Interactions between coherent twin boundaries and phase transition of iron under dynamic loading and unloading

Phase transitions and deformation twins are constantly reported in many BCC metals under high pressure, whose interactions are of fundamental importance to understand the strengthening mechanism of these metals under extreme conditions. However, the interactions between twins and phase transition in...

Full description

Saved in:
Bibliographic Details
Published inJournal of applied physics Vol. 122; no. 10
Main Authors Wang, Kun, Chen, Jun, Zhang, Xueyang, Zhu, Wenjun
Format Journal Article
LanguageEnglish
Published Melville American Institute of Physics 14.09.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Phase transitions and deformation twins are constantly reported in many BCC metals under high pressure, whose interactions are of fundamental importance to understand the strengthening mechanism of these metals under extreme conditions. However, the interactions between twins and phase transition in BCC metals remain largely unexplored. In this work, interactions between coherent twin boundaries and α ↔ ε phase transition of iron are investigated using both non-equilibrium molecular dynamics simulations and the nudged elastic band method. Mechanisms of both twin-assisted phase transition and reverse phase transition are studied, and orientation relationships between BCC and HCP phases are found to be 11 1 ¯ B C C | | 1 ¯ 2 1 ¯ 0 H C P and 1 1 ¯ 0 B C C | | 0001 H C P for both cases. The twin boundary corresponds to 10 1 ¯ 0 H C P after the phase transition. It is amazing that the reverse transition seems to be able to “memorize” and recover the initial BCC twins. The memory would be partly lost when plastic slips take place in the HCP phase before the reverse transition. In the recovered initial BCC twins, three major twin spacings are observed, which are well explained in terms of energy barriers of transition from the HCP phase to the BCC twin. Besides, the variant selection rule of the twin assisted phase transition is also discussed. The results of present work could be expected to give some clues for producing ultra-fine grain structures in materials exhibiting martensitic phase transition.
AbstractList Phase transitions and deformation twins are constantly reported in many BCC metals under high pressure, whose interactions are of fundamental importance to understand the strengthening mechanism of these metals under extreme conditions. However, the interactions between twins and phase transition in BCC metals remain largely unexplored. In this work, interactions between coherent twin boundaries and α ↔ ε phase transition of iron are investigated using both non-equilibrium molecular dynamics simulations and the nudged elastic band method. Mechanisms of both twin-assisted phase transition and reverse phase transition are studied, and orientation relationships between BCC and HCP phases are found to be 111¯BCC||1¯21¯0HCP and 11¯0BCC||0001HCP for both cases. The twin boundary corresponds to 101¯0HCP after the phase transition. It is amazing that the reverse transition seems to be able to “memorize” and recover the initial BCC twins. The memory would be partly lost when plastic slips take place in the HCP phase before the reverse transition. In the recovered initial BCC twins, three major twin spacings are observed, which are well explained in terms of energy barriers of transition from the HCP phase to the BCC twin. Besides, the variant selection rule of the twin assisted phase transition is also discussed. The results of present work could be expected to give some clues for producing ultra-fine grain structures in materials exhibiting martensitic phase transition.
Phase transitions and deformation twins are constantly reported in many BCC metals under high pressure, whose interactions are of fundamental importance to understand the strengthening mechanism of these metals under extreme conditions. However, the interactions between twins and phase transition in BCC metals remain largely unexplored. In this work, interactions between coherent twin boundaries and α ↔ ε phase transition of iron are investigated using both non-equilibrium molecular dynamics simulations and the nudged elastic band method. Mechanisms of both twin-assisted phase transition and reverse phase transition are studied, and orientation relationships between BCC and HCP phases are found to be 11 1 ¯ B C C | | 1 ¯ 2 1 ¯ 0 H C P and 1 1 ¯ 0 B C C | | 0001 H C P for both cases. The twin boundary corresponds to 10 1 ¯ 0 H C P after the phase transition. It is amazing that the reverse transition seems to be able to “memorize” and recover the initial BCC twins. The memory would be partly lost when plastic slips take place in the HCP phase before the reverse transition. In the recovered initial BCC twins, three major twin spacings are observed, which are well explained in terms of energy barriers of transition from the HCP phase to the BCC twin. Besides, the variant selection rule of the twin assisted phase transition is also discussed. The results of present work could be expected to give some clues for producing ultra-fine grain structures in materials exhibiting martensitic phase transition.
