MnO modified carbon nanotubes as a sulfur host with enhanced performance in Li/S batteries
Lithium/sulfur (Li/S) batteries have become promising future power sources owing to the high energy density. Carbon materials are the most used sulfur hosts, but their ability to adsorb polysulfide intermediates has been unreliable, thus recently many researchers have turned their interest to metal...
Saved in:
Published in | Journal of materials chemistry. A, Materials for energy and sustainability Vol. 4; no. 33; pp. 12858 - 12864 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
01.01.2016
|
Subjects | |
Online Access | Get full text |
ISSN | 2050-7488 2050-7496 2050-7496 |
DOI | 10.1039/c6ta04445j |
Cover
Loading…
Abstract | Lithium/sulfur (Li/S) batteries have become promising future power sources owing to the high energy density. Carbon materials are the most used sulfur hosts, but their ability to adsorb polysulfide intermediates has been unreliable, thus recently many researchers have turned their interest to metal oxide materials. Here, we manufactured a composite of carbon nanotubes modified with manganese oxide nanoparticles (CNTs/MnO) as a sulfur host material. In Li/S cells, the CNTs/MnOS cathode showed a rather better cycling stability over 100 cycles than a CNTsS cathode with the same carbon/sulfur weight ratio of about 1:8. In addition, the CNTs/MnOS cathode presented an initial discharge capacity of 716 mA h g
1
at a high current density of 5.0C, in contrast to the result of only 415 mA h g
1
with the CNTsS cathode. Physical and electrochemical characterization proved that the MnO modification does not vary the surface area of the CNTs but lowers their electrical conductivity. By carefully comparing the differences in the 1
st
discharge capacities of the two cathodes, the MnO modification could obviously improve the initial utilization of S especially at high current densities. The improved electrochemical characteristics of the CNTs/MnOS electrode can be attributed to its properties of a stronger adsorption capability for polysulfides.
MnO modified CNTs are applied as an efficient sulfur host to improve the performance of Li/S batteries due to the strong polysulfide adsorbability. |
---|---|
AbstractList | Lithium/sulfur (Li/S) batteries have become promising future power sources owing to the high energy density. Carbon materials are the most used sulfur hosts, but their ability to adsorb polysulfide intermediates has been unreliable, thus recently many researchers have turned their interest to metal oxide materials. Here, we manufactured a composite of carbon nanotubes modified with manganese oxide nanoparticles (CNTs/MnO) as a sulfur host material. In Li/S cells, the CNTs/MnO–S cathode showed a rather better cycling stability over 100 cycles than a CNTs–S cathode with the same carbon/sulfur weight ratio of about 1 : 8. In addition, the CNTs/MnO–S cathode presented an initial discharge capacity of 716 mA h g⁻¹ at a high current density of 5.0C, in contrast to the result of only 415 mA h g⁻¹ with the CNTs–S cathode. Physical and electrochemical characterization proved that the MnO modification does not vary the surface area of the CNTs but lowers their electrical conductivity. By carefully comparing the differences in the 1ˢᵗ discharge capacities of the two cathodes, the MnO modification could obviously improve the initial utilization of S especially at high current densities. The improved electrochemical characteristics of the CNTs/MnO–S electrode can be attributed to its properties of a stronger adsorption capability for polysulfides. Lithium/sulfur (Li/S) batteries have become promising future power sources owing to the high energy density. Carbon materials are the most