High performance NO2 sensor using MoS2 nanowires network
We report on a high-performance NO2 sensor based on a one dimensional MoS2 nanowire (NW) network. The MoS2 NW network was synthesized using chemical transport reaction through controlled turbulent vapor flow. The crystal structure and surface morphology of MoS2 NWs were confirmed by X-ray diffractio...
Saved in:
Published in | Applied physics letters Vol. 112; no. 5 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Melville
American Institute of Physics
29.01.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We report on a high-performance NO2 sensor based on a one dimensional MoS2 nanowire (NW) network. The MoS2 NW network was synthesized using chemical transport reaction through controlled turbulent vapor flow. The crystal structure and surface morphology of MoS2 NWs were confirmed by X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy, and scanning electron microscopy. Further, the sensing behavior of the nanowires was investigated at different temperatures for various concentrations of NO2 and the sensor exhibited about 2-fold enhanced sensitivity with a low detection limit of 4.6 ppb for NO2 at 60 °C compared to sensitivity at room temperature. Moreover, it showed a fast response (16 s) with complete recovery (172 s) at 60 °C, while sensitivity of the device was decreased at 120 °C. The efficient sensing with reliable selectivity toward NO2 of the nanowires is attributed to a combination of abundant active edge sites along with a large surface area and tuning of the potential barrier at the intersections of nanowires during adsorption/desorption of gas molecules. |
---|---|
AbstractList | We report on a high-performance NO2 sensor based on a one dimensional MoS2 nanowire (NW) network. The MoS2 NW network was synthesized using chemical transport reaction through controlled turbulent vapor flow. The crystal structure and surface morphology of MoS2 NWs were confirmed by X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy, and scanning electron microscopy. Further, the sensing behavior of the nanowires was investigated at different temperatures for various concentrations of NO2 and the sensor exhibited about 2-fold enhanced sensitivity with a low detection limit of 4.6 ppb for NO2 at 60 °C compared to sensitivity at room temperature. Moreover, it showed a fast response (16 s) with complete recovery (172 s) at 60 °C, while sensitivity of the device was decreased at 120 °C. The efficient sensing with reliable selectivity toward NO2 of the nanowires is attributed to a combination of abundant active edge sites along with a large surface area and tuning of the potential barrier at the intersections of nanowires during adsorption/desorption of gas molecules. |
Author | Kumar, Rahul Kumar, Mahesh Goel, Neeraj |
