.3 mg Olsen-P kg−1 soil) were chosen for the pot experiment as models for soils that are gradually becoming depleted in available P. Residues from five cover crop species (buckwheat (Fagopyrum esculentum Moench), oilseed radish (Raphanus sativus L.), garden sorrel (Rumex acetosa L.), white lupine (Lupinus albus L.) and hairy vetch (Vicia villosa Roth)) showed a wide species-dependent variability in P concentration (3.4–8.8 mg P g-1 DM) and other quality traits. Cover crop residues contributed less to ryegrass growth and P uptake than the water-soluble P fertilizer. At the same P application dose, cover crops contributed 0.4–2.3 mg P kg−1 soil (18–42 %) to the total P uptake of ryegrass depending on species and soil P status, whereas mineral P fertilizer contributed up to 5.2 mg P kg−1 soil (46 %). In the low P soil, application of sorrel and radish significantly increased the P uptake of ryegrass compared to the control without P (by 93 and 75 %, respectively), whereas in the moderate P soil, sorrel and vetch increased the uptake (by 61 and 43 %, respectively). The cover crop effects on P uptake of ryegrass correlated significantly but only moderately well with their P concentration, content of water-extractable P and C:P ratio (R2 = 0.4, R2 = 0.4 and R2 = 0.5, respectively). As expected, the contribution of mineral fertilizer to P uptake of ryegrass was lower in the low P soil with a higher P sorption capacity compared to the moderate P soil, whereas the contribution of cover crops residues in these two soils was species-dependent. Addition of mineral fertilizer resulted in a greater uptake of soil P compared to the control whereas buckwheat and lupin with highest C:P ratios gave rise to a substantially smaller uptake of soil P, which is an indication of microbial P immobilization. Our study demonstrated that cover crop residues may contribute to the P nutrition of the subsequent crop, in some cases substantially, depending on the quality of the residues and the soil P status.
AbstractList •Cover crop residues contributed 18–42 % of the total P uptake of ryegrass.•The cover crop P contribution was lower compared that from mineral fertilizer.•The effects of cover crops are correlated with P concentration and C:P ratio. Growing evidence has emerged that cover crops may be able to improve phosphorus (P) cycling and contribute to the P nutrition of the subsequent crop. This could be particularly important in farming systems, with limited access to inputs and where low soil P availability has been identified. In a pot experiment using soils labelled with radioactive 33P, we examined how a range of cover crop residues directly contribute to P uptake of ryegrass, as well as how they affect P uptake of ryegrass from the soil P pool. Two soils with a low and a moderate P status (6.3 and 15.3 mg Olsen-P kg−1 soil) were chosen for the pot experiment as models for soils that are gradually becoming depleted in available P. Residues from five cover crop species (buckwheat (Fagopyrum esculentum Moench), oilseed radish (Raphanus sativus L.), garden sorrel (Rumex acetosa L.), white lupine (Lupinus albus L.) and hairy vetch (Vicia villosa Roth)) showed a wide species-dependent variability in P concentration (3.4–8.8 mg P g-1 DM) and other quality traits. Cover crop residues contributed less to ryegrass growth and P uptake than the water-soluble P fertilizer. At the same P application dose, cover crops contributed 0.4–2.3 mg P kg−1 soil (18–42 %) to the total P uptake of ryegrass depending on species and soil P status, whereas mineral P fertilizer contributed up to 5.2 mg P kg−1 soil (46 %). In the low P soil, application of sorrel and radish significantly increased the P uptake of ryegrass compared to the control without P (by 93 and 75 %, respectively), whereas in the moderate P soil, sorrel and vetch increased the uptake (by 61 and 43 %, respectively). The cover crop effects on P uptake of ryegrass correlated significantly but only moderately well with their P concentration, content of water-extractable P and C:P ratio (R2 = 0.4, R2 = 0.4 and R2 = 0.5, respectively). As expected, the contribution of mineral fertilizer to P uptake of ryegrass was lower in the low P soil with a higher P sorption capacity compared to the moderate P soil, whereas the contribution of cover crops residues in these two soils was species-dependent. Addition of mineral fertilizer resulted in a greater uptake of soil P compared to the control whereas buckwheat and lupin with highest C:P ratios gave rise to a substantially smaller uptake of soil P, which is an indication of microbial P immobilization. Our study demonstrated that cover crop residues may contribute to the P nutrition of the subsequent crop, in some cases substantially, depending on the quality of the residues and the soil P status.
