Induction of DNA damage and apoptosis in Saccharomyces cerevisiae by a yeast killer toxin

Summary The cellular response of Saccharomyces cerevisiae to a linear plasmid encoded killer toxin from Pichia acaciae was analysed. As for the Kluyveromyces lactis zymocin, such toxin was recently shown to bind to the target cell's chitin and probably acts by facilitating the import of a toxin...

Full description

Saved in:
Bibliographic Details
Published inCellular microbiology Vol. 7; no. 3; pp. 393 - 401
Main Authors Klassen, Roland, Meinhardt, Friedhelm
Format Journal Article
LanguageEnglish
Published Oxford, UK Blackwell Science Ltd 01.03.2005
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Summary The cellular response of Saccharomyces cerevisiae to a linear plasmid encoded killer toxin from Pichia acaciae was analysed. As for the Kluyveromyces lactis zymocin, such toxin was recently shown to bind to the target cell's chitin and probably acts by facilitating the import of a toxin subunit. However, as distinct from zymocin, which arrests cells in G1, it provokes S‐phase arrest and concomitant DNA damage checkpoint activation. Here, we report that such novel toxin type causes cell death in a two‐step process. Within 4 h in toxin, viability of cells is immediately reduced to approximately 30%. Elevated mutation rates at the CAN1 locus prove DNA damaging mediated by the toxin. Cells arrested artificially in G1 or G2/M are very rapidly affected, while cells arrested in S loose their viability at a slower rate. S‐phase arrest is, thus, a response of target cells to cope with DNA damage induced by the toxin. A second decline in viability requiring metabolically active target cells emerges upon toxin exposure over 10 h. During this phase, toxin treated cells develop abnormal nuclear morphology and react positive to terminal deoxynucleotidyl transferase‐mediated nick end‐labelling (TUNEL), indicative of DNA fragmentation. Furthermore, as judged from staining with fluorescein conjugated annexinV, cells expose phosphatidylserine at the outer membrane face and the formation of reactive oxygen species (ROS) is increased. ROS formation and concomitant cell death was heavily suppressed in a rho‐ derivative of the tester strain, while immediate reduction of viability was indistinguishable from the wild type. As a strain lacking the cellular target because of defects in the major chitinsynthase (Chs3) did not display such characteristic changes, the chitin binding and DNA‐damaging P. acaciae toxin constitutes an apoptosis inducing protein. Both, DNA‐damaging and apoptosis induction are unique features of this novel toxin type.
AbstractList The cellular response of Saccharomyces cerevisiae to a linear plasmid encoded killer toxin from Pichia acaciae was analysed. As for the Kluyveromyces lactis zymocin, such toxin was recently shown to bind to the target cell's chitin and probably acts by facilitating the import of a toxin subunit. However, as distinct from zymocin, which arrests cells in G1, it provokes S-phase arrest and concomitant DNA damage checkpoint activation. Here, we report that such novel toxin type causes cell death in a two-step process. Within 4 h in toxin, viability of cells is immediately reduced to approximately 30%. Elevated mutation rates at the CAN1 locus prove DNA damaging mediated by the toxin. Cells arrested artificially in G1 or G2/M are very rapidly affected, while cells arrested in S loose their viability at a slower rate. S-phase arrest is, thus, a response of target cells to cope with DNA damage induced by the toxin. A second decline in viability requiring metabolically active target cells emerges upon toxin exposure over 10 h. During this phase, toxin treated cells develop abnormal nuclear morphology and react positive to terminal deoxynucleotidyl transferase-mediated nick end-labelling (TUNEL), indicative of DNA fragmentation. Furthermore, as judged from staining with fluorescein conjugated annexinV, cells expose phosphatidylserine at the outer membrane face and the formation of reactive oxygen species (ROS) is increased. ROS formation and concomitant cell death was heavily suppressed in a rho- derivative of the tester strain, while immediate reduction of viability was indistinguishable from the wild type. As a strain lacking the cellular target because of defects in the major chitinsynthase (Chs3) did not display such characteristic changes, the chitin binding and DNA-damaging P. acaciae toxin constitutes an apoptosis inducing protein. Both, DNA-damaging and apoptosis induction are unique features of this novel toxin type.
Summary The cellular response of Saccharomyces cerevisiae to a linear plasmid encoded killer toxin from Pichia acaciae was analysed. As for the Kluyveromyces lactis zymocin, such toxin was recently shown to bind to the target cell's chitin and probably acts by facilitating the import of a toxin subunit. However, as distinct from zymocin, which arrests cells in G1, it provokes S‐phase arrest and concomitant DNA damage checkpoint activation. Here, we report that such novel toxin type causes cell death in a two‐step process. Within 4 h in toxin, viability of cells is immediately reduced to approximately 30%. Elevated mutation rates at the CAN1 locus prove DNA damaging mediated by the toxin. Cells arrested artificially in G1 or G2/M are very rapidly affected, while cells arrested in S loose their viability at a slower rate. S‐phase arrest is, thus, a response of target cells to cope with DNA damage induced by the toxin. A second decline in viability requiring metabolically active target cells emerges upon toxin exposure over 10 h. During this phase, toxin treated cells develop abnormal nuclear morphology and react positive to terminal deoxynucleotidyl transferase‐mediated nick end‐labelling (TUNEL), indicative of DNA fragmentation. Furthermore, as judged from staining with fluorescein conjugated annexinV, cells expose phosphatidylserine at the outer membrane face and the formation of reactive oxygen species (ROS) is increased. ROS formation and concomitant cell death was heavily suppressed in a rho‐ derivative of the tester strain, while immediate reduction of viability was indistinguishable from the wild type. As a strain lacking the cellular target because of defects in the major chitinsynthase (Chs3) did not display such characteristic changes, the chitin binding and DNA‐damaging P. acaciae toxin constitutes an apoptosis inducing protein. Both, DNA‐damaging and apoptosis induction are unique features of this novel toxin type.
