High-resolution modelling of the grass swale response to runoff inflows with Mike SHE

•Grass swale outflows generated by experiments were modelled in high-res by Mike SHE.•The model displayed low sensitivity to soil characteristics at high swale flows.•Low sensitivity to initial soil moisture weakens the model performance for dry AMCs. The feasibility of simulating the hydrological r...

Full description

Saved in:
Bibliographic Details
Published inJournal of hydrology (Amsterdam) Vol. 562; pp. 411 - 422
Main Authors Rujner, Hendrik, Leonhardt, Günther, Marsalek, Jiri, Viklander, Maria
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.07.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Grass swale outflows generated by experiments were modelled in high-res by Mike SHE.•The model displayed low sensitivity to soil characteristics at high swale flows.•Low sensitivity to initial soil moisture weakens the model performance for dry AMCs. The feasibility of simulating the hydrological response of a grass swale to runoff inflows was examined using the hydrological model Mike SHE and the available input data from 12 irrigation events mimicking runoff from block rainfalls. The test swale channel had a trapezoidal cross-section, bottom slope of 1.5%, length of 30 m, and was built in loamy fine sand. The irrigation events consisted in releasing two equal constant inflows to the swale: a concentrated longitudinal flow at the upstream end and a distributed lateral inflow along the swale side slope adjacent to the contributing drainage area. The total inflows approximated runoff from two events with return periods of 2 months and 3 years, respectively, for durations of 30 min. Irrigation experiments were done for two states of the initial soil moisture, dry or wet antecedent moisture conditions (AMC). Mike SHE has been extensively used on catchments of various sizes, but rarely for small stormwater management facilities and their detailed topography investigated in this study. The latter application required high spatial and temporal resolutions, with computational cells of 0.2 × 0.2 m and time steps as short as 0.6 s to avoid computational instabilities. For dominant hydrological processes, the following computational options in Mike SHE were chosen: Soil infiltration – the van Genuchten equation, unsaturated zone flow – the one-dimensional Richards equation, and overland flow – the diffusive wave approximation of the St. Venant equations. For study purposes, the model was calibrated for single events representing one of four combinations of low and high inflows, and dry and wet AMC, and then applied to the remaining 11 events. This was complemented by calibration for two events, representing high inflow on wet AMC and low inflow in dry AMC. The goodness of fit was statistically assessed for observed and simulated peak flows, hydrograph volumes, Nash-Sutcliffe model efficiencies (NSE), and soil water content (SWC) in swale soil layers. The best fit (NSE > 0.8) was obtained for high inflows and wet AMC (i.e., when the primary swale function is flow conveyance); the least fit was noted for low inflows and dry AMC, when the primary swale function is flow attenuation. Furthermore, this observation indicates the overall importance of correct modelling of the soil infiltration. The effects of spatial variation of SWC on the swale discharge hydrograph could not be confirmed from simulation results, but high topographical accuracy was beneficial for reproducing well the locations of the observed water ponding. No significant increases in simulated SWC at 0.3 m or greater depths were noted, which agreed with field observations. Overall, the results indicated that Mike SHE was effective in process-oriented small-scale modelling of grass swale flow hydrographs.
AbstractList •Grass swale outflows generated by experiments were modelled in high-res by Mike SHE.•The model displayed low sensitivity to soil characteristics at high swale flows.•Low sensitivity to initial soil moisture weakens the model performance for dry AMCs. The feasibility of simulating the hydrological response of a grass swale to runoff inflows was examined using the hydrological model Mike SHE and the available input data from 12 irrigation events mimicking runoff from block rainfalls. The test swale channel had a trapezoidal cross-section, bottom slope of 1.5%, length of 30 m, and was built in loamy fine sand. The irrigation events consisted in releasing two equal constant inflows to the swale: a concentrated longitudinal flow at the upstream end and a distributed lateral inflow along the swale side slope adjacent to the contributing drainage area. The total inflows approximated runoff from two events with return periods of 2 months and 3 years, respectively, for durations of 30 min. Irrigation experiments were done for two states of the initial soil moisture, dry or wet antecedent moisture conditions (AMC). Mike SHE has been extensively used on catchments of various sizes, but rarely for small stormwater management facilities and their detailed topography investigated in this study. The latter application required high spatial and temporal resolutions, with computational cells of 0.2 × 0.2 m and time steps as short as 0.6 s to avoid computational instabilities. For dominant hydrological processes, the following computational options in Mike SHE were chosen: Soil infiltration – the van Genuchten equation, unsaturated zone flow – the one-dimensional Richards equation, and overland flow – the diffusive wave approximation of the St. Venant equations. For study purposes, the model was calibrated for single events representing one of four combinations of low and high inflows, and dry and wet AMC, and then applied to the remaining 11 events. This was complemented by calibration for two events, representing high inflow on wet AMC and low inflow in dry AMC. The goodness of fit was statistically assessed for observed and simulated peak flows, hydrograph volumes, Nash-Sutcliffe model efficiencies (NSE), and soil water content (SWC) in swale soil layers. The best fit (NSE > 0.8) was obtained for high inflows and wet AMC (i.e., when the primary swale function is flow conveyance); the least fit was noted for low inflows and dry AMC, when the primary swale function is flow attenuation. Furthermore, this observation indicates the overall importance of correct modelling of the soil infiltration. The effects of spatial variation of SWC on the swale discharge hydrograph could not be confirmed from simulation results, but high topographical accuracy was beneficial for reproducing well the locations of the observed water ponding. No significant increases in simulated SWC at 0.3 m or greater depths were noted, which agreed with field observations. Overall, the results indicated that Mike SHE was effective in process-oriented small-scale modelling of grass swale flow hydrographs.