used sulfur hosts, but their ability to adsorb polysulfide intermediates has been unreliable, thus recently many researchers have turned their interest to metal oxide materials. Here, we manufactured a composite of carbon nanotubes modified with manganese oxide nanoparticles (CNTs/MnO) as a sulfur host material. In Li/S cells, the CNTs/MnOS cathode showed a rather better cycling stability over 100 cycles than a CNTsS cathode with the same carbon/sulfur weight ratio of about 1:8. In addition, the CNTs/MnOS cathode presented an initial discharge capacity of 716 mA h g 1 at a high current density of 5.0C, in contrast to the result of only 415 mA h g 1 with the CNTsS cathode. Physical and electrochemical characterization proved that the MnO modification does not vary the surface area of the CNTs but lowers their electrical conductivity. By carefully comparing the differences in the 1 st discharge capacities of the two cathodes, the MnO modification could obviously improve the initial utilization of S especially at high current densities. The improved electrochemical characteristics of the CNTs/MnOS electrode can be attributed to its properties of a stronger adsorption capability for polysulfides. MnO modified CNTs are applied as an efficient sulfur host to improve the performance of Li/S batteries due to the strong polysulfide adsorbability. Lithium/sulfur (Li/S) batteries have become promising future power sources owing to the high energy density. Carbon materials are the most used sulfur hosts, but their ability to adsorb polysulfide intermediates has been unreliable, thus recently many researchers have turned their interest to metal oxide materials. Here, we manufactured a composite of carbon nanotubes modified with manganese oxide nanoparticles (CNTs/MnO) as a sulfur host material. In Li/S cells, the CNTs/MnO-S cathode showed a rather better cycling stability over 100 cycles than a CNTs-S cathode with the same carbon/sulfur weight ratio of about 1 : 8. In addition, the CNTs/MnO-S cathode presented an initial discharge capacity of 716 mA h g-1 at a high current density of 5.0C, in contrast to the result of only 415 mA h g-1 with the CNTs-S cathode. Physical and electrochemical characterization proved that the MnO modification does not vary the surface area of the CNTs but lowers their electrical conductivity. By carefully comparing the differences in the 1st discharge capacities of the two cathodes, the MnO modification could obviously improve the initial utilization of S especially at high current densities. The improved electrochemical characteristics of the CNTs/MnO-S electrode can be attributed to its properties of a stronger adsorption capability for polysulfides. Lithium/sulfur (Li/S) batteries have become promising future power sources owing to the high energy density. Carbon materials are the most used sulfur hosts, but their ability to adsorb polysulfide intermediates has been unreliable, thus recently many researchers have turned their interest to metal oxide materials. Here, we manufactured a composite of carbon nanotubes modified with manganese oxide nanoparticles (CNTs/MnO) as a sulfur host material. In Li/S cells, the CNTs/MnO–S cathode showed a rather better cycling stability over 100 cycles than a CNTs–S cathode with the same carbon/sulfur weight ratio of about 1 : 8. In addition, the CNTs/MnO–S cathode presented an initial discharge capacity of 716 mA h g −1 at a high current density of 5.0C, in contrast to the result of only 415 mA h g −1 with the CNTs–S cathode. Physical and electrochemical characterization proved that the MnO modification does not vary the surface area of the CNTs but lowers their electrical conductivity. By carefully comparing the differences in the 1 st discharge capacities of the two cathodes, the MnO modification could obviously improve the initial utilization of S especially at high current densities. The improved electrochemical characteristics of the CNTs/MnO–S electrode can be attributed to its properties of a stronger adsorption capability for polysulfides. |
