Induction of DNA damage and apoptosis in Saccharomyces cerevisiae by a yeast killer toxin
Summary The cellular response of Saccharomyces cerevisiae to a linear plasmid encoded killer toxin from Pichia acaciae was analysed. As for the Kluyveromyces lactis zymocin, such toxin was recently shown to bind to the target cell's chitin and probably acts by facilitating the import of a toxin...
Saved in:
Published in | Cellular microbiology Vol. 7; no. 3; pp. 393 - 401 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Blackwell Science Ltd
01.03.2005
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Summary
The cellular response of Saccharomyces cerevisiae to a linear plasmid encoded killer toxin from Pichia acaciae was analysed. As for the Kluyveromyces lactis zymocin, such toxin was recently shown to bind to the target cell's chitin and probably acts by facilitating the import of a toxin subunit. However, as distinct from zymocin, which arrests cells in G1, it provokes S‐phase arrest and concomitant DNA damage checkpoint activation. Here, we report that such novel toxin type causes cell death in a two‐step process. Within 4 h in toxin, viability of cells is immediately reduced to approximately 30%. Elevated mutation rates at the CAN1 locus prove DNA damaging mediated by the toxin. Cells arrested artificially in G1 or G2/M are very rapidly affected, while cells arrested in S loose their viability at a slower rate. S‐phase arrest is, thus, a response of target cells to cope with DNA damage induced by the toxin. A second decline in viability requiring metabolically active target cells emerges upon toxin exposure over 10 h. During this phase, toxin treated cells develop abnormal nuclear morphology and react positive to terminal deoxynucleotidyl transferase‐mediated nick end‐labelling (TUNEL), indicative of DNA fragmentation. Furthermore, as judged from staining with fluorescein conjugated annexinV, cells expose phosphatidylserine at the outer membrane face and the formation of reactive oxygen species (ROS) is increased. ROS formation and concomitant cell death was heavily suppressed in a rho‐ derivative of the tester strain, while immediate reduction of viability was indistinguishable from the wild type. As a strain lacking the cellular target because of defects in the major chitinsynthase (Chs3) did not display such characteristic changes, the chitin binding and DNA‐damaging P. acaciae toxin constitutes an apoptosis inducing protein. Both, DNA‐damaging and apoptosis induction are unique features of this novel toxin type. |
---|---|
AbstractList | The cellular response of Saccharomyces cerevisiae to a linear plasmid encoded killer toxin from Pichia acaciae was analysed. As for the Kluyveromyces lactis zymocin, such toxin was recently shown to bind to the target cell's chitin and probably acts by facilitating the import of a toxin subunit. However, as distinct from zymocin, which arrests cells in G1, it provokes S-phase arrest and concomitant DNA damage checkpoint activation. Here, we report that such novel toxin type causes cell death in a two-step process. Within 4 h in toxin, viability of cells is immediately reduced to approximately 30%. Elevated mutation rates at the CAN1 locus prove DNA damaging mediated by the toxin. Cells arrested artificially in G1 or G2/M are very rapidly affected, while cells arrested in S loose their viability at a slower rate. S-phase arrest is, thus, a response of target cells to cope with DNA damage induced by the toxin. A second decline in