The cellular response of Saccharomyces cerevisiae to a linear plasmid encoded killer toxin from Pichia acaciae was analysed. As for the Kluyveromyces lactis zymocin, such toxin was recently shown to bind to the target cell's chitin and probably acts by facilitating the import of a toxin subunit. However, as distinct from zymocin, which arrests cells in G1, it provokes S-phase arrest and concomitant DNA damage checkpoint activation. Here, we report that such novel toxin type causes cell death in a two-step process. Within 4 h in toxin, viability of cells is immediately reduced to approximately 30%. Elevated mutation rates at the CAN1 locus prove DNA damaging mediated by the toxin. Cells arrested artificially in G1 or G2/M are very rapidly affected, while cells arrested in S loose their viability at a slower rate. S-phase arrest is, thus, a response of target cells to cope with DNA damage induced by the toxin. A second decline in viability requiring metabolically active target cells emerges upon toxin exposure over 10 h. During this phase, toxin treated cells develop abnormal nuclear morphology and react positive to terminal deoxynucleotidyl transferase-mediated nick end-labelling (TUNEL), indicative of DNA fragmentation. Furthermore, as judged from staining with fluorescein conjugated annexinV, cells expose phosphatidylserine at the outer membrane face and the formation of reactive oxygen species (ROS) is increased. ROS formation and concomitant cell death was heavily suppressed in a rho- derivative of the tester strain, while immediate reduction of viability was indistinguishable from the wild type. As a strain lacking the cellular target because of defects in the major chitinsynthase (Chs3) did not display such characteristic changes, the chitin binding and DNA-damaging P. acaciae toxin constitutes an apoptosis inducing protein. Both, DNA-damaging and apoptosis induction are unique features of this novel toxin type.The cellular response of Saccharomyces cerevisiae to a linear plasmid encoded killer toxin from Pichia acaciae was analysed. As for the Kluyveromyces lactis zymocin, such toxin was recently shown to bind to the target cell's chitin and probably acts by facilitating the import of a toxin subunit. However, as distinct from zymocin, which arrests cells in G1, it provokes S-phase arrest and concomitant DNA damage checkpoint activation. Here, we report that such novel toxin type causes cell death in a two-step process. Within 4 h in toxin, viability of cells is immediately reduced to approximately 30%. Elevated mutation rates at the CAN1 locus prove DNA damaging mediated by the toxin. Cells arrested artificially in G1 or G2/M are very rapidly affected, while cells arrested in S loose their viability at a slower rate. S-phase arrest is, thus, a response of target cells to cope with DNA damage induced by the toxin. A second decline in viability requiring metabolically active target cells emerges upon toxin exposure over 10 h. During this phase, toxin treated cells develop abnormal nuclear morphology and react positive to terminal deoxynucleotidyl transferase-mediated nick end-labelling (TUNEL), indicative of DNA fragmentation. Furthermore, as judged from staining with fluorescein conjugated annexinV, cells expose phosphatidylserine at the outer membrane face and the formation of reactive oxygen species (ROS) is increased. ROS formation and concomitant cell death was heavily suppressed in a rho- derivative of the tester strain, while immediate reduction of viability was indistinguishable from the wild type. As a strain lacking the cellular target because of defects in the major chitinsynthase (Chs3) did not display such characteristic changes, the chitin binding and DNA-damaging P. acaciae toxin constitutes an apoptosis inducing protein. Both, DNA-damaging and apoptosis induction are unique features of this novel toxin type.
