Interactions between coherent twin boundaries and phase transition of iron under dynamic loading and unloading
Phase transitions and deformation twins are constantly reported in many BCC metals under high pressure, whose interactions are of fundamental importance to understand the strengthening mechanism of these metals under extreme conditions. However, the interactions between twins and phase transition in...
Saved in:
Published in | Journal of applied physics Vol. 122; no. 10 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Melville
American Institute of Physics
14.09.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Phase transitions and deformation twins are constantly reported in many BCC metals under high pressure, whose interactions are of fundamental importance to understand the strengthening mechanism of these metals under extreme conditions. However, the interactions between twins and phase transition in BCC metals remain largely unexplored. In this work, interactions between coherent twin boundaries and α ↔ ε phase transition of iron are investigated using both non-equilibrium molecular dynamics simulations and the nudged elastic band method. Mechanisms of both twin-assisted phase transition and reverse phase transition are studied, and orientation relationships between BCC and HCP phases are found to be
11
1
¯
B
C
C
|
|
1
¯
2
1
¯
0
H
C
P
and
1
1
¯
0
B
C
C
|
|
0001
H
C
P
for both cases. The twin boundary corresponds to
10
1
¯
0
H
C
P
after the phase transition. It is amazing that the reverse transition seems to be able to “memorize” and recover the initial BCC twins. The memory would be partly lost when plastic slips take place in the HCP phase before the reverse transition. In the recovered initial BCC twins, three major twin spacings are observed, which are well explained in terms of energy barriers of transition from the HCP phase to the BCC twin. Besides, the variant selection rule of the twin assisted phase transition is also discussed. The results of present work could be expected to give some clues for producing ultra-fine grain structures in materials exhibiting martensitic phase transition. |
---|---|
AbstractList | Phase transitions and deformation twins are constantly reported in many BCC metals under high pressure, whose interactions are of fundamental importance to understand the strengthening mechanism of these metals under extreme conditions. However, the interactions between twins and phase transition in BCC metals remain largely unexplored. In this work, interactions between coherent twin boundaries and α ↔ ε phase transition of iron are investigated using both non-equilibrium molecular dynamics simulations and the nudged elastic band method. Mechanisms of both twin-assisted phase transition and reverse phase transition are studied, and orientation relationships between BCC and HCP phases are found to be 111¯BCC||1¯21¯0HCP and 11¯0BCC||0001HCP for both cases. The twin boundary corresponds to 101¯0HCP after the phase transition. It is amazing that the reverse transition seems to be able to “memorize” and recover the initial BCC twins. The memory would be partly lost when plastic slips take place in the HCP phase before the reverse transition. In the recovered initial BCC twins, three major twin spacings are observed, which are well explained in terms of energy barriers of transition from the HCP phase to the BCC twin. Besides, the variant selection rule of the twin assisted phase transition is also discussed. The results of present