Couple-stress nanofluid flow comprising gyrotactic microbes subject to convective boundary conditions: Numerical solution
Couple-stress nanofluids have multiple potential applications in numerous industrial and engineering sectors, such as energy production, medical diagnostics, thermal control systems, and the aerospace industry. Couple-stress nanofluids have the ability to improve the heat exchange properties and ele...
Saved in:
Published in | AIP advances Vol. 14; no. 5; pp. 055222 - 055222-9 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Melville
American Institute of Physics
01.05.2024
AIP Publishing LLC |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Couple-stress nanofluids have multiple potential applications in numerous industrial and engineering sectors, such as energy production, medical diagnostics, thermal control systems, and the aerospace industry. Couple-stress nanofluids have the ability to improve the heat exchange properties and elevate the performance of nuclear power plants, solar panels, and other renewable energy sources. Therefore, in the current analysis, a non-homogeneous nanofluid model is considered to examine the non-Newtonian Casson nanofluid flow across a prolonging sheet. The flow has been studied under the significance of generalized Fourier’s and Fick’s laws, convective boundary conditions, and the heat source/sink. The modeled equations are simplified into a dimensionless lowest-order system of ordinary differential equations by using similarity transformation. The numerical outcomes are achieved by using the “ND-Solve” approach. It has been noticed that the energy field decreases because of the Prandtl number’s impacts, whereas it increases with the increase in the heat radiation parameter. The couple-stress nanoliquid’s velocity decreases vs increasing values of the magnetic field and mixed convection parameter. The influence of thermal relaxation and couple-stress parameters falls off the energy field. Furthermore, the intensifying effect of Rayleigh number and buoyancy ratio increases the fluid temperature. |
---|---|
AbstractList | Couple-stress nanofluids have multiple potential applications in numerous industrial and engineering sectors, such as energy production, medical diagnostics, thermal control systems, and the aerospace industry. Couple-stress nanofluids have the ability to improve the heat exchange properties and elevate the performance of nuclear power plants, solar panels, and other renewable energy sources. Therefore, in the current analysis, a non-homogeneous nanofluid model is considered to examine the non-Newtonian Casson nanofluid flow across a prolonging sheet. The flow has been studied under the significance of generalized Fourier’s and Fick’s laws, convective boundary conditions, and the heat source/sink. The modeled equations are simplified into a dimensionless lowest-order system of ordinary differential equations by using similarity transformation. The numerical outcomes are achieved by using the “ND-Solve” approach. It has been noticed that the energy field decreases because of the Prandtl number’s impacts, whereas it increases with the increase in the heat radiation parameter. The couple-stress nanoliquid’s velocity decreases vs increasing values of the magnetic field and mixed convection parameter. The influence of thermal relaxation and couple-stress parameters falls off the energy field. Furthermore, the intensifying effect of Rayleigh number and buoyancy ratio increases the fluid temperature. |
Author | Ullah, Saif Mostafa, Almetwally M. Zhang, Lihong Bilal, Muhammad Saqib, Abdul Baseer AlQahtani, Nouf F. |
Author_xml | – sequence: 1 givenname: Lihong surname: Zhang fullname: Zhang, Lihong organization: School of Computer Science and Technology, Shandong Technology and Business University – sequence: 2 givenname: Muhammad surname: Bilal fullname: Bilal, Muhammad organization: Sheikh Taimur Academic Block-II, Department of Mathematics, University of Peshawar – sequence: 3 givenname: Saif surname: Ullah fullname: Ullah, Saif organization: Sheikh Taimur Academic Block-II, Department of Mathematics, University of Peshawar – sequence: 4 givenname: Almetwally M. surname: Mostafa fullname: Mostafa, Almetwally M. organization: Department of Information Systems, College of Computers and Information Science – sequence: 5 givenname: Nouf F. surname: AlQahtani fullname: AlQahtani, Nouf F. organization: IS Department, College of Education, King Saud University – sequence: 6 givenname: Abdul Baseer surname: Saqib fullname: Saqib, Abdul Baseer organization: Faculty of Education, Department of Mathematics, Nangrahar University |