Author Meinhardt, Friedhelm
Klassen, Roland
Author_xml – sequence: 1
  givenname: Roland
  surname: Klassen
  fullname: Klassen, Roland
– sequence: 2
  givenname: Friedhelm
  surname: Meinhardt
  fullname: Meinhardt, Friedhelm
BackLink https://www.ncbi.nlm.nih.gov/pubmed/15679842$$D View this record in MEDLINE/PubMed
BookMark eNqNkUtv1DAUhS1URB_wF5BX7Ca142ckhFRNaRmplAWwYGXd2g54SOLBztDJv8dhyizYtJYsX-l-51z5nlN0NMTBI4QpqWg55-uKclkvhK7rqiaEV-XKpto9QyeHxtGhpvwYnea8JoRKRekLdEyFVI3m9Qn6thrc1o4hDji2-PL2Ajvo4bvHMDgMm7gZYw4ZhwF_Bmt_QIr9ZH3G1if_O-QAHt9NGPDkIY_4Z-g6n_AYd2F4iZ630GX_6uE9Q1-v3n9ZfljcfLpeLS9uFpY1rFmAYJ5ZLwh1lpdfKCIBPC8trZkQSgnZCtJKpzQnTllg2rpaAPDaNY4Ldobe7H03Kf7a-jyaPmTruw4GH7fZSMW0JoI-CtIyQQolC_j6Adze9d6ZTQo9pMn821oB3u0Bm2LOybfGhhHmJY4JQmcoMXNMZm3mBMychpljMn9jMrtioP8zOMx4XPp2L70PnZ-erDPLj6tSsD_3Q6gp
CitedBy_id crossref_primary_10_1007_s00203_022_02940_8
crossref_primary_10_1016_j_fgb_2012_10_006
crossref_primary_10_1016_j_lfs_2006_10_008
crossref_primary_10_1016_j_toxicon_2014_08_059
crossref_primary_10_1016_j_mimet_2010_12_021
crossref_primary_10_1261_rna_056242_116
crossref_primary_10_1371_journal_pone_0157611
crossref_primary_10_3389_fmicb_2021_655705
crossref_primary_10_1111_j_1365_2958_2008_06319_x
crossref_primary_10_1016_j_fgb_2011_07_002
crossref_primary_10_1002_yea_1725
crossref_primary_10_1134_S0006297912070097
crossref_primary_10_1016_j_procbio_2012_02_016
crossref_primary_10_1016_j_ejcb_2013_02_001
crossref_primary_10_1016_j_dnarep_2007_07_010
crossref_primary_10_1007_s00253_010_2483_9
crossref_primary_10_1002_yea_2893
crossref_primary_10_1002_yea_1166
crossref_primary_10_1093_femsyr_foaa016
crossref_primary_10_1016_j_bbamcr_2008_01_017
crossref_primary_10_1098_rsif_2019_0064
crossref_primary_10_18185_erzifbed_434209
crossref_primary_10_3390_microorganisms3040588
crossref_primary_10_1002_yea_1367
crossref_primary_10_3390_jof7110886
crossref_primary_10_1021_jf203883u
crossref_primary_10_1038_s41419_020_02920_0
crossref_primary_10_3109_07388551_2013_833582
crossref_primary_10_1002_yea_1592
crossref_primary_10_3389_fmicb_2019_01766
crossref_primary_10_1007_s40858_020_00418_w
crossref_primary_10_21307_PM_2019_58_4_455
crossref_primary_10_1111_j_1365_2958_2006_05486_x
crossref_primary_10_15237_gida_GD19115
crossref_primary_10_1111_cmi_12496
crossref_primary_10_1007_s00438_010_0597_5
crossref_primary_10_1016_j_febslet_2007_06_010
crossref_primary_10_1111_1541_4337_12345
crossref_primary_10_1007_s00253_012_4349_9
crossref_primary_10_1155_2018_5473817
crossref_primary_10_1016_j_bbrc_2012_03_061
crossref_primary_10_1093_femsle_fny038
crossref_primary_10_1371_journal_pone_0075512
crossref_primary_10_1128_AEM_00271_07
crossref_primary_10_1111_jam_13121
Cites_doi 10.1101/gad.239802
10.1007/BF00309600
10.1016/S0014-5793(00)01474-5
10.1016/S0147-619X(02)00101-4
10.1093/genetics/164.2.443
10.1093/genetics/91.1.35
10.1002/yea.776
10.1016/S1383-5718(01)00310-2
10.1128/CMR.10.3.369
10.1002/j.1460-2075.1986.tb04455.x
10.1007/s00294-002-0310-2
10.1099/00221287-137-7-1749
10.1007/s00438-003-0920-5
10.1016/S0960-9822(02)00776-5
10.1091/mbc.12.10.2987
10.1016/0005-2736(91)90035-7
10.1016/S0960-9822(01)00196-8
10.1046/j.1365-2958.2001.02705.x
10.1101/gad.8.6.652
10.1111/j.1365-2958.2004.04119.x
10.1093/emboj/20.8.1993
10.1074/jbc.M212808200
10.1016/S0092-8674(00)81659-1
10.1016/0076-6879(91)94013-3
10.1099/00221287-142-9-2655
10.1091/mbc.E01-12-0161
10.1111/j.1574-6976.2002.tb00614.x
10.1038/27001
10.1128/JB.145.1.382-390.1981
10.1002/yea.320060102
10.1126/science.274.5293.1664
10.1242/jcs.00848
10.1099/13500872-140-2-425
10.1002/yea.320100314
10.1016/j.mrfmmm.2003.08.009
10.1101/gad.8.20.2401
10.1007/BF00321119
10.1038/74994
10.1083/jcb.139.3.729
10.1099/00221287-147-9-2409
10.1016/j.mrfmmm.2003.08.019
10.1046/j.1365-2958.2000.02063.x
10.1083/jcb.145.4.757
ContentType Journal Article
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
M7N
7X8
DOI 10.1111/j.1462-5822.2004.00469.x
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Algology Mycology and Protozoology Abstracts (Microbiology C)
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Algology Mycology and Protozoology Abstracts (Microbiology C)
MEDLINE - Academic
DatabaseTitleList MEDLINE
Algology Mycology and Protozoology Abstracts (Microbiology C)

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1462-5822
EndPage 401
ExternalDocumentID 15679842
10_1111_j_1462_5822_2004_00469_x
CMI469
Genre article
Journal Article
GroupedDBID ---
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1OC
24P
29B
2WC
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
A8Z
AAESR
AAEVG
AAHHS
AAJEY
AAONW
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABPVW
ACAHQ
ACCFJ
ACCMX
ACFBH
ACGFS
ACMXC
ACPOU
ACPRK
ACSCC
ACUHS
ACXQS
ADBBV
ADEOM
ADIYS
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIMD
AENEX
AEQDE
AEUQT
AFBPY
AFEBI
AFGKR
AFPWT
AFRAH
AFZJQ
AIACR
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
AMBMR
AMYDB
ATUGU
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-6
D-7
D-E
D-F
DCZOG
DIK
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
E3Z
EAD
EAP
EBD
EBS
EDH
EJD
EMB
EMK
EMOBN
ESX
F00
F01
F04
F5P
FIJ
FUBAC
G-S
G.N
GODZA
GROUPED_DOAJ
H.X
HF~
HZI
HZ~
IHE
IPNFZ
IX1
J0M
K48
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MK4
MM.