Author | Wu, Qi-Hui Deng, Dingrong Tian, Zhaowu Lei, Ming Zheng, Mingsen Dong, Quanfeng An, Taihua |
AuthorAffiliation | Department of Chemistry College of Chemical Engineering and Materials Science College of Chemistry and Chemical Engineering Xiamen University Collaborative Innovation Centre of Chemistry for Energy Materials State Key Lab. of Physical Chemistry of Solid Surfaces Quanzhou Normal University Department of Materials Chemistry |
AuthorAffiliation_xml | – sequence: 0 name: Xiamen University Collaborative Innovation Centre of Chemistry for Energy Materials – sequence: 0 name: Department of Chemistry – sequence: 0 name: College of Chemistry and Chemical Engineering – sequence: 0 name: Department of Materials Chemistry – sequence: 0 name: State Key Lab. of Physical Chemistry of Solid Surfaces – sequence: 0 name: College of Chemical Engineering and Materials Science – sequence: 0 name: Quanzhou Normal University |
Author_xml | – sequence: 1 givenname: Taihua surname: An fullname: An, Taihua – sequence: 2 givenname: Dingrong surname: Deng fullname: Deng, Dingrong – sequence: 3 givenname: Ming surname: Lei fullname: Lei, Ming – sequence: 4 givenname: Qi-Hui surname: Wu fullname: Wu, Qi-Hui – sequence: 5 givenname: Zhaowu surname: Tian fullname: Tian, Zhaowu – sequence: 6 givenname: Mingsen surname: Zheng fullname: Zheng, Mingsen – sequence: 7 givenname: Quanfeng surname: Dong fullname: Dong, Quanfeng |
BookMark | eNqNkU1LAzEQhoMoWGsv3oUcRahNNpts9liKn1R6sF68LEk6S1O2SU2yiP_erZUKIugwMDPMM8Mw7wk6dN4BQmeUXFHCypERSZE8z_nqAPUywsmwyEtxuM-lPEaDGFekM0mIKMseenl0M7z2C1tbWGCjgvYOO-V8ajVErDrHsW3qNuCljwm_2bTE4JbKmY7fQKh9WG8LbB2e2tET1iolCBbiKTqqVRNh8BX76Pnmej65G05nt_eT8XRoWMnSMNOaSsqAkhw4WxAphCw1FVqBygouCs5oVjCjRSm0YFoTsW1KJSCTVAPro4vd3k3wry3EVK1tNNA0yoFvY5VlBZUkY5T_iVLJOBeSlPIfKOXdB7tbOpTsUBN8jAHqytikkvUuBWWbipJqq081EfPxpz4P3cjlj5FNsGsV3n-Hz3dwiGbPfYvNPgBeRppC |
CitedBy_id | crossref_primary_10_1039_D3CP02857G crossref_primary_10_1016_j_carbon_2024_119403 crossref_primary_10_1016_j_cej_2024_149825 crossref_primary_10_1016_j_jelechem_2021_115721 crossref_primary_10_1002_eem2_12187 crossref_primary_10_1016_j_jallcom_2019_152723 crossref_primary_10_1021_jacs_8b00411 crossref_primary_10_1073_pnas_2000128117 crossref_primary_10_1016_j_electacta_2021_138371 crossref_primary_10_1039_C6CP07650E crossref_primary_10_1021_acs_jpcc_9b12033 crossref_primary_10_1039_C7TA08309B crossref_primary_10_1007_s12274_022_4486_0 crossref_primary_10_1007_s10008_017_3818_6 crossref_primary_10_1039_C9NJ01017C crossref_primary_10_1021_acsnano_8b05534 crossref_primary_10_1021_acsnano_7b06061 crossref_primary_10_1557_jmr_2017_282 crossref_primary_10_1016_j_cej_2022_135945 crossref_primary_10_1002_celc_202001310 crossref_primary_10_1016_j_ensm_2021_08_023 crossref_primary_10_1002_adfm_201707536 crossref_primary_10_1016_j_apsusc_2024_160625 crossref_primary_10_1016_j_ccr_2018_04_015 crossref_primary_10_1002_adfm_201707411 crossref_primary_10_1002_aenm_202001304 crossref_primary_10_1002_slct_202101462 crossref_primary_10_1039_D1RA06568H crossref_primary_10_1016_j_jcis_2024_04_193 crossref_primary_10_1021_acs_jpcc_0c02324 crossref_primary_10_1016_j_jallcom_2020_153879 crossref_primary_10_1021_acsami_8b00925 crossref_primary_10_1142_S1793604718300074 crossref_primary_10_1016_j_jmst_2021_12_048 crossref_primary_10_1007_s42452_019_0492_6 crossref_primary_10_1016_j_cej_2024_152791 crossref_primary_10_1016_j_ensm_2019_05_013 