The feasibility of simulating the hydrological response of a grass swale to runoff inflows was examined using the hydrological model Mike SHE and the available input data from 12 irrigation events mimicking runoff from block rainfalls. The test swale channel had a trapezoidal cross-section, bottom slope of 1.5%, length of 30 m, and was built in loamy fine sand. The irrigation events consisted in releasing two equal constant inflows to the swale: a concentrated longitudinal flow at the upstream end and a distributed lateral inflow along the swale side slope adjacent to the contributing drainage area. The total inflows approximated runoff from two events with return periods of 2 months and 3 years, respectively, for durations of 30 min. Irrigation experiments were done for two states of the initial soil moisture, dry or wet antecedent moisture conditions (AMC). Mike SHE has been extensively used on catchments of various sizes, but rarely for small stormwater management facilities and their detailed topography investigated in this study. The latter application required high spatial and temporal resolutions, with computational cells of 0.2 × 0.2 m and time steps as short as 0.6 s to avoid computational instabilities. For dominant hydrological processes, the following computational options in Mike SHE were chosen: Soil infiltration – the van Genuchten equation, unsaturated zone flow – the one-dimensional Richards equation, and overland flow – the diffusive wave approximation of the St. Venant equations. For study purposes, the model was calibrated for single events representing one of four combinations of low and high inflows, and dry and wet AMC, and then applied to the remaining 11 events. This was complemented by calibration for two events, representing high inflow on wet AMC and low inflow in dry AMC. The goodness of fit was statistically assessed for observed and simulated peak flows, hydrograph volumes, Nash-Sutcliffe model efficiencies (NSE), and soil water content (SWC) in swale soil layers. The best fit (NSE > 0.8) was obtained for high inflows and wet AMC (i.e., when the primary swale function is flow conveyance); the least fit was noted for low inflows and dry AMC, when the primary swale function is flow attenuation. Furthermore, this observation indicates the overall importance of correct modelling of the soil infiltration. The effects of spatial variation of SWC on the swale discharge hydrograph could not be confirmed from simulation results, but high topographical accuracy was beneficial for reproducing well the locations of the observed water ponding. No significant increases in simulated SWC at 0.3 m or greater depths were noted, which agreed with field observations. Overall, the results indicated that Mike SHE was effective in process-oriented small-scale modelling of grass swale flow hydrographs.
Author Rujner, Hendrik
Viklander, Maria
Marsalek, Jiri
Leonhardt, Günther
Author_xml – sequence: 1
  givenname: Hendrik
  orcidid: 0000-0003-0367-3449
  surname: Rujner
  fullname: Rujner, Hendrik
  email: hendrik.rujner@ltu.se
– sequence: 2
  givenname: Günther
  surname: Leonhardt
  fullname: Leonhardt, Günther
– sequence: 3
  givenname: Jiri
  surname: Marsalek
  fullname: Marsalek, Jiri
– sequence: 4
  givenname: Maria
  surname: Viklander
  fullname: Viklander, Maria
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-68751$$DView record from Swedish Publication Index
BookMark eNqFkMtOwzAQRS0EEm3hE5D8AST4kecKVaVQpCIWULaW44wTlzSu7ISof0-qVmyZzWzuuZo5U3TZ2hYQuqMkpIQmD9twWx9KZ5uQEZqFJA4Jiy7QhGZpHrCUpJdoQghjAU3y6BpNvd-ScTiPJmizMlUdOPC26TtjW7yzJTSNaStsNe5qwJWT3mM_yAbwmNvb1gPuLHZ9a7XGptWNHTweTFfjN_MN-GO1vEFXWjYebs97hjbPy8_FKli_v7wu5utA8Zx3AcvTTCe8YJQXoPMi41Kl45GxLiDlZRFzraSKIKIyK4uMxYTQkiVZCkpnvOB8hu5PvX6AfV-IvTM76Q7CSiOezNdcWFeJpuvFyMR0jMenuHLWewf6D6BEHFWKrTirFEeVgsRiVDlyjycOxl9-DDjhlYFWQWkcqE6U1vzT8Av14IMt
CitedBy_id crossref_primary_10_1029_2022WR033918
crossref_primary_10_1007_s11629_021_6830_3
crossref_primary_10_1016_j_jenvman_2019_03_037
crossref_primary_10_1016_j_jhydrol_2022_128985
crossref_primary_10_3390_su132313384
crossref_primary_10_1016_j_jenvman_2022_115894
crossref_primary_10_3390_su142114325
crossref_primary_10_1016_j_jhydrol_2024_131015
crossref_primary_10_1016_j_jclepro_2021_126232
crossref_primary_10_1007_s11269_020_02669_3
crossref_primary_10_1016_j_uclim_2022_101305
crossref_primary_10_1007_s11269_021_02830_6
crossref_primary_10_1029_2021WR029772
crossref_primary_10_1007_s11707_021_0959_9
crossref_primary_10_1016_j_scitotenv_2020_137630
crossref_primary_10_1016_j_uclim_2022_101244
crossref_primary_10_1061_JHYEFF_HEENG_5824
crossref_primary_10_3390_w14050769
crossref_primary_10_1016_j_ecolind_2023_110613
crossref_primary_10_2139_ssrn_4140054
crossref_primary_10_3390_w13081055
crossref_primary_10_1007_s40710_022_00609_4
crossref_primary_10_2166_ws_2021_245
crossref_primary_10_2298_GSGD2302279A
crossref_primary_10_3390_w16111613
crossref_primary_10_3390_w14111692
crossref_primary_10_1016_j_envsoft_2022_105469
crossref_primary_10_1016_j_jenvman_2023_119760