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PQQKQ
Q.N
Q11
QB0
R.K
RHX
ROL
RX1
SUPJJ
SV3
TEORI
TR2
TUS
UB1
W8V
W99
WBKPD
WIH
WIJ
WIK
WIN
WNSPC
WOHZO
WQJ
WRC
WXI
WYISQ
XG1
ZZTAW
~IA
~KM
~WT
AAYXX
ABUWG
AEUYN
AFKRA
BBNVY
BENPR
BHPHI
CCPQU
CITATION
HCIFZ
M7P
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
M7N
7X8
ID FETCH-LOGICAL-c3939-a53e3ce501dc4046706aae4939883557756f50f6d7840d7ca38cd25aa42d9d453
IEDL.DBID DR2
ISSN 1462-5814
IngestDate Fri Jul 11 04:43:58 EDT 2025
Fri Jul 11 16:07:44 EDT 2025
Wed Feb 19 01:43:14 EST 2025
Tue Jul 01 00:57:07 EDT 2025
Thu Apr 24 23:10:04 EDT 2025
Wed Jan 22 16:29:29 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License http://doi.wiley.com/10.1002/tdm_license_1.1
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3939-a53e3ce501dc4046706aae4939883557756f50f6d7840d7ca38cd25aa42d9d453
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
PMID 15679842
PQID 17846576
PQPubID 23462
PageCount 9
ParticipantIDs proquest_miscellaneous_67388051
proquest_miscellaneous_17846576
pubmed_primary_15679842
crossref_citationtrail_10_1111_j_1462_5822_2004_00469_x
crossref_primary_10_1111_j_1462_5822_2004_00469_x
wiley_primary_10_1111_j_1462_5822_2004_00469_x_CMI469
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2005
2005-03-00
2005-Mar
20050301
PublicationDateYYYYMMDD 2005-03-01
PublicationDate_xml – month: 03
  year: 2005
  text: March 2005
PublicationDecade 2000
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: England
PublicationTitle Cellular microbiology
PublicationTitleAlternate Cell Microbiol
PublicationYear 2005
Publisher Blackwell Science Ltd
Publisher_xml – name: Blackwell Science Ltd
References 2002; 16
1991; 19
1997; 139
2000; 6
1981; 145
1990; 18
1991; 194
2002; 12
2002; 13
2002; 513
2003; 270
1979; 91
2000; 473
2004
1996; 142
1999; 145
2001b; 42
2003; 532
2003; 278
1991; 137
2001; 147
2001; 20
1998; 395
1994; 20
1994; 8
1991; 1067
2002; 48
2004; 53
2002; 26
2002; 41
2000; 37
1997; 10
1986; 5
1994; 140
1999; 99
1996; 274
2001; 11
2001; 12
2004; 117
1990; 6
1994; 10
2001a; 18
2003; 164
b6_390
Cerbon J. (b33_395) 1991; 1067
Schaffrath R. (b3_424) 2004
Stark M.J.R. (b9_430) 1990; 6
b29_419
b37_415
McCracken D.A. (b26_416) 1994; 140
Longhese M.P. (b22_413) 2003; 532
b41_397
Weinert T.A. (b20_431) 1994; 8
b14_433
b28_427
b36_412
b38_422
b12_403
b15_406
b32_393
Del Carratore R. (b40_396) 2002; 513
Gunge N. (b7_405) 1981; 145
b18_411
b16_409
b30_417
Morey N.J. (b43_421) 2003; 164
b21_399
Schmitt M.J. (b4_426) 1996; 142
Bolen P.L. (b25_392) 1994; 10
Whelan W.L. (b27_432) 1979; 91
Gasch A.P. (b24_404) 2001; 12
Fox T.D. (b42_401) 1991; 194
Allen J.B. (b19_391) 1994; 20
b10_407
b34_418
b17_410
b2_425
b44_400
Magliani W. (b1_420) 1997; 10
Butler A.R. (b11_394) 1991; 137
b23_423
b5_398
Stark M.J.R. (b8_429) 1986; 5
b39_428
b13_408
Ludovico P. (b35_414) 2001; 147
b31_402
References_xml – volume: 41
  start-page: 208
  year: 2002
  end-page: 216
  article-title: Apoptosis in yeast: a new model system with applications in cell biology and medicine
  publication-title: Curr Genet
– volume: 137
  start-page: 1749
  year: 1991
  end-page: 1757
  article-title: Analysis of the response of cells to toxin
  publication-title: J Gen Microbiol
– volume: 147
  start-page: 2409
  year: 2001
  end-page: 2415
  article-title: commits to a programmed cell death process in response to acetic acid
  publication-title: Microbiology
– volume: 532
  start-page: 41
  year: 2003
  end-page: 58
  article-title: The S‐phase checkpoint and its regulation in
  publication-title: Mutat Res
– volume: 37
  start-page: 926
  year: 2000
  end-page: 940
  article-title: Endocytotic uptake and retrograde transport of a virally encoded killer toxin in yeast
  publication-title: Mol Microbiol
– volume: 140
  start-page: 425
  year: 1994
  end-page: 431
  article-title: The linear‐plasmid‐encoded toxin produced by the yeast : characterization and comparison with the toxin of
  publication-title: Microbiology
– volume: 142
  start-page: 2655