viability requiring metabolically active target cells emerges upon toxin exposure over 10 h. During this phase, toxin treated cells develop abnormal nuclear morphology and react positive to terminal deoxynucleotidyl transferase-mediated nick end-labelling (TUNEL), indicative of DNA fragmentation. Furthermore, as judged from staining with fluorescein conjugated annexinV, cells expose phosphatidylserine at the outer membrane face and the formation of reactive oxygen species (ROS) is increased. ROS formation and concomitant cell death was heavily suppressed in a rho- derivative of the tester strain, while immediate reduction of viability was indistinguishable from the wild type. As a strain lacking the cellular target because of defects in the major chitinsynthase (Chs3) did not display such characteristic changes, the chitin binding and DNA-damaging P. acaciae toxin constitutes an apoptosis inducing protein. Both, DNA-damaging and apoptosis induction are unique features of this novel toxin type. Summary The cellular response of Saccharomyces cerevisiae to a linear plasmid encoded killer toxin from Pichia acaciae was analysed. As for the Kluyveromyces lactis zymocin, such toxin was recently shown to bind to the target cell's chitin and probably acts by facilitating the import of a toxin subunit. However, as distinct from zymocin, which arrests cells in G1, it provokes S‐phase arrest and concomitant DNA damage checkpoint activation. Here, we report that such novel toxin type causes cell death in a two‐step process. Within 4 h in toxin, viability of cells is immediately reduced to approximately 30%. Elevated mutation rates at the CAN1 locus prove DNA damaging mediated by the toxin. Cells arrested artificially in G1 or G2/M are very rapidly affected, while cells arrested in S loose their viability at a slower rate. S‐phase arrest is, thus, a response of target cells to cope with DNA damage induced by the toxin. A second decline in viability requiring metabolically active target cells emerges upon toxin exposure over 10 h. During this phase, toxin treated cells develop abnormal nuclear morphology and react positive to terminal deoxynucleotidyl transferase‐mediated nick end‐labelling (TUNEL), indicative of DNA fragmentation. Furthermore, as judged from staining with fluorescein conjugated annexinV, cells expose phosphatidylserine at the outer membrane face and the formation of reactive oxygen species (ROS) is increased. ROS formation and concomitant cell death was heavily suppressed in a rho‐ derivative of the tester strain, while immediate reduction of viability was indistinguishable from the wild type. As a strain lacking the cellular target because of defects in the major chitinsynthase (Chs3) did not display such characteristic changes, the chitin binding and DNA‐damaging P. acaciae toxin constitutes an apoptosis inducing protein. Both, DNA‐damaging and apoptosis induction are unique features of this novel toxin type. The cellular response of Saccharomyces cerevisiae to a linear plasmid encoded killer toxin from Pichia acaciae was analysed. As for the Kluyveromyces lactis zymocin, such toxin was recently shown to bind to the target cell's chitin and probably acts by facilitating the import of a toxin subunit. However, as distinct from zymocin, which arrests cells in G1, it provokes S-phase arrest and concomitant DNA damage checkpoint activation. Here, we report that such novel toxin type causes cell death in a two-step process. Within 4 h in toxin, viability of cells is