Growing evidence has emerged that cover crops may be able to improve phosphorus (P) cycling and contribute to the P nutrition of the subsequent crop. This could be particularly important in farming systems, with limited access to inputs and where low soil P availability has been identified. In a pot experiment using soils labelled with radioactive ³³P, we examined how a range of cover crop residues directly contribute to P uptake of ryegrass, as well as how they affect P uptake of ryegrass from the soil P pool. Two soils with a low and a moderate P status (6.3 and 15.3 mg Olsen-P kg⁻¹ soil) were chosen for the pot experiment as models for soils that are gradually becoming depleted in available P. Residues from five cover crop species (buckwheat (Fagopyrum esculentum Moench), oilseed radish (Raphanus sativus L.), garden sorrel (Rumex acetosa L.), white lupine (Lupinus albus L.) and hairy vetch (Vicia villosa Roth)) showed a wide species-dependent variability in P concentration (3.4–8.8 mg P g⁻¹ DM) and other quality traits. Cover crop residues contributed less to ryegrass growth and P uptake than the water-soluble P fertilizer. At the same P application dose, cover crops contributed 0.4–2.3 mg P kg⁻¹ soil (18–42 %) to the total P uptake of ryegrass depending on species and soil P status, whereas mineral P fertilizer contributed up to 5.2 mg P kg⁻¹ soil (46 %). In the low P soil, application of sorrel and radish significantly increased the P uptake of ryegrass compared to the control without P (by 93 and 75 %, respectively), whereas in the moderate P soil, sorrel and vetch increased the uptake (by 61 and 43 %, respectively). The cover crop effects on P uptake of ryegrass correlated significantly but only moderately well with their P concentration, content of water-extractable P and C:P ratio (R² = 0.4, R² = 0.4 and R² = 0.5, respectively). As expected, the contribution of mineral fertilizer to P uptake of ryegrass was lower in the low P soil with a higher P sorption capacity compared to the moderate P soil, whereas the contribution of cover crops residues in these two soils was species-dependent. Addition of mineral fertilizer resulted in a greater uptake of soil P compared to the control whereas buckwheat and lupin with highest C:P ratios gave rise to a substantially smaller uptake of soil P, which is an indication of microbial P immobilization. Our study demonstrated that cover crop residues may contribute to the P nutrition of the subsequent crop, in some cases substantially, depending on the quality of the residues and the soil P status.
ArticleNumber 116075
Author Gómez-Muñoz, Beatriz
Müller-Stöver, Dorette
Magid, Jakob
Hansen, Veronika
Oberson, Astrid
Author_xml – sequence: 1
  givenname: Veronika
  surname: Hansen
  fullname: Hansen, Veronika
  email: veha@plen.ku.dk
  organization: University of Copenhagen, Department of Plant and Environmental Sciences, Thorvaldsensvej 40, 1821 Frederiksberg, Denmark
– sequence: 2
  givenname: Dorette
  surname: Müller-Stöver
  fullname: Müller-Stöver, Dorette
  organization: University of Copenhagen, Department of Plant and Environmental Sciences, Thorvaldsensvej 40, 1821 Frederiksberg, Denmark
– sequence: 3
  givenname: Beatriz
  surname: Gómez-Muñoz
  fullname: Gómez-Muñoz, Beatriz
  organization: University of Copenhagen, Department of Plant and Environmental Sciences, Thorvaldsensvej 40, 1821 Frederiksberg, Denmark
– sequence: 4
  givenname: Astrid
  surname: Oberson
  fullname: Oberson, Astrid
  organization: Department of Environmental Systems Science, ETH Zürich, Eschikon 33, 8315 Lindau, Switzerland
– sequence: 5
  givenname: Jakob
  surname: Magid
  fullname: Magid, Jakob
  organization: University of Copenhagen, Department of Plant and Environmental Sciences, Thorvaldsensvej 40, 1821 Frederiksberg, Denmark
BookMark eNqFkU1P4zAQhi0EEgX2LyAfuaRrO4mdSBxYsR8gIcGBPVuuM2ld0jh4nFb99zgULlw4WGNL7zPyPHNGjnvfAyGXnM054_Lner4E30DYmLlgQsw5l0yVR2TGKyUyKcr6mMxYSmaKSX5KzhDX6amYYDMSf7u2hQC9BaSup9ZvIVAb_JCufQxuMUbne6TR02HlMZ0wIh2HaF6ALvY07GEZDL7Dcecpetch3bm4op3fUdM3dDP9zkSgTxSjiSNekJPWdAg_Puo5-f_3z_PtXfbw-O_-9tdDZvM6j1kuSl4KLoWsbaWKuhS2UbBgbV61dWWtKSpe8zw30JZVbUVtJGOWcVMUbaFEkZ-Tq0PfIfjXETDqjUMLXWd68CNqoXiVF1JJlqLyEE2jIwZo9RDcxoS95kxPmvVaf2rWk2Z90JzA6y-gdWlIN8kzrvsevzngkDxsHQSN1k3baFwAG3Xj3Xct3gCY8qCr
CitedBy_id crossref_primary_10_25100_iyc_v25i3_13019
crossref_primary_10_1016_j_still_2024_106096