crossref_primary_10_1021_acs_jpcc_8b10736 crossref_primary_10_1016_j_nanoen_2017_01_007 crossref_primary_10_1039_C8TA04214D crossref_primary_10_1007_s12274_020_3181_2 crossref_primary_10_1039_C6TA07221F crossref_primary_10_1016_j_carbon_2019_04_022 crossref_primary_10_1149_1945_7111_ab6bc0 crossref_primary_10_3390_batteries2040033 crossref_primary_10_1016_j_jmat_2022_07_003 crossref_primary_10_1002_smtd_202100066 crossref_primary_10_1002_smll_202103535 crossref_primary_10_1021_acsnano_7b01945 crossref_primary_10_1016_S1872_2067_22_64168_8 crossref_primary_10_1002_chem_202303507 crossref_primary_10_1021_acsnano_7b05869 crossref_primary_10_1016_j_cej_2020_124548 crossref_primary_10_1039_C7TA01675A crossref_primary_10_1007_s12274_018_2203_9 crossref_primary_10_1007_s12274_022_5156_y crossref_primary_10_1016_j_jallcom_2018_03_110 crossref_primary_10_1016_j_apsusc_2020_145286 crossref_primary_10_1021_acsnano_2c05029 crossref_primary_10_1016_j_cej_2020_125670 crossref_primary_10_1016_j_envpol_2021_117864 crossref_primary_10_1002_batt_202000143 crossref_primary_10_1016_j_jechem_2020_07_007 crossref_primary_10_1039_C9TA05347F crossref_primary_10_1002_smll_202207411 crossref_primary_10_1007_s10853_019_03871_4 crossref_primary_10_1002_slct_202002641 crossref_primary_10_1039_C9TA05517G crossref_primary_10_1002_batt_202100156 crossref_primary_10_1002_smll_202106144 crossref_primary_10_1002_nano_202000157 crossref_primary_10_20964_2017_12_32 crossref_primary_10_1021_acsami_1c00974 crossref_primary_10_1039_C8RA03793K crossref_primary_10_1149_2_0691809jes crossref_primary_10_1016_j_jpowsour_2021_230885 crossref_primary_10_1002_slct_202202879 crossref_primary_10_1016_j_cej_2020_126075 crossref_primary_10_1016_j_electacta_2019_134678 |
Cites_doi | 10.1021/nl402793z 10.1016/j.jallcom.2015.07.264 10.1039/C6EE00104A 10.1039/C5TA08999A 10.1039/c2cp40141j 10.1016/j.jpowsour.2014.01.093 10.1038/ncomms1293 10.1039/b925751a 10.1021/ja409508q 10.1038/ncomms4943 10.1021/ar300179v 10.1016/j.carbon.2007.11.007 10.1021/cm5044667 10.1002/adma.201103392 10.1016/S1388-2481(02)00358-2 10.1016/S1388-2481(01)00203-X 10.1021/acs.jpcc.5b08934 10.1002/aenm.201300253 10.1149/1.1806394 10.1039/c2jm30632h 10.1021/nn501308m 10.1039/c4ta00234b 10.1039/c002639e 10.1021/nl502331f 10.1021/ic00274a017 10.1039/C5TA08991C 10.1038/srep08763 10.1021/acsnano.5b07458 10.1002/anie.201107817 10.1021/ar3001348 10.1016/j.electacta.2010.01.069 10.1149/1.1545452 10.1126/science.1212741 10.1039/C5TA08109B 10.1016/j.jpowsour.2012.12.102 10.1021/acsami.5b11327 10.1038/nchem.1624 10.1007/s12274-015-0773-3 10.1021/nl200658a 10.1038/ncomms5759 10.1016/S1452-3981(23)11181-3 10.1038/ncomms2327 10.1142/S1793604714500209 10.1021/ja308170k 10.1039/C2TA00105E 10.1038/nmat3191 10.1039/c1jm12979a 10.1021/jacs.5b04472 10.1002/anie.201100637 10.1002/anie.201506972 10.1038/nmat2460 10.1021/nl202297p 10.1002/chem.201300886 10.1039/c1ee02256c 10.1016/j.electacta.2016.01.225 10.1021/jp304380j 10.1016/j.jpowsour.2010.12.052 10.1038/ncomms6682 10.1016/j.matlet.2015.06.003 |
ContentType | Journal Article |
DBID | AAYXX CITATION 7ST C1K SOI 7SP 7SR 7U5 8BQ 8FD JG9 L7M 7S9 L.6 |
DOI | 10.1039/c6ta04445j |
DatabaseName | CrossRef Environment Abstracts Environmental Sciences and Pollution Management Environment Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Environment Abstracts Environmental Sciences and Pollution Management Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA Environment Abstracts Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2050-7496 |
EndPage | 12864 |
ExternalDocumentID | 10_1039_C6TA04445J c6ta04445j |