work could be expected to give some clues for producing ultra-fine grain structures in materials exhibiting martensitic phase transition. Phase transitions and deformation twins are constantly reported in many BCC metals under high pressure, whose interactions are of fundamental importance to understand the strengthening mechanism of these metals under extreme conditions. However, the interactions between twins and phase transition in BCC metals remain largely unexplored. In this work, interactions between coherent twin boundaries and α ↔ ε phase transition of iron are investigated using both non-equilibrium molecular dynamics simulations and the nudged elastic band method. Mechanisms of both twin-assisted phase transition and reverse phase transition are studied, and orientation relationships between BCC and HCP phases are found to be 11 1 ¯ B C C | | 1 ¯ 2 1 ¯ 0 H C P and 1 1 ¯ 0 B C C | | 0001 H C P for both cases. The twin boundary corresponds to 10 1 ¯ 0 H C P after the phase transition. It is amazing that the reverse transition seems to be able to “memorize” and recover the initial BCC twins. The memory would be partly lost when plastic slips take place in the HCP phase before the reverse transition. In the recovered initial BCC twins, three major twin spacings are observed, which are well explained in terms of energy barriers of transition from the HCP phase to the BCC twin. Besides, the variant selection rule of the twin assisted phase transition is also discussed. The results of present work could be expected to give some clues for producing ultra-fine grain structures in materials exhibiting martensitic phase transition. |
Author | Chen, Jun Zhang, Xueyang Zhu, Wenjun Wang, Kun |
Author_xml | – sequence: 1 givenname: Kun surname: Wang fullname: Wang, Kun organization: Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics – sequence: 2 givenname: Jun surname: Chen fullname: Chen, Jun email: jun_chen@iapcm.ac.cn organization: 4 National Key Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics, Mianyang 621900, China – sequence: 3 givenname: Xueyang surname: Zhang fullname: Zhang, Xueyang organization: Department of Applied Physics, School of Physics and Electronics, Hunan University – sequence: 4 givenname: Wenjun surname: Zhu fullname: Zhu, Wenjun organization: National Key Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics |
BookMark | eNp9kE1LAzEQhoNUsFYP_oOAJ4Wtk032I0cpfhQKXvS8JJtZm1KTmqQW_71bWxFEPQ0Dz_MO8x6TgfMOCTljMGZQ8is2FlJWPIcDMmRQy6wqChiQIUDOslpW8ogcx7gAYKzmckjc1CUMqk3Wu0g1pg2io62fY0CXaNpYR7VfO6OCxUiVM3Q1VxFpCspFu9Wo76gN_ewpDNS8O_ViW7r0ylj3_Kms3X47IYedWkY83c8Rebq9eZzcZ7OHu-nkepa1XPKUsRwF6CJvQSM3hal0URstTMmZRtS1UIKDaA0owYBxhFoJYTqJqGpdl5KPyPkudxX86xpjahZ-HVx_sskZK6Eqci566mJHtcHHGLBrVsG-qPDeMGi2dTas2dfZs1c_2NYmtf2_b8IufzUud0b8Iv-N_xN-8-EbbFam4x9RD5a5 |
CODEN | JAPIAU |
CitedBy_id | crossref_primary_10_1088_1367_2630_ab20eb crossref_primary_10_1103_PhysRevB_99_060502 crossref_primary_10_1016_j_ijplas_2019_07_004 crossref_primary_10_1103_PhysRevB_98_085107 crossref_primary_10_1063_5_0069935 crossref_primary_10_1007_s10853_022_07381_8 crossref_primary_10_1063_5_0196203 crossref_primary_10_1557_s43578_022_00556_8 crossref_primary_10_1016_j_ijplas_2018_11_004 crossref_primary_10_1016_j_cocom_2021_e00560 crossref_primary_10_1063_5_0001958 crossref_primary_10_1063_5_0043880 crossref_primary_10_1063_5_0176619 crossref_primary_10_1016_j_ijmecsci_2020_106064 crossref_primary_10_1007_s11831_023_10045_8 crossref_primary_10_1016_j_intermet_2022_107462 crossref_primary_10_1088_1367_2630_ad0c82 crossref_primary_10_1016_j_matchar_2022_112436 crossref_primary_10_1063_1_5003891 crossref_primary_10_1063_1_5080227 crossref_primary_10_1103_PhysRevB_99_144515 |
