RRP6/EXOSC10 is required for the repair of DNA double-strand breaks by homologous recombination
The exosome acts on different RNA substrates and plays important roles in RNA metabolism. The fact that short non-coding RNAs are involved in the DNA damage response led us to investigate whether the exosome factor RRP6 of Drosophila melanogaster and its human ortholog EXOSC10 play a role in DNA rep...
Saved in:
Published in | Journal of cell science Vol. 128; no. 6; pp. 1097 - 1107 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
15.03.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The exosome acts on different RNA substrates and plays important roles in RNA metabolism. The fact that short non-coding RNAs are involved in the DNA damage response led us to investigate whether the exosome factor RRP6 of Drosophila melanogaster and its human ortholog EXOSC10 play a role in DNA repair. Here, we show that RRP6 and EXOSC10 are recruited to DNA double-strand breaks (DSBs) in S2 cells and HeLa cells, respectively. Depletion of RRP6/EXOSC10 does not interfere with the phosphorylation of the histone variant H2Av (Drosophila) or H2AX (humans), but impairs the recruitment of the homologous recombination factor RAD51 to the damaged sites, without affecting RAD51 levels. The recruitment of RAD51 to DSBs in S2 cells is also inhibited by overexpression of RRP6-Y361A-V5, a catalytically inactive RRP6 mutant. Furthermore, cells depleted of RRP6 or EXOSC10 are more sensitive to radiation, which is consistent with RRP6/EXOSC10 playing a role in DNA repair. RRP6/EXOSC10 can be co-immunoprecipitated with RAD51, which links RRP6/EXOSC10 to the homologous recombination pathway. Taken together, our results suggest that the ribonucleolytic activity of RRP6/EXOSC10 is required for the recruitment of RAD51 to DSBs. |
---|---|
AbstractList | The exosome acts on different RNA substrates and plays important roles in RNA metabolism. The fact that short non-coding RNAs are involved in the DNA damage response led us to investigate whether the exosome factor RRP6 of Drosophila melanogaster and its human ortholog EXOSC10 play a role in DNA repair. Here we show that RRP6 and EXOSC10 are recruited to DNA double-strand breaks (DSBs) in S2 cells and HeLa cells, respectively. Depletion of RRP6/EXOSC10 does not interfere with the phosphorylation of the histone variant H2Av/H2AX, but impairs the recruitment of the homologous recombination factor RAD51 to the damaged sites, without affecting RAD51 levels. The recruitment of RAD51 to DSBs in S2 cells is also inhibited by overexpression of RRP6-Y361A-V5, a catalytically inactive RRP6 mutant. Furthermore, cells depleted of RRP6 or EXOSC10 are more sensitive to radiation, which is consistent with RRP6/EXOSC10 playing a role in DNA repair. RRP6/EXOSC10 can be co-immunoprecipitated with RAD51, which links RRP6/EXOSC10 to the homologous recombination pathway. Altogether, our results suggest that the ribonucleolytic activity of RRP6/EXOSC10 is required for the recruitment of RAD51 to DSBs. The exosome acts on different RNA substrates and plays important roles in RNA metabolism. The fact that short non-coding RNAs are involved in the DNA damage response led us to investigate whether the exosome factor RRP6 of Drosophila melanogaster and its human ortholog EXOSC10 play a role in DNA repair. Here, we show that RRP6 and EXOSC10 are recruited to DNA double-strand breaks (DSBs) in S2 cells and HeLa