Author_xml | – sequence: 1 givenname: Rahul surname: Kumar fullname: Kumar, Rahul organization: Department of Electrical Engineering, Indian Institute of Technology Jodhpur, Jodhpur 342011, India – sequence: 2 givenname: Neeraj surname: Goel fullname: Goel, Neeraj organization: Department of Electrical Engineering, Indian Institute of Technology Jodhpur, Jodhpur 342011, India – sequence: 3 givenname: Mahesh surname: Kumar fullname: Kumar, Mahesh email: mkumar@iitj.ac.in organization: Department of Electrical Engineering, Indian Institute of Technology Jodhpur, Jodhpur 342011, India |
BookMark | eNp90FFLwzAQB_AgE9ymD36Dgk8K3XLNkjaPMtQJ0z2ozyFNr7NzS2rSOvz2VjYRRH067vjdHfwHpGedRUJOgY6ACjaGEacgEykOSB9omsYMIOuRPqWUxUJyOCKDEFZdyxPG-iSbVcvnqEZfOr_R1mB0v0iigDY4H7Whssvozj0kkdXWbSuPIbLYbJ1_OSaHpV4HPNnXIXm6vnqczuL54uZ2ejmPDZOsiZNC5xJpZtK0SDUwCZhxpFRMUHTznKY5chSZTiXnGhkXuRTUsGJiZGmEYUNytrtbe_faYmjUyrXedi9VAsAzoBSgU-c7ZbwLwWOpal9ttH9XQNVnMArUPpjOjn9YUzW6qZxtvK7Wv25c7DbCl_z3_J_4zflvqOqiZB8h9IDv |
CODEN | APPLAB |
CitedBy_id | crossref_primary_10_1007_s10854_023_10677_3 crossref_primary_10_1002_admi_202000474 crossref_primary_10_1016_j_snr_2024_100191 crossref_primary_10_1016_j_colsurfa_2022_129435 crossref_primary_10_1016_j_ceramint_2021_08_070 crossref_primary_10_1016_j_apsusc_2024_161104 crossref_primary_10_1016_j_materresbull_2024_112775 crossref_primary_10_1021_acsanm_1c04519 crossref_primary_10_1039_D0GC02779K crossref_primary_10_1021_acsanm_1c01929 crossref_primary_10_1109_TED_2021_3095243 crossref_primary_10_1021_acs_inorgchem_0c03478 crossref_primary_10_3390_nano13152182 crossref_primary_10_1002_admt_201901062 crossref_primary_10_1039_D2TC04680F crossref_primary_10_1016_j_jallcom_2023_173208 crossref_primary_10_1007_s10854_024_12991_w crossref_primary_10_1002_pssa_202000004 crossref_primary_10_1016_j_sna_2020_111875 crossref_primary_10_1016_j_sna_2020_112247 crossref_primary_10_1016_j_mtcomm_2024_110491 crossref_primary_10_1016_j_physb_2018_06_033 crossref_primary_10_1039_C8TA02679C crossref_primary_10_34133_2021_9863038 crossref_primary_10_1021_acs_analchem_0c04476 crossref_primary_10_1021_acssensors_9b01307 crossref_primary_10_1088_1361_6463_abd6ab crossref_primary_10_1016_j_jallcom_2019_152518 crossref_primary_10_1039_D0RA00121J crossref_primary_10_1002_smll_202408500 crossref_primary_10_2139_ssrn_4135077 crossref_primary_10_1016_j_microc_2024_111643 crossref_primary_10_1103_PhysRevApplied_14_054014 crossref_primary_10_3390_s19040905 crossref_primary_10_1007_s40820_020_00558_3 crossref_primary_10_1007_s40820_020_0394_6 crossref_primary_10_1016_j_apsusc_2021_150530 crossref_primary_10_1016_j_snb_2021_129616 crossref_primary_10_1039_D2TC04188J crossref_primary_10_1016_j_apsusc_2023_156959 crossref_primary_10_1021_acs_jpcc_9b00051 crossref_primary_10_1039_D0TC02242J crossref_primary_10_1039_D0NJ03491F crossref_primary_10_1039_D2SD00208F crossref_primary_10_1016_j_sna_2022_113986 crossref_primary_10_1038_s41467_021_23278_7 crossref_primary_10_1016_j_rinp_2023_106694 crossref_primary_10_1038_s41598_020_68388_2 crossref_primary_10_1088_1361_6528_ab2277 crossref_primary_10_1016_j_apsusc_2022_154157 crossref_primary_10_1016_j_apsusc_2020_147933 crossref_primary_10_1080_14328917_2022_2109887 crossref_primary_10_1016_j_cej_2021_131079 