crossref_primary_10_1080_00330124_2023_2275317
crossref_primary_10_1061_JIDEDH_IRENG_10057
crossref_primary_10_1007_s11269_022_03215_z
crossref_primary_10_3390_w12092484
crossref_primary_10_3390_hydrology9050087
crossref_primary_10_1080_02626667_2023_2279205
crossref_primary_10_2166_hydro_2021_035
crossref_primary_10_2139_ssrn_4187673
crossref_primary_10_5194_nhess_19_2027_2019
Cites_doi 10.1016/j.jenvman.2007.03.026
10.1061/(ASCE)0733-9372(2008)134:8(628)
10.1016/0022-1694(70)90255-6
10.1061/JSWBAY.0000817
10.1016/j.jhydrol.2015.06.050
10.14796/JWMM.R236-11
10.1016/S0022-1694(01)00403-6
10.1016/j.jhydrol.2005.12.026
10.1007/s11270-007-9484-z
10.1016/j.jhydrol.2005.11.012
10.1139/l97-044
10.1007/s11270-012-1189-2
10.2136/sssaj1980.03615995004400050002x
10.13031/2013.33720
10.1016/S1002-0160(10)60035-5
10.1016/j.jhydrol.2005.05.021
10.1016/j.watres.2011.10.017
10.1016/j.envres.2017.05.023
10.1016/j.jhydrol.2014.03.013
10.2166/wst.2016.578
10.1016/j.ecoleng.2005.10.014
10.1016/j.jhydrol.2017.07.014
10.1016/j.envsoft.2005.12.005
10.1016/j.resconrec.2012.11.007
10.1029/WR023i012p02207
ContentType Journal Article
Copyright 2018 The Authors
Copyright_xml – notice: 2018 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
ADTPV
AOWAS
D8T
ZZAVC
DOI 10.1016/j.jhydrol.2018.05.024
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
SwePub
SwePub Articles
SWEPUB Freely available online
SwePub Articles full text
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 1879-2707
EndPage 422
ExternalDocumentID oai_DiVA_org_ltu_68751
10_1016_j_jhydrol_2018_05_024
S0022169418303500
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29K
4.4
457
4G.
5GY
5VS
6I.
6TJ
7-5
71M
8P~
9JM
9JN
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
ABEFU
ABFNM
ABGRD
ABJNI
ABMAC
ABQEM
ABQYD
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACLVX
ACNCT
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
ADQTV
AEBSH
AEKER
AENEX
AEQOU
AFFNX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CBWCG
CS3
D-I
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FA8
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HMA
HVGLF
HZ~
H~9
IHE
IMUCA
J1W
K-O
KOM
LW9
LY3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SCC
SDF
SDG
SDP
SEP
SES
SEW
SPC
SPCBC
SPD
SSA
SSE
SSZ
T5K
TN5
UQL
VOH
WUQ
Y6R
ZCA
ZMT
ZY4
~02
~G-
~KM
AAHBH
AAXKI
AAYXX
ADVLN
AFJKZ
AKRWK
CITATION
ADTPV
AOWAS
D8T
ZZAVC
ID FETCH-LOGICAL-c393t-2978f63b213bef9b83ac71695fbe73db53fcac4e41a8db825001d2687ecf83b33
IEDL.DBID AIKHN
ISSN 0022-1694
1879-2707
IngestDate Tue Oct 01 22:20:54 EDT 2024
Thu Sep 26 15:53:31 EDT 2024
Fri Feb 23 02:49:00 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Mike SHE
Distributed modelling
Soil water content
Grass swale
Stormwater management
Language English
License This is an open access article under the CC BY license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c393t-2978f63b213bef9b83ac71695fbe73db53fcac4e41a8db825001d2687ecf83b33
ORCID 0000-0003-0367-3449
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0022169418303500
PageCount 12
ParticipantIDs swepub_primary_oai_DiVA_org_ltu_68751
crossref_primary_10_1016_j_jhydrol_2018_05_024
elsevier_sciencedirect_doi_10_1016_j_jhydrol_2018_05_024
PublicationCentury 2000
PublicationDate 2018-07-01
PublicationDateYYYYMMDD 2018-07-01
PublicationDate_xml – month: 07
  year: 2018
  text: 2018-07-01
  day: 01
PublicationDecade 2010
PublicationTitle Journal of hydrology (Amsterdam)
PublicationYear 2018
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Beven (b0015) 2012
Davis, Stagge, Jamil, Kim (b0030) 2012; 46
Dietz (b0055) 2007; 186
Sahoo, Ray, De Carlo (b0160) 2006; 327
Ahiablame, Engel, Chaubey (b0010) 2012; 223
Flanagan, Branchu, Ramier, Gromaire (b0070) 2017; 75
Rossman, L.A., 2009. Stormwater management model: Useŕs manual version 5.0. United States Environmental Protection Agency (USEPA), EPA/600/R-05/040, Cincinnati, OH.
DHI (Danish Hydraulic Institute) (b0045) 2017
Dahlström, B., 2010. Regnintensitet–en molnfysikalisk betraktelse. (Rainfall intensity – considerations of cloud physics) (in Swedish). Report 2010–05, Swedish Water and Wastewater Association, Svenskt Vatten AB, Stockholm.
Krebs, Kokkonen, Valtanen, Setälä, Koivusalo (b0095) 2014; 512
Pitt, Chen, Clark, Swenson, Ong (b0125) 2008; 12
Niazi, Nietch, Maghrebi, Jackson, Bennett, Tryby, Massoudieh (b0115) 2017; 3
Palla, Gnecco (b9010) 2015; 528
Ghanbarian-Alavijeh, Liaghat, Huang, van Genuchten (b0080) 2010; 20
Zimmerman, M.J., Waldron, M.C., Barbaro, J.R., Sorenson, J.R., 2010. Effects of Low-impact-development (LID) Practices on Streamflow, Runoff Quality, and Runoff Quality in the Ipswich River Basin, Massachusetts: A Summary of Field and Modeling Studies, Cicular 1361, US Department of the Interior, US Geological Survey. Available at
Deletic, Fletcher (b9005) 2004
Wong, Fletcher, Duncan, Jenkins (b0175) 2006; 27
Zölch, Henze, Keilholz, Pauleit (b0185) 2017; 157
Deletic, Fletcher (b0040) 2006; 317
DHI (Danish Hydraulic Institute) (2016). Mike URBAN User Manual.