crossref_primary_10_3389_fpls_2024_1356224
crossref_primary_10_3390_agronomy13020499
crossref_primary_10_1007_s11104_023_06136_x
crossref_primary_10_3390_su16135329
crossref_primary_10_1002_sae2_70035
crossref_primary_10_3390_agronomy13092326
crossref_primary_10_3390_su152015091
crossref_primary_10_1007_s10705_023_10333_6
crossref_primary_10_1016_j_geoderma_2022_115939
Cites_doi 10.1007/s11104-012-1216-5
10.1002/agg2.20111
10.1007/s11104-018-3810-7
10.1007/s11104-008-9730-1
10.1007/s10705-017-9894-2
10.1016/j.soilbio.2014.03.003
10.1007/s11104-011-0880-1
10.1002/elsc.201100085
10.1080/03650340.2017.1308493
10.1016/j.soilbio.2012.04.012
10.1007/s11104-010-0390-6
10.1016/j.geoderma.2019.113909
10.2134/agronj2016.03.0168
10.1071/SR9880323
10.1016/j.soilbio.2018.04.003
10.1007/s11104-013-1716-y
10.2136/sssaj2014.09.0369
10.2134/jeq1977.00472425000600020007x
10.4141/P00-093
10.1007/s10705-020-10101-w
10.1016/j.eja.2017.02.006
10.1007/s11104-006-0021-4
10.1023/B:PLSO.0000016565.14718.4b
10.1016/S0065-2113(02)79005-6
10.1023/A:1014958029905
10.1016/j.agee.2021.107392
10.1080/01904160801926517
10.1016/j.soilbio.2012.01.031
10.1007/s11104-015-2477-6
10.1016/j.soilbio.2009.01.023
10.1016/j.geoderma.2014.04.028
10.1007/s11104-013-1968-6
ContentType Journal Article
Copyright 2022 The Authors
Copyright_xml – notice: 2022 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.geoderma.2022.116075
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1872-6259
ExternalDocumentID 10_1016_j_geoderma_2022_116075
S0016706122003822
GroupedDBID --K
--M
-DZ
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JM
9JN
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATLK
AAXUO
ABFRF
ABGRD
ABJNI
ABMAC
ABQEM
ABQYD
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADQTV
AEBSH
AEFWE
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BKOJK
BLXMC
CBWCG
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IMUCA
J1W
KOM
LW9
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SAB
SDF
SDG
SES
SPC
SPCBC
SSA
SSE
SSZ
T5K
~02
~G-
29H
AAHBH
AALCJ
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEGFY
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
GROUPED_DOAJ
HLV
HMA
HMC
HVGLF
HZ~
H~9
K-O
OHT
R2-
RIG
SEN
SEP
SEW
SSH
VH1
WUQ
XPP
Y6R
ZMT
7S9
L.6
ID FETCH-LOGICAL-c393t-32515216269c874952cd7eb0f38f98cca4819133aef589c29a600c01a44f47243
IEDL.DBID .~1
ISSN 0016-7061
IngestDate Fri Jul 11 10:49:29 EDT 2025
Tue Jul 01 04:04:58 EDT 2025
Thu Apr 24 23:05:11 EDT 2025
Fri Feb 23 02:40:03 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Phosphorus uptake
Isotopic labelling
Cover crops
Soil phosphorus status
Language English
License This is an open access article under the CC BY license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c393t-32515216269c874952cd7eb0f38f98cca4819133aef589c29a600c01a44f47243
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0016706122003822
PQID 2718346760
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2718346760
crossref_primary_10_1016_j_geoderma_2022_116075
crossref_citationtrail_10_1016_j_geoderma_2022_116075
elsevier_sciencedirect_doi_10_1016_j_geoderma_2022_116075
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-11-15
PublicationDateYYYYMMDD 2022-11-15
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-11-15
  day: 15
PublicationDecade 2020
PublicationTitle Geoderma
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Maltais-Landry, Frossard (b0085) 2015; 393
Lindedam, Magid, Poulsen, Luxhoi (b0065) 2009; 41
Nachimuthu, Guppy, Kristiansen, Lockwood (b0100) 2009; 314
van der Bom, Nunes, Raymond, Hansen, Bonnichsen, Magid, Nybroe, Jensen (b0155) 2018; 122
Achat, Sperandio, Daumer, Santellani, Prud’Homme, Akhtar, Morel (b0005) 2014; 232–234
Damon, Bowden, Rose, Rengel (b0030) 2014; 74
Fordham, Schwertmann (bib166) 1977; 6
Reuter, Edwards, Wilhelm (b0130) 1997
Traoré, Kiba, Bünemann, Obersib (bib169) 2020; 3
RStudio Team (b0135) 2017
R Core Team (b0120) 2017
van der Bom, McLaren, Doolette, Magid, Frossard, Oberson, Jensen (b0150) 2019; 355
de Oliveira, Comin, Tiecher, Piccin, Somavilla, Loss, Lourenzi, Kürtz, Brunetto (b0035) 2017; 41
Hansen, Eriksen, Jensen, Thorup-Kristensen, Magid (b0060) 2021; 313
Simpson, Oberson, Culvenor, Ryan, Veneklaas, Lambers, Lynch, Ryan, Delhaize, Smith, Smith, Harvey, Richardson (b0140) 2011; 1–2
Varela, Barraco, Gili, Taboada, Rubio (bib170) 2017; 109
Zhu, He, Smith, Smith (b0165) 2002; 239
