MnO modified carbon nanotubes as a sulfur host with enhanced performance in Li/S batteries

Lithium/sulfur (Li/S) batteries have become promising future power sources owing to the high energy density. Carbon materials are the most used sulfur hosts, but their ability to adsorb polysulfide intermediates has been unreliable, thus recently many researchers have turned their interest to metal...

Full description

Saved in:
Bibliographic Details
Published inJournal of materials chemistry. A, Materials for energy and sustainability Vol. 4; no. 33; pp. 12858 - 12864
Main Authors An, Taihua, Deng, Dingrong, Lei, Ming, Wu, Qi-Hui, Tian, Zhaowu, Zheng, Mingsen, Dong, Quanfeng
Format Journal Article
LanguageEnglish
Published 01.01.2016
Subjects
Online AccessGet full text
ISSN2050-7488
2050-7496
2050-7496
DOI10.1039/c6ta04445j

Cover

Loading…
Abstract Lithium/sulfur (Li/S) batteries have become promising future power sources owing to the high energy density. Carbon materials are the most used sulfur hosts, but their ability to adsorb polysulfide intermediates has been unreliable, thus recently many researchers have turned their interest to metal oxide materials. Here, we manufactured a composite of carbon nanotubes modified with manganese oxide nanoparticles (CNTs/MnO) as a sulfur host material. In Li/S cells, the CNTs/MnOS cathode showed a rather better cycling stability over 100 cycles than a CNTsS cathode with the same carbon/sulfur weight ratio of about 1:8. In addition, the CNTs/MnOS cathode presented an initial discharge capacity of 716 mA h g 1 at a high current density of 5.0C, in contrast to the result of only 415 mA h g 1 with the CNTsS cathode. Physical and electrochemical characterization proved that the MnO modification does not vary the surface area of the CNTs but lowers their electrical conductivity. By carefully comparing the differences in the 1 st discharge capacities of the two cathodes, the MnO modification could obviously improve the initial utilization of S especially at high current densities. The improved electrochemical characteristics of the CNTs/MnOS electrode can be attributed to its properties of a stronger adsorption capability for polysulfides. MnO modified CNTs are applied as an efficient sulfur host to improve the performance of Li/S batteries due to the strong polysulfide adsorbability.
AbstractList Lithium/sulfur (Li/S) batteries have become promising future power sources owing to the high energy density. Carbon materials are the most used sulfur hosts, but their ability to adsorb polysulfide intermediates has been unreliable, thus recently many researchers have turned their interest to metal oxide materials. Here, we manufactured a composite of carbon nanotubes modified with manganese oxide nanoparticles (CNTs/MnO) as a sulfur host material. In Li/S cells, the CNTs/MnO–S cathode showed a rather better cycling stability over 100 cycles than a CNTs–S cathode with the same carbon/sulfur weight ratio of about 1 : 8. In addition, the CNTs/MnO–S cathode presented an initial discharge capacity of 716 mA h g⁻¹ at a high current density of 5.0C, in contrast to the result of only 415 mA h g⁻¹ with the CNTs–S cathode. Physical and electrochemical characterization proved that the MnO modification does not vary the surface area of the CNTs but lowers their electrical conductivity. By carefully comparing the differences in the 1ˢᵗ discharge capacities of the two cathodes, the MnO modification could obviously improve the initial utilization of S especially at high current densities. The improved electrochemical characteristics of the CNTs/MnO–S electrode can be attributed to its properties of a stronger adsorption capability for polysulfides.
Lithium/sulfur (Li/S) batteries have become promising future power sources owing to the high energy density. Carbon materials are the most used sulfur hosts, but their ability to adsorb polysulfide intermediates has been unreliable, thus recently many researchers have turned their interest to metal oxide materials. Here, we manufactured a composite of carbon nanotubes modified with manganese oxide nanoparticles (CNTs/MnO) as a sulfur host material. In Li/S cells, the CNTs/MnOS cathode showed a rather better cycling stability over 100 cycles than a CNTsS cathode with the same carbon/sulfur weight ratio of about 1:8. In addition, the CNTs/MnOS cathode presented an initial discharge capacity of 716 mA h g 1 at a high current density of 5.0C, in contrast to the result of only 415 mA h g 1 with the CNTsS cathode. Physical and electrochemical characterization proved that the MnO modification does not vary the surface area of the CNTs but lowers their electrical conductivity. By carefully comparing the differences in the 1 st discharge capacities of the two cathodes, the MnO modification could obviously improve the initial utilization of S especially at high current densities. The improved electrochemical characteristics of the CNTs/MnOS electrode can be attributed to its properties of a stronger adsorption capability for polysulfides. MnO modified CNTs are applied as an efficient sulfur host to improve the performance of Li/S batteries due to the strong polysulfide adsorbability.