BookMark | eNp9UctqGzEUFSGFpGkW_QNBVg1MrMeMNNNdMXkYTLtp10JPIzOWXEnj4L-PXCchhFBpocvh3KN77vkMTkMMFoCvGN1gxOisu0EE9RzjE3BOcNc3lBB2-qY-A5c5r1E97YBR356D_TxO29E2uSSbMwwyRDdO3kA3xkeo42abfPZhBVf7FIvUxWu48TpFZTPMk1pbXWCJlRl2tfQ7C1WcgpFpf8CMLz6G_B3-nDY2eS1HmOM4HcAv4JOTY7aXz-8F-HN3-3v-0Cx_3S_mP5aNpgMtDWm1JY6ywbSm7xwakLaWSaOZoopqxHtlJMYDIdWRdIRyYxhnSFGDqFSKXoDFUddEuRbVzqbOJqL04h8Q00rIVG2NVpCW9rLljA_UtkTV23WODxw5hw3SvGpdHbW2Kf6dbC5iHacU6viCoo4hUmPoK-vbkVXXlHOy7vVXjMQhKNGJ56Aqd_aOq32Rh_2UJP34Ycf1sSO_MP8j_wTw0aWg |
CODEN | AAIDBI |
CitedBy_id | crossref_primary_10_1007_s10973_024_13527_4 crossref_primary_10_1016_j_asej_2024_103119 crossref_primary_10_1080_10407782_2024_2386610 crossref_primary_10_1063_5_0235980 |
Cites_doi | 10.1108/hff-12-2018-0715 10.1016/j.energy.2022.125775 10.1016/j.heliyon.2019.e03117 10.1016/j.icheatmasstransfer.2023.106893 10.1016/j.csite.2023.102917 10.1016/0022-5193(61)90036-4 10.1016/j.icheatmasstransfer.2020.104737 10.1002/mma.6347 10.1016/j.applthermaleng.2010.02.009 10.1038/s41598-023-49481-8 10.1063/5.0151572 10.1515/ntrev-2023-0106 10.1088/1361-6528/ace912 10.1155/2021/2355258 10.1038/s41598-023-27562-y 10.1063/5.0141532 10.1016/j.jcde.2019.04.001 10.1142/s1793524519500414 10.1016/j.jaubas.2014.01.001 10.1371/journal.pone.0145332 10.1016/j.tsep.2020.100539 10.1007/s12043-023-02702-1 10.1007/s10973-020-09488-z 10.1007/s10404-021-02448-5 10.1063/5.0144191 10.1002/mma.6335 10.1007/s11071-016-2716-2 10.1016/j.cam.2023.115601 10.1016/j.asej.2021.02.017 10.1016/j.aej.2021.06.047 10.1016/j.aej.2022.09.027 10.1016/j.padiff.2021.100240 10.1063/5.0010181 10.1080/10407790.2024.2337119 10.1016/j.ijheatmasstransfer.2018.05.030 10.3390/math10091542 10.1007/s10483-014-1839-9 10.1515/ntrev-2023-0194 10.1063/5.0154720 10.1016/j.rinp.2016.12.038 10.3390/mi13040588 10.1142/s0217979225500444 10.1016/j.aej.2021.01.050 10.1016/j.euromechflu.2019.01.002 |
ContentType | Journal Article |
Copyright | Author(s) 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
Copyright_xml | – notice: Author(s) – notice: 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
DBID | AJDQP AAYXX CITATION 8FD H8D L7M DOA |
DOI | 10.1063/5.0208711 |
DatabaseName | AIP Open Access Journals CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | Technology Research Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: AJDQP name: AIP Open Access Journals url: https://publishing.aip.org/librarians/open-access-policy sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2158-3226 |
EndPage | 055222-9 |
ExternalDocumentID | oai_doaj_org_article_2438a476793e42b2b255f7970ff1d0c7 10_1063_5_0208711 adv |
GrantInformation_xml | – fundername: Shandong Soft Science Project grantid: 2016RKB01008 – fundername: King Saud University, Saudi Arabia grantid: RSPD2024R1007 |
GroupedDBID | 5VS 61. AAFWJ ABFTF ACGFO ADBBV ADCTM AEGXH AENEX AFPKN AGKCL AGLKD AHSDT AIAGR AJDQP ALMA_UNASSIGNED_HOLDINGS BCNDV EBS FRP GROUPED_DOAJ HH5 KQ8 M~E OK1 RIP RNS RQS AAYXX ABJGX ADMLS AKSGC CITATION 8FD H8D L7M |
ID | FETCH-LOGICAL-c393t-24ce2f369d4d85f090cee6adc6b3b3c078bda11922910af237dd6760b3d03abb3 |
IEDL.DBID | DOA |
ISSN | 2158-3226 |
IngestDate | Wed Aug 27 01:31:12 EDT 2025 Sun Jun 29 16:25:48 EDT 2025 Thu Apr 24 23:06:47 EDT 2025 Thu Jul 03 08:37:19 EDT 2025 Fri Jun 21 00:17:03 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c393t-24ce2f369d4d85f090cee6adc6b3b3c078bda11922910af237dd6760b3d03abb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0009-0004-7332-9402 0000-0002-8311-3267 0000-0001-7773-4844 0000-0002-4338-6850 0000-0002-0976-239X |
OpenAccessLink | https://doaj.org/article/2438a476793e42b2b255f7970ff1d0c7 |
PQID | 3056021068 |
PQPubID | 2050671 |
PageCount | 9 |
ParticipantIDs | scitation_primary_10_1063_5_0208711 crossref_primary_10_1063_5_0208711 proquest_journals_3056021068 crossref_citationtrail_10_1063_5_0208711 doaj_primary_oai_doaj_org_article_2438a476793e42b2b255f7970ff1d0c7 |
PublicationCentury | 2000 |
PublicationDate | 20240501 2024-05-01 |
PublicationDateYYYYMMDD | 2024-05-01 |
PublicationDate_xml | – month: 05 year: 2024 text: 20240501 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Melville |
PublicationPlace_xml | – name: Melville |
PublicationTitle | AIP advances |
PublicationYear | 2024 |
Publisher | American Institute of Physics AIP Publishing LLC |
Publisher_xml | – name: American Institute of Physics – name: AIP Publishing LLC |