  year: 1996
  end-page: 2662
  article-title: Cell cycle studies on the mode of action of yeast K28 killer toxin
  publication-title: Microbiology
– volume: 16
  start-page: 3236
  year: 2002
  end-page: 3252
  article-title: ORC and the intra‐S‐phase checkpoint: a threshold regulates Rad53p activation in S phase
  publication-title: Genes Dev
– volume: 53
  start-page: 263
  year: 2004
  end-page: 273
  article-title: Novel yeast killer toxins provoke S‐phase arrest and DNA damage checkpoint activation
  publication-title: Mol Microbiol
– volume: 19
  start-page: 389
  year: 1991
  end-page: 393
  article-title: Linear DNA plasmids of are associated with a novel killer toxin activity
  publication-title: Curr Genet
– volume: 18
  start-page: 77
  year: 1990
  end-page: 80
  article-title: Killer toxin production in is associated with linear DNA plasmids
  publication-title: Curr Genet
– volume: 513
  start-page: 183
  year: 2002
  end-page: 191
  article-title: Cell cycle and morphological alterations as indicative of apoptosis promoted by UV irradiation in
  publication-title: Mutat Res
– volume: 91
  start-page: 35
  year: 1979
  end-page: 51
  article-title: The locus of : fine‐structure analysis and forward mutation rates
  publication-title: Genetics
– volume: 473
  start-page: 6
  year: 2000
  end-page: 9
  article-title: Apoptosis in yeast – a monocellular organism exhibits altruistic behaviour
  publication-title: FEBS Lett
– volume: 20
  start-page: 2401
  year: 1994
  end-page: 2415
  article-title: The SAD1/RAD53 protein kinase controls multiple checkpoints and DNA damage‐induced transcription in yeast
  publication-title: Genes Dev
– volume: 532
  start-page: 227
  year: 2003
  end-page: 243
  article-title: Apoptosis‐like yeast cell death in response to DNA damage and replication defects
  publication-title: Mutat Res
– volume: 145
  start-page: 382
  year: 1981
  end-page: 390
  article-title: Isolation and characterization of linear deoxyribonucleic acid plasmids from and the plasmid‐associated killer character
  publication-title: J Bacteriol
– volume: 20
  start-page: 1993
  year: 2001
  end-page: 2003
  article-title: elongator mutations confer resistance to the zymocin
  publication-title: EMBO J
– volume: 12
  start-page: 2987
  year: 2001
  end-page: 3003
  article-title: Genomic expression responses to DNA‐damaging agents and the regulatory role of the yeast ATR homolog Mec1p
  publication-title: Mol Biol Cell
– volume: 164
  start-page: 443
  year: 2003
  end-page: 455
  article-title: Delineating the requirements for spontaneous DNA damage resistance pathways and viability in
  publication-title: Genetics
– volume: 278
  start-page: 15136
  year: 2003
  end-page: 15141
  article-title: Inactivation of Cdc13p triggers MEC1‐dependet apoptotic signals in yeast
  publication-title: J Biol Chem
– volume: 99
  start-page: 283
  year: 1999
  end-page: 291
  article-title: A molecular target for viral killer toxin: TOK1 potassium channels
  publication-title: Cell
– volume: 145
  start-page: 757
  year: 1999
  end-page: 767
  article-title: Oxygen stress: a regulator of apoptosis in yeast
  publication-title: J Cell Biol
– volume: 10
  start-page: 369
  year: 1997
  end-page: 400
  article-title: Yeast killer systems
  publication-title: Clin Microbiol Rev
– volume: 6
  start-page: 1
  year: 1990
  end-page: 29
  article-title: The plasmid encoded killer system of a review
  publication-title: Yeast
– volume: 117
  start-page: 115
  year: 2004
  end-page: 126
  article-title: The HtrA‐like protein Nma111p is a nuclear serine protease that mediates yeast apoptosis
  publication-title: J Cell Sci
– volume: 13
  start-page: 2598
  year: 2002
  end-page: 2606
  article-title: Cytochrome release and mitochondria involvement in programmed cell death induced by acetic acid in
  publication-title: Mol Biol Cell
– volume: 6
  start-page: 513
  year: 2000
  end-page: 519
  article-title: Mitochondrial control of cell death
  publication-title: Nat Med