Lithium/sulfur (Li/S) batteries have become promising future power sources owing to the high energy density. Carbon materials are the most used sulfur hosts, but their ability to adsorb polysulfide intermediates has been unreliable, thus recently many researchers have turned their interest to metal oxide materials. Here, we manufactured a composite of carbon nanotubes modified with manganese oxide nanoparticles (CNTs/MnO) as a sulfur host material. In Li/S cells, the CNTs/MnO-S cathode showed a rather better cycling stability over 100 cycles than a CNTs-S cathode with the same carbon/sulfur weight ratio of about 1 : 8. In addition, the CNTs/MnO-S cathode presented an initial discharge capacity of 716 mA h g-1 at a high current density of 5.0C, in contrast to the result of only 415 mA h g-1 with the CNTs-S cathode. Physical and electrochemical characterization proved that the MnO modification does not vary the surface area of the CNTs but lowers their electrical conductivity. By carefully comparing the differences in the 1st discharge capacities of the two cathodes, the MnO modification could obviously improve the initial utilization of S especially at high current densities. The improved electrochemical characteristics of the CNTs/MnO-S electrode can be attributed to its properties of a stronger adsorption capability for polysulfides.
Lithium/sulfur (Li/S) batteries have become promising future power sources owing to the high energy density. Carbon materials are the most used sulfur hosts, but their ability to adsorb polysulfide intermediates has been unreliable, thus recently many researchers have turned their interest to metal oxide materials. Here, we manufactured a composite of carbon nanotubes modified with manganese oxide nanoparticles (CNTs/MnO) as a sulfur host material. In Li/S cells, the CNTs/MnO–S cathode showed a rather better cycling stability over 100 cycles than a CNTs–S cathode with the same carbon/sulfur weight ratio of about 1 : 8. In addition, the CNTs/MnO–S cathode presented an initial discharge capacity of 716 mA h g −1 at a high current density of 5.0C, in contrast to the result of only 415 mA h g −1 with the CNTs–S cathode. Physical and electrochemical characterization proved that the MnO modification does not vary the surface area of the CNTs but lowers their electrical conductivity. By carefully comparing the differences in the 1 st discharge capacities of the two cathodes, the MnO modification could obviously improve the initial utilization of S especially at high current densities. The improved electrochemical characteristics of the CNTs/MnO–S electrode can be attributed to its properties of a stronger adsorption capability for polysulfides.
Author Wu, Qi-Hui
Deng, Dingrong
Tian, Zhaowu
Lei, Ming
Zheng, Mingsen
Dong, Quanfeng
An, Taihua
AuthorAffiliation Department of Chemistry
College of Chemical Engineering and Materials Science
College of Chemistry and Chemical Engineering
Xiamen University Collaborative Innovation Centre of Chemistry for Energy Materials
State Key Lab. of Physical Chemistry of Solid Surfaces
Quanzhou Normal University
Department of Materials Chemistry
AuthorAffiliation_xml – sequence: 0
  name: Xiamen University Collaborative Innovation Centre of Chemistry for Energy Materials
– sequence: 0
  name: Department of Chemistry
– sequence: 0
  name: College of Chemistry and Chemical Engineering
– sequence: 0
  name: Department of Materials Chemistry
– sequence: 0