Cites_doi | 10.1016/j.ijplas.2014.03.007 10.1209/epl/i2003-10249-1 10.1016/j.actamat.2014.09.010 10.1016/j.msea.2006.11.112 10.1063/1.1329672 10.1016/j.actamat.2005.03.047 10.1103/PhysRevLett.118.025501 10.1088/0965-0393/18/1/015012 10.1063/1.1328406 10.1038/nnano.2012.116 10.1557/jmr.2006.0070 10.1016/j.ijplas.2015.01.002 10.1103/PhysRevLett.103.035502 10.1557/mrs.2016.60 10.1126/science.145.3631.483 10.1016/j.actamat.2016.05.037 10.1103/PhysRevLett.109.095501 10.1006/jcph.1995.1039 10.1016/j.actamat.2013.11.047 10.1103/PhysRevLett.98.135701 10.1103/PhysRevB.70.184118 10.1016/j.msea.2016.12.061 10.1063/1.1722359 10.1063/1.4935452 10.1016/j.scriptamat.2009.01.014 10.1088/0953-8984/18/25/S14 10.1103/PhysRevLett.110.265507 10.1016/j.ijplas.2016.07.009 10.1088/0965-0393/20/4/045021 10.1016/j.ijplas.2017.04.016 10.1016/j.commatsci.2016.03.021 10.1103/PhysRevLett.63.2480 10.1103/PhysRevB.88.104105 10.1088/0965-0393/11/2/305 10.1038/srep01086 10.1103/PhysRevB.72.064120 10.1038/srep15064 10.1103/PhysRevB.89.220101 10.1016/j.commatsci.2016.09.034 10.1103/PhysRevB.89.140102 10.1007/s11661-015-3082-2 10.1103/PhysRevB.88.134101 10.1016/j.commatsci.2016.05.010 10.1016/j.scriptamat.2012.01.031 10.1063/1.4976541 10.1063/1.4913622 10.1080/14786435.2016.1240377 10.1016/j.actamat.2013.11.001 10.1103/PhysRevLett.116.075501 |
ContentType | Journal Article |
Copyright | Author(s) 2017 Author(s). Published by AIP Publishing. |
Copyright_xml | – notice: Author(s) – notice: 2017 Author(s). Published by AIP Publishing. |
DBID | AAYXX CITATION 8FD H8D L7M |
DOI | 10.1063/1.4997320 |
DatabaseName | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | CrossRef Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1089-7550 |
ExternalDocumentID | 10_1063_1_4997320 jap |
GrantInformation_xml | – fundername: National Natural Science Foundation of China (NSFC) grantid: 11076012 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: China Postdoctoral Science Foundation grantid: 2017M610824 funderid: http://dx.doi.org/10.13039/501100002858 |
GroupedDBID | -DZ -~X .DC 1UP 2-P 29J 4.4 53G 5GY 5VS 85S AAAAW AABDS AAEUA AAIKC AAMNW AAPUP AAYIH ABFTF ABJNI ABRJW ABZEH ACBEA ACBRY ACGFO ACGFS ACLYJ ACNCT ACZLF ADCTM AEGXH AEJMO AENEX AFATG AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AIAGR AIDUJ AJJCW AJQPL ALEPV ALMA_UNASSIGNED_HOLDINGS AQWKA ATXIE AWQPM BPZLN CS3 D0L DU5 EBS EJD ESX F5P FDOHQ FFFMQ HAM M6X M71 M73 N9A NPSNA O-B P2P RIP RNS RQS RXW SC5 TAE TN5 TWZ UCJ UHB UPT WH7 XSW YQT YZZ ZCA ~02 AAGWI AAYXX ABJGX ADMLS BDMKI CITATION 8FD H8D L7M |
ID | FETCH-LOGICAL-c393t-12e40b52c0be3d5d7b58db4d631beeb84a4304cd0a41013e08a44df9eea8b8693 |
ISSN | 0021-8979 |
IngestDate | Sun Jun 29 15:50:24 EDT 2025 Thu Apr 24 22:56:46 EDT 2025 Tue Jul 01 02:00:56 EDT 2025 Fri Jun 21 00:15:27 EDT 2024 Sun Jul 14 10:05:12 EDT 2019 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
License | 0021-8979/2017/122(10)/105107/11/$30.00 Published by AIP Publishing. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c393t-12e40b52c0be3d5d7b58db4d631beeb84a4304cd0a41013e08a44df9eea8b8693 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2116075234 |
PQPubID | 2050677 |
PageCount | 11 |
ParticipantIDs | crossref_citationtrail_10_1063_1_4997320 proquest_journals_2116075234 scitation_primary_10_1063_1_4997320 crossref_primary_10_1063_1_4997320 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-09-14 |