cells, respectively. Depletion of RRP6/ EXOSC10 does not interfere with the phosphorylation of the histone variant H2Av (Drosophila) or H2AX (humans), but impairs the recruitment of the homologous recombination factor RAD51 to the damaged sites, without affecting RAD51 levels. The recruitment of RAD51 to DSBs in S2 cells is also inhibited by overexpression of RRP6-Y361A-V5, a catalytically inactive RRP6 mutant. Furthermore, cells depleted of RRP6 or EXOSC10 are more sensitive to radiation, which is consistent with RRP6/EXOSC10 playing a role in DNA repair. RRP6/EXOSC10 can be co-immunoprecipitated with RAD51, which links RRP6/EXOSC10 to the homologous recombination pathway. Taken together, our results suggest that the ribonucleolytic activity of RRP6/EXOSC10 is required for the recruitment of RAD51 to DSBs. |
Author | Domingo-Prim, Judit Visa, Neus Marin-Vicente, Consuelo Eberle, Andrea B |
Author_xml | – sequence: 1 givenname: Consuelo surname: Marin-Vicente fullname: Marin-Vicente, Consuelo organization: Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden – sequence: 2 givenname: Judit surname: Domingo-Prim fullname: Domingo-Prim, Judit organization: Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden – sequence: 3 givenname: Andrea B surname: Eberle fullname: Eberle, Andrea B organization: Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden – sequence: 4 givenname: Neus surname: Visa fullname: Visa, Neus email: neus.visa@su.se organization: Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden neus.visa@su.se |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25632158$$D View this record in MEDLINE/PubMed https://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-116613$$DView record from Swedish Publication Index |
BookMark | eNqFkU1P3DAQhq2Kqiy0F34A8hGhBjx24o_jaqGAhEpFP9Sb5cQTMCTxYidC_PtmtcC1p5FGz7x6R88e2RnigIQcADsBXvLThyafQKWVEB_IAkqlCgNC7ZAFYxwKUwmxS_ZyfmCMKW7UJ7LLKyn4fLIg9vb2hzw9_3vzcwWMhkwTPk0hoadtTHS8x3mxdiHR2NKz70vq41R3WOQxucHTOqF7zLR-ofexj128i9MmoYl9HQY3hjh8Jh9b12X88jr3ye9v579Wl8X1zcXVanldNMKIsQCtnQSoeeu58CUXvDRSaYNCg64UikZ56RvTzr2dF1AL7rmudFsxBIZO7JOv29z8jOuptusUepdebHTBnoU_SxvTnc2TBZASxIwfbfF1ik8T5tH2ITfYdW7A-QcLGsAwU6ny_6iUJRiuzAY93qJNijknbN9rALMbVXZWZbeqZvjwNXeqe_Tv6Jsb8Q9pVY5n |
CitedBy_id | crossref_primary_10_1111_brv_12693 crossref_primary_10_1038_s41416_019_0624_1 crossref_primary_10_3390_cells10061433 crossref_primary_10_1186_s13008_016_0014_5 crossref_primary_10_15252_embr_202357801 crossref_primary_10_1242_dev_188276 crossref_primary_10_1038_s41467_019_10153_9 crossref_primary_10_1093_nar_gkx963 crossref_primary_10_1002_bies_201900225 crossref_primary_10_1016_j_dnarep_2019_102653 crossref_primary_10_1002_wrna_1499 crossref_primary_10_3389_fmolb_2021_668821 crossref_primary_10_1111_acer_14389 crossref_primary_10_1016_j_celrep_2016_08_059 crossref_primary_10_1371_journal_pgen_1005523 crossref_primary_10_1093_nar_gkx072 crossref_primary_10_1371_journal_pgen_1006107 crossref_primary_10_1038_s41467_018_07799_2 crossref_primary_10_1038_nrm_2015_15 |
Cites_doi | 10.1016/j.bbagrm.2013.01.006 10.1038/nature01446 10.1101/gad.2021311 10.1101/gad.1241204 10.15252/embr.201439458 10.1016/j.sbi.2008.10.004 10.1016/j.febslet.2013.05.006 10.1091/mbc.E09-01-0079 10.1371/journal.pone.0011540 10.7554/eLife.00505 10.1016/j.cell.2011.02.012 10.1091/mbc.E08-08-0825 10.1093/genetics/161.2.711 10.1016/j.semcdb.2014.03.033 10.1534/genetics.105.050138 10.1126/scisignal.2002255 10.1038/nrm1964 10.1016/j.cell.2012.03.002 10.1016/j.sbi.2014.01.011 10.1093/nar/gks270 10.1093/nar/gkf496 10.1006/bbrc.1999.0152 10.4161/rna.8.1.14237 10.1038/ncb2426 10.1016/j.tcb.2013.09.008 10.1261/rna.5560903 10.1261/rna.2364811 10.1038/nmeth.2089 10.1038/nature11179 10.1074/jbc.R700039200 10.1101/gad.224923.113 10.1038/nature13374 10.1016/j.molcel.2011.06.028 10.1038/nsmb.2827 10.1038/cr.2014.36 10.1016/j.jmb.2008.11.011 |