immediately reduced to approximately 30%. Elevated mutation rates at the CAN1 locus prove DNA damaging mediated by the toxin. Cells arrested artificially in G1 or G2/M are very rapidly affected, while cells arrested in S loose their viability at a slower rate. S-phase arrest is, thus, a response of target cells to cope with DNA damage induced by the toxin. A second decline in viability requiring metabolically active target cells emerges upon toxin exposure over 10 h. During this phase, toxin treated cells develop abnormal nuclear morphology and react positive to terminal deoxynucleotidyl transferase-mediated nick end-labelling (TUNEL), indicative of DNA fragmentation. Furthermore, as judged from staining with fluorescein conjugated annexinV, cells expose phosphatidylserine at the outer membrane face and the formation of reactive oxygen species (ROS) is increased. ROS formation and concomitant cell death was heavily suppressed in a rho- derivative of the tester strain, while immediate reduction of viability was indistinguishable from the wild type. As a strain lacking the cellular target because of defects in the major chitinsynthase (Chs3) did not display such characteristic changes, the chitin binding and DNA-damaging P. acaciae toxin constitutes an apoptosis inducing protein. Both, DNA-damaging and apoptosis induction are unique features of this novel toxin type.The cellular response of Saccharomyces cerevisiae to a linear plasmid encoded killer toxin from Pichia acaciae was analysed. As for the Kluyveromyces lactis zymocin, such toxin was recently shown to bind to the target cell's chitin and probably acts by facilitating the import of a toxin subunit. However, as distinct from zymocin, which arrests cells in G1, it provokes S-phase arrest and concomitant DNA damage checkpoint activation. Here, we report that such novel toxin type causes cell death in a two-step process. Within 4 h in toxin, viability of cells is immediately reduced to approximately 30%. Elevated mutation rates at the CAN1 locus prove DNA damaging mediated by the toxin. Cells arrested artificially in G1 or G2/M are very rapidly affected, while cells arrested in S loose their viability at a slower rate. S-phase arrest is, thus, a response of target cells to cope with DNA damage induced by the toxin. A second decline in viability requiring metabolically active target cells emerges upon toxin exposure over 10 h. During this phase, toxin treated cells develop abnormal nuclear morphology and react positive to terminal deoxynucleotidyl transferase-mediated nick end-labelling (TUNEL), indicative of DNA fragmentation. Furthermore, as judged from staining with fluorescein conjugated annexinV, cells expose phosphatidylserine at the outer membrane face and the formation of reactive oxygen species (ROS) is increased. ROS formation and concomitant cell death was heavily suppressed in a rho- derivative of the tester strain, while immediate reduction of viability was indistinguishable from the wild type. As a strain lacking the cellular target because of defects in the major chitinsynthase (Chs3) did not display such characteristic changes, the chitin binding and DNA-damaging P. acaciae toxin constitutes an apoptosis inducing protein. Both, DNA-damaging and apoptosis induction are unique features of this novel toxin type. |
Author | Meinhardt, Friedhelm Klassen, Roland |