GroupedDBID | -JG 0-7 0R~ 705 AAEMU AAIWI AAJAE AANOJ AAWGC AAXHV ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFS ACIWK ACLDK ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRAH AFRDS AFVBQ AGEGJ AGRSR AGSTE AHGCF ALMA_UNASSIGNED_HOLDINGS ANBJS ANUXI APEMP ASKNT AUDPV AUNWK BLAPV BSQNT C6K EBS ECGLT EE0 EF- EJD GGIMP GNO H13 HZ~ H~N J3I O-G O9- R7C RAOCF RCNCU RNS ROL RPMJG RRC RSCEA SKA SKF SLH UCJ AAYXX AFRZK AKMSF ALUYA CITATION J3G J3H 7ST C1K SOI 7SP 7SR 7U5 8BQ 8FD JG9 L7M 7S9 L.6 |
ID | FETCH-LOGICAL-c393t-2bb1813e104e53d086689b16baea27567531273cb696b63bb0616ba8a6e281be3 |
ISSN | 2050-7488 2050-7496 |
IngestDate | Thu Jul 10 22:46:14 EDT 2025 Fri Jul 11 12:17:17 EDT 2025 Thu Jul 10 18:49:35 EDT 2025 Tue Jul 01 03:13:30 EDT 2025 Thu Apr 24 23:08:02 EDT 2025 Tue Dec 17 20:59:50 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 33 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c393t-2bb1813e104e53d086689b16baea27567531273cb696b63bb0616ba8a6e281be3 |
Notes | 10.1039/c6ta04445j Electronic supplementary information (ESI) available. See DOI ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1815699616 |
PQPubID | 23462 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_2271802315 proquest_miscellaneous_1835568098 crossref_citationtrail_10_1039_C6TA04445J crossref_primary_10_1039_C6TA04445J proquest_miscellaneous_1815699616 rsc_primary_c6ta04445j |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-01-01 |
PublicationDateYYYYMMDD | 2016-01-01 |
PublicationDate_xml | – month: 01 year: 2016 text: 2016-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Journal of materials chemistry. A, Materials for energy and sustainability |
PublicationYear | 2016 |
References | Tao (C6TA04445J-(cit35)/*[position()=1]) 2014; 14 Dubois (C6TA04445J-(cit55)/*[position()=1]) 1988; 27 Su (C6TA04445J-(cit58)/*[position()=1]) 2013; 19 Al Salem (C6TA04445J-(cit31)/*[position()=1]) 2015; 137 Jayaprakash (C6TA04445J-(cit15)/*[position()=1]) 2011; 50 Wang (C6TA04445J-(cit21)/*[position()=1]) 2011; 11 Bruce (C6TA04445J-(cit3)/*[position()=1]) 2012; 11 Shan (C6TA04445J-(cit20)/*[position()=1]) 2016; 4 Xin (C6TA04445J-(cit22)/*[position()=1]) 2012; 134 Lee (C6TA04445J-(cit41)/*[position()=1]) 2015; 158 Manthiram (C6TA04445J-(cit6)/*[position()=1]) 2012; 46 Babu (C6TA04445J-(cit32)/*[position()=1]) 2015; 5 Chen (C6TA04445J-(cit23)/*[position()=1]) 2012; 14 Wang (C6TA04445J-(cit29)/*[position()=1]) 2008; 46 Evers (C6TA04445J-(cit36)/*[position()=1]) 2012; 116 Zhang (C6TA04445J-(cit27)/*[position()=1]) 2010; 3 Yao (C6TA04445J-(cit33)/*[position()=1]) 2014; 5 Pang (C6TA04445J-(cit34)/*[position()=1]) 2014; 5 Mikhaylik (C6TA04445J-(cit57)/*[position()=1]) 2003; 150 Liang (C6TA04445J-(cit38)/*[position()=1]) 2014; 8 Song (C6TA04445J-(cit18)/*[position()=1]) 2013; 13 Liang (C6TA04445J-(cit24)/*[position()=1]) 2011; 196 Mikhaylik (C6TA04445J-(cit4)/*[position()=1]) 2004; 151 Chen (C6TA04445J-(cit7)/*[position()=1]) 2015; 27 Yu (C6TA04445J-(cit44)/*[position()=1]) 2014; 2 Li (C6TA04445J-(cit25)/*[position()=1]) 2011; 21 Cheng (C6TA04445J-(cit50)/*[position()=1]) 2014; 7 Chen (C6TA04445J-(cit12)/*[position()=1]) 2010; 55 Qian (C6TA04445J-(cit52)/*[position()=1]) 2016; 192 Evers (C6TA04445J-(cit5)/*[position()=1]) 2012; 46 Evans (C6TA04445J-(cit56)/*[position()=1]) 2001; 3 Guo (C6TA04445J-(cit13)/*[position()=1]) 2011; 11 Ji (C6TA04445J-(cit26)/*[position()=1]) 2011; 4 Tang (C6TA04445J-(cit48)/*[position()=1]) 2015; 650 Wang (C6TA04445J-(cit8)/*[position()=1]) 2012; 22 Wang (C6TA04445J-(cit53)/*[position()=1]) 2016; 4 Dunn (C6TA04445J-(cit2)/*[position()=1]) 2011; 334 Liang (C6TA04445J-(cit39)/*[position()=1]) 2015; 6 Wang (C6TA04445J-(cit19)/*[position()=1]) 2014; 256 Kim (C6TA04445J-(cit43)/*[position()=1]) 2013; 3 Xiao (C6TA04445J-(cit9)/*[position()=1]) 2012; 24 Ye (C6TA04445J-(cit14)/*[position()=1]) 2016; 