Author Chen, Jun
Zhang, Xueyang
Zhu, Wenjun
Wang, Kun
Author_xml – sequence: 1
  givenname: Kun
  surname: Wang
  fullname: Wang, Kun
  organization: Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics
– sequence: 2
  givenname: Jun
  surname: Chen
  fullname: Chen, Jun
  email: jun_chen@iapcm.ac.cn
  organization: 4 National Key Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics, Mianyang 621900, China
– sequence: 3
  givenname: Xueyang
  surname: Zhang
  fullname: Zhang, Xueyang
  organization: Department of Applied Physics, School of Physics and Electronics, Hunan University
– sequence: 4
  givenname: Wenjun
  surname: Zhu
  fullname: Zhu, Wenjun
  organization: National Key Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics
BookMark eNp9kE1LAzEQhoNUsFYP_oOAJ4Wtk032I0cpfhQKXvS8JJtZm1KTmqQW_71bWxFEPQ0Dz_MO8x6TgfMOCTljMGZQ8is2FlJWPIcDMmRQy6wqChiQIUDOslpW8ogcx7gAYKzmckjc1CUMqk3Wu0g1pg2io62fY0CXaNpYR7VfO6OCxUiVM3Q1VxFpCspFu9Wo76gN_ewpDNS8O_ViW7r0ylj3_Kms3X47IYedWkY83c8Rebq9eZzcZ7OHu-nkepa1XPKUsRwF6CJvQSM3hal0URstTMmZRtS1UIKDaA0owYBxhFoJYTqJqGpdl5KPyPkudxX86xpjahZ-HVx_sskZK6Eqci566mJHtcHHGLBrVsG-qPDeMGi2dTas2dfZs1c_2NYmtf2_b8IufzUud0b8Iv-N_xN-8-EbbFam4x9RD5a5
CODEN JAPIAU
CitedBy_id crossref_primary_10_1088_1367_2630_ab20eb
crossref_primary_10_1103_PhysRevB_99_060502
crossref_primary_10_1016_j_ijplas_2019_07_004
crossref_primary_10_1103_PhysRevB_98_085107
crossref_primary_10_1063_5_0069935
crossref_primary_10_1007_s10853_022_07381_8
crossref_primary_10_1063_5_0196203
crossref_primary_10_1557_s43578_022_00556_8
crossref_primary_10_1016_j_ijplas_2018_11_004
crossref_primary_10_1016_j_cocom_2021_e00560
crossref_primary_10_1063_5_0001958
crossref_primary_10_1063_5_0043880
crossref_primary_10_1063_5_0176619
crossref_primary_10_1016_j_ijmecsci_2020_106064
crossref_primary_10_1007_s11831_023_10045_8
crossref_primary_10_1016_j_intermet_2022_107462
crossref_primary_10_1088_1367_2630_ad0c82
crossref_primary_10_1016_j_matchar_2022_112436
crossref_primary_10_1063_1_5003891
crossref_primary_10_1063_1_5080227
crossref_primary_10_1103_PhysRevB_99_144515
Cites_doi 10.1016/j.ijplas.2014.03.007
10.1209/epl/i2003-10249-1
10.1016/j.actamat.2014.09.010
10.1016/j.msea.2006.11.112
10.1063/1.1329672
10.1016/j.actamat.2005.03.047
10.1103/PhysRevLett.118.025501
10.1088/0965-0393/18/1/015012
10.1063/1.1328406
10.1038/nnano.2012.116
10.1557/jmr.2006.0070
10.1016/j.ijplas.2015.01.002
10.1103/PhysRevLett.103.035502
10.1557/mrs.2016.60
10.1126/science.145.3631.483
10.1016/j.actamat.2016.05.037
10.1103/PhysRevLett.109.095501
10.1006/jcph.1995.1039
10.1016/j.actamat.2013.11.047
10.1103/PhysRevLett.98.135701
10.1103/PhysRevB.70.184118
10.1016/j.msea.2016.12.061
10.1063/1.1722359
10.1063/1.4935452
10.1016/j.scriptamat.2009.01.014
10.1088/0953-8984/18/25/S14
10.1103/PhysRevLett.110.265507
10.1016/j.ijplas.2016.07.009
10.1088/0965-0393/20/4/045021
10.1016/j.ijplas.2017.04.016
10.1016/j.commatsci.2016.03.021
10.1103/PhysRevLett.63.2480
10.1103/PhysRevB.88.104105
10.1088/0965-0393/11/2/305
10.1038/srep01086
10.1103/PhysRevB.72.064120
10.1038/srep15064
10.1103/PhysRevB.89.220101
10.1016/j.commatsci.2016.09.034
10.1103/PhysRevB.89.140102
10.1007/s11661-015-3082-2
10.1103/PhysRevB.88.134101
10.1016/j.commatsci.2016.05.010
10.1016/j.scriptamat.2012.01.031
10.1063/1.4976541
10.1063/1.4913622
10.1080/14786435.2016.1240377
10.1016/j.actamat.2013.11.001
10.1103/PhysRevLett.116.075501
ContentType Journal Article
Copyright Author(s)