Author_xml | – sequence: 1 givenname: Roland surname: Klassen fullname: Klassen, Roland – sequence: 2 givenname: Friedhelm surname: Meinhardt fullname: Meinhardt, Friedhelm |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/15679842$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkUtv1DAUhS1URB_wF5BX7Ca142ckhFRNaRmplAWwYGXd2g54SOLBztDJv8dhyizYtJYsX-l-51z5nlN0NMTBI4QpqWg55-uKclkvhK7rqiaEV-XKpto9QyeHxtGhpvwYnea8JoRKRekLdEyFVI3m9Qn6thrc1o4hDji2-PL2Ajvo4bvHMDgMm7gZYw4ZhwF_Bmt_QIr9ZH3G1if_O-QAHt9NGPDkIY_4Z-g6n_AYd2F4iZ630GX_6uE9Q1-v3n9ZfljcfLpeLS9uFpY1rFmAYJ5ZLwh1lpdfKCIBPC8trZkQSgnZCtJKpzQnTllg2rpaAPDaNY4Ldobe7H03Kf7a-jyaPmTruw4GH7fZSMW0JoI-CtIyQQolC_j6Adze9d6ZTQo9pMn821oB3u0Bm2LOybfGhhHmJY4JQmcoMXNMZm3mBMychpljMn9jMrtioP8zOMx4XPp2L70PnZ-erDPLj6tSsD_3Q6gp |
CitedBy_id | crossref_primary_10_1007_s00203_022_02940_8 crossref_primary_10_1016_j_fgb_2012_10_006 crossref_primary_10_1016_j_lfs_2006_10_008 crossref_primary_10_1016_j_toxicon_2014_08_059 crossref_primary_10_1016_j_mimet_2010_12_021 crossref_primary_10_1261_rna_056242_116 crossref_primary_10_1371_journal_pone_0157611 crossref_primary_10_3389_fmicb_2021_655705 crossref_primary_10_1111_j_1365_2958_2008_06319_x crossref_primary_10_1016_j_fgb_2011_07_002 crossref_primary_10_1002_yea_1725 crossref_primary_10_1134_S0006297912070097 crossref_primary_10_1016_j_procbio_2012_02_016 crossref_primary_10_1016_j_ejcb_2013_02_001 crossref_primary_10_1016_j_dnarep_2007_07_010 crossref_primary_10_1007_s00253_010_2483_9 crossref_primary_10_1002_yea_2893 crossref_primary_10_1002_yea_1166 crossref_primary_10_1093_femsyr_foaa016 crossref_primary_10_1016_j_bbamcr_2008_01_017 crossref_primary_10_1098_rsif_2019_0064 crossref_primary_10_18185_erzifbed_434209 crossref_primary_10_3390_microorganisms3040588 crossref_primary_10_1002_yea_1367 crossref_primary_10_3390_jof7110886 crossref_primary_10_1021_jf203883u crossref_primary_10_1038_s41419_020_02920_0 crossref_primary_10_3109_07388551_2013_833582 crossref_primary_10_1002_yea_1592 crossref_primary_10_3389_fmicb_2019_01766 crossref_primary_10_1007_s40858_020_00418_w crossref_primary_10_21307_PM_2019_58_4_455 crossref_primary_10_1111_j_1365_2958_2006_05486_x crossref_primary_10_15237_gida_GD19115 crossref_primary_10_1111_cmi_12496 crossref_primary_10_1007_s00438_010_0597_5 crossref_primary_10_1016_j_febslet_2007_06_010 crossref_primary_10_1111_1541_4337_12345 crossref_primary_10_1007_s00253_012_4349_9 crossref_primary_10_1155_2018_5473817 crossref_primary_10_1016_j_bbrc_2012_03_061 crossref_primary_10_1093_femsle_fny038 crossref_primary_10_1371_journal_pone_0075512 crossref_primary_10_1128_AEM_00271_07 crossref_primary_10_1111_jam_13121 |
Cites_doi | 10.1101/gad.239802 10.1007/BF00309600 10.1016/S0014-5793(00)01474-5 10.1016/S0147-619X(02)00101-4 10.1093/genetics/164.2.443 10.1093/genetics/91.1.35 10.1002/yea.776 10.1016/S1383-5718(01)00310-2 10.1128/CMR.10.3.369 10.1002/j.1460-2075.1986.tb04455.x 10.1007/s00294-002-0310-2 10.1099/00221287-137-7-1749 10.1007/s00438-003-0920-5 10.1016/S0960-9822(02)00776-5 10.1091/mbc.12.10.2987 10.1016/0005-2736(91)90035-7 10.1016/S0960-9822(01)00196-8 10.1046/j.1365-2958.2001.02705.x 10.1101/gad.8.6.652 10.1111/j.1365-2958.2004.04119.x 10.1093/emboj/20.8.1993 10.1074/jbc.M212808200 10.1016/S0092-8674(00)81659-1 10.1016/0076-6879(91)94013-3 10.1099/00221287-142-9-2655 10.1091/mbc.E01-12-0161 10.1111/j.1574-6976.2002.tb00614.x 10.1038/27001 10.1128/JB.145.1.382-390.1981 10.1002/yea.320060102 10.1126/science.274.5293.1664 10.1242/jcs.00848 10.1099/13500872-140-2-425 10.1002/yea.320100314 10.1016/j.mrfmmm.2003.08.009 10.1101/gad.8.20.2401 10.1007/BF00321119 10.1038/74994 10.1083/jcb.139.3.729 10.1099/00221287-147-9-2409 10.1016/j.mrfmmm.2003.08.019 10.1046/j.1365-2958.2000.02063.x 10.1083/jcb.145.4.757 |