  name: State Key Lab. of Physical Chemistry of Solid Surfaces
– sequence: 0
  name: College of Chemical Engineering and Materials Science
– sequence: 0
  name: Quanzhou Normal University
Author_xml – sequence: 1
  givenname: Taihua
  surname: An
  fullname: An, Taihua
– sequence: 2
  givenname: Dingrong
  surname: Deng
  fullname: Deng, Dingrong
– sequence: 3
  givenname: Ming
  surname: Lei
  fullname: Lei, Ming
– sequence: 4
  givenname: Qi-Hui
  surname: Wu
  fullname: Wu, Qi-Hui
– sequence: 5
  givenname: Zhaowu
  surname: Tian
  fullname: Tian, Zhaowu
– sequence: 6
  givenname: Mingsen
  surname: Zheng
  fullname: Zheng, Mingsen
– sequence: 7
  givenname: Quanfeng
  surname: Dong
  fullname: Dong, Quanfeng
BookMark eNqNkU1LAzEQhoMoWGsv3oUcRahNNpts9liKn1R6sF68LEk6S1O2SU2yiP_erZUKIugwMDPMM8Mw7wk6dN4BQmeUXFHCypERSZE8z_nqAPUywsmwyEtxuM-lPEaDGFekM0mIKMseenl0M7z2C1tbWGCjgvYOO-V8ajVErDrHsW3qNuCljwm_2bTE4JbKmY7fQKh9WG8LbB2e2tET1iolCBbiKTqqVRNh8BX76Pnmej65G05nt_eT8XRoWMnSMNOaSsqAkhw4WxAphCw1FVqBygouCs5oVjCjRSm0YFoTsW1KJSCTVAPro4vd3k3wry3EVK1tNNA0yoFvY5VlBZUkY5T_iVLJOBeSlPIfKOXdB7tbOpTsUBN8jAHqytikkvUuBWWbipJqq081EfPxpz4P3cjlj5FNsGsV3n-Hz3dwiGbPfYvNPgBeRppC
CitedBy_id crossref_primary_10_1039_D3CP02857G
crossref_primary_10_1016_j_carbon_2024_119403
crossref_primary_10_1016_j_cej_2024_149825
crossref_primary_10_1016_j_jelechem_2021_115721
crossref_primary_10_1002_eem2_12187
crossref_primary_10_1016_j_jallcom_2019_152723
crossref_primary_10_1021_jacs_8b00411
crossref_primary_10_1073_pnas_2000128117
crossref_primary_10_1016_j_electacta_2021_138371
crossref_primary_10_1039_C6CP07650E
crossref_primary_10_1021_acs_jpcc_9b12033
crossref_primary_10_1039_C7TA08309B
crossref_primary_10_1007_s12274_022_4486_0
crossref_primary_10_1007_s10008_017_3818_6
crossref_primary_10_1039_C9NJ01017C
crossref_primary_10_1021_acsnano_8b05534
crossref_primary_10_1021_acsnano_7b06061
crossref_primary_10_1557_jmr_2017_282
crossref_primary_10_1016_j_cej_2022_135945
crossref_primary_10_1002_celc_202001310
crossref_primary_10_1016_j_ensm_2021_08_023
crossref_primary_10_1002_adfm_201707536
crossref_primary_10_1016_j_apsusc_2024_160625
crossref_primary_10_1016_j_ccr_2018_04_015
crossref_primary_10_1002_adfm_201707411
crossref_primary_10_1002_aenm_202001304
crossref_primary_10_1002_slct_202101462
crossref_primary_10_1039_D1RA06568H
crossref_primary_10_1016_j_jcis_2024_04_193
crossref_primary_10_1021_acs_jpcc_0c02324
crossref_primary_10_1016_j_jallcom_2020_153879
crossref_primary_10_1021_acsami_8b00925
crossref_primary_10_1142_S1793604718300074
crossref_primary_10_1016_j_jmst_2021_12_048
crossref_primary_10_1007_s42452_019_0492_6
crossref_primary_10_1016_j_cej_2024_152791
crossref_primary_10_1016_j_ensm_2019_05_013
crossref_primary_10_1021_acs_jpcc_8b10736
crossref_primary_10_1016_j_nanoen_2017_01_007
crossref_primary_10_1039_C8TA04214D
crossref_primary_10_1007_s12274_020_3181_2
crossref_primary_10_1039_C6TA07221F
crossref_primary_10_1016_j_carbon_2019_04_022
crossref_primary_10_1149_1945_7111_ab6bc0
crossref_primary_10_3390_batteries2040033
crossref_primary_10_1016_j_jmat_2022_07_003
crossref_primary_10_1002_smtd_202100066
crossref_primary_10_1002_smll_202103535
crossref_primary_10_1021_acsnano_7b01945
crossref_primary_10_1016_S1872_2067_22_64168_8
crossref_primary_10_1002_chem_202303507
crossref_primary_10_1021_acsnano_7b05869
crossref_primary_10_1016_j_cej_2020_124548
crossref_primary_10_1039_C7TA01675A
crossref_primary_10_1007_s12274_018_2203_9