PublicationDateYYYYMMDD | 2017-09-14 |
PublicationDate_xml | – month: 09 year: 2017 text: 2017-09-14 day: 14 |
PublicationDecade | 2010 |
PublicationPlace | Melville |
PublicationPlace_xml | – name: Melville |
PublicationTitle | Journal of applied physics |
PublicationYear | 2017 |
Publisher | American Institute of Physics |
Publisher_xml | – name: American Institute of Physics |
References | Karma, Trautt, Mishin (c2) 2012 Rawat, Mitra (c35) 2017 Zhu, Gao (c11) 2012 Zhao, Lu, Tieu, Pei, Zhang, Su, Zhan (c10) 2017 Cheng, Stoica, Wang, Ren, Almer, Horton, Liu, Clausen, Brown, Liaw, Zuo (c4) 2009 Zong, Ding, Lookman, Li, Sun (c32) 2015 Stukowski (c46) 2010 Zong, Ding, Lookman, Sun (c31) 2016 Wang, Chen, Zhu, Hu, Xiang (c50) 2017 Li, Zhang, Liu, Sun (c9) 2016 Gunkelmann, Bringa, Tramontina, Ruestes, Suggit, Higginbotham, Wark, Urbassek (c27) 2014 Ackermann, Martin, Schwarz, Schimpf, Kulawinski, Lathe, Henkel, Rafaja, Biermann, Weidner (c38) 2016 Cormier, Rickman, Delph (c48) 2001 Lu, Hahn, Remington, Maddox, Bringa, Meyers (c19) 2015 Wang, Sui, Chen, Lu, Ma, Pei, Li, Hu (c15) 2013 Humbert, Petit, Bolle, Gey (c42) 2007 Levitas (c39) 2004 Levitas (c36) 2004 Stukowski (c45) 2012 Gunkelmann, Tramontina, Bringa, Urbassek (c30) 2015 Plimpton (c44) 1995 Zong, Ding, Lookman, Li, Sun, Cerreta, Escobedo, Addessio, Bronkhorst (c34) 2014 Kadau, Germann, Lomdahl, Albers, Wark, Higginbotham, Holian (c22) 2007 Zong, Lookman, Ding, Luo, Sun (c33) 2014 Ovid'Ko, Sheinerman (c12) 2016 Li, Wang, Liu, An, Liu, Su, Li, Liaw (c41) 2014 Henkelman, Uberuaga, Jónsson (c49) 2000 Pettifor (c25) 1989 Sansoz, Lu, Zhu, Misra (c7) 2016 Jang, Li, Gao, Greer (c8) 2012 Rajabzadeh, Mompiou, Legros, Combe (c3) 2013 Wu, Wang, Xiao, Deng, Zhu, Hu (c43) 2016 Gunkelmann, Bringa, Urbassek (c29) 2015 Wang, Zhu, Xiao, Chen, Deng, Hu (c40) 2015 Briggs, Gorman, Coleman, McWilliams, McBride, McGonegle, Wark, Peacock, Rothman, Macleod, Bolme, Gleason, Collins, Eggert, Fratanduono, Smith, Galtier, Granados, Lee, Nagler, Nam, Xing, McMahon (c21) 2017 Hartley, Ozaki, Matsuoka, Albertazzi, Faenov, Fujimoto, Habara, Harmand, Inubushi, Katayama, Koenig, Krygier, Mabey, Matsumura, Matsuyama, McBride, Miyanishi, Morard, Okuchi, Pikuz, Sakata, Sano, Sato, Sekine, Seto, Takahashi, Tanaka, Tange, Togashi, Umeda, Vinci, Yabashi, Yabuuchi, Yamauchi, Kodama (c20) 2017 Ravelo, Germann, Guerrero, An, Holian (c14) 2013 Dougherty, Gray Iii, Cerreta, McCabe, Field, Bingert (c16) 2009 Moriarty, Benedict, Glosli, Hood, Orlikowski, Patel, Söderlind, Streitz, Tang, Yang (c26) 2006 Bancroft, Peterson, Minshall (c18) 1956 Wang, Xiao, Deng, Zhu, Hu (c28) 2014 Sainath, Choudhary (c13) 2016 Ma, Selvi, Levitas, Hashemi (c37) 2006 Kadau, Germann, Lomdahl, Holian (c23) 2005 Takahashi, Bassett (c17) 1964 Asaro, Suresh (c1) 2005 Li (c47) 2003 Higginbotham, Suggit, Bringa, Erhart, Hawreliak, Mogni, Park, Remington, Wark (c24) 2013 Zhang, Lu, Tieu (c6) 2016 Zhao, Wang, Fan, Bie, Zhou, Suo, Li, Chen, Liu, Qi, Zhu, Luo (c5) 2016 (2023070321440271100_c36) 2004; 70 (2023070321440271100_c35) 2017; 126 (2023070321440271100_c1) 2005; 53 (2023070321440271100_c15) 2013; 3 (2023070321440271100_c22) 2007; 98 (2023070321440271100_c3) 2013; 110 (2023070321440271100_c37) 2006; 18 (2023070321440271100_c20) 2017; 110 (2023070321440271100_c39) 2004; 66 (2023070321440271100_c26) 2006; 21 (2023070321440271100_c7) 2016; 41 (2023070321440271100_c19) 2015; 5 (2023070321440271100_c44) 