References | Marinca, Marinca, Herisanu (c33) 2024; 439 Algehyne, Saeed, Arif, Bilal, Kumam, Galal (c5) 2023; 13 Gumber, Yaseen, Rawat, Kumar (c41) 2022; 5 Elsebaee, Bilal, Mahmoud, Balubaid, Shuaib, Asamoah, Ali (c11) 2023; 13 Wakif, Chamkha, Thumma, Animasaun, Sehaqui (c42) 2021; 143 Kumar, Kumar, Baleanu (c25) 2016; 85 Veeresha, Prakasha (c36) 2020; 2020 Kumar, Singh, Kumar (c40) 2015; 17 Bilal, Waqas, Shafi, Rahman, Eldin, Alaoui (c34) 2023; 13 Ahmad, Alnahdi, Bilal, Daher Albalwi, Faqihi (c37) 2024; 13 Alharbi, Ahmed, Ould Sidi, Ahammad, Mohamed, El-Shorbagy, Bilal, Marzouki (c23) 2022; 13 Adnan, AlBaidani, Kumar Mishra, Ahmad, Eldin, Ul Haq (c38) 2023; 45 Biswas, Mandal, Manna, Benim (c12) 2023; 263 Khan, Rashad, Abdou, Tlili (c2) 2019; 75 Nadeem, Khan, Muhammad, Ahmad (c14) 2019; 6 Rashidi, Hosseini, Pop, Kumar, Freidoonimehr (c20) 2014; 35 Umavathi, Bég (c18) 2021; 25 Khan, Rasheed, Salahuddin, Ali (c43) 2021; 12 Allehiany, Alqahtani, Bilal, Ali, Eldin (c24) 2023; 13 Vieru, Fetecau, Shah, Yook (c30) 2023; 64 Platt (c1) 1961; 1 Ullah, Abuzaid, Asma, Bariq (c19); 2021 Alharbi, Bilal, Ali, Eldin, Alburaikan, Khalifa (c6) 2023; 12 Tassaddiq, Khan, Bilal, Gul, Mukhtar, Shah, Bonyah (c32) 2020; 10 Ali, Khan, Bilal, Usman, Shuaib, Gul, Gul (c4) 2023; 34 Al-Khaled, Khan, Khan (c9) 2020; 6 Lakew, Bolland (c26) 2010; 30 Oyelakin, Mondal, Sibanda, Sibanda (c3) 2019; 12 Hayat, Aziz, Muhammad, Ahmad (c16) 2015; 10 Hayat, Sajjad, Alsaedi, Muhammad, Ellahi (c15) 2017; 7 Kumar, Ghosh, Samet, Goufo (c10) 2020; 43 Zhao, Xiao, Wang (c7) 2018; 126 Allehiany, Bilal, Alfwzan, Ali, Eldin (c22) 2023; 13 Yu, Wang (c39) 2022; 10 Mebarek-Oudina, Aissa, Mahanthesh, Öztop (c27) 2020; 117 Alhejaili, Aly (c13) 2023; 146 Farooq, Waqas, Khan, Khan, Chu, Kadry (c28) 2021; 60 Waqas, Almutiri, Yagoob, Ahmad, Bilal (c35) 2024; 98 Zadeh, Mehryan, Sheremet, Izadi, Ghodrat (c8) 2020; 18 Bilal, Hamad, AlQahtani (c21) 2024; 2024 Adnan, Abbas, Alqahtani, Mahmood, Ould Beinane, Bilal (c29) 2024; 2024 Assiri, Aziz Elsebaee, Alqahtani, Bilal, Ali, Eldin (c31) 2023; 13 Umavathi, Sheremet (c17) 2019; 29 Waqas, Wakif, Al-Mdallal, Zaydan, Farooq, Hussain (c44) 2022; 61 (2024051716060086100_c6) 2023; 12 (2024051716060086100_c22) 2023; 13 (2024051716060086100_c39) 2022; 10 (2024051716060086100_c12) 2023; 263 (2024051716060086100_c16) 2015; 10 (2024051716060086100_c29) 2024; 2024 (2024051716060086100_c33) 2024; 439 (2024051716060086100_c20) 2014; 35 (2024051716060086100_c43) 2021; 12 (2024051716060086100_c15) 2017; 7 (2024051716060086100_c1) 1961; 1 (2024051716060086100_c7) 2018; 126 (2024051716060086100_c19); 2021 (2024051716060086100_c31) 2023; 13 (2024051716060086100_c4) 2023; 34 (2024051716060086100_c41) 2022; 5 (2024051716060086100_c44) 2022; 61 (2024051716060086100_c42) 2021; 143 (2024051716060086100_c2) 2019; 75 (2024051716060086100_c25) 2016; 85 (2024051716060086100_c28) 2021; 60 (2024051716060086100_c8) 2020; 18 (2024051716060086100_c34) 2023; 13 (2024051716060086100_c5) 2023; 13 (2024051716060086100_c13) 2023; 146 (2024051716060086100_c21) 2024; 2024 (2024051716060086100_c40) 2015; 17 (2024051716060086100_c30) 2023; 64 (2024051716060086100_c32) 2020; 10 (2024051716060086100_c35) 2024; 98 (2024051716060086100_c17) 2019; 29 (2024051716060086100_c11) 2023; 13 (2024051716060086100_c37) 2024; 13 (2024051716060086100_c3) 2019; 12 (2024051716060086100_c24) 2023; 13 (2024051716060086100_c9) 2020; 6 (2024051716060086100_c18) 2021; 25 (2024051716060086100_c26) 2010; 30 (2024051716060086100_c14) 2019; 6 (2024051716060086100_c27) 2020; 117 (2024051716060086100_c23) 2022; 13 (2024051716060086100_c36) 2020; 2020 (2024051716060086100_c10) 2020; 43 (2024051716060086100_c38) 2023; 45 |
References_xml | – volume: 61 start-page: 1425 year: 2022 ident: c44 article-title: Significance of magnetic field and activation energy on the features of stratified mixed radiative-convective couple-stress nanofluid flows with motile microorganisms publication-title: Alexandria Eng. J. – volume: 13 start-page: 065222 year: 2023 ident: c24 article-title: Fractional study of radiative Brinkman-type nanofluid flow across a vertical plate with the effect of Lorentz force and Newtonian heating publication-title: AIP Adv. – volume: 43 start-page: 6062 year: 2020 ident: c10 article-title: An analysis for heat equations arises in diffusion process using new Yang‐Abdel‐Aty‐Cattani fractional operator publication-title: Math. Methods Appl. Sci. – volume: 13 start-page: 035237 year: 2023 ident: c11 article-title: Motile micro-organism based trihybrid nanofluid flow with an application of magnetic effect across a slender stretching sheet: Numerical approach publication-title: AIP Adv. – volume: 2024 start-page: 2550044 year: 2024 ident: c29 article-title: Numerical heat featuring in radiative convective ternary nanofluid under induced magnetic field and heat generating source publication-title: Int. J. Mod. Phys. B – volume: 45 start-page: 102917 year: 2023 ident: c38 article-title: Numerical study of thermal enhancement in ZnO-SAE50 nanolubricant over a spherical magnetized surface influenced by Newtonian heating and thermal radiation publication-title: Case Stud. Therm. Eng. – volume: 2020 start-page: 1 year: 2020 ident: c36 article-title: A fractional model for propagation of classical optical solitons by using nonsingular