4 Liang (C6TA04445J-(cit45)/*[position()=1]) 2015; 10 Ji (C6TA04445J-(cit51)/*[position()=1]) 2011; 2 Zhang (C6TA04445J-(cit54)/*[position()=1]) 2013; 231 Chung (C6TA04445J-(cit11)/*[position()=1]) 2013; 5 Zhou (C6TA04445J-(cit10)/*[position()=1]) 2013; 135 Schuster (C6TA04445J-(cit16)/*[position()=1]) 2012; 51 Zhang (C6TA04445J-(cit46)/*[position()=1]) 2015; 119 Zang (C6TA04445J-(cit17)/*[position()=1]) 2015; 8 Ji (C6TA04445J-(cit1)/*[position()=1]) 2010; 20 Seh (C6TA04445J-(cit37)/*[position()=1]) 2013; 4 Li (C6TA04445J-(cit40)/*[position()=1]) 2015; 54 Li (C6TA04445J-(cit59)/*[position()=1]) 2016; 9 Ji (C6TA04445J-(cit28)/*[position()=1]) 2009; 8 Liang (C6TA04445J-(cit42)/*[position()=1]) 2016; 10 Zhang (C6TA04445J-(cit49)/*[position()=1]) 2013; 1 Ponraj (C6TA04445J-(cit47)/*[position()=1]) 2016; 8 Wang (C6TA04445J-(cit30)/*[position()=1]) 2002; 4 |
References_xml | – volume: 13 start-page: 5891 year: 2013 ident: C6TA04445J-(cit18)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl402793z – volume: 650 start-page: 351 year: 2015 ident: C6TA04445J-(cit48)/*[position()=1] publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2015.07.264 – volume: 9 start-page: 1998 year: 2016 ident: C6TA04445J-(cit59)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/C6EE00104A – volume: 4 start-page: 1653 year: 2016 ident: C6TA04445J-(cit53)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C5TA08999A – volume: 14 start-page: 5376 year: 2012 ident: C6TA04445J-(cit23)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c2cp40141j – volume: 256 start-page: 361 year: 2014 ident: C6TA04445J-(cit19)/*[position()=1] publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2014.01.093 – volume: 2 start-page: 325 year: 2011 ident: C6TA04445J-(cit51)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms1293 – volume: 20 start-page: 9821 year: 2010 ident: C6TA04445J-(cit1)/*[position()=1] publication-title: J. Mater. Chem. doi: 10.1039/b925751a – volume: 135 start-page: 16736 year: 2013 ident: C6TA04445J-(cit10)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja409508q – volume: 5 start-page: 3943 year: 2014 ident: C6TA04445J-(cit33)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms4943 – volume: 46 start-page: 1125 year: 2012 ident: C6TA04445J-(cit6)/*[position()=1] publication-title: Acc. Chem. Res. doi: 10.1021/ar300179v – volume: 46 start-page: 229 year: 2008 ident: C6TA04445J-(cit29)/*[position()=1] publication-title: Carbon doi: 10.1016/j.carbon.2007.11.007 – volume: 27 start-page: 2048 year: 2015 ident: C6TA04445J-(cit7)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/cm5044667 – volume: 24 start-page: 1176 year: 2012 ident: C6TA04445J-(cit9)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201103392 – volume: 4 start-page: 499 year: 2002 ident: C6TA04445J-(cit30)/*[position()=1] publication-title: Electrochem. Commun. doi: 10.1016/S1388-2481(02)00358-2 – volume: 3 start-page: 514 year: 2001 ident: C6TA04445J-(cit56)/*[position()=1] publication-title: Electrochem. Commun. doi: 10.1016/S1388-2481(01)00203-X – volume: 119 start-page: 28721 year: 2015 ident: C6TA04445J-(cit46)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.5b08934 – volume: 3 start-page: 1308 year: 2013 ident: C6TA04445J-(cit43)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201300253 – volume: 151 start-page: A1969 year: 2004 ident: C6TA04445J-(cit4)/*[position()=1] publication-title: J. Electrochem. Soc. doi: 10.1149/1.1806394 – volume: 22 start-page: 22077 year: 2012 ident: C6TA04445J-(cit8)/*[position()=1] publication-title: J. Mater. Chem. doi: 10.1039/c2jm30632h – volume: 8 start-page: 5249 year: 2014 ident: C6TA04445J-(cit38)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn501308m – volume: 2 start-page: 7360 year: 2014 ident: C6TA04445J-(cit44)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/c4ta00234b – volume: 3 start-page: 1531 year: 2010 ident: C6TA04445J-(cit27)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/c002639e – volume: 14 start-page: 5288 year: 2014 ident: C6TA04445J-(cit35)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl502331f – volume: 27 start-page: 73 year: 1988 ident: C6TA04445J-(cit55)/*[position()=1] publication-title: Inorg. Chem. doi: 10.1021/ic00274a017 – volume: 4 start-page: 775 year: 2016 ident: C6TA04445J-(cit14)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C5TA08991C – volume: 5 start-page: 8763 year: 2015 ident: C6TA04445J-(cit32)/*[position()=1] publication-title: Sci. Rep. doi: 10.1038/srep08763 – volume: 10 start-page: 4192 year: 2016 ident: C6TA04445J-(cit42)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.5b07458 – volume: 51 start-page: 3591 year: 2012 ident: C6TA04445J-(cit16)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201107817 – volume: 46 start-page: 1135 year: 2012 ident: C6TA04445J-(cit5)/*[position()=1] publication-title: Acc. Chem. Res. doi: 10.1021/ar3001348 – volume: 55 start-page: 8062 year: 2010 ident: C6TA04445J-(cit12)/*[position()=1] publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2010.01.069 – volume: 150 start-page: A306 year: 2003 ident: C6TA04445J-(cit57)/*[position()=1] publication-title: J. Electrochem. Soc. doi: 10.1149/1.1545452 – volume: 334 start-page: 928 year: 2011 ident: C6TA04445J-(cit2)/*[position()=1] publication-title: Science doi: 10.1126/science.1212741 – volume: 4 start-page: 314 year: 2016 ident: C6TA04445J-(cit20)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C5TA08109B – volume: 231 start-page: 153 year: 2013 ident: C6TA04445J-(cit54)/*[position()=1] publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2012.12.102 – volume: 8 start-page: 4000 year: 2016 ident: C6TA04445J-(cit47)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b11327 – volume: 5 start-page: 518 year: 2013 ident: C6TA04445J-(cit11)/*[position()=1] publication-title: Nat. Chem. doi: 10.1038/nchem.1624 – volume: 8 start-page: 2663 year: 2015 ident: C6TA04445J-(cit17)/*[position()=1] publication-title: Nano Res. doi: 10.1007/s12274-015-0773-3 – volume: 11 start-page: 2644 year: 2011 ident: C6TA04445J-(cit21)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl200658a – volume: 5 start-page: 4759 year: 2014 ident: C6TA04445J-(cit34)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms5759 – volume: 10 start-page: 9333 year: 2015 ident: C6TA04445J-(cit45)/*[position()=1] publication-title: Int. J. Electrochem. Sci. doi: 10.1016/S1452-3981(23)11181-3 – volume: 4 start-page: 1331 year: 2013 ident: C6TA04445J-(cit37)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms2327 – volume: 7 start-page: 1450020 year: 2014 ident: C6TA04445J-(cit50)/*[position()=1] publication-title: Funct. Mater. Lett. doi: 10.1142/S1793604714500209 – volume: 134 start-page: 18510 year: 2012 ident: C6TA04445J-(cit22)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja308170k – volume: 1 start-page: 295 year: 2013 ident: C6TA04445J-(cit49)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C2TA00105E – volume: 11 start-page: 19 year: 2012 ident: C6TA04445J-(cit3)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/nmat3191 – volume: 21 start-page: 16603 year: 2011 ident: C6TA04445J-(cit25)/*[position()=1] publication-title: J. Mater. Chem. doi: 10.1039/c1jm12979a – volume: 137 start-page: 11542 year: 2015 ident: C6TA04445J-(cit31)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b04472 – volume: 50 start-page: 5904 year: 2011 ident: C6TA04445J-(cit15)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201100637 – volume: 54 start-page: 12886 year: 2015 ident: C6TA04445J-(cit40)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201506972 – volume: 8 start-page: 500 year: 2009 ident: C6TA04445J-(cit28)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/nmat2460 – volume: 11 start-page: 4288 year: 2011 ident: C6TA04445J-(cit13)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl202297p – volume: 19 start-page: 8621 year: 2013 ident: C6TA04445J-(cit58)/*[position()=1] publication-title: Chem.