2017 Author(s). Published by AIP Publishing.
Copyright_xml – notice: Author(s)
– notice: 2017 Author(s). Published by AIP Publishing.
DBID AAYXX
CITATION
8FD
H8D
L7M
DOI 10.1063/1.4997320
DatabaseName CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitleList CrossRef

Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1089-7550
ExternalDocumentID 10_1063_1_4997320
jap
GrantInformation_xml – fundername: National Natural Science Foundation of China (NSFC)
  grantid: 11076012
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: China Postdoctoral Science Foundation
  grantid: 2017M610824
  funderid: http://dx.doi.org/10.13039/501100002858
GroupedDBID -DZ
-~X
.DC
1UP
2-P
29J
4.4
53G
5GY
5VS
85S
AAAAW
AABDS
AAEUA
AAIKC
AAMNW
AAPUP
AAYIH
ABFTF
ABJNI
ABRJW
ABZEH
ACBEA
ACBRY
ACGFO
ACGFS
ACLYJ
ACNCT
ACZLF
ADCTM
AEGXH
AEJMO
AENEX
AFATG
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AIAGR
AIDUJ
AJJCW
AJQPL
ALEPV
ALMA_UNASSIGNED_HOLDINGS
AQWKA
ATXIE
AWQPM
BPZLN
CS3
D0L
DU5
EBS
EJD
ESX
F5P
FDOHQ
FFFMQ
HAM
M6X
M71
M73
N9A
NPSNA
O-B
P2P
RIP
RNS
RQS
RXW
SC5
TAE
TN5
TWZ
UCJ
UHB
UPT
WH7
XSW
YQT
YZZ
ZCA
~02
AAGWI
AAYXX
ABJGX
ADMLS
BDMKI
CITATION
8FD
H8D
L7M
ID FETCH-LOGICAL-c393t-12e40b52c0be3d5d7b58db4d631beeb84a4304cd0a41013e08a44df9eea8b8693
ISSN 0021-8979
IngestDate Sun Jun 29 15:50:24 EDT 2025
Thu Apr 24 22:56:46 EDT 2025
Tue Jul 01 02:00:56 EDT 2025
Fri Jun 21 00:15:27 EDT 2024
Sun Jul 14 10:05:12 EDT 2019
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License 0021-8979/2017/122(10)/105107/11/$30.00
Published by AIP Publishing.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c393t-12e40b52c0be3d5d7b58db4d631beeb84a4304cd0a41013e08a44df9eea8b8693
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2116075234
PQPubID 2050677
PageCount 11
ParticipantIDs crossref_citationtrail_10_1063_1_4997320
proquest_journals_2116075234
scitation_primary_10_1063_1_4997320
crossref_primary_10_1063_1_4997320
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-09-14
PublicationDateYYYYMMDD 2017-09-14
PublicationDate_xml – month: 09
  year: 2017
  text: 2017-09-14
  day: 14
PublicationDecade 2010
PublicationPlace Melville
PublicationPlace_xml – name: Melville
PublicationTitle Journal of applied physics
PublicationYear 2017
Publisher American Institute of Physics
Publisher_xml – name: American Institute of Physics
References Karma, Trautt, Mishin (c2) 2012
Rawat, Mitra (c35) 2017
Zhu, Gao (c11) 2012
Zhao, Lu, Tieu, Pei, Zhang, Su, Zhan (c10) 2017
Cheng, Stoica, Wang, Ren, Almer, Horton, Liu, Clausen, Brown, Liaw, Zuo (c4) 2009
Zong, Ding, Lookman, Li, Sun (c32) 2015
Stukowski (c46) 2010
Zong, Ding, Lookman, Sun (c31) 2016
Wang, Chen, Zhu, Hu, Xiang (c50) 2017
Li, Zhang, Liu, Sun (c9) 2016
Gunkelmann, Bringa, Tramontina, Ruestes, Suggit, Higginbotham, Wark, Urbassek (c27) 2014
Ackermann, Martin, Schwarz, Schimpf, Kulawinski, Lathe, Henkel, Rafaja, Biermann, Weidner (c38) 2016