crossref_primary_10_1007_s12274_022_5156_y
crossref_primary_10_1016_j_jallcom_2018_03_110
crossref_primary_10_1016_j_apsusc_2020_145286
crossref_primary_10_1021_acsnano_2c05029
crossref_primary_10_1016_j_cej_2020_125670
crossref_primary_10_1016_j_envpol_2021_117864
crossref_primary_10_1002_batt_202000143
crossref_primary_10_1016_j_jechem_2020_07_007
crossref_primary_10_1039_C9TA05347F
crossref_primary_10_1002_smll_202207411
crossref_primary_10_1007_s10853_019_03871_4
crossref_primary_10_1002_slct_202002641
crossref_primary_10_1039_C9TA05517G
crossref_primary_10_1002_batt_202100156
crossref_primary_10_1002_smll_202106144
crossref_primary_10_1002_nano_202000157
crossref_primary_10_20964_2017_12_32
crossref_primary_10_1021_acsami_1c00974
crossref_primary_10_1039_C8RA03793K
crossref_primary_10_1149_2_0691809jes
crossref_primary_10_1016_j_jpowsour_2021_230885
crossref_primary_10_1002_slct_202202879
crossref_primary_10_1016_j_cej_2020_126075
crossref_primary_10_1016_j_electacta_2019_134678
Cites_doi 10.1021/nl402793z
10.1016/j.jallcom.2015.07.264
10.1039/C6EE00104A
10.1039/C5TA08999A
10.1039/c2cp40141j
10.1016/j.jpowsour.2014.01.093
10.1038/ncomms1293
10.1039/b925751a
10.1021/ja409508q
10.1038/ncomms4943
10.1021/ar300179v
10.1016/j.carbon.2007.11.007
10.1021/cm5044667
10.1002/adma.201103392
10.1016/S1388-2481(02)00358-2
10.1016/S1388-2481(01)00203-X
10.1021/acs.jpcc.5b08934
10.1002/aenm.201300253
10.1149/1.1806394
10.1039/c2jm30632h
10.1021/nn501308m
10.1039/c4ta00234b
10.1039/c002639e
10.1021/nl502331f
10.1021/ic00274a017
10.1039/C5TA08991C
10.1038/srep08763
10.1021/acsnano.5b07458
10.1002/anie.201107817
10.1021/ar3001348
10.1016/j.electacta.2010.01.069
10.1149/1.1545452
10.1126/science.1212741
10.1039/C5TA08109B
10.1016/j.jpowsour.2012.12.102
10.1021/acsami.5b11327
10.1038/nchem.1624
10.1007/s12274-015-0773-3
10.1021/nl200658a
10.1038/ncomms5759
10.1016/S1452-3981(23)11181-3
10.1038/ncomms2327
10.1142/S1793604714500209
10.1021/ja308170k
10.1039/C2TA00105E
10.1038/nmat3191
10.1039/c1jm12979a
10.1021/jacs.5b04472
10.1002/anie.201100637
10.1002/anie.201506972
10.1038/nmat2460
10.1021/nl202297p
10.1002/chem.201300886
10.1039/c1ee02256c
10.1016/j.electacta.2016.01.225
10.1021/jp304380j
10.1016/j.jpowsour.2010.12.052
10.1038/ncomms6682
10.1016/j.matlet.2015.06.003
ContentType Journal Article
DBID AAYXX
CITATION
7ST
C1K
SOI
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
7S9
L.6
DOI 10.1039/c6ta04445j
DatabaseName CrossRef
Environment Abstracts
Environmental Sciences and Pollution Management
Environment Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Environment Abstracts
Environmental Sciences and Pollution Management
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

Environment Abstracts
Materials Research Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2050-7496
EndPage 12864
ExternalDocumentID 10_1039_C6TA04445J
c6ta04445j
GroupedDBID -JG
0-7
0R~
705
AAEMU
AAIWI
AAJAE
AANOJ
AAWGC
AAXHV
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRAH
AFRDS
AFVBQ
AGEGJ
AGRSR
AGSTE
AHGCF
ALMA_UNASSIGNED_HOLDINGS
ANBJS
ANUXI
APEMP
ASKNT
AUDPV
AUNWK
BLAPV
BSQNT
C6K
EBS
ECGLT
EE0
EF-
EJD
GGIMP
GNO
H13
HZ~
H~N
J3I
O-G
O9-
R7C
RAOCF
RCNCU
RNS
ROL
RPMJG
RRC
RSCEA
SKA
SKF
SLH
UCJ
AAYXX
AFRZK
AKMSF
ALUYA
CITATION
J3G
J3H
7ST
C1K
SOI
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
7S9
L.6
ID FETCH-LOGICAL-c393t-2bb1813e104e53d086689b16baea27567531273cb696b63bb0616ba8a6e281be3
ISSN 2050-7488
2050-7496