ContentType | Journal Article |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM M7N 7X8 |
DOI | 10.1111/j.1462-5822.2004.00469.x |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Algology Mycology and Protozoology Abstracts (Microbiology C) MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Algology Mycology and Protozoology Abstracts (Microbiology C) MEDLINE - Academic |
DatabaseTitleList | MEDLINE Algology Mycology and Protozoology Abstracts (Microbiology C) MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1462-5822 |
EndPage | 401 |
ExternalDocumentID | 15679842 10_1111_j_1462_5822_2004_00469_x CMI469 |
Genre | article Journal Article |
GroupedDBID | --- .3N .GA .GJ .Y3 05W 0R~ 10A 1OC 24P 29B 2WC 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 A8Z AAESR AAEVG AAHHS AAJEY AAONW AAZKR ABCQN ABCUV ABDBF ABEML ABPVW ACAHQ ACCFJ ACCMX ACFBH ACGFS ACMXC ACPOU ACPRK ACSCC ACUHS ACXQS ADBBV ADEOM ADIYS ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIMD AENEX AEQDE AEUQT AFBPY AFEBI AFGKR AFPWT AFRAH AFZJQ AIACR AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS AMBMR AMYDB ATUGU AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CAG COF CS3 D-6 D-7 D-E D-F DCZOG DIK DPXWK DR2 DRFUL DRMAN DRSTM DU5 E3Z EAD EAP EBD EBS EDH EJD EMB EMK EMOBN ESX F00 F01 F04 F5P FIJ FUBAC G-S G.N GODZA GROUPED_DOAJ H.X HF~ HZI HZ~ IHE IPNFZ IX1 J0M K48 KBYEO LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MK4 MM. MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 OVD P2P P2W P2X P2Z P4B P4D PQQKQ Q.N Q11 QB0 R.K RHX ROL RX1 SUPJJ SV3 TEORI TR2 TUS UB1 W8V W99 WBKPD WIH WIJ WIK WIN WNSPC WOHZO WQJ WRC WXI WYISQ XG1 ZZTAW ~IA ~KM ~WT AAYXX ABUWG AEUYN AFKRA BBNVY BENPR BHPHI CCPQU CITATION HCIFZ M7P PHGZM PHGZT CGR CUY CVF ECM EIF NPM M7N 7X8 |
ID | FETCH-LOGICAL-c3939-a53e3ce501dc4046706aae4939883557756f50f6d7840d7ca38cd25aa42d9d453 |
IEDL.DBID | DR2 |
ISSN | 1462-5814 |
IngestDate | Fri Jul 11 04:43:58 EDT 2025 Fri Jul 11 16:07:44 EDT 2025 Wed Feb 19 01:43:14 EST 2025 Tue Jul 01 00:57:07 EDT 2025 Thu Apr 24 23:10:04 EDT 2025 Wed Jan 22 16:29:29 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | http://doi.wiley.com/10.1002/tdm_license_1.1 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3939-a53e3ce501dc4046706aae4939883557756f50f6d7840d7ca38cd25aa42d9d453 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
PMID | 15679842 |
PQID | 17846576 |
PQPubID | 23462 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_67388051 proquest_miscellaneous_17846576 pubmed_primary_15679842 crossref_citationtrail_10_1111_j_1462_5822_2004_00469_x crossref_primary_10_1111_j_1462_5822_2004_00469_x wiley_primary_10_1111_j_1462_5822_2004_00469_x_CMI469 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2005 2005-03-00 2005-Mar 20050301 |
PublicationDateYYYYMMDD | 2005-03-01 |
PublicationDate_xml | – month: 03 year: 2005 text: March 2005 |
PublicationDecade | 2000 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: England |
PublicationTitle | Cellular microbiology |
PublicationTitleAlternate | Cell Microbiol |
PublicationYear | 2005 |
Publisher | Blackwell Science Ltd |
Publisher_xml | – name: Blackwell Science Ltd |