crossref_primary_10_1016_j_snb_2021_130608 crossref_primary_10_1021_acsanm_4c05066 crossref_primary_10_1021_acsomega_2c05586 crossref_primary_10_1021_acssensors_4c03489 crossref_primary_10_1002_adsr_202300007 crossref_primary_10_1016_j_snb_2020_129138 crossref_primary_10_1039_D1TA11014D crossref_primary_10_1007_s40820_020_00503_4 crossref_primary_10_1038_s41598_022_06078_x crossref_primary_10_1016_j_inoche_2020_108200 crossref_primary_10_1016_j_nanoen_2019_05_012 crossref_primary_10_1088_1361_648X_abf477 crossref_primary_10_1002_sstr_202200392 crossref_primary_10_1021_acsomega_4c04506 crossref_primary_10_1088_1361_6528_ab6685 crossref_primary_10_1016_j_apsusc_2022_154624 crossref_primary_10_1021_acsomega_1c07274 crossref_primary_10_1016_j_nanoso_2023_100995 crossref_primary_10_3390_s19061281 crossref_primary_10_1016_j_mssp_2019_104865 crossref_primary_10_1088_1361_665X_ac1956 crossref_primary_10_2139_ssrn_4152861 crossref_primary_10_3390_s19092123 crossref_primary_10_1109_TNANO_2021_3059622 crossref_primary_10_1088_1361_6528_aade20 crossref_primary_10_1016_j_jece_2024_112268 crossref_primary_10_1016_j_surfin_2024_104966 crossref_primary_10_1016_j_jallcom_2023_172819 crossref_primary_10_1109_JSEN_2024_3422972 crossref_primary_10_1016_j_jallcom_2023_170683 crossref_primary_10_1016_j_sna_2020_112517 crossref_primary_10_1039_D2TC02103J crossref_primary_10_1021_acsnano_8b08778 crossref_primary_10_1021_acsanm_3c01513 crossref_primary_10_1016_j_sna_2022_113647 crossref_primary_10_1016_j_snb_2021_131078 crossref_primary_10_1021_acsapm_4c02691 crossref_primary_10_1016_j_jece_2021_105836 crossref_primary_10_1039_D0NR02177F crossref_primary_10_1109_JSEN_2022_3187445 crossref_primary_10_1007_s11664_019_07817_z |
Cites_doi | 10.1021/jp1115146 10.1063/1.4906066 10.1021/jacs.6b05940 10.1088/0957-4484/24/9/095202 10.1126/science.267.5195.222 10.1186/1556-276X-8-425 10.1063/1.5000825 10.1002/chem.201500435 10.1021/acssensors.7b00585 10.1021/acssensors.7b00731 10.1038/srep08052 10.1007/s40820-015-0057-1 10.1039/c3ta14313a 10.1021/nl802384n 10.1351/pac199567101699 10.1021/nn1003937 10.1021/acssensors.7b00459 10.1063/1.3696045 10.1103/PhysRevLett.87.196803 10.1021/acsnano.5b04504 10.1063/1.5009249 10.1038/ncomms12904 10.1016/j.cplett.2014.01.043 10.1103/PhysRevLett.105.136805 10.1039/C5RA13733K 10.1021/acsami.6b05848 10.1021/nn400026u 10.1007/s40820-015-0073-1 |
ContentType | Journal Article |
Copyright | Author(s) 2018 Author(s). Published by AIP Publishing. |
Copyright_xml | – notice: Author(s) – notice: 2018 Author(s). Published by AIP Publishing. |
DBID | AAYXX CITATION 8FD H8D L7M |
DOI | 10.1063/1.5019296 |
DatabaseName | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | CrossRef Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1077-3118 |
ExternalDocumentID | 10_1063_1_5019296 apl |
GrantInformation_xml | – fundername: DST | Science and Engineering Research Board grantid: SERB/F/2236/2015-16 funderid: http://dx.doi.org/10.13039/501100001843 |