1995; 117 (2023070321440271100_c47) 2003; 11 (2023070321440271100_c40) 2015; 71 (2023070321440271100_c5) 2016; 116 (2023070321440271100_c32) 2015; 82 (2023070321440271100_c14) 2013; 88 (2023070321440271100_c18) 1956; 27 (2023070321440271100_c42) 2007; 454–455 (2023070321440271100_c46) 2010; 18 (2023070321440271100_c30) 2015; 117 (2023070321440271100_c6) 2016; 118 (2023070321440271100_c29) 2015; 118 (2023070321440271100_c2) 2012; 109 (2023070321440271100_c45) 2012; 20 (2023070321440271100_c27) 2014; 89 (2023070321440271100_c50) 2017; 96 (2023070321440271100_c24) 2013; 88 (2023070321440271100_c49) 2000; 113 (2023070321440271100_c38) 2016; 47 (2023070321440271100_c33) 2014; 65 (2023070321440271100_c16) 2009; 60 (2023070321440271100_c43) 2016; 122 (2023070321440271100_c41) 2014; 64 (2023070321440271100_c23) 2005; 72 (2023070321440271100_c12) 2016; 44 (2023070321440271100_c31) 2016; 115 (2023070321440271100_c48) 2001; 89 (2023070321440271100_c28) 2014; 59 (2023070321440271100_c25) 1989; 63 (2023070321440271100_c34) 2014; 89 (2023070321440271100_c13) 2016; 96 (2023070321440271100_c4) 2009; 103 (2023070321440271100_c17) 1964; 145 (2023070321440271100_c21) 2017; 118 (2023070321440271100_c9) 2016; 85 (2023070321440271100_c11) 2012; 66 (2023070321440271100_c8) 2012; 7 (2023070321440271100_c10) 2017; 687 |
References_xml | – start-page: 172 year: 2016 ident: c9 publication-title: Int. J. Plast. – start-page: 1 year: 2016 ident: c43 publication-title: Comput. Mater. Sci. – start-page: 104105 year: 2013 ident: c24 publication-title: Phys. Rev. B – start-page: 025501 year: 2017 ident: c21 publication-title: Phys. Rev. Lett. – start-page: 218 year: 2015 ident: c40 publication-title: Int. J. Plast. – start-page: 3502 year: 2016 ident: c13 publication-title: Philos. Mag. – start-page: 184118 year: 2004 ident: c36 publication-title: Phys. Rev. B – start-page: 3369 year: 2005 ident: c1 publication-title: Acta Mater. – start-page: 035502 year: 2009 ident: c4 publication-title: Phys. Rev. Lett. – start-page: 291 year: 1956 ident: c18 publication-title: J. Appl. Phys. – start-page: 064120 year: 2005 ident: c23 publication-title: Phys. Rev. B – start-page: 99 year: 2001 ident: c48 publication-title: J. Appl. Phys. – start-page: 1 year: 1995 ident: c44 publication-title: J. Comput. Phys. – start-page: 295 year: 2015 ident: c32 publication-title: Acta Mater. – start-page: 12 year: 2014 ident: c41 publication-title: Acta Mater. – start-page: 292 year: 2016 ident: c7 publication-title: MRS Bull. – start-page: 180 year: 2014 ident: c28 publication-title: Int. J. Plast. – start-page: 10 year: 2014 ident: c33 publication-title: Acta Mater. – start-page: 843 year: 2012 ident: c11 publication-title: Scr. Mater. – start-page: 1 year: 2016 ident: c12 publication-title: Rev. Adv. Mater. Sci. – start-page: 071905 year: 2017 ident: c20 publication-title: Appl. Phys. Lett. – start-page: 508 year: 2007 ident: c42 publication-title: Mater. Sci. Eng., A – start-page: 1 year: 2016 ident: c31 publication-title: Acta Mater. – start-page: 772 year: 2009 ident: c16 publication-title: Scr. Mater. – start-page: 265507 year: 2013 ident: c3 publication-title: Phys. Rev. Lett. – start-page: 075501 year: 2016 ident: c5 publication-title: Phys. Rev. Lett. – start-page: 56 year: 2017 ident: c50 publication-title: Int. J. Plast. – start-page: 594 year: 2012 ident: c8 publication-title: Nat. Nanotechnol. – start-page: 220101 year: 2014 ident: c34 publication-title: Phys. Rev. B – start-page: 135701 year: 2007 ident: c22 