Cormier, Rickman, Delph (c48) 2001
Lu, Hahn, Remington, Maddox, Bringa, Meyers (c19) 2015
Wang, Sui, Chen, Lu, Ma, Pei, Li, Hu (c15) 2013
Humbert, Petit, Bolle, Gey (c42) 2007
Levitas (c39) 2004
Levitas (c36) 2004
Stukowski (c45) 2012
Gunkelmann, Tramontina, Bringa, Urbassek (c30) 2015
Plimpton (c44) 1995
Zong, Ding, Lookman, Li, Sun, Cerreta, Escobedo, Addessio, Bronkhorst (c34) 2014
Kadau, Germann, Lomdahl, Albers, Wark, Higginbotham, Holian (c22) 2007
Zong, Lookman, Ding, Luo, Sun (c33) 2014
Ovid'Ko, Sheinerman (c12) 2016
Li, Wang, Liu, An, Liu, Su, Li, Liaw (c41) 2014
Henkelman, Uberuaga, Jónsson (c49) 2000
Pettifor (c25) 1989
Sansoz, Lu, Zhu, Misra (c7) 2016
Jang, Li, Gao, Greer (c8) 2012
Rajabzadeh, Mompiou, Legros, Combe (c3) 2013
Wu, Wang, Xiao, Deng, Zhu, Hu (c43) 2016
Gunkelmann, Bringa, Urbassek (c29) 2015
Wang, Zhu, Xiao, Chen, Deng, Hu (c40) 2015
Briggs, Gorman, Coleman, McWilliams, McBride, McGonegle, Wark, Peacock, Rothman, Macleod, Bolme, Gleason, Collins, Eggert, Fratanduono, Smith, Galtier, Granados, Lee, Nagler, Nam, Xing, McMahon (c21) 2017
Hartley, Ozaki, Matsuoka, Albertazzi, Faenov, Fujimoto, Habara, Harmand, Inubushi, Katayama, Koenig, Krygier, Mabey, Matsumura, Matsuyama, McBride, Miyanishi, Morard, Okuchi, Pikuz, Sakata, Sano, Sato, Sekine, Seto, Takahashi, Tanaka, Tange, Togashi, Umeda, Vinci, Yabashi, Yabuuchi, Yamauchi, Kodama (c20) 2017
Ravelo, Germann, Guerrero, An, Holian (c14) 2013
Dougherty, Gray Iii, Cerreta, McCabe, Field, Bingert (c16) 2009
Moriarty, Benedict, Glosli, Hood, Orlikowski, Patel, Söderlind, Streitz, Tang, Yang (c26) 2006
Bancroft, Peterson, Minshall (c18) 1956
Wang, Xiao, Deng, Zhu, Hu (c28) 2014
Sainath, Choudhary (c13) 2016
Ma, Selvi, Levitas, Hashemi (c37) 2006
Kadau, Germann, Lomdahl, Holian (c23) 2005
Takahashi, Bassett (c17) 1964
Asaro, Suresh (c1) 2005
Li (c47) 2003
Higginbotham, Suggit, Bringa, Erhart, Hawreliak, Mogni, Park, Remington, Wark (c24) 2013
Zhang, Lu, Tieu (c6) 2016
Zhao, Wang, Fan, Bie, Zhou, Suo, Li, Chen, Liu, Qi, Zhu, Luo (c5) 2016
(2023070321440271100_c36) 2004; 70
(2023070321440271100_c35) 2017; 126
(2023070321440271100_c1) 2005; 53
(2023070321440271100_c15) 2013; 3
(2023070321440271100_c22) 2007; 98
(2023070321440271100_c3) 2013; 110
(2023070321440271100_c37) 2006; 18
(2023070321440271100_c20) 2017; 110
(2023070321440271100_c39) 2004; 66
(2023070321440271100_c26) 2006; 21
(2023070321440271100_c7) 2016; 41
(2023070321440271100_c19) 2015; 5
(2023070321440271100_c44) 1995; 117
(2023070321440271100_c47) 2003; 11
(2023070321440271100_c40) 2015; 71
(2023070321440271100_c5) 2016; 116
(2023070321440271100_c32) 2015; 82
(2023070321440271100_c14) 2013; 88
(2023070321440271100_c18) 1956; 27
(2023070321440271100_c42) 2007; 454–455
(2023070321440271100_c46) 2010; 18
(2023070321440271100_c30) 2015; 117
(2023070321440271100_c6) 2016; 118