GroupedDBID | -DZ -~X .DC 1UP 2-P 23M 4.4 53G 5GY 5VS 6J9 A9. AAAAW AABDS AAEUA AAGZG AAPUP AAYIH ABFTF ABJNI ABZEH ACBEA ACBRY ACGFO ACGFS ACLYJ ACNCT ACZLF ADCTM AEGXH AEJMO AENEX AFATG AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AIAGR AJJCW AJQPL ALEPV ALMA_UNASSIGNED_HOLDINGS AQWKA ATXIE AWQPM BPZLN CS3 D0L EBS EJD ESX F.2 F5P FDOHQ FFFMQ HAM M6X M71 M73 N9A NPSNA O-B P2P RIP RNS RQS SJN TAE TN5 UCJ UPT WH7 XJE YZZ ~02 AAGWI AAYXX ABJGX ADMLS BDMKI CITATION 8FD H8D L7M |
ID | FETCH-LOGICAL-c393t-2dab9e08c77d7a1391e85e0064e69e0b07be5e68a7955ae356b960c3d4c9fc6c3 |
ISSN | 0003-6951 |
IngestDate | Sun Jun 29 12:53:19 EDT 2025 Tue Jul 01 01:15:58 EDT 2025 Thu Apr 24 23:10:03 EDT 2025 Sun Jul 14 10:05:10 EDT 2019 Fri Jun 21 00:15:00 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | 0003-6951/2018/112(5)/053502/5/$30.00 Published by AIP Publishing. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c393t-2dab9e08c77d7a1391e85e0064e69e0b07be5e68a7955ae356b960c3d4c9fc6c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-5357-7300 0000-0002-1386-3804 0000-0002-8740-6737 |
PQID | 2115810011 |
PQPubID | 2050678 |
PageCount | 5 |
ParticipantIDs | proquest_journals_2115810011 crossref_primary_10_1063_1_5019296 scitation_primary_10_1063_1_5019296 crossref_citationtrail_10_1063_1_5019296 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20180129 2018-01-29 |
PublicationDateYYYYMMDD | 2018-01-29 |
PublicationDate_xml | – month: 01 year: 2018 text: 20180129 day: 29 |
PublicationDecade | 2010 |
PublicationPlace | Melville |
PublicationPlace_xml | – name: Melville |
PublicationTitle | Applied physics letters |
PublicationYear | 2018 |
Publisher | American Institute of Physics |
Publisher_xml | – name: American Institute of Physics |
References | Wang, Huang, Yang, Xu, He, Li, Hu, Yin, He, Zhang (c10) 2016 Liu, Lin, Chen, Zhou, Wu (c13) 2017 Bhimanapati, Hankins, Lei, Vila, Fuller, Terrones, Robinson (c20) 2016 Kumar, Goel, Kumar (c2) 2017 Late, Huang, Liu, Acharya, Shirodkar, Luo, Yan, Charles, Waghmare, Dravid, Rao (c5) 2013 Xu, Liu, Ding, Tan, Yam, Bao, Tai Nai, Ng, Lu, Zhang, Loh (c8) 2016 Ataca, Sahin, Akturk, Ciraci (c29) 2011 Kibsgaard, Tuxen, Levisen, Lægsgaard, Gemming, Seifert, Lauritsen, Besenbacher (c9) 2008 Mak, Lee, Hone, Shan, Heinz (c6) 2010 Cho, Hahm, Choi, Yoon, Kim, Lee, Park, Kwon, Su Kim, Song, Jeong, Nam, Lee, Yoo, Kang, Lee, Cho Ko, Ajayan, Kim (c21) 2015 Kadhim, Hassan, Abdullah (c11) 2016 Yue, Shao, Chang, Li (c23) 2013 Feldman, Wasserman, Srolovitz, Tenne (c15) 1995 Qiu, Pan, Yao, Li, Shi, Wang (c25) 2012 Bollinger, Lauritsen, Jacobsen, Nørskov, Helveg, Besenbacher (c28) 2001 Lee, Yan, Brus, Heinz, Hone, Ryu (c18) 2010 Kim, Han, Kim, Meyyappan (c14) 2017 Han, Yuan, Luo, Cao, Yu, Yang, Li, Ye (c16) 2015 Park, Park, Jang, Lee, Jeong, Cho, Hong, Lee (c26) 2013 Agrawal, Kumar, Venkatesan, Zakhidov, Zhu, Bao, Kumar, Kumar (c3) 2017 Fathipour, Remskar, Varlec, Ajoy, Yan, Vishwanath, Rouvimov, Hwang, Xing, Jena, Seabaugh (c7) 2015 Tan, Ambrosi, Sofer, Huber, Sedmidubsky, Pumera (c19) 2015 Saaedi, Yousefi (c12) 2017 Li, Zhang, Qiao, Yu, Peterson, Zafar, Kumar, Curtarolo, Hunte, Shannon, Zhu, Yang, Cao (c27) 2016 Lei, Li, Gao (c17) 2014 Currie (c22) 1995 Cho, Kim, Lee, Kim, Jung, Yoo, Kim, Jung (c4) 2015 Zhao, Xue, Kang (c24) 2014 (2023061715491648400_c22) 1995; 67 (2023061715491648400_c4) 2015; 9 (2023061715491648400_c23) 2013; 8 (2023061715491648400_c7) 2015; 106 (2023061715491648400_c10) 2016; 8 (2023061715491648400_c3) 2017; 111 (2023061715491648400_c17) 2014; 2 (2023061715491648400_c13) 2017; 2 (2023061715491648400_c18) 2010; 4 (2023061715491648400_c2) 2017; 2 (2023061715491648400_c16) 2015; 5 (2023061715491648400_c19) 2015; 21 (2023061715491648400_c24) 2014; 595 (2023061715491648400_c5) 2013; 7 (2023061715491648400_c26) 2013; 24 (2023061715491648400_c12) 2017; 122 (2023061715491648400_c15) 1995; 267 (2023061715491648400_c14) 2017; 2 2023061715491648400_c1 (2023061715491648400_c25) 2012; 100 (2023061715491648400_c9) 2008; 8 (2023061715491648400_c28) 2001; 87 (2023061715491648400_c8) 2016; 7 (2023061715491648400_c6) 2010; 105 (2023061715491648400_c21) 2015; 5 (2023061715491648400_c20) 2016; 8 (2023061715491648400_c29) 2011; 115 (2023061715491648400_c27) 2016; 138 (2023061715491648400_c11) 2016; 8 |
References_xml | – start-page: 136805 year: 2010 ident: c6 publication-title: Phys. Rev. Lett. – start-page: 1744 year: 2017 ident: c2 publication-title: ACS Sens. – start-page: 222 year: 1995 ident: c15 publication-title: Science – start-page: 3919 year: 2014 ident: c17 publication-title: J. Mater. Chem. A – start-page: 093102 year: 2017 ident: c3 publication-title: Appl. Phys. Lett. – start-page: 4879 year: 2013 ident: c5 publication-title: ACS Nano – start-page: 224505 year: 2017 ident: c12 publication-title: J. Appl. Phys. – start-page: 95 year: 2016 ident: c10 publication-title: Nano-Micro Lett. – start-page: 2695 year: 2010 ident: c18 publication-title: ACS Nano – start-page: 3934 year: 2011 ident: c29 publication-title: J. Phys. Chem. C – start-page: 12904 year: 2016 ident: c8 publication-title: Nat. Commun. – start-page: 095202 year: 2013 ident: c26 publication-title: Nanotechnology – start-page: 196803 year: 2001 ident: c28 publication-title: Phys. Rev. Lett. – start-page: 7170 year: 2015 ident: c19 publication-title: Chem. Eur. J. – start-page: 123104 year: 2012 ident: c25 publication-title: Appl. Phys. Lett. – start-page: 022114 year: 2015 ident: c7 publication-title: Appl. Phys. Lett. – start-page: 1491 year: 2017 ident: c13 publication-title: ACS Sens. – start-page: 20 year: 2016 ident: c11 publication-title: Nano-Micro Lett. – start-page: 425 year: 2013 ident: c23 publication-title: Nano. Res. Lett. – start-page: 22190 year: 2016 ident: c20 publication-title: ACS Appl. Mater. Interfaces – start-page: 35 year: 2014 ident: c24 publication-title: Chem. Phys. Lett. – start-page: 3928 year: 2008 ident: c9 publication-title: Nano Lett. – start-page: 68283 year: 2015 ident: c16 publication-title: RSC Adv. – start-page: 9314 year: 2015 ident: c4 publication-title: ACS Nano – start-page: 1679 year: 2017 ident: c14 publication-title: ACS Sens. – start-page: 8052 year: 2015 