– volume: 26
  start-page: 257
  year: 2002
  end-page: 276
  article-title: The viral killer system in yeast: from molecular biology to application
  publication-title: FEMS Microbiol Rev
– volume: 274
  start-page: 1664
  year: 1996
  end-page: 1672
  article-title: Cell cycle checkpoints: preventing an identity crisis
  publication-title: Science
– volume: 8
  start-page: 652
  year: 1994
  end-page: 665
  article-title: Mitotic checkpoint genes in budding yeast and the dependence of mitosis on DNA replication and repair
  publication-title: Genes Dev
– volume: 11
  start-page: 367
  year: 2001
  end-page: 370
  article-title: DNA replication: building the perfect switch
  publication-title: Curr Biol
– volume: 48
  start-page: 142
  year: 2002
  end-page: 148
  article-title: Linear plasmids pWR1A and pWR1B of the yeast are associated with a killer phenotype
  publication-title: Plasmid
– year: 2004
– volume: 10
  start-page: 403
  year: 1994
  end-page: 414
  article-title: Isolation and sequence analysis of a gene from the linear DNA plasmid pPacl‐2 of that shows similarity to a killer toxin gene of
  publication-title: Yeast
– volume: 12
  start-page: R233
  year: 2002
  end-page: R235
  article-title: Pheromone induces programmed cell death in
  publication-title: Curr Biol
– volume: 270
  start-page: 190
  year: 2003
  end-page: 199
  article-title: Structural and functional analysis of the killer element pPin1‐3 from
  publication-title: Mol Genet Genomics
– volume: 5
  start-page: 1995
  year: 1986
  end-page: 2002
  article-title: The killer toxin of characterization of the toxin subunits and identification of the genes which encode them
  publication-title: EMBO J
– volume: 395
  start-page: 615
  year: 1998
  end-page: 618
  article-title: A Mec1‐ and Rad53‐dependent checkpoint controls late‐firing origins of DNA replication
  publication-title: Nature
– volume: 194
  start-page: 149
  year: 1991
  end-page: 167
  article-title: Analysis and manipulation of yeast mitochondrial genes
  publication-title: Methods Enzymol
– volume: 139
  start-page: 729
  year: 1997
  end-page: 734
  article-title: A yeast mutant showing diagnostic markers of early and late apoptosis
  publication-title: J Cell Biol
– volume: 1067
  start-page: 139
  year: 1991
  end-page: 144
  article-title: Changes of the compositional asymmetry of phospholipids associated to the increment in the membrane surface potential
  publication-title: Biochim Biophys Acta
– volume: 18
  start-page: 1285
  year: 2001a
  end-page: 1299
  article-title: cell wall chitin, the potential zymocin receptor
  publication-title: Yeast
– volume: 42
  start-page: 1095
  year: 2001b
  end-page: 1105
  article-title: zymocin mode of action is linked to RNA polymerase II function via elongator
  publication-title: Mol Microbiol
– ident: b39_428
  doi: 10.1101/gad.239802
– ident: b15_406
  doi: 10.1007/BF00309600
– ident: b31_402
  doi: 10.1016/S0014-5793(00)01474-5
– ident: b16_409
  doi: 10.1016/S0147-619X(02)00101-4
– volume: 164
  start-page: 443
  year: 2003
  ident: b43_421
  publication-title: Genetics
  doi: 10.1093/genetics/164.2.443
– volume: 91
  start-page: 35
  year: 1979
  ident: b27_432
  publication-title: Genetics
  doi: 10.1093/genetics/91.1.35
– ident: b10_407
  doi: 10.1002/yea.776
– volume: 513
  start-page: 183
  year: 2002
  ident: b40_396
  publication-title: Mutat Res
  doi: 10.1016/S1383-5718(01)00310-2
– volume: 10
  start-page: 369
  year: 1997
  ident: b1_420
  publication-title: Clin Microbiol Rev
  doi: 10.1128/CMR.10.3.369
– volume: 5
  start-page: 1995
  year: 1986
  ident: b8_429
  publication-title: EMBO J
  doi: 10.1002/j.1460-2075.1986.tb04455.x
– ident: b29_419
  doi: 10.1007/s00294-002-0310-2
– volume: 137
  start-page: 1749
  year: 1991
  ident: b11_394
  publication-title: J Gen Microbiol
  doi: 10.1099/00221287-137-7-1749
– ident: b17_410
  doi: 10.1007/s00438-003-0920-5
– volume-title: Topics in Current Genetics: Microbial Protein Toxins.