(2023070321440271100_c29) 2015; 118
(2023070321440271100_c2) 2012; 109
(2023070321440271100_c45) 2012; 20
(2023070321440271100_c27) 2014; 89
(2023070321440271100_c50) 2017; 96
(2023070321440271100_c24) 2013; 88
(2023070321440271100_c49) 2000; 113
(2023070321440271100_c38) 2016; 47
(2023070321440271100_c33) 2014; 65
(2023070321440271100_c16) 2009; 60
(2023070321440271100_c43) 2016; 122
(2023070321440271100_c41) 2014; 64
(2023070321440271100_c23) 2005; 72
(2023070321440271100_c12) 2016; 44
(2023070321440271100_c31) 2016; 115
(2023070321440271100_c48) 2001; 89
(2023070321440271100_c28) 2014; 59
(2023070321440271100_c25) 1989; 63
(2023070321440271100_c34) 2014; 89
(2023070321440271100_c13) 2016; 96
(2023070321440271100_c4) 2009; 103
(2023070321440271100_c17) 1964; 145
(2023070321440271100_c21) 2017; 118
(2023070321440271100_c9) 2016; 85
(2023070321440271100_c11) 2012; 66
(2023070321440271100_c8) 2012; 7
(2023070321440271100_c10) 2017; 687
References_xml – start-page: 172
  year: 2016
  ident: c9
  publication-title: Int. J. Plast.
– start-page: 1
  year: 2016
  ident: c43
  publication-title: Comput. Mater. Sci.
– start-page: 104105
  year: 2013
  ident: c24
  publication-title: Phys. Rev. B
– start-page: 025501
  year: 2017
  ident: c21
  publication-title: Phys. Rev. Lett.
– start-page: 218
  year: 2015
  ident: c40
  publication-title: Int. J. Plast.
– start-page: 3502
  year: 2016
  ident: c13
  publication-title: Philos. Mag.
– start-page: 184118
  year: 2004
  ident: c36
  publication-title: Phys. Rev. B
– start-page: 3369
  year: 2005
  ident: c1
  publication-title: Acta Mater.
– start-page: 035502
  year: 2009
  ident: c4
  publication-title: Phys. Rev. Lett.
– start-page: 291
  year: 1956
  ident: c18
  publication-title: J. Appl. Phys.
– start-page: 064120
  year: 2005
  ident: c23
  publication-title: Phys. Rev. B
– start-page: 99
  year: 2001
  ident: c48
  publication-title: J. Appl. Phys.
– start-page: 1
  year: 1995
  ident: c44
  publication-title: J. Comput. Phys.
– start-page: 295
  year: 2015
  ident: c32
  publication-title: Acta Mater.
– start-page: 12
  year: 2014
  ident: c41
  publication-title: Acta Mater.
– start-page: 292
  year: 2016
  ident: c7
  publication-title: MRS Bull.
– start-page: 180
  year: 2014
  ident: c28
  publication-title: Int. J. Plast.
– start-page: 10
  year: 2014
  ident: c33
  publication-title: Acta Mater.
– start-page: 843
  year: 2012
  ident: c11
  publication-title: Scr. Mater.
– start-page: 1
  year: 2016
  ident: c12
  publication-title: Rev. Adv. Mater. Sci.
– start-page: 071905
  year: 2017
  ident: c20
  publication-title: Appl. Phys. Lett.
– start-page: 508
  year: 2007
  ident: c42
  publication-title: Mater. Sci. Eng., A
– start-page: 1
  year: 2016
  ident: c31
  publication-title: Acta Mater.
– start-page: 772
  year: 2009
  ident: c16
  publication-title: Scr. Mater.