ContentType | Journal Article |
Copyright | 2015. Published by The Company of Biologists Ltd. |
Copyright_xml | – notice: 2015. Published by The Company of Biologists Ltd. |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 7TM 8FD FR3 P64 RC3 ADTPV AOWAS DG7 |
DOI | 10.1242/jcs.158733 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef MEDLINE - Academic Nucleic Acids Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts SwePub SwePub Articles SWEPUB Stockholms universitet |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef MEDLINE - Academic Genetics Abstracts Engineering Research Database Technology Research Database Nucleic Acids Abstracts Biotechnology and BioEngineering Abstracts |
DatabaseTitleList | CrossRef MEDLINE - Academic MEDLINE Genetics Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1477-9137 |
EndPage | 1107 |
ExternalDocumentID | oai_DiVA_org_su_116613 10_1242_jcs_158733 25632158 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -DZ -~X 0R~ 18M 2WC 34G 39C 4.4 53G 5GY 5RE 5VS 85S ABDNZ ABPPZ ACGFO ACGFS ACIWK ACNCT ACPRK ADBBV ADCOW AEILP AENEX AFFNX AFRAH AGGIJ ALMA_UNASSIGNED_HOLDINGS BAWUL BTFSW CGR CS3 CUY CVF DIK DU5 E3Z EBS ECM EIF F5P F9R GX1 H13 HZ~ IH2 INIJC KQ8 NPM O9- OK1 P2P R.V RCB RHF RHI RNS SJN TN5 TR2 UPT W2D W8F WH7 WOQ YQT ~02 ~KM AAYXX CITATION 7X8 7TM 8FD FR3 P64 RC3 .55 .GJ 3O- 4R4 AAJMC ABEFU ABJNI ABTAH ACYGS ADTPV AI. AOWAS C1A DG7 EJD MVM OHT VH1 X7M XOL YQI ZGI ZXP ZY4 |
ID | FETCH-LOGICAL-c393t-188a611b2fd23d4232496789e381857e3c7d6dc9f632ad31b32d2858f50e10ea3 |
ISSN | 0021-9533 1477-9137 |
IngestDate | Tue Oct 01 22:41:34 EDT 2024 Fri Oct 25 03:05:40 EDT 2024 Fri Oct 25 08:33:24 EDT 2024 Thu Sep 12 18:12:35 EDT 2024 Tue Oct 15 23:53:41 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | RRP6 EXOSC10 RAD51 Exosome DNA repair Non-coding RNA |
Language | English |
License | 2015. Published by The Company of Biologists Ltd. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c393t-188a611b2fd23d4232496789e381857e3c7d6dc9f632ad31b32d2858f50e10ea3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://jcs.biologists.org/content/joces/128/6/1097.full.pdf |
PMID | 25632158 |
PQID | 1664192794 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | swepub_primary_oai_DiVA_org_su_116613 proquest_miscellaneous_1811909574 proquest_miscellaneous_1664192794 crossref_primary_10_1242_jcs_158733 pubmed_primary_25632158 |
PublicationCentury | 2000 |
PublicationDate | 2015-03-15 |
PublicationDateYYYYMMDD | 2015-03-15 |
PublicationDate_xml | – month: 03 year: 2015 text: 2015-03-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Journal of cell science |
PublicationTitleAlternate | J Cell Sci |
PublicationYear | 2015 |