  year: 2004
  ident: b3_424
– ident: b28_427
  doi: 10.1016/S0960-9822(02)00776-5
– volume: 12
  start-page: 2987
  year: 2001
  ident: b24_404
  publication-title: Mol Biol Cell
  doi: 10.1091/mbc.12.10.2987
– volume: 1067
  start-page: 139
  year: 1991
  ident: b33_395
  publication-title: Biochim Biophys Acta
  doi: 10.1016/0005-2736(91)90035-7
– ident: b41_397
  doi: 10.1016/S0960-9822(01)00196-8
– ident: b13_408
  doi: 10.1046/j.1365-2958.2001.02705.x
– volume: 8
  start-page: 652
  year: 1994
  ident: b20_431
  publication-title: Genes Dev
  doi: 10.1101/gad.8.6.652
– ident: b18_411
  doi: 10.1111/j.1365-2958.2004.04119.x
– ident: b12_403
  doi: 10.1093/emboj/20.8.1993
– ident: b38_422
  doi: 10.1074/jbc.M212808200
– ident: b6_390
  doi: 10.1016/S0092-8674(00)81659-1
– volume: 194
  start-page: 149
  year: 1991
  ident: b42_401
  publication-title: Methods Enzymol
  doi: 10.1016/0076-6879(91)94013-3
– volume: 142
  start-page: 2655
  year: 1996
  ident: b4_426
  publication-title: Microbiology
  doi: 10.1099/00221287-142-9-2655
– ident: b37_415
  doi: 10.1091/mbc.E01-12-0161
– ident: b2_425
  doi: 10.1111/j.1574-6976.2002.tb00614.x
– ident: b23_423
  doi: 10.1038/27001
– volume: 145
  start-page: 382
  year: 1981
  ident: b7_405
  publication-title: J Bacteriol
  doi: 10.1128/JB.145.1.382-390.1981
– volume: 6
  start-page: 1
  year: 1990
  ident: b9_430
  publication-title: Yeast
  doi: 10.1002/yea.320060102
– ident: b21_399
  doi: 10.1126/science.274.5293.1664
– ident: b44_400
  doi: 10.1242/jcs.00848
– volume: 140
  start-page: 425
  year: 1994
  ident: b26_416
  publication-title: Microbiology
  doi: 10.1099/13500872-140-2-425
– volume: 10
  start-page: 403
  year: 1994
  ident: b25_392
  publication-title: Yeast
  doi: 10.1002/yea.320100314
– volume: 532
  start-page: 41
  year: 2003
  ident: b22_413
  publication-title: Mutat Res
  doi: 10.1016/j.mrfmmm.2003.08.009
– volume: 20
  start-page: 2401
  year: 1994
  ident: b19_391
  publication-title: Genes Dev
  doi: 10.1101/gad.8.20.2401
– ident: b14_433
  doi: 10.1007/BF00321119
– ident: b36_412
  doi: 10.1038/74994
– ident: b30_417
  doi: 10.1083/jcb.139.3.729
– volume: 147
  start-page: 2409
  year: 2001
  ident: b35_414
  publication-title: Microbiology
  doi: 10.1099/00221287-147-9-2409
– ident: b32_393
  doi: 10.1016/j.mrfmmm.2003.08.019
– ident: b5_398
  doi: 10.1046/j.1365-2958.2000.02063.x
– ident: b34_418
  doi: 10.1083/jcb.145.4.757
SSID ssj0016711
Score 1.9842378
Snippet Summary The cellular response of Saccharomyces cerevisiae to a linear plasmid encoded killer toxin from Pichia acaciae was analysed. As for the Kluyveromyces...