Nanzer, Oberson, Berger, Berset, Hermann, Frossard (b0105) 2014; 377
Magid, Luxhøi, Lyshede (b0080) 2004; 258
Maltais-Landry, Scow, Brennan, Vitousek (b0090) 2015; 79
Vanzolini, Galantini, Martínez, Suñer (b0160) 2017; 63
Bünemann, Oberson, Liebisch, Keller, Annaheim, Huguenin-Elie, Frossard (b0020) 2012; 51
Hallama, Pekrun, Lambers, Kandeler (b0055) 2019; 434
Thorup-Kristensen, Magid, Jensen (bib168) 2003; 79
Noack, McLaughlin, Smernik, McBeath, Armstrong (b0110) 2012; 359
Möller, Müller (bib167) 2012; 12
Eichler-Löbermann, Köhne, Kowalski, Schnug (b0040) 2008; 31
Grant, Flaten, Tomasiewicz, Sheppard (b0050) 2001; 81
Liu, Khalaf, Ulén, Bergkvist (b0070) 2013; 371
McLaughlin, Alston, Martin (b0095) 1988; 26
Cooper, Reed, Hortenhuber, Lindenthal, Loes, Mader, Magid, Oberson, Kolbe, Moeller (b0025) 2018; 110
Oberson, Tagmann, Langmeier, Dubois, Mäder, Frossard (b0115) 2010; 334
Reimer, Hartmann, Oelofse, Magid, Bünemann, Möller (b0125) 2020; 118
Bayon, Weisskopf, Martinoia, Jansa, Frossard, Keller, Föllmi, Gobat (b0015) 2006; 283
van der Bom, Magid, Jensen (b0145) 2017; 86
Alamgir, McNeill, Tang, Marschner (b0010) 2012; 49
Maltais-Landry (10.1016/j.geoderma.2022.116075_b0090) 2015; 79
de Oliveira (10.1016/j.geoderma.2022.116075_b0035) 2017; 41
Alamgir (10.1016/j.geoderma.2022.116075_b0010) 2012; 49
Liu (10.1016/j.geoderma.2022.116075_b0070) 2013; 371
Möller (10.1016/j.geoderma.2022.116075_bib167) 2012; 12
Nachimuthu (10.1016/j.geoderma.2022.116075_b0100) 2009; 314
Vanzolini (10.1016/j.geoderma.2022.116075_b0160) 2017; 63
Maltais-Landry (10.1016/j.geoderma.2022.116075_b0085) 2015; 393
Eichler-Löbermann (10.1016/j.geoderma.2022.116075_b0040) 2008; 31
R Core Team (10.1016/j.geoderma.2022.116075_b0120) 2017
van der Bom (10.1016/j.geoderma.2022.116075_b0155) 2018; 122
Traoré (10.1016/j.geoderma.2022.116075_bib169) 2020; 3
Zhu (10.1016/j.geoderma.2022.116075_b0165) 2002; 239
Varela (10.1016/j.geoderma.2022.116075_bib170) 2017; 109
RStudio Team (10.1016/j.geoderma.2022.116075_b0135) 2017
Nanzer (10.1016/j.geoderma.2022.116075_b0105) 2014; 377
Grant (10.1016/j.geoderma.2022.116075_b0050) 2001; 81
Simpson (10.1016/j.geoderma.2022.116075_b0140) 2011; 1–2
Achat (10.1016/j.geoderma.2022.116075_b0005) 2014; 232–234
McLaughlin (10.1016/j.geoderma.2022.116075_b0095) 1988; 26
Hallama (10.1016/j.geoderma.2022.116075_b0055) 2019; 434
Oberson (10.1016/j.geoderma.2022.116075_b0115) 2010; 334
van der Bom (10.1016/j.geoderma.2022.116075_b0145) 2017; 86
Damon (10.1016/j.geoderma.2022.116075_b0030) 2014; 74
Hansen (10.1016/j.geoderma.2022.116075_b0060) 2021; 313
van der Bom (10.1016/j.geoderma.2022.116075_b0150) 2019; 355
Cooper (10.1016/j.geoderma.2022.116075_b0025) 2018; 110
Thorup-Kristensen (10.1016/j.geoderma.2022.116075_bib168) 2003; 79
Bayon (10.1016/j.geoderma.2022.116075_b0015) 2006; 283
Lindedam (10.1016/j.geoderma.2022.116075_b0065) 2009; 41
Magid (10.1016/j.geoderma.2022.116075_b0080) 2004; 258
Fordham (10.1016/j.geoderma.2022.116075_bib166) 1977; 6
Noack (10.1016/j.geoderma.2022.116075_b0110) 2012; 359
Bünemann (10.1016/j.geoderma.2022.116075_b0020) 2012; 51
Reimer (10.1016/j.geoderma.2022.116075_b0125) 2020; 118
Reuter (10.1016/j.geoderma.2022.116075_b0130) 1997
References_xml – volume: 118
  start-page: 273
  year: 2020
  end-page: 291
  ident: b0125
  article-title: Reliance on biological nitrogen fixation depletes soil phosphorus and potassium reserves
  publication-title: Nutr. Cycl. Agroecosyst.
– volume: 51
  start-page: 84
  year: 2012
  end-page: 95
  ident: b0020
  article-title: Rapid microbial phosphorus immobilization dominates gross phosphorus fluxes in a grassland soil with low inorganic phosphorus availability
  publication-title: Soil Biol. Biochem.
– volume: 314
  start-page: 303
  year: 2009
  end-page: 310
  ident: b0100
  article-title: Isotopic tracing of phosphorus uptake in corn from 33P labelled legume residues and 32P labelled fertilisers applied to a sandy loam soil
  publication-title: Plant Soil
– volume: 6
  start-page: 136
  year: 1977
  end-page: 140
  ident: bib166
  article-title: Composition and Reactions of Liquid Manure (Gülle), with Particular Reference to Phosphate: II. Solid Phase Components
  publication-title: J. Environ. Qual.
– volume: 49
  start-page: 70
  year: 2012
  end-page: 77
  ident: b0010
  article-title: Changes in soil P pools during legume residue decomposition
  publication-title: Soil Biol. Biochem.