References | Chlebowski (2021042613464067800_b4) 2013; 1829 Schneider (2021042613464067800_b29) 2012; 9 Eberle (2021042613464067800_b7) 2010; 5 Phillips (2021042613464067800_b24) 2003; 9 Woods (2021042613464067800_b36) 2012; 5 Stewart (2021042613464067800_b31) 2003; 421 d'Adda di Fagagna (2021042613464067800_b5) 2014; 24 Lykke-Andersen (2021042613464067800_b20) 2011; 8 Polo (2021042613464067800_b25) 2011; 25 Januszyk (2021042613464067800_b14) 2014; 24 Lorentzen (2021042613464067800_b18) 2008; 18 Adamson (2021042613464067800_b1) 2012; 14 Gao (2021042613464067800_b9) 2014; 24 Wahba (2021042613464067800_b33) 2013; 2 Manfrini (2021042613464067800_b22) 2014; 2014 Lieber (2021042613464067800_b17) 2008; 283 White (2021042613464067800_b35) 2014; 21 Bhatia (2021042613464067800_b2) 2014; 511 Monnat (2021042613464067800_b23) 1999; 255 Madigan (2021042613464067800_b21) 2002; 30 Kiss (2021042613464067800_b15) 2011; 17 Lubas (2021042613464067800_b19) 2011; 43 Krejci (2021042613464067800_b16) 2012; 40 Synowsky (2021042613464067800_b32) 2009; 385 Eberle (2021042613464067800_b6) 2014; 32 Chiolo (2021042613464067800_b3) 2011; 144 Richard (2021042613464067800_b28) 2013; 27 Wei (2021042613464067800_b34) 2012; 149 Hessle (2021042613464067800_b11) 2009; 20 Hieronymus (2021042613464067800_b12) 2004; 18 Francia (2021042613464067800_b8) 2012; 488 Graham (2021042613464067800_b10) 2009; 20 Houseley (2021042613464067800_b13) 2006; 7 Sharma (2021042613464067800_b30) 2013; 587 Preston (2021042613464067800_b26) 2002; 161 Preston (2021042613464067800_b27) 2006; 172 |
References_xml | – volume: 1829 start-page: 552 year: 2013 ident: 2021042613464067800_b4 article-title: RNA decay machines: the exosome. publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbagrm.2013.01.006 contributor: fullname: Chlebowski – volume: 421 start-page: 961 year: 2003 ident: 2021042613464067800_b31 article-title: MDC1 is a mediator of the mammalian DNA damage checkpoint. publication-title: Nature doi: 10.1038/nature01446 contributor: fullname: Stewart – volume: 25 start-page: 409 year: 2011 ident: 2021042613464067800_b25 article-title: Dynamics of DNA damage response proteins at DNA breaks: a focus on protein modifications. publication-title: Genes Dev. doi: 10.1101/gad.2021311 contributor: fullname: Polo – volume: 18 start-page: 2652 year: 2004 ident: 2021042613464067800_b12 article-title: Genome-wide mRNA surveillance is coupled to mRNA export. publication-title: Genes Dev. doi: 10.1101/gad.1241204 contributor: fullname: Hieronymus – volume: 2014 start-page: embr.201439458 year: 2014 ident: 2021042613464067800_b22 article-title: RNA-processing proteins regulate Mec1/ATR activation by promoting generation of RPA-coated ssDNA. publication-title: EMBO Rep. doi: 10.15252/embr.201439458 contributor: fullname: Manfrini – volume: 18 start-page: 709 year: 2008 ident: 2021042613464067800_b18 article-title: Structural organization of the RNA-degrading exosome. publication-title: Curr. Opin. Struct. Biol. doi: 10.1016/j.sbi.2008.10.004 contributor: fullname: Lorentzen – volume: 587 start-page: 1832 year: 2013 ident: 2021042613464067800_b30 article-title: Non-coding RNAs in DNA damage and repair. publication-title: FEBS Lett. doi: 10.1016/j.febslet.2013.05.006 contributor: fullname: Sharma – volume: 20 start-page: 3459 year: 2009 ident: 2021042613464067800_b11 article-title: The exosome associates cotranscriptionally with the nascent pre-mRNP through interactions with heterogeneous nuclear ribonucleoproteins. publication-title: Mol. Biol. Cell doi: 10.1091/mbc.E09-01-0079 contributor: fullname: Hessle – volume: 5 start-page: e11540 year: 2010 ident: 2021042613464067800_b7 article-title: Splice-site mutations cause Rrp6-mediated nuclear retention of the unspliced RNAs and transcriptional down-regulation