IngestDate Thu Jul 10 22:46:14 EDT 2025
Fri Jul 11 12:17:17 EDT 2025
Thu Jul 10 18:49:35 EDT 2025
Tue Jul 01 03:13:30 EDT 2025
Thu Apr 24 23:08:02 EDT 2025
Tue Dec 17 20:59:50 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 33
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c393t-2bb1813e104e53d086689b16baea27567531273cb696b63bb0616ba8a6e281be3
Notes 10.1039/c6ta04445j
Electronic supplementary information (ESI) available. See DOI
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1815699616
PQPubID 23462
PageCount 7
ParticipantIDs proquest_miscellaneous_2271802315
proquest_miscellaneous_1835568098
crossref_citationtrail_10_1039_C6TA04445J
crossref_primary_10_1039_C6TA04445J
proquest_miscellaneous_1815699616
rsc_primary_c6ta04445j
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-01-01
PublicationDateYYYYMMDD 2016-01-01
PublicationDate_xml – month: 01
  year: 2016
  text: 2016-01-01
  day: 01
PublicationDecade 2010
PublicationTitle Journal of materials chemistry. A, Materials for energy and sustainability
PublicationYear 2016
References Tao (C6TA04445J-(cit35)/*[position()=1]) 2014; 14
Dubois (C6TA04445J-(cit55)/*[position()=1]) 1988; 27
Su (C6TA04445J-(cit58)/*[position()=1]) 2013; 19
Al Salem (C6TA04445J-(cit31)/*[position()=1]) 2015; 137
Jayaprakash (C6TA04445J-(cit15)/*[position()=1]) 2011; 50
Wang (C6TA04445J-(cit21)/*[position()=1]) 2011; 11
Bruce (C6TA04445J-(cit3)/*[position()=1]) 2012; 11
Shan (C6TA04445J-(cit20)/*[position()=1]) 2016; 4
Xin (C6TA04445J-(cit22)/*[position()=1]) 2012; 134
Lee (C6TA04445J-(cit41)/*[position()=1]) 2015; 158
Manthiram (C6TA04445J-(cit6)/*[position()=1]) 2012; 46
Babu (C6TA04445J-(cit32)/*[position()=1]) 2015; 5
Chen (C6TA04445J-(cit23)/*[position()=1]) 2012; 14
Wang (C6TA04445J-(cit29)/*[position()=1]) 2008; 46
Evers (C6TA04445J-(cit36)/*[position()=1]) 2012; 116
Zhang (C6TA04445J-(cit27)/*[position()=1]) 2010; 3
Yao (C6TA04445J-(cit33)/*[position()=1]) 2014; 5
Pang (C6TA04445J-(cit34)/*[position()=1]) 2014; 5
Mikhaylik (C6TA04445J-(cit57)/*[position()=1]) 2003; 150
Liang (C6TA04445J-(cit38)/*[position()=1]) 2014; 8
Song (C6TA04445J-(cit18)/*[position()=1]) 2013; 13
Liang (C6TA04445J-(cit24)/*[position()=1]) 2011; 196
Mikhaylik (C6TA04445J-(cit4)/*[position()=1]) 2004; 151
Chen (C6TA04445J-(cit7)/*[position()=1]) 2015; 27
Yu (C6TA04445J-(cit44)/*[position()=1]) 2014; 2
Li (C6TA04445J-(cit25)/*[position()=1]) 2011; 21
Cheng (C6TA04445J-(cit50)/*[position()=1]) 2014; 7
Chen (C6TA04445J-(cit12)/*[position()=1]) 2010; 55
Qian (C6TA04445J-(cit52)/*[position()=1]) 2016; 192
Evers (C6TA04445J-(cit5)/*[position()=1]) 2012; 46
Evans (C6TA04445J-(cit56)/*[position()=1]) 2001; 3
Guo (C6TA04445J-(cit13)/*[position()=1]) 2011; 11
Ji (C6TA04445J-(cit26)/*[position()=1]) 2011; 4
Tang (C6TA04445J-(cit48)/*[position()=1]) 2015; 650
Wang (C6TA04445J-(cit8)/*[position()=1]) 2012; 22
Wang (C6TA04445J-(cit53)/*[position()=1]) 2016; 4
Dunn (C6TA04445J-(cit2)/*[position()=1]) 2011; 334
Liang (C6TA04445J-(cit39)/*[position()=1]) 2015; 6
Wang (C6TA04445J-(cit19)/*[position()=1]) 2014; 256
Kim (C6TA04445J-(cit43)/*[position()=1]) 2013; 3
Xiao (C6TA04445J-(cit9)/*[position()=1]) 2012; 24
Ye (C6TA04445J-(cit14)/*[position()=1]) 2016; 4
Liang (C6TA04445J-(cit45)/*[position()=1]) 2015; 10
Ji (C6TA04445J-(cit51)/*[position()=1]) 2011; 2
Zhang (C6TA04445J-(cit54)/*[position()=1]) 2013; 231
Chung (C6TA04445J-(cit11)/*[position()=1]) 2013; 5
Zhou (C6TA04445J-(cit10)/*[position()=1]) 2013; 135