derivative publication-title: Math. Methods Appl. Sci. – volume: 18 start-page: 100539 year: 2020 ident: c8 article-title: Numerical study of mixed bio-convection associated with a micropolar fluid publication-title: Therm. Sci. Eng. Prog. – volume: 263 start-page: 125775 year: 2023 ident: c12 article-title: Enhanced energy and mass transport dynamics in a thermo-magneto-bioconvective porous system containing oxytactic bacteria and nanoparticles: Cleaner energy application publication-title: Energy – volume: 35 start-page: 831 year: 2014 ident: c20 article-title: Comparative numerical study of single and two-phase models of nanofluid heat transfer in wavy channel publication-title: Appl. Math. Mech. – volume: 146 start-page: 106893 year: 2023 ident: c13 article-title: Magneto-bioconvection flow in an annulus between circular cylinders containing oxytactic microorganisms publication-title: Int. Commun. Heat Mass Transfer – volume: 13 start-page: 035020 year: 2023 ident: c31 article-title: Numerical simulation of energy transfer in radiative hybrid nanofluids flow influenced by second-order chemical reaction and magnetic field publication-title: AIP Adv. – volume: 2024 start-page: 1 year: 2024 ident: c21 article-title: Numerical simulation of nanofluid flow across a slender stretching Riga plate subjected to heat source and activation energy publication-title: Numer. Heat Transfer, Part B – volume: 17 start-page: 14 year: 2015 ident: c40 article-title: A fractional model of Navier–Stokes equation arising in unsteady flow of a viscous fluid publication-title: J. Assoc. Arab Univ. Basic Appl. Sci. – volume: 12 start-page: 20230106 year: 2023 ident: c6 article-title: Significance of gyrotactic microorganisms on the MHD tangent hyperbolic nanofluid flow across an elastic slender surface: Numerical analysis publication-title: Nanotechnol. Rev. – volume: 12 start-page: 3209 year: 2021 ident: c43 article-title: Chemically reactive flow of hyperbolic tangent fluid flow having thermal radiation and double stratification embedded in porous medium publication-title: Ain Shams Eng. J. – volume: 34 start-page: 425404 year: 2023 ident: c4 article-title: Motile microorganisms hybrid nanoliquid flow with the influence of activation energy and heat source over a rotating disc publication-title: Nanotechnology – volume: 1 start-page: 342 year: 1961 ident: c1 article-title: Properties of large molecules that go beyond the properties of their chemical sub-groups publication-title: J. Theor. Biol. – volume: 75 start-page: 133 year: 2019 ident: c2 article-title: Natural bioconvection flow of a nanofluid containing gyrotactic microorganisms about a truncated cone publication-title: Eur. J. Mech. B Fluids – volume: 98 start-page: 27 year: 2024 ident: c35 article-title: Numerical analysis of MHD tangent hyperbolic nanofluid flow over a stretching surface subject to heat source/sink publication-title: Pramana – volume: 7 start-page: 553 year: 2017 ident: c15 article-title: On squeezed flow of couple stress nanofluid between two parallel plates publication-title: Results Phys. – volume: 12 start-page: 1950041 year: 2019 ident: c3 article-title: Bioconvection in Casson nanofluid flow with Gyrotactic microorganisms and variable surface heat flux publication-title: Int. J. Biomath. – volume: 10 start-page: e0145332 year: 2015 ident: c16 article-title: Influence of magnetic field in three-dimensional flow of couple stress nanofluid over a nonlinearly stretching surface with convective condition publication-title: PLoS One – volume: 13 start-page: 20230194 year: 2024 ident: c37 article-title: Energy and mass transmission through hybrid nanofluid flow passing over a spinning sphere with magnetic effect and heat source/sink publication-title: Nanotechnol. Rev. – volume: 2021 start-page: 2355258 ident: c19 article-title: Couple stress hybrid nanofluid flow through a converging-diverging channel publication-title: J. Nanomater. – volume: 25 start-page: 53 year: 2021 ident: c18 article-title: Simulation of the onset of convection in a porous medium layer saturated by a couple-stress nanofluid publication-title: Microfluid. Nanofluid. – volume: 64 start-page: 761 year: 2023 ident: c30 article-title: Unsteady natural convection flow due to fractional thermal transport and symmetric heat source/sink publication-title: Alexandria Eng. J. – volume: 30 start-page: 1262 year: 2010 ident: c26 article-title: Working fluids for low-temperature heat source publication-title: Appl. Therm. Eng. – volume: 6 start-page: 233 year: 2019 ident: c14 article-title: Mathematical analysis of bio-convective micropolar nanofluid publication-title: J. Comput. Des. Eng. – volume: 13 start-page: 588 year: 2022 ident: c23 article-title: Computational valuation of Darcy ternary-hybrid