of the splicing-defective genes. publication-title: PLoS ONE doi: 10.1371/journal.pone.0011540 contributor: fullname: Eberle – volume: 2 start-page: e00505 year: 2013 ident: 2021042613464067800_b33 article-title: The homologous recombination machinery modulates the formation of RNA-DNA hybrids and associated chromosome instability. publication-title: eLife doi: 10.7554/eLife.00505 contributor: fullname: Wahba – volume: 144 start-page: 732 year: 2011 ident: 2021042613464067800_b3 article-title: Double-strand breaks in heterochromatin move outside of a dynamic HP1a domain to complete recombinational repair. publication-title: Cell doi: 10.1016/j.cell.2011.02.012 contributor: fullname: Chiolo – volume: 20 start-page: 2242 year: 2009 ident: 2021042613464067800_b10 article-title: Core exosome-independent roles for Rrp6 in cell cycle progression. publication-title: Mol. Biol. Cell doi: 10.1091/mbc.E08-08-0825 contributor: fullname: Graham – volume: 161 start-page: 711 year: 2002 ident: 2021042613464067800_b26 article-title: Efficient repair of DNA breaks in Drosophila: evidence for single-strand annealing and competition with other repair pathways. publication-title: Genetics doi: 10.1093/genetics/161.2.711 contributor: fullname: Preston – volume: 32 start-page: 37 year: 2014 ident: 2021042613464067800_b6 article-title: Quality control of mRNP biogenesis: networking at the transcription site. publication-title: Semin. Cell Dev. Biol. doi: 10.1016/j.semcdb.2014.03.033 contributor: fullname: Eberle – volume: 172 start-page: 1055 year: 2006 ident: 2021042613464067800_b27 article-title: Differential usage of alternative pathways of double-strand break repair in Drosophila. publication-title: Genetics doi: 10.1534/genetics.105.050138 contributor: fullname: Preston – volume: 5 start-page: rs6 year: 2012 ident: 2021042613464067800_b36 article-title: Charting the landscape of tandem BRCT domain-mediated protein interactions. publication-title: Sci. Signal. doi: 10.1126/scisignal.2002255 contributor: fullname: Woods – volume: 7 start-page: 529 year: 2006 ident: 2021042613464067800_b13 article-title: RNA-quality control by the exosome. publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm1964 contributor: fullname: Houseley – volume: 149 start-page: 101 year: 2012 ident: 2021042613464067800_b34 article-title: A role for small RNAs in DNA double-strand break repair. publication-title: Cell doi: 10.1016/j.cell.2012.03.002 contributor: fullname: Wei – volume: 24 start-page: 132 year: 2014 ident: 2021042613464067800_b14 article-title: The eukaryotic RNA exosome. publication-title: Curr. Opin. Struct. Biol. doi: 10.1016/j.sbi.2014.01.011 contributor: fullname: Januszyk – volume: 40 start-page: 5795 year: 2012 ident: 2021042613464067800_b16 article-title: Homologous recombination and its regulation. publication-title: Nucleic Acids Res. doi: 10.1093/nar/gks270 contributor: fullname: Krejci – volume: 30 start-page: 3698 year: 2002 ident: 2021042613464067800_b21 article-title: DNA double-strand break-induced phosphorylation of Drosophila histone variant H2Av helps prevent radiation-induced apoptosis. publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkf496 contributor: fullname: Madigan – volume: 255 start-page: 88 year: 1999 ident: 2021042613464067800_b23 article-title: Generation of highly site-specific DNA double-strand breaks in human cells by the homing endonucleases I-PpoI and I-CreI. publication-title: Biochem. Biophys. Res. Commun. doi: 10.1006/bbrc.1999.0152 contributor: fullname: Monnat – volume: 8 start-page: 61 year: 2011 ident: 2021042613464067800_b20 article-title: The eukaryotic RNA exosome: same scaffold but variable catalytic subunits. publication-title: RNA Biol. doi: 10.4161/rna.8.1.14237 contributor: fullname: Lykke-Andersen – volume: 14 start-page: 318 year: 2012 ident: 2021042613464067800_b1 article-title: A genome-wide homologous recombination screen identifies the RNA-binding protein RBMX as a component of the DNA-damage response. publication-title: Nat. Cell Biol. doi: 10.1038/ncb2426 contributor: fullname: Adamson – volume: 24 start-page: 171 year: 2014 ident: 2021042613464067800_b5 article-title: A direct role for small non-coding RNAs in DNA damage response. publication-title: Trends Cell Biol. doi: 10.1016/j.tcb.2013.09.008 contributor: fullname: d'Adda di Fagagna – volume: 9 start-page: 1098 year: 2003 ident: 2021042613464067800_b24 article-title: Contribution of domain structure to the RNA 3′ end processing and degradation functions of the nuclear exosome subunit Rrp6p. publication-title: RNA doi: 10.1261/rna.5560903 contributor: fullname: Phillips – volume: 17 start-page: 1 year: 2011 ident: 2021042613464067800_b15 article-title: The exozyme model: a continuum of functionally distinct complexes. publication-title: RNA doi: 10.1261/rna.2364811 contributor: fullname: Kiss – volume: 9 start-page: 671 year: 2012 ident: 2021042613464067800_b29 article-title: NIH Image to ImageJ: 25 years of image analysis. publication-title: Nat. Methods doi: 10.1038/nmeth.2089 contributor: fullname: Schneider – volume: 488 start-page: 231 year: 2012 ident: 2021042613464067800_b8 article-title: Site-specific DICER and DROSHA RNA products control the DNA-damage response. publication-title: Nature doi: 10.1038/nature11179 contributor: fullname: Francia – volume: 283 start-page: 1 year: 2008 ident: 2021042613464067800_b17 article-title: The mechanism of human nonhomologous DNA end joining. publication-title: J. Biol. Chem. doi: 10.1074/jbc.R700039200 contributor: fullname: Lieber – volume: 27 start-page: 2227 year: 2013 ident: 2021042613464067800_b28 article-title: A SUMO-dependent interaction between Senataxin and the exosome, disrupted in the neurodegenerative disease AOA2, targets the exosome to sites of transcription-induced DNA damage. publication-title: Genes Dev. doi: 10.1101/gad.224923.113 contributor: fullname: Richard – volume: 511 start-page: 362 year: 2014 ident: 2021042613464067800_b2 article-title: BRCA2 prevents R-loop accumulation and associates with TREX-2 mRNA export factor PCID2. publication-title: Nature doi: 10.1038/nature13374 contributor: fullname: Bhatia – volume: 43 start-page: 624 year: 2011 ident: 2021042613464067800_b19 article-title: Interaction profiling identifies the human nuclear exosome targeting complex. publication-title: Mol. Cell doi: 10.1016/j.molcel.2011.06.028 contributor: fullname: Lubas – volume: 21 start-page: 552 year: 2014 ident: 2021042613464067800_b35 article-title: Human nuclear Dicer restricts the deleterious accumulation of endogenous double-stranded RNA. publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.2827 contributor: fullname: White – volume: 24 start-page: 532 year: 2014 ident: 2021042613464067800_b9 article-title: Ago2 facilitates Rad51 recruitment and DNA double-strand break repair by homologous recombination. publication-title: Cell Res. doi: 10.1038/cr.2014.36 contributor: fullname: Gao – volume: 385 start-page: 1300 year: 2009 ident: 2021042613464067800_b32 article-title: Comparative multiplexed mass spectrometric analyses of endogenously expressed yeast nuclear and cytoplasmic exosomes. publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2008.11.011 contributor: fullname: Synowsky |