Deletic (b0035) 2001; 248
Rujner, Leonhardt, Marsalek, Viklander (b0155) 2018; 2018
Rawls, Brakensiek, Saxtonn (b0130) 1982; 25
Ackerman, Stein (b0005) 2008; 134
Richards (b0140) 1931; 1
Helmers, Eisenhauer (b0085) 2006; 328
Nash, Sutcliffe (b0110) 1970; 10
van Genuchten (b0170) 1980; 44
(visited May 4, 2018).
Li, Orland, Hogenbirk (b0100) 1998; 25
Refsgaard, Storm (b0135) 1990
Dietz, Clausen (b0060) 2008; 87
Elliott, Trowsdale (b9000) 2007; 22
Mualem (b0105) 1976; 134
Bicknell, Imhoff, Kittle, Donigian, Johanson (b0020) 1997
Stephens, Lambert, Watson (b0165) 1987
Rossman L.A., 2010. Modeling low impact development alternatives with SWMM. Journal of Water Management Modeling. CHI Guelph, Ontario, Canada, doi: 10:14796/JWMM.R236-11.
García-Serrana, Gulliver, Nieber (b0075) 2017; 552
Imteaz, Ahsan, Rahman, Mekanik (b0090) 2013; 71
Eriksson, B., 1981. Den “potentiella” evapotranspirationen i Sverige. [The potential evapotranspiration in Sweden] (in Swedish). RMK 28, RHO27, SMHI, Norrköping, Sweden.
Deletic (10.1016/j.jhydrol.2018.05.024_b0035) 2001; 248
10.1016/j.jhydrol.2018.05.024_b0150
Zölch (10.1016/j.jhydrol.2018.05.024_b0185) 2017; 157
Ackerman (10.1016/j.jhydrol.2018.05.024_b0005) 2008; 134
10.1016/j.jhydrol.2018.05.024_b0050
Stephens (10.1016/j.jhydrol.2018.05.024_b0165) 1987
Flanagan (10.1016/j.jhydrol.2018.05.024_b0070) 2017; 75
Niazi (10.1016/j.jhydrol.2018.05.024_b0115) 2017; 3
DHI (Danish Hydraulic Institute) (10.1016/j.jhydrol.2018.05.024_b0045) 2017
Palla (10.1016/j.jhydrol.2018.05.024_b9010) 2015; 528
Pitt (10.1016/j.jhydrol.2018.05.024_b0125) 2008; 12
van Genuchten (10.1016/j.jhydrol.2018.05.024_b0170) 1980; 44
Ahiablame (10.1016/j.jhydrol.2018.05.024_b0010) 2012; 223
Davis (10.1016/j.jhydrol.2018.05.024_b0030) 2012; 46
Richards (10.1016/j.jhydrol.2018.05.024_b0140) 1931; 1
Li (10.1016/j.jhydrol.2018.05.024_b0100) 1998; 25
Sahoo (10.1016/j.jhydrol.2018.05.024_b0160) 2006; 327
Wong (10.1016/j.jhydrol.2018.05.024_b0175) 2006; 27
Nash (10.1016/j.jhydrol.2018.05.024_b0110) 1970; 10
Helmers (10.1016/j.jhydrol.2018.05.024_b0085) 2006; 328
Rawls (10.1016/j.jhydrol.2018.05.024_b0130) 1982; 25
10.1016/j.jhydrol.2018.05.024_b0065
10.1016/j.jhydrol.2018.05.024_b0145
Dietz (10.1016/j.jhydrol.2018.05.024_b0055) 2007; 186
Ghanbarian-Alavijeh (10.1016/j.jhydrol.2018.05.024_b0080) 2010; 20
10.1016/j.jhydrol.2018.05.024_b0180
Elliott (10.1016/j.jhydrol.2018.05.024_b9000) 2007; 22
Deletic (10.1016/j.jhydrol.2018.05.024_b9005) 2004
García-Serrana (10.1016/j.jhydrol.2018.05.024_b0075) 2017; 552
Mualem (10.1016/j.jhydrol.2018.05.024_b0105) 1976; 134
Refsgaard (10.1016/j.jhydrol.2018.05.024_b0135) 1990
Deletic (10.1016/j.jhydrol.2018.05.024_b0040) 2006; 317
Bicknell (10.1016/j.jhydrol.2018.05.024_b0020) 1997
10.1016/j.jhydrol.2018.05.024_b0025
Krebs (10.1016/j.jhydrol.2018.05.024_b0095) 2014; 512
Rujner (10.1016/j.jhydrol.2018.05.024_b0155) 2018; 2018
Dietz (10.1016/j.jhydrol.2018.05.024_b0060) 2008; 87
Beven (10.1016/j.jhydrol.2018.05.024_b0015) 2012
Imteaz (10.1016/j.jhydrol.2018.05.024_b0090) 2013; 71
References_xml – volume: 71
  start-page: 15
  year: 2013
  end-page: 21
  ident: b0090
  article-title: Modelling stormwater treatment systems using MUSIC: accuracy
  publication-title: Resour. Conserv. Recycl.
  contributor:
    fullname: Mekanik
– volume: 248
  start-page: 168
  year: 2001
  end-page: 182
  ident: b0035
  article-title: Modelling of water and sediment transport over grass areas
  publication-title: J. Hydrol.