–Eur. J. doi: 10.1002/chem.201300886 – volume: 4 start-page: 5053 year: 2011 ident: C6TA04445J-(cit26)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/c1ee02256c – volume: 192 start-page: 346 year: 2016 ident: C6TA04445J-(cit52)/*[position()=1] publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2016.01.225 – volume: 116 start-page: 19653 year: 2012 ident: C6TA04445J-(cit36)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/jp304380j – volume: 196 start-page: 3655 year: 2011 ident: C6TA04445J-(cit24)/*[position()=1] publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2010.12.052 – volume: 6 start-page: 5682 year: 2015 ident: C6TA04445J-(cit39)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms6682 – volume: 158 start-page: 132 year: 2015 ident: C6TA04445J-(cit41)/*[position()=1] publication-title: Mater. Lett. doi: 10.1016/j.matlet.2015.06.003 |
SSID | ssj0000800699 |
Score | 2.4432168 |
Snippet | Lithium/sulfur (Li/S) batteries have become promising future power sources owing to the high energy density. Carbon materials are the most used sulfur hosts,... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 12858 |
SubjectTerms | adsorption Carbon Carbon nanotubes Cathodes Electric batteries electrical conductivity electrochemistry energy density High current Lithium lithium batteries manganese oxides nanoparticles Polysulfides Sulfur surface area |
Title | MnO modified carbon nanotubes as a sulfur host with enhanced performance in Li/S batteries |
URI | https://www.proquest.com/docview/1815699616 https://www.proquest.com/docview/1835568098 https://www.proquest.com/docview/2271802315 |
Volume | 4 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELe67QUeEF8T5UtG8IKqbE3cOMljtA2VaQMhOjHxUtmOowUhd8qSF_4H_mfu4tgJ2oYAqYpa27LS3C_23fnud4S8UbJQLEmSQIRMBQsMcxVRkQS8EGkpS1BgOSY4n37gy7PF8Xl8Ppn8HEUttY3cUz9uzCv5H6lCG8gVs2T_QbJ-UmiA7yBfuIKE4fpXMj41H7GUTVWiHqlELUGURphN00p9hRVkBEafl209w1wO63PV5sIe-l-OUgYqA8Y5HqrOZMe36SILr2utoODafzZTrlTc3iy3WT-up2MRtzmFnVve5WhhGK734Oe2LLKoLlq_Mxxqu_Icwn5ab_o9tYsWqmyI_9D0pcWWT1WwbKux5yIcey66BS6ax3PkMrXrrx632Sq3boVejIDI2Gi5hc01Tkd7N_y2nOjXNoY5Q15VxRuBBHnxt2H780GJQ-cW2YmSBE_9d_Kj1fsT77RD9Zp3NUn9vTvKW5btDxP8ruQMlstW7crKdOrL6j6510uQ5hZED8hEm4fk7oiN8hH5CnCiDk7Uwol6OFEBH2rhRBFOFOFEHZzoCE60MvSk2v9MPZgek7N3R6uDZdCX3ggUy1gTRFKC6sc0GOs6ZgXYvTzNZMil0AILBoCRG4LiqyTPuORMSlALoTMVXEdgCGm2S7bNxugnhIK-voBZEolkeaB8o-Oda5aVpSrAOImm5K17VmvV89JjeZTv6y4-gmXrA77Ku-d6PCWv_dhLy8Zy46hX7pGv4UXAEzBh9Ka9WofIjQTrUcj_NIYhK988S28fE0WJZU6Mp2QXZOpvZoDA09s6npE7w8vwnGw3datfgGLbyJc93H4B8e2kYg |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MnO+modified+carbon+nanotubes+as+a+sulfur+host+with+enhanced+performance+in+Li%2FS+batteries&rft.jtitle=Journal+of+materials+chemistry.+A%2C+Materials+for+energy+and+sustainability&rft.au=An%2C+Taihua&rft.au=Deng%2C+Dingrong&rft.au=Lei%2C+Ming&rft.au=Wu%2C+Qi-Hui&rft.date=2016-01-01&rft.issn=2050-7488&rft.eissn=2050-7496&rft.volume=4&rft.issue=33&rft.spage=12858&rft.epage=12864&rft_id=info:doi/10.1039%2Fc6ta04445j&rft.externalDocID=c6ta04445j |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7488&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7488&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7488&client=summon |