– volume: 355
  start-page: 113909
  year: 2019
  ident: b0150
  article-title: Influence of long-term phosphorus fertilisation history on the availability and chemical nature of soil phosphorus
  publication-title: Geoderma
– volume: 41
  start-page: 1040
  year: 2009
  end-page: 1049
  ident: b0065
  article-title: Tissue architecture and soil fertility controls on decomposer communities and decomposition of roots
  publication-title: Soil Biol. Biochem.
– volume: 79
  start-page: 227
  year: 2003
  end-page: 302
  ident: bib168
  article-title: Catch crops and green manures as biological tools in nitrogen management in temperate zones
  publication-title: Adv. Agron.
– volume: 109
  start-page: 317
  year: 2017
  end-page: 326
  ident: bib170
  article-title: Biomass decomposition and phosphorus release from residues of cover crops under no-tillage
  publication-title: Agron. J.
– volume: 110
  start-page: 227
  year: 2018
  end-page: 239
  ident: b0025
  article-title: Phosphorus availability on many organically managed farms in Europe
  publication-title: Nutr. Cycl. Agroecosyst.
– volume: 377
  start-page: 439
  year: 2014
  end-page: 456
  ident: b0105
  article-title: The plant availability of phosphorus from thermo-chemically treated sewage sludge ashes as studied by 33P labeling techniques
  publication-title: Plant Soil
– volume: 63
  start-page: 1864
  year: 2017
  end-page: 1874
  ident: b0160
  article-title: Changes in soil pH and phosphorus availability during decomposition of cover crop residues
  publication-title: Arch. Agron. Soil Sci.
– volume: 41
  start-page: 1
  year: 2017
  end-page: 16
  ident: b0035
  article-title: Release of phosphorus forms from cover crop residues in agroecological no-till onion production
  publication-title: Rev. Bras. Cienc. do Solo
– volume: 258
  start-page: 351
  year: 2004
  end-page: 365
  ident: b0080
  article-title: Decomposition of plant residues at low temperatures separates turnover of nitrogen and energy rich tissue components in time
  publication-title: Plant Soil
– start-page: 81
  year: 1997
  end-page: 284
  ident: b0130
  article-title: Temperate and tropical crops
  publication-title: Plant analysis an Interpretation Manual
– volume: 31
  start-page: 659
  year: 2008
  end-page: 676
  ident: b0040
  article-title: Effect of catch cropping on phosphorus bioavailability in comparison to organic and inorganic fertilization
  publication-title: J. Plant Nutr.
– volume: 79
  start-page: 688
  year: 2015
  end-page: 697
  ident: b0090
  article-title: Long-term effects of compost and cover crops on coil phosphorus in two california agroecosystems
  publication-title: Soil Sci. Soc. Am. J.
– year: 2017
  ident: b0135
  article-title: RStudio: Integreated Development for R
– volume: 393
  start-page: 193
  year: 2015
  end-page: 205
  ident: b0085
  article-title: Similar phosphorus transfer from cover crop residues and water-soluble mineral fertilizer to soils and a subsequent crop
  publication-title: Plant Soil
– volume: 283
  start-page: 309
  year: 2006
  end-page: 321
  ident: b0015
  article-title: Soil phosphorus uptake by continuously cropped Lupinus albus: A new microcosm design
  publication-title: Plant Soil
– volume: 74
  start-page: 127
  year: 2014
  end-page: 137
  ident: b0030
  article-title: Crop residue contributions to phosphorus pools in agricultural soils: A review
  publication-title: Soil Biol. Biochem.
– volume: 3
  start-page: 1
  year: 2020
  end-page: 17
  ident: bib169
  article-title: Nitrogen and phosphorus uptake from isotope‐labeled fertilizers by sorghum and soil microorganisms
  publication-title: Agrosystems, Geosci. Environ.
– volume: 371
  start-page: 543
  year: 2013
  end-page: 557
  ident: b0070
  article-title: Potential phosphorus release from catch crop shoots and roots after freezing-thawing
  publication-title: Plant Soil
– volume: 86
  start-page: 12
  year: 2017
  end-page: 23
  ident: b0145
  article-title: Long-term P and K fertilisation strategies and balances affect soil availability indices, crop yield depression risk and N use
  publication-title: Eur. J. Agron.
– volume: 239
  start-page: 1
  year: 2002
  end-page: 8
  ident: b0165
  article-title: Buckwheat (Fagopyrum esculentum Moench) has high capacity to take up phosphorus (P) from a calcium (Ca)-bound source
  publication-title: Plant Soil
– volume: 232–234
  start-page: 24
  year: 2014
  end-page: 33
  ident: b0005
  article-title: Plant-availability of phosphorus recycled from pig manures and dairy effluents as assessed by isotopic labeling techniques
  publication-title: Geoderma
– volume: 1–2
  start-page: 89
  year: 2011
  end-page: 120
  ident: b0140
  article-title: Strategies and agronomic interventions to improve the phosphorus-use efficiency of farming systems
  publication-title: Plant Soil
– volume: 434
  start-page: 7
  year: 2019
  end-page: 45
  ident: b0055
  article-title: Hidden miners – the roles of cover crops and soil microorganisms in phosphorus cycling through agroecosystems
  publication-title: Plant Soil
– volume: 81
  start-page: 211
  year: 2001
  end-page: 224
  ident: b0050
  article-title: The importance of early season phosphorus nutrition
  publication-title: Can. J. Plant Sci.