  contributor:
    fullname: Deletic
– volume: 25
  start-page: 26
  year: 1998
  end-page: 39
  ident: b0100
  article-title: Environmental road and lot drainage designs: alternatives to the curb-gutter-sewer system
  publication-title: Can. J. Civ. Eng.
  contributor:
    fullname: Hogenbirk
– volume: 27
  start-page: 58
  year: 2006
  end-page: 70
  ident: b0175
  article-title: Modelling urban stormwater treatment – A unified approach
  publication-title: Ecol. Eng.
  contributor:
    fullname: Jenkins
– volume: 186
  start-page: 351
  year: 2007
  end-page: 363
  ident: b0055
  article-title: Low impact development practices: a review of current research and recommendations for future directions
  publication-title: Water Air Soil Pollut.
  contributor:
    fullname: Dietz
– year: 2012
  ident: b0015
  article-title: Rainfall–Runoff Modelling-The Primer
  contributor:
    fullname: Beven
– volume: 75
  start-page: 987
  year: 2017
  end-page: 997
  ident: b0070
  article-title: Evaluation of the relative roles of a vegetative filter strip and a biofiltration swale in a treatment train for road runoff
  publication-title: Water Sci. Technol.
  contributor:
    fullname: Gromaire
– volume: 552
  start-page: 586
  year: 2017
  end-page: 599
  ident: b0075
  article-title: Non-uniform overland flow-infiltration model for roadside swales
  publication-title: J. Hydrol.
  contributor:
    fullname: Nieber
– start-page: 2207
  year: 1987
  end-page: 2214
  ident: b0165
  article-title: Regression models for hydraulic conductivity and field test of the borehole permeameter
  publication-title: Water Resour. Res.
  contributor:
    fullname: Watson
– volume: 134
  start-page: 628
  year: 2008
  end-page: 639
  ident: b0005
  article-title: Evaluating the effectiveness of best management practices using dynamic modeling
  publication-title: J. Environ. Eng.
  contributor:
    fullname: Stein
– volume: 528
  start-page: 361
  year: 2015
  end-page: 368
  ident: b9010
  article-title: Hydrologic modeling of Low Impact Development systems at the urban catchment scale
  publication-title: J. Hydrol.
  contributor:
    fullname: Gnecco
– volume: 12
  start-page: 513
  year: 2008
  end-page: 522
  ident: b0125
  article-title: Compaction’s impacts on urban porous media
  publication-title: Water Resour. Res.
  contributor:
    fullname: Ong
– volume: 157
  start-page: 135
  year: 2017
  end-page: 144
  ident: b0185
  article-title: Regulating urban surface runoff through nature-based solutions–an assessment at the micro-scale
  publication-title: Environ. Res.
  contributor:
    fullname: Pauleit
– volume: 25
  start-page: 1316
  year: 1982
  end-page: 1320
  ident: b0130
  article-title: Estimation of soil water properties
  publication-title: Transactions of the ASAE
  contributor:
    fullname: Saxtonn
– volume: 44
  start-page: 892
  year: 1980
  end-page: 898
  ident: b0170
  article-title: A closed-form equation for predicting the hydraulic conductivity of unsaturated soils
  publication-title: Soil Sci. Soc. Am. J.
  contributor:
    fullname: van Genuchten
– volume: 327
  start-page: 94
  year: 2006
  end-page: 109
  ident: b0160
  article-title: Calibration and validation of a physically distributed hydrological model, MIKE SHE, to predict streamflow at high frequency in a flashy mountainous Hawaii stream
  publication-title: J. Hydrol.
  contributor:
    fullname: De Carlo
– volume: 134
  start-page: 652
  year: 1976
  end-page: 658
  ident: b0105
  article-title: A new model for predicting the hydraulic conductivity of unsaturated storm-water infiltration
  publication-title: J. Irrig. Drain Eng.
  contributor:
    fullname: Mualem
– volume: 1
  start-page: 318
  year: 1931
  end-page: 333
  ident: b0140
  article-title: Capillary conduction of liquids through porous mediums
  publication-title: J. Appl. Phys.
  contributor:
    fullname: Richards
– volume: 512
  start-page: 482
  year: 2014
  end-page: 497
  ident: b0095
  article-title: Spatial resolution considerations for urban hydrological modelling
  publication-title: J. Hydrol.
  contributor:
    fullname: Koivusalo
– volume: 22
  start-page: 394
  year: 2007
  end-page: 405
  ident: b9000
  article-title: A review of models for low impact urban stormwater drainage
  publication-title: Environ. Modell. Softw.
  contributor:
    fullname: Trowsdale
– volume: 223
  start-page: 4253
  year: 2012
  end-page: 4273
  ident: b0010
  article-title: Effectiveness of low impact development practices: literature review and suggestions for future research
  publication-title: Water, Air, Soil Pollut.
  contributor:
    fullname: Chaubey
– year: 2017
  ident: b0045
  article-title: MIKE SHE User Manual
  contributor:
    fullname: DHI (Danish Hydraulic Institute)
– volume: 3
  start-page: 04017002
  year: 2017
  ident: b0115
  article-title: Storm water management model: performance review and gap analysis
  publication-title: J. Sustainable Water Built Environ.
  contributor:
    fullname: Massoudieh
– start-page: 755
  year: 1997
  ident: b0020
  publication-title: Hydrological Simulation Program-Fortran: User’s manual for version 11: U.S. Environmental Protection Agency
  contributor:
    fullname: Johanson
– volume: 20
  start-page: 456
  year: 2010
  end-page: 465
  ident: b0080
  article-title: Estimation of the van Genuchten soil water retention properties from soil textural data
  publication-title: Pedosphere
  contributor:
    fullname: van Genuchten
– volume: 10
  start-page: 282
  year: 1970
  end-page: 290
  ident: b0110
  article-title: River flow forecasting through conceptual models part I — a discussion of principles
  publication-title: J. Hydrol.