publication-title: Phys. Rev. Lett. – start-page: 15064 year: 2015 ident: c19 publication-title: Sci. Rep. – start-page: 015012 year: 2010 ident: c46 publication-title: Modell. Simul. Mater. Sci. Eng. – start-page: 343 year: 2017 ident: c10 publication-title: Mater. Sci. Eng., A – start-page: S1075 year: 2006 ident: c37 publication-title: J. Phys.: Condens. Matter – start-page: 2480 year: 1989 ident: c25 publication-title: Phys. Rev. Lett. – start-page: 180 year: 2016 ident: c6 publication-title: Comput. Mater. Sci. – start-page: 173 year: 2003 ident: c47 publication-title: Modell. Simul. Mater. Sci. Eng. – start-page: 563 year: 2006 ident: c26 publication-title: J. Mater. Res. – start-page: 9901 year: 2000 ident: c49 publication-title: J. Chem. Phys. – start-page: 095501 year: 2012 ident: c2 publication-title: Phys. Rev. Lett. – start-page: 185902 year: 2015 ident: c29 publication-title: J. Appl. Phys. – start-page: 483 year: 1964 ident: c17 publication-title: Science – start-page: 95 year: 2016 ident: c38 publication-title: Metall. Mater. Trans. A – start-page: 134101 year: 2013 ident: c14 publication-title: Phys. Rev. B – start-page: 687 year: 2004 ident: c39 publication-title: Europhys. Lett. – start-page: 085901 year: 2015 ident: c30 publication-title: J. Appl. Phys. – start-page: 228 year: 2017 ident: c35 publication-title: Comput. Mater. Sci. – start-page: 045021 year: 2012 ident: c45 publication-title: Modell. Simul. Mater. Sci. Eng. – start-page: 1086 year: 2013 ident: c15 publication-title: Sci. Rep. – start-page: 140102 year: 2014 ident: c27 publication-title: Phys. Rev. B – volume: 44 start-page: 1 year: 2016 ident: 2023070321440271100_c12 publication-title: Rev. Adv. Mater. Sci. – volume: 59 start-page: 180 year: 2014 ident: 2023070321440271100_c28 publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2014.03.007 – volume: 66 start-page: 687 year: 2004 ident: 2023070321440271100_c39 publication-title: Europhys. Lett. doi: 10.1209/epl/i2003-10249-1 – volume: 82 start-page: 295 year: 2015 ident: 2023070321440271100_c32 publication-title: Acta Mater. doi: 10.1016/j.actamat.2014.09.010 – volume: 454–455 start-page: 508 year: 2007 ident: 2023070321440271100_c42 publication-title: Mater. Sci. Eng., A doi: 10.1016/j.msea.2006.11.112 – volume: 113 start-page: 9901 year: 2000 ident: 2023070321440271100_c49 publication-title: J. Chem. Phys. doi: 10.1063/1.1329672 – volume: 53 start-page: 3369 year: 2005 ident: 2023070321440271100_c1 publication-title: Acta Mater. doi: 10.1016/j.actamat.2005.03.047 – volume: 118 start-page: 025501 year: 2017 ident: 2023070321440271100_c21 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.118.025501 – volume: 18 start-page: 015012 year: 2010 ident: 2023070321440271100_c46 publication-title: Modell. Simul. Mater. Sci. Eng. doi: 10.1088/0965-0393/18/1/015012 – volume: 89 start-page: 99 year: 2001 ident: 2023070321440271100_c48 publication-title: J. Appl. Phys. doi: 10.1063/1.1328406 – volume: 7 start-page: 594 year: 2012 ident: 2023070321440271100_c8 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2012.116 – volume: 21 start-page: 563 year: 2006 ident: 2023070321440271100_c26 publication-title: J. Mater. Res. doi: 10.1557/jmr.2006.0070 – volume: 71 start-page: 218 year: 2015 ident: 2023070321440271100_c40 publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2015.01.002 – volume: 103 start-page: 035502 year: 2009 ident: 2023070321440271100_c4 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.103.035502 – volume: 41 