– year: 2017
  ident: b0120
  article-title: R: A language and environment for statistical computing
– volume: 334
  start-page: 391
  year: 2010
  end-page: 407
  ident: b0115
  article-title: Fresh and residual phosphorus uptake by ryegrass from soils with different fertilization histories
  publication-title: Plant Soil
– volume: 313
  start-page: 107392
  year: 2021
  ident: b0060
  article-title: Towards integrated cover crop management: N, P and S release from aboveground and belowground residues
  publication-title: Agric. Ecosyst. Environ.
– volume: 122
  start-page: 91
  year: 2018
  end-page: 103
  ident: b0155
  article-title: Long-term fertilisation form, level and duration affect the diversity, structure and functioning of soil microbial communities in the field
  publication-title: Soil Biol. Biochem.
– volume: 26
  start-page: 323
  year: 1988
  end-page: 331
  ident: b0095
  article-title: Phosphorus cycling in wheat-pasture rotations. I. the source of phosphorus taken up by wheat
  publication-title: Aust. J. Soil Res.
– volume: 12
  start-page: 242
  year: 2012
  end-page: 257
  ident: bib167
  article-title: Effects of anaerobic digestion on digestate nutrient availability and crop growth: A review
  publication-title: Eng. Life Sci.
– volume: 359
  start-page: 375
  year: 2012
  end-page: 385
  ident: b0110
  article-title: Crop residue phosphorus: Speciation and potential bio-availability
  publication-title: Plant Soil
– volume: 359
  start-page: 375
  year: 2012
  ident: 10.1016/j.geoderma.2022.116075_b0110
  article-title: Crop residue phosphorus: Speciation and potential bio-availability
  publication-title: Plant Soil
  doi: 10.1007/s11104-012-1216-5
– volume: 3
  start-page: 1
  year: 2020
  ident: 10.1016/j.geoderma.2022.116075_bib169
  article-title: Nitrogen and phosphorus uptake from isotope‐labeled fertilizers by sorghum and soil microorganisms
  publication-title: Agrosystems, Geosci. Environ.
  doi: 10.1002/agg2.20111
– volume: 434
  start-page: 7
  year: 2019
  ident: 10.1016/j.geoderma.2022.116075_b0055
  article-title: Hidden miners – the roles of cover crops and soil microorganisms in phosphorus cycling through agroecosystems
  publication-title: Plant Soil
  doi: 10.1007/s11104-018-3810-7
– volume: 314
  start-page: 303
  year: 2009
  ident: 10.1016/j.geoderma.2022.116075_b0100
  article-title: Isotopic tracing of phosphorus uptake in corn from 33P labelled legume residues and 32P labelled fertilisers applied to a sandy loam soil
  publication-title: Plant Soil
  doi: 10.1007/s11104-008-9730-1
– volume: 110
  start-page: 227
  year: 2018
  ident: 10.1016/j.geoderma.2022.116075_b0025
  article-title: Phosphorus availability on many organically managed farms in Europe
  publication-title: Nutr. Cycl. Agroecosyst.
  doi: 10.1007/s10705-017-9894-2
– volume: 41
  start-page: 1
  year: 2017
  ident: 10.1016/j.geoderma.2022.116075_b0035
  article-title: Release of phosphorus forms from cover crop residues in agroecological no-till onion production
  publication-title: Rev. Bras. Cienc. do Solo
– volume: 74
  start-page: 127
  year: 2014
  ident: 10.1016/j.geoderma.2022.116075_b0030
  article-title: Crop residue contributions to phosphorus pools in agricultural soils: A review
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2014.03.003
– volume: 1–2
  start-page: 89
  year: 2011
  ident: 10.1016/j.geoderma.2022.116075_b0140
  article-title: Strategies and agronomic interventions to improve the phosphorus-use efficiency of farming systems
  publication-title: Plant Soil
  doi: 10.1007/s11104-011-0880-1
– volume: 12
  start-page: 242
  year: 2012
  ident: 10.1016/j.geoderma.2022.116075_bib167
  article-title: Effects of anaerobic digestion on digestate nutrient availability and crop growth: A review
  publication-title: Eng. Life Sci.
  doi: 10.1002/elsc.201100085
– year: 2017
  ident: 10.1016/j.geoderma.2022.116075_b0135
– volume: 63
  start-page: 1864
  year: 2017
  ident: 10.1016/j.geoderma.2022.116075_b0160
  article-title: Changes in soil pH and phosphorus availability during decomposition of cover crop residues
  publication-title: Arch. Agron. Soil Sci.
  doi: 10.1080/03650340.2017.1308493
– volume: 51
  start-page: 84
  year: 2012
  ident: 10.1016/j.geoderma.2022.116075_b0020
  article-title: Rapid microbial phosphorus immobilization dominates gross phosphorus fluxes in a grassland soil with low inorganic phosphorus availability
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2012.04.012
– volume: 334
  start-page: 391
  year: 2010
  ident: 10.1016/j.geoderma.2022.116075_b0115
  article-title: Fresh and residual phosphorus uptake by ryegrass from soils with different fertilization histories
  publication-title: Plant Soil
  doi: 10.1007/s11104-010-0390-6
– volume: 355
  start-page: 113909
  year: 2019
  ident: 10.1016/j.geoderma.2022.116075_b0150
  article-title: Influence of long-term phosphorus fertilisation history on the availability and chemical nature of soil phosphorus
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2019.113909
– volume: 109
  start-page: 317
  year: 2017
  ident: 10.1016/j.geoderma.2022.116075_bib170
  article-title: Biomass decomposition and phosphorus release from residues of cover crops under no-tillage
  publication-title: Agron. J.