  contributor:
    fullname: Sutcliffe
– volume: 2018
  start-page: 1
  year: 2018
  end-page: 11
  ident: b0155
  article-title: The effects of initial soil moisture conditions on swale flow hydrographs
  publication-title: Hydrol. Process.
  contributor:
    fullname: Viklander
– start-page: 713
  year: 2004
  ident: b9005
  article-title: Modelling performance of stormwater grass swales-application of simple and complex models
  publication-title: Proceedings of WSUD 2004: Cities as Catchments; International Conference on Water Sensitive Urban Design
  contributor:
    fullname: Fletcher
– start-page: 41
  year: 1990
  end-page: 54
  ident: b0135
  article-title: Construction, calibration and validation of hydrological models Distributed hydrological modelling
  contributor:
    fullname: Storm
– volume: 87
  start-page: 560
  year: 2008
  end-page: 566
  ident: b0060
  article-title: Stormwater runoff and export changes with development in a traditional and low impact subdivision
  publication-title: J. Environ. Manage.
  contributor:
    fullname: Clausen
– volume: 46
  start-page: 6775
  year: 2012
  end-page: 6786
  ident: b0030
  article-title: Hydraulic performance of grass swales for managing highway runoff
  publication-title: Water Res.
  contributor:
    fullname: Kim
– volume: 328
  start-page: 267
  year: 2006
  end-page: 282
  ident: b0085
  article-title: Overland flow modeling in a vegetative filter considering non-planar topography and spatial variability of soil hydraulic properties and vegetation density
  publication-title: J. Hydrol.
  contributor:
    fullname: Eisenhauer
– volume: 317
  start-page: 261
  year: 2006
  end-page: 275
  ident: b0040
  article-title: Performance of grass filters used for stormwater treatment – a field and modelling study
  publication-title: J. Hydrol.
  contributor:
    fullname: Fletcher
– volume: 87
  start-page: 560
  issue: 4
  year: 2008
  ident: 10.1016/j.jhydrol.2018.05.024_b0060
  article-title: Stormwater runoff and export changes with development in a traditional and low impact subdivision
  publication-title: J. Environ. Manage.
  doi: 10.1016/j.jenvman.2007.03.026
  contributor:
    fullname: Dietz
– year: 2017
  ident: 10.1016/j.jhydrol.2018.05.024_b0045
  contributor:
    fullname: DHI (Danish Hydraulic Institute)
– ident: 10.1016/j.jhydrol.2018.05.024_b0145
– ident: 10.1016/j.jhydrol.2018.05.024_b0065
– volume: 134
  start-page: 628
  issue: 8
  year: 2008
  ident: 10.1016/j.jhydrol.2018.05.024_b0005
  article-title: Evaluating the effectiveness of best management practices using dynamic modeling
  publication-title: J. Environ. Eng.
  doi: 10.1061/(ASCE)0733-9372(2008)134:8(628)
  contributor:
    fullname: Ackerman
– volume: 1
  start-page: 318
  issue: 5
  year: 1931
  ident: 10.1016/j.jhydrol.2018.05.024_b0140
  article-title: Capillary conduction of liquids through porous mediums
  publication-title: J. Appl. Phys.
  contributor:
    fullname: Richards
– volume: 10
  start-page: 282
  issue: 3
  year: 1970
  ident: 10.1016/j.jhydrol.2018.05.024_b0110
  article-title: River flow forecasting through conceptual models part I — a discussion of principles
  publication-title: J. Hydrol.
  doi: 10.1016/0022-1694(70)90255-6
  contributor:
    fullname: Nash
– volume: 3
  start-page: 04017002
  issue: 2
  year: 2017
  ident: 10.1016/j.jhydrol.2018.05.024_b0115
  article-title: Storm water management model: performance review and gap analysis
  publication-title: J. Sustainable Water Built Environ.
  doi: 10.1061/JSWBAY.0000817
  contributor:
    fullname: Niazi
– volume: 528
  start-page: 361
  year: 2015
  ident: 10.1016/j.jhydrol.2018.05.024_b9010
  article-title: Hydrologic modeling of Low Impact Development systems at the urban catchment scale
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2015.06.050
  contributor:
    fullname: Palla
– ident: 10.1016/j.jhydrol.2018.05.024_b0150
  doi: 10.14796/JWMM.R236-11
– ident: 10.1016/j.jhydrol.2018.05.024_b0180
– ident: 10.1016/j.jhydrol.2018.05.024_b0025
– ident: 10.1016/j.jhydrol.2018.05.024_b0050
– volume: 248
  start-page: 168
  issue: 1–4
  year: 2001
  ident: 10.1016/j.jhydrol.2018.05.024_b0035
  article-title: Modelling of water and sediment transport over grass areas
  publication-title: J. Hydrol.
  doi: 10.1016/S0022-1694(01)00403-6
  contributor:
    fullname: Deletic
– volume: 328
  start-page: 267
  issue: 1
  year: 2006
  ident: 10.1016/j.jhydrol.2018.05.024_b0085
  article-title: Overland flow modeling in a vegetative filter considering non-planar topography and spatial variability of soil hydraulic properties and vegetation density
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2005.12.026
  contributor:
    fullname: Helmers
– start-page: 755
  year: 1997
  ident: 10.1016/j.jhydrol.2018.05.024_b0020
  contributor:
    fullname: Bicknell
– volume: 186
  start-page: 351
  issue: 1–4
  year: 2007
  ident: 10.1016/j.jhydrol.2018.05.024_b0055
  article-title: Low impact development practices: a review of current research and recommendations for future directions
  publication-title: Water Air Soil Pollut.