The cellular response of Saccharomyces cerevisiae to a linear plasmid encoded killer toxin from Pichia acaciae was analysed. As for the Kluyveromyces lactis...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 393
SubjectTerms Apoptosis
Chitin Synthase - genetics
Chitin Synthase - metabolism
DNA Damage
DNA Fragmentation
In Situ Nick-End Labeling
Killer Factors, Yeast
Kluyveromyces lactis
Mutation
Mycotoxins - genetics
Mycotoxins - metabolism
Pichia - metabolism
Pichia acaciae
Reactive Oxygen Species - metabolism
S Phase
Saccharomyces cerevisiae
Saccharomyces cerevisiae - cytology
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae - physiology
Saccharomyces cerevisiae Proteins - biosynthesis
Time Factors
Title Induction of DNA damage and apoptosis in Saccharomyces cerevisiae by a yeast killer toxin
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1462-5822.2004.00469.x
https://www.ncbi.nlm.nih.gov/pubmed/15679842
https://www.proquest.com/docview/17846576
https://www.proquest.com/docview/67388051
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9swDCaGFgN26WNbu7Rdp8OuDuxIsqxj-gi6AethW4HuZNCSAgRZ7aB2gKa_vqLsZEi3AsXQm1-0JZmkSInkB_A5trGRFjHSjqtIZIWOtDYi0plOXRHbBE2I8r1ML67E12t53cU_US5MWx9iteBGkhH0NQk4FvVjIfeOlJ_hgpvXD65en-xJCt0i--j7qpJUkqoAxduRJGI9qOefL1qfqf4yP9et2TAdjbZhuuxIG4Uy7c-bom_uH9V4fJme7sBWZ7WyYctmu_DKlW_hdYtjuXgHvwgAJCRIsGrMzi6HzOKNV1QMS8twVs2aqp7UbFKyH2goz6u6WXj9xEwIMq4n6FixYMgWBCTEpiE9kTXV3aR8D1ej85-nF1GH2RAZrrmOUHLHjZNxYo3wzVRxiuiEv5V5W08qJdOxjMepVd6ztMogz4wdSEQxsNoKyfdgo6xK9wGYv0Ko4wax4KLIxlpYx2nZzCjpT2QP1PL_5KYraE64Gr_zNcdmkNPAEdymyMPA5Xc9SFaUs7aoxzNoPi1ZIPcSSNsqWLpqXueJ70rq3bannyBk1cxrvx7st7zz56uSdsHEoAcycMCzm5OffvviDw7-k-4Q3oQatCGY7gg2mtu5--itq6Y4hs3hydnJ6DjIzwM2YhSq
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VrRBcaHmVhUJ9gGNWedhxfOBQdal2absHaKVyMo7tlValyYpkxYa_xl_hxzB2sou2gFQh9cAtr1H8mBnP2DPzAbwKTaiZUSoQNuEBzXIRCKFpIDKR2jw0kdI-ynecDs_puwt2sQHfl7kwbX2I1Yabkwyvr52Auw3p61KOnhQucd7P63tfr7_oIiyPbfMV_bfqzWiAk_06jo_enh0Ogw5iINCJSESgWGITbVkYGU2RnIepUpbiqwxNE8Y5SycsnKSGoyNkuFZJpk3MlKKxEYY6yAjU_1sOUNwV7h-8X9WuilLuwX-7NkZ0PYzojy1fXxt_M3jX7We_AB5tw4_l0LVxL5f9eZ339bdrVSX_07HdgfudYU4OWkl6ABu2eAh3WqjO5hF8dBgnPgeElBMyGB8Qo65QFxNVGKJm5awuq2lFpgX5oLRLZSuvGlTBRPs46mqqLMkbokjjsJLIpc_AJHW5mBaP4fxW-vUENouysE-B4BMHrK6VyhOaZxNBjU3czqDmDG9YD_iSIaTuarY76JDPcs13i6WbKIcoSqWfKLnoQbSinLV1S25As7_kOYlKxp0cqcKW80pG2JUUPdO_f-HAYzNU8D3YbZn111-ZO-ijcQ-YZ7kbN0ceno7w4tk_0u3D3eHZ6Yk8GY2Pn8M9X3LXxw7uwWb9ZW5foDFZ5y-90BL4dNuc_BPxEm77
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VRSAu5V2WV32AY1Z52HF84FB1WXUprBBQqZyMYzvSqjRZNVmx4afxV_gzjJ3soi0gVUg9cMtrFD9mxjP2zHwAz0MTamaUCoRNeECzXARCaBqITKQ2D02ktI_ynaaHx_T1CTvZgu-rXJiuPsR6w81JhtfXTsDnprgo5OhI4Qrn3byhd_WGyz7A8si2X9F9q19ORjjXL-J4_OrjwWHQIwwEOhGJCBRLbKItCyOjKZLzMFXKUnyVoWXCOGdpwcIiNRz9IMO1SjJtYqYUjY0w1CFGoPq_RtNQONiI0ft16aoo5R77t29jRDejiP7Y8s2l8Td7d9N89uvf-Bb8WI1cF_ZyOlw0-VB_u1BU8v8c2tuw05vlZL-TozuwZcu7cL0D6mzvwSeHcOIzQEhVkNF0nxh1hpqYqNIQNa_mTVXPajIryQelXSJbddaiAibaR1HXM2VJ3hJFWoeURE59_iVpquWsvA_HV9KvB7BdVqV9CASfOFh1rVSe0DwrBDU2cfuCmjO8YQPgK36Quq_Y7oBDvsgNzy2WbqIcniiVfqLkcgDRmnLeVS25BM3eiuUkqhh3bqRKWy1qGWFXUvRL__6Fg47NUL0PYLfj1V9_Ze6Yj8YDYJ7jLt0cefB2gheP_pFuD268G43lm8n06DHc9PV2feDgE9huzhf2KVqSTf7MiyyBz1fNyD8B_c9tqg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Induction+of+DNA+damage+and+apoptosis+in+Saccharomyces+cerevisiae+by+a+yeast+killer+toxin&rft.jtitle=Cellular+microbiology&rft.au=Klassen%2C+Roland&rft.au=Meinhardt%2C+Friedhelm&rft.date=2005-03-01&rft.issn=1462-5814&rft.eissn=1462-5822&rft.volume=7&rft.issue=3&rft.spage=393&rft.epage=401&rft_id=info:doi/10.1111%2Fj.1462-5822.2004.00469.x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_j_1462_5822_2004_00469_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1462-5814&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1462-5814&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1462-5814&client=summon