nanofluid flow across an extending cylinder with induction effects publication-title: Micromachines – volume: 13 start-page: 075005 year: 2023 ident: c22 article-title: Numerical solution for the electrically conducting hybrid nanofluid flow between two parallel rotating surfaces subject to thermal radiation publication-title: AIP Adv. – volume: 10 start-page: 1542 year: 2022 ident: c39 article-title: An optimal investigation of convective fluid flow suspended by carbon nanotubes and thermal radiation impact publication-title: Mathematics – volume: 6 start-page: e03117 year: 2020 ident: c9 article-title: Chemically reactive bioconvection flow of tangent hyperbolic nanoliquid with gyrotactic microorganisms and nonlinear thermal radiation publication-title: Heliyon – volume: 60 start-page: 3073 year: 2021 ident: c28 article-title: Thermally radioactive bioconvection flow of Carreau nanofluid with modified Cattaneo-Christov expressions and exponential space-based heat source publication-title: Alexandria Eng. J. – volume: 13 start-page: 22204 year: 2023 ident: c34 article-title: Energy transmission through radiative ternary nanofluid flow with exponential heat source/sink across an inclined permeable cylinder/plate: Numerical computing publication-title: Sci. Rep. – volume: 5 start-page: 100240 year: 2022 ident: c41 article-title: Heat transfer in micropolar hybrid nanofluid flow past a vertical plate in the presence of thermal radiation and suction/injection effects publication-title: Partial Differ. Equ. Appl. Math. – volume: 13 start-page: 13675 year: 2023 ident: c5 article-title: Gyrotactic microorganism hybrid nanofluid over a Riga plate subject to activation energy and heat source: Numerical approach publication-title: Sci. Rep. – volume: 117 start-page: 104737 year: 2020 ident: c27 article-title: Heat transport of magnetized Newtonian nanoliquids in an annular space between porous vertical cylinders with discrete heat source publication-title: Int. Commun. Heat Mass Transfer – volume: 439 start-page: 115601 year: 2024 ident: c33 article-title: Study of heat transfer in MHD viscoelastic fluid of second grade over a stretching porous sheet with electromagnetic effects and nonuniform source/sink publication-title: J. Comput. Appl. Math. – volume: 143 start-page: 1201 year: 2021 ident: c42 article-title: Thermal radiation and surface roughness effects on the thermo-magneto-hydrodynamic stability of alumina–copper oxide hybrid nanofluids utilizing the generalized Buongiorno’s nanofluid model publication-title: J. Therm. Anal. Calorim. – volume: 29 start-page: 4262 year: 2019 ident: c17 article-title: Flow and heat transfer of couple stress nanofluid sandwiched between viscous fluids publication-title: Int. J. Numer. Methods Heat Fluid Flow – volume: 126 start-page: 95 year: 2018 ident: c7 article-title: Linear stability of thermal-bioconvection in a suspension of gyrotactic micro-organisms publication-title: Int. J. Heat Mass Transfer – volume: 85 start-page: 699 year: 2016 ident: c25 article-title: Two analytical methods for time-fractional nonlinear coupled Boussinesq–Burger’s equations arise in propagation of shallow water waves publication-title: Nonlinear Dyn. – volume: 10 start-page: 055317 year: 2020 ident: c32 article-title: Heat and mass transfer together with hybrid nanofluid flow over a rotating disk publication-title: AIP Adv. – volume: 29 start-page: 4262 year: 2019 ident: 2024051716060086100_c17 article-title: Flow and heat transfer of couple stress nanofluid sandwiched between viscous fluids publication-title: Int. J. Numer. Methods Heat Fluid Flow doi: 10.1108/hff-12-2018-0715 – volume: 263 start-page: 125775 year: 2023 ident: 2024051716060086100_c12 article-title: Enhanced energy and mass transport dynamics in a thermo-magneto-bioconvective porous system containing oxytactic bacteria and nanoparticles: Cleaner energy application publication-title: Energy doi: 10.1016/j.energy.2022.125775 – volume: 6 start-page: e03117 year: 2020 ident: 2024051716060086100_c9 article-title: Chemically reactive bioconvection flow of tangent hyperbolic nanoliquid with gyrotactic microorganisms and nonlinear thermal radiation publication-title: Heliyon doi: 10.1016/j.heliyon.2019.e03117 – volume: 146 start-page: 106893 year: 2023 ident: 2024051716060086100_c13 article-title: Magneto-bioconvection flow in an annulus between circular cylinders containing oxytactic microorganisms publication-title: Int. Commun. Heat Mass Transfer doi: 10.1016/j.icheatmasstransfer.2023.106893 – volume: 45 start-page: 102917 year: 2023 ident: 2024051716060086100_c38 article-title: Numerical study of thermal enhancement in ZnO-SAE50 nanolubricant over a spherical magnetized surface influenced by Newtonian heating and thermal radiation publication-title: Case Stud. Therm. Eng. doi: 10.1016/j.csite.2023.102917 – volume: 1 start-page: 342 year: 1961 ident: 2024051716060086100_c1 article-title: Properties of large molecules that go beyond the properties of their chemical sub-groups publication-title: J. Theor. Biol. doi: 10.1016/0022-5193(61)90036-4 – volume: 117 start-page: 104737 year: 2020 ident: 2024051716060086100_c27 article-title: Heat transport of magnetized Newtonian nanoliquids in an annular space between porous vertical cylinders with discrete heat source publication-title: Int. Commun. Heat Mass Transfer doi: 10.1016/j.icheatmasstransfer.2020.104737 – volume: 43 start-page: 6062 year: 2020 ident: 2024051716060086100_c10 article-title: An analysis for heat equations arises in diffusion process using new Yang-Abdel-Aty-Cattani fractional operator publication-title: Math. Methods Appl. Sci. doi: 10.1002/mma.6347 – volume: 30 start-page: 1262 year: 2010 ident: 2024051716060086100_c26 article-title: Working fluids for low-temperature heat source publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2010.02.009 – volume: 13 start-page: 22204 year: 2023 ident: 2024051716060086100_c34 article-title: Energy transmission through radiative ternary nanofluid flow with exponential heat source/sink across an inclined permeable cylinder/plate: Numerical computing publication-title: Sci. Rep. doi: 10.1038/s41598-023-49481-8 – volume: 13 start-page: 065222 year: 2023 ident: 2024051716060086100_c24 article-title: Fractional study of radiative Brinkman-type nanofluid flow across a vertical plate with the effect of Lorentz force and Newtonian heating publication-title: AIP Adv. doi: 10.1063/5.0151572 – volume: 12 start-page: 20230106 year: 2023 ident: 2024051716060086100_c6 article-title: Significance of gyrotactic microorganisms on the MHD tangent hyperbolic nanofluid flow across an elastic slender surface: Numerical analysis publication-title: Nanotechnol. Rev. doi: 10.1515/ntrev-2023-0106 – volume: 34 start-page: 425404 year: 2023 ident: 2024051716060086100_c4 article-title: Motile microorganisms hybrid nanoliquid flow with the influence of activation energy and heat source over a rotating disc publication-title: Nanotechnology doi: 10.1088/1361-6528/ace912 – volume: 2021 start-page: 2355258 ident: 2024051716060086100_c19 article-title: Couple stress hybrid nanofluid flow through a converging-diverging channel publication-title: J. Nanomater. doi: 10.1155/2021/2355258 – volume: 13 start-page: 13675 year: 2023 ident: 2024051716060086100_c5 article-title: Gyrotactic microorganism hybrid nanofluid over a Riga plate subject to activation energy and heat source: Numerical approach publication-title: Sci. Rep. doi: 10.1038/s41598-023-27562-y – volume: 13 start-page: 035020 year: 2023 ident: 2024051716060086100_c31 article-title: Numerical simulation of energy transfer in radiative hybrid nanofluids flow influenced by second-order chemical reaction and magnetic field publication-title: AIP Adv. doi: 10.1063/5.0141532 – volume: 6 start-page: 233 year: 2019 ident: 2024051716060086100_c14 article-title: Mathematical analysis of bio-convective micropolar nanofluid publication-title: J. Comput. Des. Eng. doi: 10.1016/j.jcde.2019.04.001 – volume: 12 start-page: 1950041 year: 2019 ident: 2024051716060086100_c3 article-title: Bioconvection in Casson nanofluid flow with Gyrotactic microorganisms and variable surface heat flux publication-title: Int. J. Biomath. doi: 10.1142/s1793524519500414 – volume: 17 start-page: 14 year: 2015 ident: 2024051716060086100_c40 article-title: A fractional model of Navier–Stokes equation arising in unsteady flow of a viscous fluid publication-title: J. Assoc. Arab Univ. Basic Appl. Sci. doi: 10.1016/j.jaubas.2014.01.001 – volume: 10 start-page: e0145332 year: 2015 ident: 2024051716060086100_c16 article-title: Influence of magnetic field in three-dimensional flow of couple stress nanofluid over a nonlinearly stretching surface with convective condition publication-title: PLoS One doi: 10.1371/journal.pone.0145332 – volume: 18 start-page: 100539 year: 2020 ident: 2024051716060086100_c8 article-title: Numerical study of mixed bio-convection associated with a micropolar fluid publication-title: Therm. Sci. Eng. Prog. doi: 10.1016/j.tsep.2020.100539 – volume: 98 start-page: 27 year: 2024 ident: 2024051716060086100_c35 article-title: Numerical analysis of MHD tangent hyperbolic nanofluid flow over a stretching surface subject to heat source/sink publication-title: Pramana doi: 10.1007/s12043-023-02702-1 – volume: 143 start-page: 1201 year: 2021 ident: 2024051716060086100_c42 article-title: Thermal radiation and surface roughness effects on the thermo-magneto-hydrodynamic stability of alumina–copper oxide hybrid nanofluids utilizing the generalized Buongiorno’s