  doi: 10.1007/s11270-007-9484-z
  contributor:
    fullname: Dietz
– volume: 327
  start-page: 94
  issue: 1–2
  year: 2006
  ident: 10.1016/j.jhydrol.2018.05.024_b0160
  article-title: Calibration and validation of a physically distributed hydrological model, MIKE SHE, to predict streamflow at high frequency in a flashy mountainous Hawaii stream
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2005.11.012
  contributor:
    fullname: Sahoo
– volume: 25
  start-page: 26
  issue: 1
  year: 1998
  ident: 10.1016/j.jhydrol.2018.05.024_b0100
  article-title: Environmental road and lot drainage designs: alternatives to the curb-gutter-sewer system
  publication-title: Can. J. Civ. Eng.
  doi: 10.1139/l97-044
  contributor:
    fullname: Li
– volume: 223
  start-page: 4253
  issue: 7
  year: 2012
  ident: 10.1016/j.jhydrol.2018.05.024_b0010
  article-title: Effectiveness of low impact development practices: literature review and suggestions for future research
  publication-title: Water, Air, Soil Pollut.
  doi: 10.1007/s11270-012-1189-2
  contributor:
    fullname: Ahiablame
– start-page: 41
  year: 1990
  ident: 10.1016/j.jhydrol.2018.05.024_b0135
  contributor:
    fullname: Refsgaard
– volume: 44
  start-page: 892
  issue: 5
  year: 1980
  ident: 10.1016/j.jhydrol.2018.05.024_b0170
  article-title: A closed-form equation for predicting the hydraulic conductivity of unsaturated soils
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj1980.03615995004400050002x
  contributor:
    fullname: van Genuchten
– volume: 25
  start-page: 1316
  issue: 5
  year: 1982
  ident: 10.1016/j.jhydrol.2018.05.024_b0130
  article-title: Estimation of soil water properties
  publication-title: Transactions of the ASAE
  doi: 10.13031/2013.33720
  contributor:
    fullname: Rawls
– volume: 20
  start-page: 456
  issue: 4
  year: 2010
  ident: 10.1016/j.jhydrol.2018.05.024_b0080
  article-title: Estimation of the van Genuchten soil water retention properties from soil textural data
  publication-title: Pedosphere
  doi: 10.1016/S1002-0160(10)60035-5
  contributor:
    fullname: Ghanbarian-Alavijeh
– volume: 317
  start-page: 261
  year: 2006
  ident: 10.1016/j.jhydrol.2018.05.024_b0040
  article-title: Performance of grass filters used for stormwater treatment – a field and modelling study
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2005.05.021
  contributor:
    fullname: Deletic
– volume: 46
  start-page: 6775
  issue: 20
  year: 2012
  ident: 10.1016/j.jhydrol.2018.05.024_b0030
  article-title: Hydraulic performance of grass swales for managing highway runoff
  publication-title: Water Res.
  doi: 10.1016/j.watres.2011.10.017
  contributor:
    fullname: Davis
– volume: 157
  start-page: 135
  year: 2017
  ident: 10.1016/j.jhydrol.2018.05.024_b0185
  article-title: Regulating urban surface runoff through nature-based solutions–an assessment at the micro-scale
  publication-title: Environ. Res.
  doi: 10.1016/j.envres.2017.05.023
  contributor:
    fullname: Zölch
– start-page: 713
  year: 2004
  ident: 10.1016/j.jhydrol.2018.05.024_b9005
  article-title: Modelling performance of stormwater grass swales-application of simple and complex models
  contributor:
    fullname: Deletic
– volume: 512
  start-page: 482
  year: 2014
  ident: 10.1016/j.jhydrol.2018.05.024_b0095
  article-title: Spatial resolution considerations for urban hydrological modelling
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2014.03.013
  contributor:
    fullname: Krebs
– volume: 2018
  start-page: 1
  year: 2018
  ident: 10.1016/j.jhydrol.2018.05.024_b0155
  article-title: The effects of initial soil moisture conditions on swale flow hydrographs
  publication-title: Hydrol. Process.
  contributor:
    fullname: Rujner
– volume: 12
  start-page: 513
  issue: 3
  year: 2008
  ident: 10.1016/j.jhydrol.2018.05.024_b0125
  article-title: Compaction’s impacts on urban porous media
  publication-title: Water Resour. Res.
  contributor:
    fullname: Pitt
– year: 2012
  ident: 10.1016/j.jhydrol.2018.05.024_b0015
  contributor:
    fullname: Beven
– volume: 75
  start-page: 987
  issue: 4
  year: 2017
  ident: 10.1016/j.jhydrol.2018.05.024_b0070
  article-title: Evaluation of the relative roles of a vegetative filter strip and a biofiltration swale in a treatment train for road runoff
  publication-title: Water Sci. Technol.
  doi: 10.2166/wst.2016.578
  contributor:
    fullname: Flanagan
– volume: 27
  start-page: 58
  issue: 1
  year: 2006
  ident: 10.1016/j.jhydrol.2018.05.024_b0175
  article-title: Modelling urban stormwater treatment – A unified approach
  publication-title: Ecol. Eng.
  doi: 10.1016/j.ecoleng.2005.10.014
  contributor:
    fullname: Wong
– volume: 134
  start-page: 652
  issue: 5
  year: 1976
  ident: 10.1016/j.jhydrol.2018.05.024_b0105
  article-title: A new model for predicting the hydraulic conductivity of unsaturated storm-water infiltration
  publication-title: J. Irrig. Drain Eng.