– start-page: 265507
  year: 2013
  ident: c3
  publication-title: Phys. Rev. Lett.
– start-page: 075501
  year: 2016
  ident: c5
  publication-title: Phys. Rev. Lett.
– start-page: 56
  year: 2017
  ident: c50
  publication-title: Int. J. Plast.
– start-page: 594
  year: 2012
  ident: c8
  publication-title: Nat. Nanotechnol.
– start-page: 220101
  year: 2014
  ident: c34
  publication-title: Phys. Rev. B
– start-page: 135701
  year: 2007
  ident: c22
  publication-title: Phys. Rev. Lett.
– start-page: 15064
  year: 2015
  ident: c19
  publication-title: Sci. Rep.
– start-page: 015012
  year: 2010
  ident: c46
  publication-title: Modell. Simul. Mater. Sci. Eng.
– start-page: 343
  year: 2017
  ident: c10
  publication-title: Mater. Sci. Eng., A
– start-page: S1075
  year: 2006
  ident: c37
  publication-title: J. Phys.: Condens. Matter
– start-page: 2480
  year: 1989
  ident: c25
  publication-title: Phys. Rev. Lett.
– start-page: 180
  year: 2016
  ident: c6
  publication-title: Comput. Mater. Sci.
– start-page: 173
  year: 2003
  ident: c47
  publication-title: Modell. Simul. Mater. Sci. Eng.
– start-page: 563
  year: 2006
  ident: c26
  publication-title: J. Mater. Res.
– start-page: 9901
  year: 2000
  ident: c49
  publication-title: J. Chem. Phys.
– start-page: 095501
  year: 2012
  ident: c2
  publication-title: Phys. Rev. Lett.
– start-page: 185902
  year: 2015
  ident: c29
  publication-title: J. Appl. Phys.
– start-page: 483
  year: 1964
  ident: c17
  publication-title: Science
– start-page: 95
  year: 2016
  ident: c38
  publication-title: Metall. Mater. Trans. A
– start-page: 134101
  year: 2013
  ident: c14
  publication-title: Phys. Rev. B
– start-page: 687
  year: 2004
  ident: c39
  publication-title: Europhys. Lett.
– start-page: 085901
  year: 2015
  ident: c30
  publication-title: J. Appl. Phys.
– start-page: 228
  year: 2017
  ident: c35
  publication-title: Comput. Mater. Sci.
– start-page: 045021
  year: 2012
  ident: c45
  publication-title: Modell. Simul. Mater. Sci. Eng.
– start-page: 1086
  year: 2013
  ident: c15
  publication-title: Sci. Rep.
– start-page: 140102
  year: 2014
  ident: c27
  publication-title: Phys. Rev. B
– volume: 44
  start-page: 1
  year: 2016
  ident: 2023070321440271100_c12
  publication-title: Rev. Adv. Mater. Sci.
– volume: 59
  start-page: 180
  year: 2014
  ident: 2023070321440271100_c28
  publication-title: Int. J. Plast.
  doi: 10.1016/j.ijplas.2014.03.007
– volume: 66
  start-page: 687
  year: 2004
  ident: 2023070321440271100_c39
  publication-title: Europhys. Lett.
  doi: 10.1209/epl/i2003-10249-1
– volume: 82
  start-page: 295
  year: 2015
  ident: 2023070321440271100_c32
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2014.09.010
– volume: 454–455
  start-page: 508
  year: 2007
  ident: 2023070321440271100_c42
  publication-title: Mater. Sci. Eng., A
  doi: 10.1016/j.msea.2006.11.112
– volume: 113
  start-page: 9901
  year: 2000
  ident: 2023070321440271100_c49
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1329672
– volume: 53
  start-page: 3369
  year: 2005
  ident: 2023070321440271100_c1
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2005.03.047
– volume: 118
  start-page: 025501
  year: 2017
  ident: 2023070321440271100_c21
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.118.025501
– volume: 18
  start-page: 015012
  year: 2010
  ident: 2023070321440271100_c46
  publication-title: Modell. Simul. Mater. Sci. Eng.
  doi: 10.1088/0965-0393/18/1/015012
– volume: 89
  start-page: 99
  year: 2001
  ident: 2023070321440271100_c48
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1328406
– volume: 7
  start-page: 594
  year: 2012
  ident: 2023070321440271100_c8
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2012.116
– volume: 21
  start-page: 563
  year: 2006
  ident: 2023070321440271100_c26
  publication-title: J. Mater. Res.