Schuster (C6TA04445J-(cit16)/*[position()=1]) 2012; 51
Zhang (C6TA04445J-(cit46)/*[position()=1]) 2015; 119
Zang (C6TA04445J-(cit17)/*[position()=1]) 2015; 8
Ji (C6TA04445J-(cit1)/*[position()=1]) 2010; 20
Seh (C6TA04445J-(cit37)/*[position()=1]) 2013; 4
Li (C6TA04445J-(cit40)/*[position()=1]) 2015; 54
Li (C6TA04445J-(cit59)/*[position()=1]) 2016; 9
Ji (C6TA04445J-(cit28)/*[position()=1]) 2009; 8
Liang (C6TA04445J-(cit42)/*[position()=1]) 2016; 10
Zhang (C6TA04445J-(cit49)/*[position()=1]) 2013; 1
Ponraj (C6TA04445J-(cit47)/*[position()=1]) 2016; 8
Wang (C6TA04445J-(cit30)/*[position()=1]) 2002; 4
References_xml – volume: 13
  start-page: 5891
  year: 2013
  ident: C6TA04445J-(cit18)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl402793z
– volume: 650
  start-page: 351
  year: 2015
  ident: C6TA04445J-(cit48)/*[position()=1]
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2015.07.264
– volume: 9
  start-page: 1998
  year: 2016
  ident: C6TA04445J-(cit59)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C6EE00104A
– volume: 4
  start-page: 1653
  year: 2016
  ident: C6TA04445J-(cit53)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA08999A
– volume: 14
  start-page: 5376
  year: 2012
  ident: C6TA04445J-(cit23)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c2cp40141j
– volume: 256
  start-page: 361
  year: 2014
  ident: C6TA04445J-(cit19)/*[position()=1]
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2014.01.093
– volume: 2
  start-page: 325
  year: 2011
  ident: C6TA04445J-(cit51)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms1293
– volume: 20
  start-page: 9821
  year: 2010
  ident: C6TA04445J-(cit1)/*[position()=1]
  publication-title: J. Mater. Chem.
  doi: 10.1039/b925751a
– volume: 135
  start-page: 16736
  year: 2013
  ident: C6TA04445J-(cit10)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja409508q
– volume: 5
  start-page: 3943
  year: 2014
  ident: C6TA04445J-(cit33)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms4943
– volume: 46
  start-page: 1125
  year: 2012
  ident: C6TA04445J-(cit6)/*[position()=1]
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar300179v
– volume: 46
  start-page: 229
  year: 2008
  ident: C6TA04445J-(cit29)/*[position()=1]
  publication-title: Carbon
  doi: 10.1016/j.carbon.2007.11.007
– volume: 27
  start-page: 2048
  year: 2015
  ident: C6TA04445J-(cit7)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/cm5044667
– volume: 24
  start-page: 1176
  year: 2012
  ident: C6TA04445J-(cit9)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201103392
– volume: 4
  start-page: 499
  year: 2002
  ident: C6TA04445J-(cit30)/*[position()=1]
  publication-title: Electrochem. Commun.
  doi: 10.1016/S1388-2481(02)00358-2
– volume: 3
  start-page: 514
  year: 2001
  ident: C6TA04445J-(cit56)/*[position()=1]
  publication-title: Electrochem. Commun.
  doi: 10.1016/S1388-2481(01)00203-X
– volume: 119
  start-page: 28721
  year: 2015
  ident: C6TA04445J-(cit46)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.5b08934
– volume: 3
  start-page: 1308
  year: 2013
  ident: C6TA04445J-(cit43)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201300253
– volume: 151
  start-page: A1969
  year: 2004
  ident: C6TA04445J-(cit4)/*[position()=1]
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1806394
– volume: 22
  start-page: 22077
  year: 2012
  ident: C6TA04445J-(cit8)/*[position()=1]
  publication-title: J. Mater. Chem.