  contributor:
    fullname: Mualem
– volume: 552
  start-page: 586
  year: 2017
  ident: 10.1016/j.jhydrol.2018.05.024_b0075
  article-title: Non-uniform overland flow-infiltration model for roadside swales
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2017.07.014
  contributor:
    fullname: García-Serrana
– volume: 22
  start-page: 394
  issue: 3
  year: 2007
  ident: 10.1016/j.jhydrol.2018.05.024_b9000
  article-title: A review of models for low impact urban stormwater drainage
  publication-title: Environ. Modell. Softw.
  doi: 10.1016/j.envsoft.2005.12.005
  contributor:
    fullname: Elliott
– volume: 71
  start-page: 15
  year: 2013
  ident: 10.1016/j.jhydrol.2018.05.024_b0090
  article-title: Modelling stormwater treatment systems using MUSIC: accuracy
  publication-title: Resour. Conserv. Recycl.
  doi: 10.1016/j.resconrec.2012.11.007
  contributor:
    fullname: Imteaz
– start-page: 2207
  year: 1987
  ident: 10.1016/j.jhydrol.2018.05.024_b0165
  article-title: Regression models for hydraulic conductivity and field test of the borehole permeameter
  publication-title: Water Resour. Res.
  doi: 10.1029/WR023i012p02207
  contributor:
    fullname: Stephens
SSID ssj0000334
Score 2.466873
Snippet •Grass swale outflows generated by experiments were modelled in high-res by Mike SHE.•The model displayed low sensitivity to soil characteristics at high swale...
The feasibility of simulating the hydrological response of a grass swale to runoff inflows was examined using the hydrological model Mike SHE and the available...
SourceID swepub
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Publisher
StartPage 411
SubjectTerms Centre - Centre for Stormwater Management (DRIZZLE)
Centrumbildning - Centrum för dagvattenhantering (DRIZZLE)
Distributed modelling
Grass swale
Mike SHE
Soil water content
Stormwater management
Urban Water Engineering
VA-teknik
Title High-resolution modelling of the grass swale response to runoff inflows with Mike SHE
URI https://dx.doi.org/10.1016/j.jhydrol.2018.05.024
https://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-68751
Volume 562
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagDLAgnqK85AHGtMSP4IxVKSogWKCIzYodG1qqBKWpqi78ds6Nw2NASIyJYjn5fLpH7u47hE5IpJLQ8iSIeMIDZrUOVOKIXGNuFDjQobAuo3t7F_UH7PqJPy2hbt0L48oqve6vdPpCW_s7bY9m-204dD2-hISuD1NQlx6DuH0FzBERDbTSubrp330pZEpZTRruFnw18rRHrdHLPC1yl4QIxYLDk7BfTdR3LtGF_bncQOveccSd6t020ZLJttCqn2H-Mt9GA1eyEUD07IUJL4bcuG5znFsMfh6GJycTPJmBTcBFVRtrcJnjYprl1mKQtXE-m2D3axbfDl8Nvu_3dtDgsvfQ7Qd-aEKgaUzLgEBYaCOqSEiVsbESNNGOEYdbZc5pqji1OtHMsDARqYL4EOxUSiJxbrQVVFG6ixpZnpk9hEmsKVM85kSkjIDd0mcxcf4OAwWpYt5ErRon-VZxY8i6aGwkPbDSASvPuARgm0jUaMofhyxBf_-19LRC_3Mnx4t9MXzsyLx4luNyKuEbeLj__y0O0Jq7qmpxD1GjLKbmCDyOUh2j5dZ7eOzl6gPMDtYv
link.rule.ids 230,315,783,787,888,4509,24128,27936,27937,45597,45691
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELUQPcAFsYodH-AYSrwE51iVokCXCxRxs2LHhhbUoDQV6t8zbhyWA0LimsRy8jKZJTPzBqFTEqk0tDwNIp7ygFmtA5U6IteYGwUOdCisy-j2B1EyZLeP_HEJteteGFdW6XV_pdMX2tofaXo0m2-jkevxJSR0fZiCuvQYxO0N8AZi-DobrZtuMvhSyJSymjTcLfhq5GmOz8fP86zIXRIiFAsOT8J-NVHfuUQX9ud6Ha15xxG3qnvbQEtmsolW_Azz5_kWGrqSjQCiZy9MeDHkxnWb49xi8PMwXDmd4uk72ARcVLWxBpc5LmaT3FoMsvaav0-x-zWL-6MXg--SzjYaXnfu20nghyYEmsa0DAiEhTaiioRUGRsrQVPtGHG4VeaSZopTq1PNDAtTkSmID8FOZSQSl0ZbQRWlO2h5kk_MLsIk1pQpHnMiMkbAbumLmDh_h4GCVDHfQ-c1TvKt4saQddHYWHpgpQNWXnAJwO4hUaMpf7xkCfr7r6VnFfqfOzle7KvRQ0vmxZN8LWcSnoGH-__f4gStJPf9nuzdDLoHaNWdqepyD9FyWczMEXgfpTr20vUB_XbYIw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-resolution+modelling+of+the+grass+swale+response+to+runoff+inflows+with+Mike+SHE&rft.jtitle=Journal+of+hydrology+%28Amsterdam%29&rft.au=Rujner%2C+Hendrik&rft.au=Leonhardt%2C+G%C3%BCnther&rft.au=Marsalek%2C+Jiri&rft.au=Viklander%2C+Maria&rft.date=2018-07-01&rft.pub=Elsevier+B.V&rft.issn=0022-1694&rft.eissn=1879-2707&rft.volume=562&rft.spage=411&rft.epage=422&rft_id=info:doi/10.1016%2Fj.jhydrol.2018.05.024&rft.externalDocID=S0022169418303500
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1694&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1694&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1694&client=summon