start-page: 292 year: 2016 ident: 2023070321440271100_c7 publication-title: MRS Bull. doi: 10.1557/mrs.2016.60 – volume: 145 start-page: 483 year: 1964 ident: 2023070321440271100_c17 publication-title: Science doi: 10.1126/science.145.3631.483 – volume: 115 start-page: 1 year: 2016 ident: 2023070321440271100_c31 publication-title: Acta Mater. doi: 10.1016/j.actamat.2016.05.037 – volume: 109 start-page: 095501 year: 2012 ident: 2023070321440271100_c2 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.109.095501 – volume: 117 start-page: 1 year: 1995 ident: 2023070321440271100_c44 publication-title: J. Comput. Phys. doi: 10.1006/jcph.1995.1039 – volume: 65 start-page: 10 year: 2014 ident: 2023070321440271100_c33 publication-title: Acta Mater. doi: 10.1016/j.actamat.2013.11.047 – volume: 98 start-page: 135701 year: 2007 ident: 2023070321440271100_c22 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.98.135701 – volume: 70 start-page: 184118 year: 2004 ident: 2023070321440271100_c36 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.70.184118 – volume: 687 start-page: 343 year: 2017 ident: 2023070321440271100_c10 publication-title: Mater. Sci. Eng., A doi: 10.1016/j.msea.2016.12.061 – volume: 27 start-page: 291 year: 1956 ident: 2023070321440271100_c18 publication-title: J. Appl. Phys. doi: 10.1063/1.1722359 – volume: 118 start-page: 185902 year: 2015 ident: 2023070321440271100_c29 publication-title: J. Appl. Phys. doi: 10.1063/1.4935452 – volume: 60 start-page: 772 year: 2009 ident: 2023070321440271100_c16 publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2009.01.014 – volume: 18 start-page: S1075 year: 2006 ident: 2023070321440271100_c37 publication-title: J. Phys.: Condens. Matter doi: 10.1088/0953-8984/18/25/S14 – volume: 110 start-page: 265507 year: 2013 ident: 2023070321440271100_c3 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.110.265507 – volume: 85 start-page: 172 year: 2016 ident: 2023070321440271100_c9 publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2016.07.009 – volume: 20 start-page: 045021 year: 2012 ident: 2023070321440271100_c45 publication-title: Modell. Simul. Mater. Sci. Eng. doi: 10.1088/0965-0393/20/4/045021 – volume: 96 start-page: 56 year: 2017 ident: 2023070321440271100_c50 publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2017.04.016 – volume: 118 start-page: 180 year: 2016 ident: 2023070321440271100_c6 publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2016.03.021 – volume: 63 start-page: 2480 year: 1989 ident: 2023070321440271100_c25 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.63.2480 – volume: 88 start-page: 104105 year: 2013 ident: 2023070321440271100_c24 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.88.104105 – volume: 11 start-page: 173 year: 2003 ident: 2023070321440271100_c47 publication-title: Modell. Simul. Mater. Sci. Eng. doi: 10.1088/0965-0393/11/2/305 – volume: 3 start-page: 1086 year: 2013 ident: 2023070321440271100_c15 publication-title: Sci. Rep. doi: 10.1038/srep01086 – volume: 72 start-page: 064120 year: 2005 ident: 2023070321440271100_c23 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.72.064120 – volume: 5 start-page: 15064 year: 2015 ident: 2023070321440271100_c19 publication-title: Sci. Rep. doi: 10.1038/srep15064 – volume: 89 start-page: 220101 year: 2014 ident: 2023070321440271100_c34 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.89.220101 – volume: 126 start-page: 228 year: 2017 ident: 2023070321440271100_c35 publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2016.09.034 – volume: 89 start-page: 140102 year: 2014 ident: 2023070321440271100_c27 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.89.140102 – volume: 47 start-page: 95 year: 2016 ident: 2023070321440271100_c38 publication-title: Metall. Mater. Trans. A doi: 10.1007/s11661-015-3082-2 – volume: 88 start-page: 134101 year: 2013 ident: 2023070321440271100_c14 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.88.134101 – volume: 122 start-page: 1 year: 2016 ident: 2023070321440271100_c43 publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2016.05.010 – volume: 66 start-page: 843 year: 2012 ident: 2023070321440271100_c11 publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2012.01.031 – volume: 110 start-page: 071905 year: 2017 ident: 2023070321440271100_c20 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4976541 – volume: 117 start-page: 085901 year: 2015 ident: 2023070321440271100_c30 publication-title: J. Appl. Phys. doi: 10.1063/1.4913622 – volume: 96 start-page: 3502 year: 2016 ident: 2023070321440271100_c13 publication-title: Philos. Mag. doi: 10.1080/14786435.2016.1240377 – volume: 64 start-page: 12 year: 2014 ident: 2023070321440271100_c41 publication-title: Acta Mater. doi: 10.1016/j.actamat.2013.11.001 – volume: 116 start-page: 075501 year: 2016 ident: 2023070321440271100_c5 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.116.075501 |
SSID | ssj0011839 |
Score | 2.3774574 |
Snippet | Phase transitions and deformation twins are constantly reported in many BCC metals under high pressure, whose interactions are of fundamental importance to... |
SourceID | proquest crossref scitation |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Applied physics BCC metals Deformation mechanisms Iron Molecular dynamics Orientation relationships Phase transitions Twin boundaries |
Title | Interactions between coherent twin boundaries and phase transition of iron under dynamic loading and unloading |
URI | http://dx.doi.org/10.1063/1.4997320 https://www.proquest.com/docview/2116075234 |
Volume | 122 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZgEwIeEAwQhYEs4AGpcklsJ3UepwGauAmJTfQtsmNHY5qSqktA8Os5vsQJUkGDl7S1TtzqnC8-l54LQs-TWlUqYxkBdS4IaAhN1JJpwiQoT0GLtJAuy_djfnTC366y1TiM01WXdGpR_dxaV_I_UoU1kKutkv0HycZNYQHeg3zhChKG66Vk7MJ5vjLhImZcVe2pcS2Xuu9fm7lyY5OsP-xbApyC1rJzIRqfq-U6Rmzg1daSbebaz6efn7cutd7d0jfh0x_sWBnsWB8jiSb6lxCIftdH-B3GSpC4FOPVq978kOE73Hrvsv9McxaIQ2QCtJ2drMCnpy1NiSj8sJiF8QdsIgqyzHyz2XgCUzqFWrL1aAdbykYZFuCiLRlNRv0VswrP5Poq2qXgL8CBt3vw6sP7z_EPJWsI-mwf_5OGJlM5exm3_N00Gf2N62CM-LyIielxfBvdCrzGBx4Ad9AV0-yhm5NOknvo2ifP_buomYICB1DgARTYggKPoMAgYexAgUdQ4LbGFhTYgQIHUOAAA3dLBMU9dPLm9fHhEQlDNUjFCtaRlBqeqIxWiTJMZ3qpMqEV1zlLlTFKcMlZwiudSJ7aEHkiJOe6LoyRQom8YPfRTtM25gHCRleKwbOcU15zZrsKUQleUFoLyoVKsxl6MfCzHDhoB5-cly7zIWdlWgbWz9DTSLr2bVa2Ee0PQinDU3hR0tS2SMwo4zP0LArqb5tsofrWbkaKcq3rh5fa6xG6MeJ-H-10m948Bhu1U08C_n4BpduVhg |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interactions+between+coherent+twin+boundaries+and+phase+transition+of+iron+under+dynamic+loading+and+unloading&rft.jtitle=Journal+of+applied+physics&rft.au=Wang%2C+Kun&rft.au=Chen%2C+Jun&rft.au=Zhang%2C+Xueyang&rft.au=Zhu%2C+Wenjun&rft.date=2017-09-14&rft.issn=0021-8979&rft.eissn=1089-7550&rft.volume=122&rft.issue=10&rft_id=info:doi/10.1063%2F1.4997320&rft.externalDocID=jap |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-8979&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-8979&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-8979&client=summon |