nanofluid model publication-title: J. Therm. Anal. Calorim. doi: 10.1007/s10973-020-09488-z – volume: 25 start-page: 53 year: 2021 ident: 2024051716060086100_c18 article-title: Simulation of the onset of convection in a porous medium layer saturated by a couple-stress nanofluid publication-title: Microfluid. Nanofluid. doi: 10.1007/s10404-021-02448-5 – volume: 13 start-page: 035237 year: 2023 ident: 2024051716060086100_c11 article-title: Motile micro-organism based trihybrid nanofluid flow with an application of magnetic effect across a slender stretching sheet: Numerical approach publication-title: AIP Adv. doi: 10.1063/5.0144191 – volume: 2020 start-page: 1 year: 2020 ident: 2024051716060086100_c36 article-title: A fractional model for propagation of classical optical solitons by using nonsingular derivative publication-title: Math. Methods Appl. Sci. doi: 10.1002/mma.6335 – volume: 85 start-page: 699 year: 2016 ident: 2024051716060086100_c25 article-title: Two analytical methods for time-fractional nonlinear coupled Boussinesq–Burger’s equations arise in propagation of shallow water waves publication-title: Nonlinear Dyn. doi: 10.1007/s11071-016-2716-2 – volume: 439 start-page: 115601 year: 2024 ident: 2024051716060086100_c33 article-title: Study of heat transfer in MHD viscoelastic fluid of second grade over a stretching porous sheet with electromagnetic effects and nonuniform source/sink publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2023.115601 – volume: 12 start-page: 3209 year: 2021 ident: 2024051716060086100_c43 article-title: Chemically reactive flow of hyperbolic tangent fluid flow having thermal radiation and double stratification embedded in porous medium publication-title: Ain Shams Eng. J. doi: 10.1016/j.asej.2021.02.017 – volume: 61 start-page: 1425 year: 2022 ident: 2024051716060086100_c44 article-title: Significance of magnetic field and activation energy on the features of stratified mixed radiative-convective couple-stress nanofluid flows with motile microorganisms publication-title: Alexandria Eng. J. doi: 10.1016/j.aej.2021.06.047 – volume: 64 start-page: 761 year: 2023 ident: 2024051716060086100_c30 article-title: Unsteady natural convection flow due to fractional thermal transport and symmetric heat source/sink publication-title: Alexandria Eng. J. doi: 10.1016/j.aej.2022.09.027 – volume: 5 start-page: 100240 year: 2022 ident: 2024051716060086100_c41 article-title: Heat transfer in micropolar hybrid nanofluid flow past a vertical plate in the presence of thermal radiation and suction/injection effects publication-title: Partial Differ. Equ. Appl. Math. doi: 10.1016/j.padiff.2021.100240 – volume: 10 start-page: 055317 year: 2020 ident: 2024051716060086100_c32 article-title: Heat and mass transfer together with hybrid nanofluid flow over a rotating disk publication-title: AIP Adv. doi: 10.1063/5.0010181 – volume: 2024 start-page: 1 year: 2024 ident: 2024051716060086100_c21 article-title: Numerical simulation of nanofluid flow across a slender stretching Riga plate subjected to heat source and activation energy publication-title: Numer. Heat Transfer, Part B doi: 10.1080/10407790.2024.2337119 – volume: 126 start-page: 95 year: 2018 ident: 2024051716060086100_c7 article-title: Linear stability of thermal-bioconvection in a suspension of gyrotactic micro-organisms publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2018.05.030 – volume: 10 start-page: 1542 year: 2022 ident: 2024051716060086100_c39 article-title: An optimal investigation of convective fluid flow suspended by carbon nanotubes and thermal radiation impact publication-title: Mathematics doi: 10.3390/math10091542 – volume: 35 start-page: 831 year: 2014 ident: 2024051716060086100_c20 article-title: Comparative numerical study of single and two-phase models of nanofluid heat transfer in wavy channel publication-title: Appl. Math. Mech. doi: 10.1007/s10483-014-1839-9 – volume: 13 start-page: 20230194 year: 2024 ident: 2024051716060086100_c37 article-title: Energy and mass transmission through hybrid nanofluid flow passing over a spinning sphere with magnetic effect and heat source/sink publication-title: Nanotechnol. Rev. doi: 10.1515/ntrev-2023-0194 – volume: 13 start-page: 075005 year: 2023 ident: 2024051716060086100_c22 article-title: Numerical solution for the electrically conducting hybrid nanofluid flow between two parallel rotating surfaces subject to thermal radiation publication-title: AIP Adv. doi: 10.1063/5.0154720 – volume: 7 start-page: 553 year: 2017 ident: 2024051716060086100_c15 article-title: On squeezed flow of couple stress nanofluid between two parallel plates publication-title: Results Phys. doi: 10.1016/j.rinp.2016.12.038 – volume: 13 start-page: 588 year: 2022 ident: 2024051716060086100_c23 article-title: Computational valuation of Darcy ternary-hybrid nanofluid flow across an extending cylinder with induction effects publication-title: Micromachines doi: 10.3390/mi13040588 – volume: 2024 start-page: 2550044 year: 2024 ident: 2024051716060086100_c29 article-title: Numerical heat featuring in radiative convective ternary nanofluid under induced magnetic field and heat generating source publication-title: Int. J. Mod. Phys. B doi: 10.1142/s0217979225500444 – volume: 60 start-page: 3073 year: 2021 ident: 2024051716060086100_c28 article-title: Thermally radioactive bioconvection flow of Carreau nanofluid with modified Cattaneo-Christov expressions and exponential space-based heat source publication-title: Alexandria Eng. J. doi: 10.1016/j.aej.2021.01.050 – volume: 75 start-page: 133 year: 2019 ident: 2024051716060086100_c2 article-title: Natural bioconvection flow of a nanofluid containing gyrotactic microorganisms about a truncated cone publication-title: Eur. J. Mech. B Fluids doi: 10.1016/j.euromechflu.2019.01.002 |
SSID | ssj0000491084 |
Score | 2.3513474 |
Snippet | Couple-stress nanofluids have multiple potential applications in numerous industrial and engineering sectors, such as energy production, medical diagnostics,... |
SourceID | doaj proquest crossref scitation |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 055222 |
SubjectTerms | Aerospace industry Boundary conditions Differential equations Fluid flow Heat exchange Nanofluids Nuclear energy Nuclear power plants Ordinary differential equations Parameters Prandtl number Renewable energy sources Thermal control systems Thermal radiation Thermal relaxation |
SummonAdditionalLinks | – databaseName: AIP Open Access Journals dbid: AJDQP link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwEA_DIfoifuJ0SnA--FLtkjRtfZsfYwwcCgp7K_loRKjt2Fpk_72XfowJCtK3cIFyd8n9LveF0CWYKBGC5-PosG9LchhzRGAUuCrU9kI2TCj7NPA04aM3Np560xbq_RHB5_TGu7ZzJH1bv9smAI5BdduD8cPL8-opBUBu3w1Y0zdofc8Pa1M25f-BJLfAzFQR7zWjMtxFOzUaxINKfHuoFaf7aLPMylSLA7S8z4pZEjtVQQdORZqZpPjQ2CTZF7bZ4HBEwfbg9-U8y8tyJ_xpM-xkvMCLQto3FpxnuEwtLy82LMsxSvOlXdNVutYtnhRV3CbBjSYeorfh4-v9yKlnJTiKhjR3CFMxMZSHmunAM27ogvXjQisuqaQKgIDUog9wjgCvhCHU15r73JVUu1RISY_QRpql8THCMha-CpXHJaeMgzGTIEwSaBJwTaQxHXTV8DRq2GfnWSRRGdDmNPKimv0ddLEinVXdM34jurOCWRHYhtflAmhBVJ-fiDAaCOZzuE5iRiR8nmf80HeN6WtX-R3UbcQa1adwEVn3yPq0POig3krUf__Jyb-oTtE2AWRTZT120UY-L-IzQCa5PK818xsDy9_q priority: 102 providerName: American Institute of Physics |
Title | Couple-stress nanofluid flow comprising gyrotactic microbes subject to convective boundary conditions: Numerical solution |
URI | http://dx.doi.org/10.1063/5.0208711 https://www.proquest.com/docview/3056021068 https://doaj.org/article/2438a476793e42b2b255f7970ff1d0c7 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS-UwEA-LsuhFdFV8fhFWD3uptkmatt78RERll1XwVvLRiFLbx3st8v57J0n7eILiRXoohBzCzCS_meQ3MwjtA0SJDCKfQGeRTclhLBCpURCqUFsL2TCh7NXAzS2_vGdXD_HDTKsvywnz5YG94A4Jo6lgCQc7KhiR8MWxSbIkNCbSoXJ55IB5M8HUs_d7ozBlfSkhTg_jA9uOMomidwDk6vS_cy4XAHn8I_gMzlwso6XOQcTHfmEr6EdR_UI_HVFTjVfR5LRuh2UR-BwPXImqNmX7pLEp61dsCeKwawGO8ONkVDcuAwq_WNKdLMZ43Ep77YKbGju2uTvrsHSdlUYTO6Y9g-sI37b-KafEvXGuofuL87vTy6BrnxAomtEmIEwVxFCeaabT2IRZCIDIhVZcUkkV-AZSiwg8PAKyEobQRGue8FBSHVIhJV1Hc1VdFRsIy0IkKlMxl5wyDvgmQb8k1STlmkhjBuhPL9O8F59tcVHm7o2b0zzOO_EP0O_p1KEvqPHRpBOrmOkEWwPbDYBl5J1l5F9ZxgBt92rNu405zm3EZMNcng7Q3lTVn69k8ztWsoUWCfhCnie5jeaaUVvsgC_TyF00f3x2c_3f_q_O_v3ddWb8Bnpb9Do |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Za9wwEB7ShJK-hJ50c7SiB_TFiS3Jsh3oQ5o0bK6lhQTy5uiwSsC1l7WdsD-q_7EjH9sEWuhL8JsYjJgZzTcjzQHwASFKJhj5eCYJXEkO556MrcZQhbleyJZL7a4GziZifMGPL8PLJfg11MLgJqpteT3tWgSbm52egV6OPmcz_dNwQLCdcNtNmIyCoM-pPMnmtxixVZ-PDlC8Hyk9_Hq-P_b6oQKeZgmrPcp1Ri0TieEmDq2f-AgTQhotFFNMI2IqIwP0eygCqbSURcaISPiKGZ9JpRj-9xGsYPQv8BCt7B0ffP-2uNRBdzvwYz50MLq7x3u4144HuOfTriLgdW_vd-Dt8Cms9X4p2ev48AyWsuI5PG7zQ3X1Aub7ZTNF_nSlJaSQRWnz5toQm5e3xOWlo7FAFCQ_5rOybguvyE-X66eyilSNcrc9pC5Jm-Temlii2oFOs7lbM13i2C6ZNN0LUk6GM_ESLh6Ewa9guSiL7DUQlclIJzoUSjAuEFYVqhWNDY2FocraEXwaeJoO7HOTNfK0fVoXLA3Tnv0jeLcgnXZ9PP5G9MUJZkHgWm-3C6iMaa-IKeUsljwSaNgyThV-YWijJPKtDYyvoxFsDmJNe3tQpS5Qc9G1iEfwfiHqf-9k_b-o3sLq-PzsND09mpxswBOK_laXi7kJy_WsybbQX6rVm15LCVw99MH4DfSnJ8Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Couple-stress+nanofluid+flow+comprising+gyrotactic+microbes+subject+to+convective+boundary+conditions%3A+Numerical+solution&rft.jtitle=AIP+advances&rft.au=Zhang%2C+Lihong&rft.au=Bilal+Muhammad&rft.au=Ullah+Saif&rft.au=Mostafa%2C+Almetwally+M&rft.date=2024-05-01&rft.pub=American+Institute+of+Physics&rft.eissn=2158-3226&rft.volume=14&rft.issue=5&rft_id=info:doi/10.1063%2F5.0208711&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2158-3226&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2158-3226&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2158-3226&client=summon |