  doi: 10.1039/c2jm30632h
– volume: 8
  start-page: 5249
  year: 2014
  ident: C6TA04445J-(cit38)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn501308m
– volume: 2
  start-page: 7360
  year: 2014
  ident: C6TA04445J-(cit44)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c4ta00234b
– volume: 3
  start-page: 1531
  year: 2010
  ident: C6TA04445J-(cit27)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c002639e
– volume: 14
  start-page: 5288
  year: 2014
  ident: C6TA04445J-(cit35)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl502331f
– volume: 27
  start-page: 73
  year: 1988
  ident: C6TA04445J-(cit55)/*[position()=1]
  publication-title: Inorg. Chem.
  doi: 10.1021/ic00274a017
– volume: 4
  start-page: 775
  year: 2016
  ident: C6TA04445J-(cit14)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA08991C
– volume: 5
  start-page: 8763
  year: 2015
  ident: C6TA04445J-(cit32)/*[position()=1]
  publication-title: Sci. Rep.
  doi: 10.1038/srep08763
– volume: 10
  start-page: 4192
  year: 2016
  ident: C6TA04445J-(cit42)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b07458
– volume: 51
  start-page: 3591
  year: 2012
  ident: C6TA04445J-(cit16)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201107817
– volume: 46
  start-page: 1135
  year: 2012
  ident: C6TA04445J-(cit5)/*[position()=1]
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar3001348
– volume: 55
  start-page: 8062
  year: 2010
  ident: C6TA04445J-(cit12)/*[position()=1]
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2010.01.069
– volume: 150
  start-page: A306
  year: 2003
  ident: C6TA04445J-(cit57)/*[position()=1]
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1545452
– volume: 334
  start-page: 928
  year: 2011
  ident: C6TA04445J-(cit2)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1212741
– volume: 4
  start-page: 314
  year: 2016
  ident: C6TA04445J-(cit20)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA08109B
– volume: 231
  start-page: 153
  year: 2013
  ident: C6TA04445J-(cit54)/*[position()=1]
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2012.12.102
– volume: 8
  start-page: 4000
  year: 2016
  ident: C6TA04445J-(cit47)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b11327
– volume: 5
  start-page: 518
  year: 2013
  ident: C6TA04445J-(cit11)/*[position()=1]
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.1624
– volume: 8
  start-page: 2663
  year: 2015
  ident: C6TA04445J-(cit17)/*[position()=1]
  publication-title: Nano Res.
  doi: 10.1007/s12274-015-0773-3
– volume: 11
  start-page: 2644
  year: 2011
  ident: C6TA04445J-(cit21)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl200658a
– volume: 5
  start-page: 4759
  year: 2014
  ident: C6TA04445J-(cit34)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms5759
– volume: 10
  start-page: 9333
  year: 2015
  ident: C6TA04445J-(cit45)/*[position()=1]
  publication-title: Int. J. Electrochem. Sci.
  doi: 10.1016/S1452-3981(23)11181-3
– volume: 4
  start-page: 1331
  year: 2013
  ident: C6TA04445J-(cit37)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms2327
– volume: 7
  start-page: 1450020
  year: 2014
  ident: C6TA04445J-(cit50)/*[position()=1]
  publication-title: Funct. Mater. Lett.
  doi: 10.1142/S1793604714500209
– volume: 134
  start-page: 18510
  year: 2012
  ident: C6TA04445J-(cit22)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja308170k
– volume: 1
  start-page: 295
  year: 2013
  ident: C6TA04445J-(cit49)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C2TA00105E
– volume: 11
  start-page: 19
  year: 2012
  ident: C6TA04445J-(cit3)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3191
– volume: 21
  start-page: 16603
  year: 2011
  ident: C6TA04445J-(cit25)/*[position()=1]
  publication-title: J. Mater. Chem.
  doi: 10.1039/c1jm12979a
– volume: 137
  start-page: 11542
  year: 2015
  ident: C6TA04445J-(cit31)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b04472
– volume: 50
  start-page: 5904
  year: 2011
  ident: C6TA04445J-(cit15)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201100637
– volume: 54
  start-page: 12886
  year: 2015
  ident: C6TA04445J-(cit40)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201506972
– volume: 8
  start-page: 500
  year: 2009
  ident: C6TA04445J-(cit28)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2460
– volume: 11
  start-page: 4288
  year: 2011
  ident: C6TA04445J-(cit13)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl202297p
– volume: 19
  start-page: 8621
  year: 2013
  ident: C6TA04445J-(cit58)/*[position()=1]
  publication-title: Chem.–Eur. J.