ident: c21 publication-title: Sci. Rep. – start-page: 16632 year: 2016 ident: c27 publication-title: J. Am. Chem. Soc. – start-page: 1699 year: 1995 ident: c22 publication-title: Pure Appl. Chem. – volume: 115 start-page: 3934 year: 2011 ident: 2023061715491648400_c29 publication-title: J. Phys. Chem. C doi: 10.1021/jp1115146 – volume: 106 start-page: 022114 year: 2015 ident: 2023061715491648400_c7 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4906066 – volume: 138 start-page: 16632 year: 2016 ident: 2023061715491648400_c27 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b05940 – volume: 24 start-page: 095202 year: 2013 ident: 2023061715491648400_c26 publication-title: Nanotechnology doi: 10.1088/0957-4484/24/9/095202 – volume: 267 start-page: 222 year: 1995 ident: 2023061715491648400_c15 publication-title: Science doi: 10.1126/science.267.5195.222 – volume: 8 start-page: 425 year: 2013 ident: 2023061715491648400_c23 publication-title: Nano. Res. Lett. doi: 10.1186/1556-276X-8-425 – volume: 111 start-page: 093102 year: 2017 ident: 2023061715491648400_c3 publication-title: Appl. Phys. Lett. doi: 10.1063/1.5000825 – volume: 21 start-page: 7170 year: 2015 ident: 2023061715491648400_c19 publication-title: Chem. Eur. J. doi: 10.1002/chem.201500435 – volume: 2 start-page: 1679 year: 2017 ident: 2023061715491648400_c14 publication-title: ACS Sens. doi: 10.1021/acssensors.7b00585 – ident: 2023061715491648400_c1 – volume: 2 start-page: 1744 issue: 11 year: 2017 ident: 2023061715491648400_c2 publication-title: ACS Sens. doi: 10.1021/acssensors.7b00731 – volume: 5 start-page: 8052 year: 2015 ident: 2023061715491648400_c21 publication-title: Sci. Rep. doi: 10.1038/srep08052 – volume: 8 start-page: 20 issue: 1 year: 2016 ident: 2023061715491648400_c11 publication-title: Nano-Micro Lett. doi: 10.1007/s40820-015-0057-1 – volume: 2 start-page: 3919 year: 2014 ident: 2023061715491648400_c17 publication-title: J. Mater. Chem. A doi: 10.1039/c3ta14313a – volume: 8 start-page: 3928 year: 2008 ident: 2023061715491648400_c9 publication-title: Nano Lett. doi: 10.1021/nl802384n – volume: 67 start-page: 1699 year: 1995 ident: 2023061715491648400_c22 publication-title: Pure Appl. Chem. doi: 10.1351/pac199567101699 – volume: 4 start-page: 2695 year: 2010 ident: 2023061715491648400_c18 publication-title: ACS Nano doi: 10.1021/nn1003937 – volume: 2 start-page: 1491 year: 2017 ident: 2023061715491648400_c13 publication-title: ACS Sens. doi: 10.1021/acssensors.7b00459 – volume: 100 start-page: 123104 year: 2012 ident: 2023061715491648400_c25 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3696045 – volume: 87 start-page: 196803 year: 2001 ident: 2023061715491648400_c28 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.87.196803 – volume: 9 start-page: 9314 year: 2015 ident: 2023061715491648400_c4 publication-title: ACS Nano doi: 10.1021/acsnano.5b04504 – volume: 122 start-page: 224505 year: 2017 ident: 2023061715491648400_c12 publication-title: J. Appl. Phys. doi: 10.1063/1.5009249 – volume: 7 start-page: 12904 year: 