  doi: 10.1557/jmr.2006.0070
– volume: 71
  start-page: 218
  year: 2015
  ident: 2023070321440271100_c40
  publication-title: Int. J. Plast.
  doi: 10.1016/j.ijplas.2015.01.002
– volume: 103
  start-page: 035502
  year: 2009
  ident: 2023070321440271100_c4
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.103.035502
– volume: 41
  start-page: 292
  year: 2016
  ident: 2023070321440271100_c7
  publication-title: MRS Bull.
  doi: 10.1557/mrs.2016.60
– volume: 145
  start-page: 483
  year: 1964
  ident: 2023070321440271100_c17
  publication-title: Science
  doi: 10.1126/science.145.3631.483
– volume: 115
  start-page: 1
  year: 2016
  ident: 2023070321440271100_c31
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2016.05.037
– volume: 109
  start-page: 095501
  year: 2012
  ident: 2023070321440271100_c2
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.109.095501
– volume: 117
  start-page: 1
  year: 1995
  ident: 2023070321440271100_c44
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.1995.1039
– volume: 65
  start-page: 10
  year: 2014
  ident: 2023070321440271100_c33
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2013.11.047
– volume: 98
  start-page: 135701
  year: 2007
  ident: 2023070321440271100_c22
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.98.135701
– volume: 70
  start-page: 184118
  year: 2004
  ident: 2023070321440271100_c36
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.70.184118
– volume: 687
  start-page: 343
  year: 2017
  ident: 2023070321440271100_c10
  publication-title: Mater. Sci. Eng., A
  doi: 10.1016/j.msea.2016.12.061
– volume: 27
  start-page: 291
  year: 1956
  ident: 2023070321440271100_c18
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1722359
– volume: 118
  start-page: 185902
  year: 2015
  ident: 2023070321440271100_c29
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4935452
– volume: 60
  start-page: 772
  year: 2009
  ident: 2023070321440271100_c16
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2009.01.014
– volume: 18
  start-page: S1075
  year: 2006
  ident: 2023070321440271100_c37
  publication-title: J. Phys.: Condens. Matter
  doi: 10.1088/0953-8984/18/25/S14
– volume: 110
  start-page: 265507
  year: 2013
  ident: 2023070321440271100_c3
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.110.265507
– volume: 85
  start-page: 172
  year: 2016
  ident: 2023070321440271100_c9
  publication-title: Int. J. Plast.
  doi: 10.1016/j.ijplas.2016.07.009
– volume: 20
  start-page: 045021
  year: 2012
  ident: 2023070321440271100_c45
  publication-title: Modell. Simul. Mater. Sci. Eng.
  doi: 10.1088/0965-0393/20/4/045021
– volume: 96
  start-page: 56
  year: 2017
  ident: 2023070321440271100_c50
  publication-title: Int. J. Plast.
  doi: 10.1016/j.ijplas.2017.04.016
– volume: 118
  start-page: 180
  year: 2016
  ident: 2023070321440271100_c6
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2016.03.021
– volume: 63
  start-page: 2480
  year: 1989
  ident: 2023070321440271100_c25
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.63.2480
– volume: 88
  start-page: 104105
  year: 2013
  ident: 2023070321440271100_c24
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.88.104105
– volume: 11
  start-page: 173
  year: 2003
  ident: 2023070321440271100_c47
  publication-title: Modell. Simul. Mater. Sci. Eng.
  doi: 10.1088/0965-0393/11/2/305
– volume: 3
  start-page: 1086
  year: 2013
  ident: 2023070321440271100_c15
  publication-title: Sci. Rep.
  doi: 10.1038/srep01086
– volume: 72
  start-page: 064120
  year: 2005
  ident: 2023070321440271100_c23
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.72.064120
– volume: 5
  start-page: 15064
  year: 2015
  ident: 2023070321440271100_c19
  publication-title: Sci. Rep.