  doi: 10.1002/chem.201300886
– volume: 4
  start-page: 5053
  year: 2011
  ident: C6TA04445J-(cit26)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c1ee02256c
– volume: 192
  start-page: 346
  year: 2016
  ident: C6TA04445J-(cit52)/*[position()=1]
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2016.01.225
– volume: 116
  start-page: 19653
  year: 2012
  ident: C6TA04445J-(cit36)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp304380j
– volume: 196
  start-page: 3655
  year: 2011
  ident: C6TA04445J-(cit24)/*[position()=1]
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2010.12.052
– volume: 6
  start-page: 5682
  year: 2015
  ident: C6TA04445J-(cit39)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms6682
– volume: 158
  start-page: 132
  year: 2015
  ident: C6TA04445J-(cit41)/*[position()=1]
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2015.06.003
SSID ssj0000800699
Score 2.4432168
Snippet Lithium/sulfur (Li/S) batteries have become promising future power sources owing to the high energy density. Carbon materials are the most used sulfur hosts,...
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 12858
SubjectTerms adsorption
Carbon
Carbon nanotubes
Cathodes
Electric batteries
electrical conductivity
electrochemistry
energy density
High current
Lithium
lithium batteries
manganese oxides
nanoparticles
Polysulfides
Sulfur
surface area
Title MnO modified carbon nanotubes as a sulfur host with enhanced performance in Li/S batteries
URI https://www.proquest.com/docview/1815699616
https://www.proquest.com/docview/1835568098
https://www.proquest.com/docview/2271802315
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELe67QUeEF8T5UtG8IKqbE3cOMljtA2VaQMhOjHxUtmOowUhd8qSF_4H_mfu4tgJ2oYAqYpa27LS3C_23fnud4S8UbJQLEmSQIRMBQsMcxVRkQS8EGkpS1BgOSY4n37gy7PF8Xl8Ppn8HEUttY3cUz9uzCv5H6lCG8gVs2T_QbJ-UmiA7yBfuIKE4fpXMj41H7GUTVWiHqlELUGURphN00p9hRVkBEafl209w1wO63PV5sIe-l-OUgYqA8Y5HqrOZMe36SILr2utoODafzZTrlTc3iy3WT-up2MRtzmFnVve5WhhGK734Oe2LLKoLlq_Mxxqu_Icwn5ab_o9tYsWqmyI_9D0pcWWT1WwbKux5yIcey66BS6ax3PkMrXrrx632Sq3boVejIDI2Gi5hc01Tkd7N_y2nOjXNoY5Q15VxRuBBHnxt2H780GJQ-cW2YmSBE_9d_Kj1fsT77RD9Zp3NUn9vTvKW5btDxP8ruQMlstW7crKdOrL6j6510uQ5hZED8hEm4fk7oiN8hH5CnCiDk7Uwol6OFEBH2rhRBFOFOFEHZzoCE60MvSk2v9MPZgek7N3R6uDZdCX3ggUy1gTRFKC6sc0GOs6ZgXYvTzNZMil0AILBoCRG4LiqyTPuORMSlALoTMVXEdgCGm2S7bNxugnhIK-voBZEolkeaB8o-Oda5aVpSrAOImm5K17VmvV89JjeZTv6y4-gmXrA77Ku-d6PCWv_dhLy8Zy46hX7pGv4UXAEzBh9Ka9WofIjQTrUcj_NIYhK988S28fE0WJZU6Mp2QXZOpvZoDA09s6npE7w8vwnGw3datfgGLbyJc93H4B8e2kYg
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MnO+modified+carbon+nanotubes+as+a+sulfur+host+with+enhanced+performance+in+Li%2FS+batteries&rft.jtitle=Journal+of+materials+chemistry.+A%2C+Materials+for+energy+and+sustainability&rft.au=An%2C+Taihua&rft.au=Deng%2C+Dingrong&rft.au=Lei%2C+Ming&rft.au=Wu%2C+Qi-Hui&rft.date=2016-01-01&rft.issn=2050-7488&rft.eissn=2050-7496&rft.volume=4&rft.issue=33&rft.spage=12858&rft.epage=12864&rft_id=info:doi/10.1039%2Fc6ta04445j&rft.externalDocID=c6ta04445j
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7488&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7488&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7488&client=summon