2016 ident: 2023061715491648400_c8 publication-title: Nat. Commun. doi: 10.1038/ncomms12904 – volume: 595 start-page: 35 year: 2014 ident: 2023061715491648400_c24 publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2014.01.043 – volume: 105 start-page: 136805 year: 2010 ident: 2023061715491648400_c6 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.105.136805 – volume: 5 start-page: 68283 year: 2015 ident: 2023061715491648400_c16 publication-title: RSC Adv. doi: 10.1039/C5RA13733K – volume: 8 start-page: 22190 year: 2016 ident: 2023061715491648400_c20 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b05848 – volume: 7 start-page: 4879 year: 2013 ident: 2023061715491648400_c5 publication-title: ACS Nano doi: 10.1021/nn400026u – volume: 8 start-page: 95 issue: 2 year: 2016 ident: 2023061715491648400_c10 publication-title: Nano-Micro Lett. doi: 10.1007/s40820-015-0073-1 |
SSID | ssj0005233 |
Score | 2.544363 |
Snippet | We report on a high-performance NO2 sensor based on a one dimensional MoS2 nanowire (NW) network. The MoS2 NW network was synthesized using chemical transport... |
SourceID | proquest crossref scitation |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Applied physics Chemical synthesis Crystal structure Fluid dynamics Intersections Molybdenum disulfide Morphology Nanowires Nitrogen dioxide Organic chemistry Potential barriers Raman spectroscopy Scanning electron microscopy Sensitivity enhancement Sensors Spectrum analysis Turbulent flow X ray photoelectron spectroscopy X-ray diffraction |
Title | High performance NO2 sensor using MoS2 nanowires network |
URI | http://dx.doi.org/10.1063/1.5019296 https://www.proquest.com/docview/2115810011 |
Volume | 112 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELagEwIeEAwQhYEi4AEpypbYsRM_TrAxobZDWiv1LbKdiyo0JVPb8cBfz7lxflREE_ASVZbrRPc5p-8un-8I-QigYknTIhBU5kEsch5oHosgj2hYhKBDFdrDydOZuFjE35Z82bR3d6dLtvrY_Bo8V_I_qOIY4mpPyf4Dsu2iOIC_EV-8IsJ4_SuMrUjDFh5upf-zS-pvMDCt1v7tLgkwra6oX6qysiWJN35Zi777jLShoXWKY-Nf78739D7xNBJsteo0hF-tIHYGsFY__pg4VSvYrPrZhMgK2QLa-az2M9GeVOF7_QR7fpQFQrpSsVC7zjCxGU_nTRvfGtHeJuKDPhtJkk0fHHPLNuVAXezZZXa-mEyy-dlyfp8cUAwI6IgcnH6ZTq56ch7Gmu6I9smaKlKCnbRL73OPLqB4iGyjFj70uMX8KXniggLvtEb4GbkH5SF53CsVeUgeOOs8J6lF3euh7iHqXo26t0Pds6h7LeqeQ_0FWZyfzT9fBK7_RWCYZNuA5kpLCFOTJHmikKpHkHKwJBIEjusw0cBBpCqRnCtgXGiMRw3LYyMLIwx7SUZlVcIr4tHYcIgTLZhtNi6ERKZN8b9Ugi5MasbkU2OZrLGF7VFyne1ECoJlUeaMOCbv26k3dUWUoUlHjXkz98JsMorRR2prfkVj8qE1-V2LDMz6Wa27GdlNXry--1ZvyKNunx-R0XZ9C2-RR271O7eFfgNY53Ik |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High+performance+NO2+sensor+using+MoS2+nanowires+network&rft.jtitle=Applied+physics+letters&rft.au=Kumar%2C+Rahul&rft.au=Goel+Neeraj&rft.au=Kumar%2C+Mahesh&rft.date=2018-01-29&rft.pub=American+Institute+of+Physics&rft.issn=0003-6951&rft.eissn=1077-3118&rft.volume=112&rft.issue=5&rft_id=info:doi/10.1063%2F1.5019296&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-6951&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-6951&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-6951&client=summon |