  doi: 10.2134/agronj2016.03.0168
– volume: 26
  start-page: 323
  year: 1988
  ident: 10.1016/j.geoderma.2022.116075_b0095
  article-title: Phosphorus cycling in wheat-pasture rotations. I. the source of phosphorus taken up by wheat
  publication-title: Aust. J. Soil Res.
  doi: 10.1071/SR9880323
– volume: 122
  start-page: 91
  year: 2018
  ident: 10.1016/j.geoderma.2022.116075_b0155
  article-title: Long-term fertilisation form, level and duration affect the diversity, structure and functioning of soil microbial communities in the field
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2018.04.003
– volume: 371
  start-page: 543
  year: 2013
  ident: 10.1016/j.geoderma.2022.116075_b0070
  article-title: Potential phosphorus release from catch crop shoots and roots after freezing-thawing
  publication-title: Plant Soil
  doi: 10.1007/s11104-013-1716-y
– volume: 79
  start-page: 688
  year: 2015
  ident: 10.1016/j.geoderma.2022.116075_b0090
  article-title: Long-term effects of compost and cover crops on coil phosphorus in two california agroecosystems
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2014.09.0369
– volume: 6
  start-page: 136
  year: 1977
  ident: 10.1016/j.geoderma.2022.116075_bib166
  article-title: Composition and Reactions of Liquid Manure (Gülle), with Particular Reference to Phosphate: II. Solid Phase Components
  publication-title: J. Environ. Qual.
  doi: 10.2134/jeq1977.00472425000600020007x
– volume: 81
  start-page: 211
  year: 2001
  ident: 10.1016/j.geoderma.2022.116075_b0050
  article-title: The importance of early season phosphorus nutrition
  publication-title: Can. J. Plant Sci.
  doi: 10.4141/P00-093
– volume: 118
  start-page: 273
  year: 2020
  ident: 10.1016/j.geoderma.2022.116075_b0125
  article-title: Reliance on biological nitrogen fixation depletes soil phosphorus and potassium reserves
  publication-title: Nutr. Cycl. Agroecosyst.
  doi: 10.1007/s10705-020-10101-w
– volume: 86
  start-page: 12
  year: 2017
  ident: 10.1016/j.geoderma.2022.116075_b0145
  article-title: Long-term P and K fertilisation strategies and balances affect soil availability indices, crop yield depression risk and N use
  publication-title: Eur. J. Agron.
  doi: 10.1016/j.eja.2017.02.006
– start-page: 81
  year: 1997
  ident: 10.1016/j.geoderma.2022.116075_b0130
  article-title: Temperate and tropical crops
– volume: 283
  start-page: 309
  year: 2006
  ident: 10.1016/j.geoderma.2022.116075_b0015
  article-title: Soil phosphorus uptake by continuously cropped Lupinus albus: A new microcosm design
  publication-title: Plant Soil
  doi: 10.1007/s11104-006-0021-4
– volume: 258
  start-page: 351
  year: 2004
  ident: 10.1016/j.geoderma.2022.116075_b0080
  article-title: Decomposition of plant residues at low temperatures separates turnover of nitrogen and energy rich tissue components in time
  publication-title: Plant Soil
  doi: 10.1023/B:PLSO.0000016565.14718.4b
– volume: 79
  start-page: 227
  year: 2003
  ident: 10.1016/j.geoderma.2022.116075_bib168
  article-title: Catch crops and green manures as biological tools in nitrogen management in temperate zones
  publication-title: Adv. Agron.
  doi: 10.1016/S0065-2113(02)79005-6
– volume: 239
  start-page: 1
  year: 2002
  ident: 10.1016/j.geoderma.2022.116075_b0165
  article-title: Buckwheat (Fagopyrum esculentum Moench) has high capacity to take up phosphorus (P) from a calcium (Ca)-bound source
  publication-title: Plant Soil
  doi: 10.1023/A:1014958029905
– volume: 313
  start-page: 107392
  year: 2021
  ident: 10.1016/j.geoderma.2022.116075_b0060
  article-title: Towards integrated cover crop management: N, P and S release from aboveground and belowground residues
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/j.agee.2021.107392
– volume: 31
  start-page: 659
  year: 2008
  ident: 10.1016/j.geoderma.2022.116075_b0040
  article-title: Effect of catch cropping on phosphorus bioavailability in comparison to organic and inorganic fertilization
  publication-title: J. Plant Nutr.