SSID | ssj0007297 |
Score | 2.368317 |
Snippet | The exosome acts on different RNA substrates and plays important roles in RNA metabolism. The fact that short non-coding RNAs are involved in the DNA damage... |
SourceID | swepub proquest crossref pubmed |
SourceType | Open Access Repository Aggregation Database Index Database |
StartPage | 1097 |
SubjectTerms | Animals Blotting, Western Cell Proliferation Chromatin Immunoprecipitation DNA Breaks, Double-Stranded DNA repair DNA Repair - genetics Drosophila melanogaster Drosophila melanogaster - genetics Drosophila melanogaster - growth & development Drosophila melanogaster - metabolism Drosophila Proteins - genetics Drosophila Proteins - metabolism Exoribonucleases - antagonists & inhibitors Exoribonucleases - genetics Exoribonucleases - metabolism EXOSC10 Exosome Exosome Multienzyme Ribonuclease Complex - antagonists & inhibitors Exosome Multienzyme Ribonuclease Complex - genetics Exosome Multienzyme Ribonuclease Complex - metabolism HeLa Cells Histones - metabolism Homologous Recombination - genetics Humans Molecular Bioscience molekylär biovetenskap Non-coding RNA Phosphorylation RAD51 Rad51 Recombinase - metabolism RNA, Small Interfering - genetics RRP6 |
Title | RRP6/EXOSC10 is required for the repair of DNA double-strand breaks by homologous recombination |
URI | https://www.ncbi.nlm.nih.gov/pubmed/25632158 https://search.proquest.com/docview/1664192794 https://search.proquest.com/docview/1811909574 https://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-116613 |
Volume | 128 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF5BERIXxLspDy0CTpXb7K4f62PUpqqgpKUkUW4rr70Gi8aunORQfj0zXseOCUKFixU51jqZ-TTzze48CHkvIpf1IXBwOGeJ42rtOToCY5hqzsFDeW7gYnHy55F_OnE_zrxZm5BZVZcs9UH88491Jf-jVbgHesUq2X_QbLMo3IDPoF-4gobheisdX15eYEw8nJ1_PWJ9nE1eGszsBRLZZA-Cu7EnAcejwX5SrPSVcXB7IwfmCYTxxwIJ6PdijkYQ02ExQp5DuNxqbJu64m7_fu072y3tMsudaYbZnja7EIs7zVXRUOViDm6ycC7KbN7UgzSEXpvSJjZXGZZROwx6mi0qfjsy3S0K5mGOli3SbEoGGJ4Ti47Z5XIDX5tGFA_FNxwyq-fibhl7YBdo7OPFAfNkUK_e6ag9Olcnk7MzNR7OxnfJPQ7GCK3gpy9tR3kILuqxvvYn1i1sYe3DduUuadmKRH5rM1tRk_Ej8rBWDB1YgDwmd0z-hNy3U0ZvnhKFMDmsQUKzBV2DhAJIKICEWpDQIqUAEtoBCbUgofqGtiChHZA8I5OT4fjo1KnnajixCMXSYVJGPmOapwkXCZ7UuyFwltBU7C0wIg4SP4nD1Bc8SgTTgidcejL1-ob1TSSek528yM0uoa4UMdcSFzCuTv3IS8IgcoUROvY0Zz3ybi04dW3bpygMO0G8CsSrrHh75O1apgqsG4I4yg38HcV8H9MUwGn85RnJgNWGXgDPvLAKad4FhF4AqZU98sFqqPkG26ofZ9OBKspvarGCSBiYqti7xVtekgctyF-RnWW5Mq-BmS71mwpavwCIyI3- |
link.rule.ids | 230,315,783,787,888,27936,27937 |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=RRP6%2FEXOSC10+is+required+for+the+repair+of+DNA+double-strand+breaks+by+homologous+recombination&rft.jtitle=Journal+of+cell+science&rft.au=Marin-Vicente%2C+Consuelo&rft.au=Domingo-Prim%2C+Judit&rft.au=Eberle%2C+Andrea+B&rft.au=Visa%2C+Neus&rft.date=2015-03-15&rft.issn=0021-9533&rft.volume=128&rft.issue=6&rft.spage=1097&rft.epage=1107&rft_id=info:doi/10.1242%2Fjcs.158733&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9533&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9533&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9533&client=summon |