  doi: 10.1038/srep15064
– volume: 89
  start-page: 220101
  year: 2014
  ident: 2023070321440271100_c34
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.89.220101
– volume: 126
  start-page: 228
  year: 2017
  ident: 2023070321440271100_c35
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2016.09.034
– volume: 89
  start-page: 140102
  year: 2014
  ident: 2023070321440271100_c27
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.89.140102
– volume: 47
  start-page: 95
  year: 2016
  ident: 2023070321440271100_c38
  publication-title: Metall. Mater. Trans. A
  doi: 10.1007/s11661-015-3082-2
– volume: 88
  start-page: 134101
  year: 2013
  ident: 2023070321440271100_c14
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.88.134101
– volume: 122
  start-page: 1
  year: 2016
  ident: 2023070321440271100_c43
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2016.05.010
– volume: 66
  start-page: 843
  year: 2012
  ident: 2023070321440271100_c11
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2012.01.031
– volume: 110
  start-page: 071905
  year: 2017
  ident: 2023070321440271100_c20
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4976541
– volume: 117
  start-page: 085901
  year: 2015
  ident: 2023070321440271100_c30
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4913622
– volume: 96
  start-page: 3502
  year: 2016
  ident: 2023070321440271100_c13
  publication-title: Philos. Mag.
  doi: 10.1080/14786435.2016.1240377
– volume: 64
  start-page: 12
  year: 2014
  ident: 2023070321440271100_c41
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2013.11.001
– volume: 116
  start-page: 075501
  year: 2016
  ident: 2023070321440271100_c5
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.116.075501
SSID ssj0011839
Score 2.3774574
Snippet Phase transitions and deformation twins are constantly reported in many BCC metals under high pressure, whose interactions are of fundamental importance to...
SourceID proquest
crossref
scitation
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Applied physics
BCC metals
Deformation mechanisms
Iron
Molecular dynamics
Orientation relationships
Phase transitions
Twin boundaries
Title Interactions between coherent twin boundaries and phase transition of iron under dynamic loading and unloading
URI http://dx.doi.org/10.1063/1.4997320
https://www.proquest.com/docview/2116075234
Volume 122
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZgEwIeEAwQhYEs4AGpcklsJ3UepwGauAmJTfQtsmNHY5qSqktA8Os5vsQJUkGDl7S1TtzqnC8-l54LQs-TWlUqYxkBdS4IaAhN1JJpwiQoT0GLtJAuy_djfnTC366y1TiM01WXdGpR_dxaV_I_UoU1kKutkv0HycZNYQHeg3zhChKG66Vk7MJ5vjLhImZcVe2pcS2Xuu9fm7lyY5OsP-xbApyC1rJzIRqfq-U6Rmzg1daSbebaz6efn7cutd7d0jfh0x_sWBnsWB8jiSb6lxCIftdH-B3GSpC4FOPVq978kOE73Hrvsv9McxaIQ2QCtJ2drMCnpy1NiSj8sJiF8QdsIgqyzHyz2XgCUzqFWrL1aAdbykYZFuCiLRlNRv0VswrP5Poq2qXgL8CBt3vw6sP7z_EPJWsI-mwf_5OGJlM5exm3_N00Gf2N62CM-LyIielxfBvdCrzGBx4Ad9AV0-yhm5NOknvo2ifP_buomYICB1DgARTYggKPoMAgYexAgUdQ4LbGFhTYgQIHUOAAA3dLBMU9dPLm9fHhEQlDNUjFCtaRlBqeqIxWiTJMZ3qpMqEV1zlLlTFKcMlZwiudSJ7aEHkiJOe6LoyRQom8YPfRTtM25gHCRleKwbOcU15zZrsKUQleUFoLyoVKsxl6MfCzHDhoB5-cly7zIWdlWgbWz9DTSLr2bVa2Ee0PQinDU3hR0tS2SMwo4zP0LArqb5tsofrWbkaKcq3rh5fa6xG6MeJ-H-10m948Bhu1U08C_n4BpduVhg
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interactions+between+coherent+twin+boundaries+and+phase+transition+of+iron+under+dynamic+loading+and+unloading&rft.jtitle=Journal+of+applied+physics&rft.au=Wang%2C+Kun&rft.au=Chen%2C+Jun&rft.au=Zhang%2C+Xueyang&rft.au=Zhu%2C+Wenjun&rft.date=2017-09-14&rft.issn=0021-8979&rft.eissn=1089-7550&rft.volume=122&rft.issue=10&rft_id=info:doi/10.1063%2F1.4997320&rft.externalDocID=jap
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-8979&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-8979&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-8979&client=summon