  doi: 10.1080/01904160801926517
– year: 2017
  ident: 10.1016/j.geoderma.2022.116075_b0120
– volume: 49
  start-page: 70
  year: 2012
  ident: 10.1016/j.geoderma.2022.116075_b0010
  article-title: Changes in soil P pools during legume residue decomposition
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2012.01.031
– volume: 393
  start-page: 193
  year: 2015
  ident: 10.1016/j.geoderma.2022.116075_b0085
  article-title: Similar phosphorus transfer from cover crop residues and water-soluble mineral fertilizer to soils and a subsequent crop
  publication-title: Plant Soil
  doi: 10.1007/s11104-015-2477-6
– volume: 41
  start-page: 1040
  year: 2009
  ident: 10.1016/j.geoderma.2022.116075_b0065
  article-title: Tissue architecture and soil fertility controls on decomposer communities and decomposition of roots
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2009.01.023
– volume: 232–234
  start-page: 24
  year: 2014
  ident: 10.1016/j.geoderma.2022.116075_b0005
  article-title: Plant-availability of phosphorus recycled from pig manures and dairy effluents as assessed by isotopic labeling techniques
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2014.04.028
– volume: 377
  start-page: 439
  year: 2014
  ident: 10.1016/j.geoderma.2022.116075_b0105
  article-title: The plant availability of phosphorus from thermo-chemically treated sewage sludge ashes as studied by 33P labeling techniques
  publication-title: Plant Soil
  doi: 10.1007/s11104-013-1968-6
SSID ssj0017020
Score 2.4553964
Snippet •Cover crop residues contributed 18–42 % of the total P uptake of ryegrass.•The cover crop P contribution was lower compared that from mineral fertilizer.•The...
Growing evidence has emerged that cover crops may be able to improve phosphorus (P) cycling and contribute to the P nutrition of the subsequent crop. This...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 116075
SubjectTerms buckwheat
Cover crops
Fagopyrum esculentum
Isotopic labelling
Lolium
Lupinus albus
nutrition
oilseeds
phosphorus
phosphorus fertilizers
Phosphorus uptake
radishes
Raphanus sativus
Rumex acetosa
soil
Soil phosphorus status
soluble phosphorus
sorption
sorrel
species
Vicia villosa
Title Differences in cover crop contributions to phosphorus uptake by ryegrass in two soils with low and moderate P status
URI https://dx.doi.org/10.1016/j.geoderma.2022.116075
https://www.proquest.com/docview/2718346760
Volume 426
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwELUQvcChKgUELawGiWu6ju18HVdQtC0CcQCJmxU7Dl26SlabRKgXfjszWWdFUSUOPeSQKBNFHnvejD3zhrFTx22UuMIEJpYYoORlgXYwK4LISKtSjAfS_vT86jqe3qmf99H9BjsbamEordLb_pVN7621fzL2ozlezGZU4xvGCSE05VchzlEFu0poln97Xqd5hAn31IxhHNDbr6qEH1FH1HCs5x8SAq1HzCnf8N8A9cZU9_hz8Yl99I4jTFb_tsM2XPWZbU8elp48w-2y9tx3O8G1D7MKLKVnAvXogj4j3be2aqCtYfGrbvBadg10izb_7cD8AfS_H5boTZNw-1RDU8_mDdBWLczrJ8irAqhzDrFLwA1QLVLX7LG7i--3Z9PAd1UIrMxkG0j0aBCzMZDJbJpgfCRskTjDS5mWWWqJ5RxjOClzV0ZpZkWWo09keZgrVapEKLnPNqu6cgcMuLLGlVbwzFolSmGsTHIiquRGoZvGD1k0DKW2nnKcOl_M9ZBb9qgHFWhSgV6p4JCN13KLFenGuxLZoCn91_TRiAzvyp4MqtW4tujAJK9c3TVaIHBLRJKYf_mP739lW3RHBYxhdMQ222XnjtGTac2on6oj9mHy43J6_QK0KvQc
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELZgewAOFeUh6HOQeg3r2M7ruKJF2xYQB5C4WbHj0KWrZLVJhHrpb-9M1kEUVeLAIZckjiJPPN9MPPN9jH123EaJK0xgYokJSl4W6AezIoiMtCrFfCDtd8_PL-Lptfp-E92ssZOhF4bKKr3vX_n03lv7M2M_m-PFbEY9vmGcEEJTfRXi3Dp7pXD5kozB8Z-HOo8w4Z6bMYwDuv1Rm_AdGokUx3oCIiHQfcScCg7_j1BPfHUPQKfb7LWPHGGyerk3bM1VO2xrcrv07Blul7VfvNwJLn6YVWCpPhNIpAv6knSvbdVAW8PiZ93gsewa6BZt_suB-Q0YgN8uMZymwe19DU09mzdA_2phXt9DXhVA0jlELwGXQM1IXbPHrk-_Xp1MAy-rEFiZyTaQGNIgaGMmk9k0wQRJ2CJxhpcyLbPUEs05JnFS5q6M0syKLMegyPIwV6pUiVByn42qunIHDLiyxpVW8MxaJUphrExyYqrkRmGcxg9ZNEyltp5znKQv5nooLrvTgwk0mUCvTHDIxg_jFivWjWdHZIOl9D_fj0ZoeHbs0WBajYuLdkzyytVdowUit0QoifnbFzz_E9uYXp2f6bNvFz_esU26Qt2MYfSejdpl5z5gWNOaj_1n-xdHcfWq
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Differences+in+cover+crop+contributions+to+phosphorus+uptake+by+ryegrass+in+two+soils+with+low+and+moderate+P+status&rft.jtitle=Geoderma&rft.au=Hansen%2C+Veronika&rft.au=M%C3%BCller-St%C3%B6ver%2C+Dorette&rft.au=G%C3%B3mez-Mu%C3%B1oz%2C+Beatriz&rft.au=Oberson%2C+Astrid&rft.date=2022-11-15&rft.issn=0016-7061&rft.volume=426&rft.spage=116075&rft_id=info:doi/10.1016%2Fj.geoderma.2022.116075&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_geoderma_2022_116075
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7061&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7061&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7061&client=summon