References | 2002; 16 1991; 19 1997; 139 2000; 6 1981; 145 1990; 18 1991; 194 2002; 12 2002; 13 2002; 513 2003; 270 1979; 91 2000; 473 2004 1996; 142 1999; 145 2001b; 42 2003; 532 2003; 278 1991; 137 2001; 147 2001; 20 1998; 395 1994; 20 1994; 8 1991; 1067 2002; 48 2004; 53 2002; 26 2002; 41 2000; 37 1997; 10 1986; 5 1994; 140 1999; 99 1996; 274 2001; 11 2001; 12 2004; 117 1990; 6 1994; 10 2001a; 18 2003; 164 b6_390 Cerbon J. (b33_395) 1991; 1067 Schaffrath R. (b3_424) 2004 Stark M.J.R. (b9_430) 1990; 6 b29_419 b37_415 McCracken D.A. (b26_416) 1994; 140 Longhese M.P. (b22_413) 2003; 532 b41_397 Weinert T.A. (b20_431) 1994; 8 b14_433 b28_427 b36_412 b38_422 b12_403 b15_406 b32_393 Del Carratore R. (b40_396) 2002; 513 Gunge N. (b7_405) 1981; 145 b18_411 b16_409 b30_417 Morey N.J. (b43_421) 2003; 164 b21_399 Schmitt M.J. (b4_426) 1996; 142 Bolen P.L. (b25_392) 1994; 10 Whelan W.L. (b27_432) 1979; 91 Gasch A.P. (b24_404) 2001; 12 Fox T.D. (b42_401) 1991; 194 Allen J.B. (b19_391) 1994; 20 b10_407 b34_418 b17_410 b2_425 b44_400 Magliani W. (b1_420) 1997; 10 Butler A.R. (b11_394) 1991; 137 b23_423 b5_398 Stark M.J.R. (b8_429) 1986; 5 b39_428 b13_408 Ludovico P. (b35_414) 2001; 147 b31_402 |
References_xml | – volume: 41 start-page: 208 year: 2002 end-page: 216 article-title: Apoptosis in yeast: a new model system with applications in cell biology and medicine publication-title: Curr Genet – volume: 137 start-page: 1749 year: 1991 end-page: 1757 article-title: Analysis of the response of cells to toxin publication-title: J Gen Microbiol – volume: 147 start-page: 2409 year: 2001 end-page: 2415 article-title: commits to a programmed cell death process in response to acetic acid publication-title: Microbiology – volume: 532 start-page: 41 year: 2003 end-page: 58 article-title: The S‐phase checkpoint and its regulation in publication-title: Mutat Res – volume: 37 start-page: 926 year: 2000 end-page: 940 article-title: Endocytotic uptake and retrograde transport of a virally encoded killer toxin in yeast publication-title: Mol Microbiol – volume: 140 start-page: 425 year: 1994 end-page: 431 article-title: The linear‐plasmid‐encoded toxin produced by the yeast : characterization and comparison with the toxin of publication-title: Microbiology – volume: 142 start-page: 2655 year: 1996 end-page: 2662 article-title: Cell cycle studies on the mode of action of yeast K28 killer toxin publication-title: Microbiology – volume: 16 start-page: 3236 year: 2002 end-page: 3252 article-title: ORC and the intra‐S‐phase checkpoint: a threshold regulates Rad53p activation in S phase publication-title: Genes Dev – volume: 53 start-page: 263 year: 2004 end-page: 273 article-title: Novel yeast killer toxins provoke S‐phase arrest and DNA damage checkpoint activation publication-title: Mol Microbiol – volume: 19 start-page: 389 year: 1991 end-page: 393 article-title: Linear DNA plasmids of are associated with a novel killer toxin activity publication-title: Curr Genet – volume: 18 start-page: 77 year: 1990 end-page: 80 article-title: Killer toxin production in is associated with linear DNA plasmids publication-title: Curr Genet – volume: 513 start-page: 183 year: 2002 end-page: 191 article-title: Cell cycle and morphological alterations as indicative of apoptosis promoted by UV irradiation in publication-title: Mutat Res – volume: 91 start-page: 35 year: 1979 end-page: 51 article-title: The locus of : fine‐structure analysis and forward mutation rates publication-title: Genetics – volume: 473 start-page: 6 year: 2000 end-page: 9 article-title: Apoptosis in yeast – a monocellular organism exhibits altruistic behaviour publication-title: FEBS Lett – volume: 20 start-page: 2401 year: 1994 end-page: 2415 article-title: The SAD1/RAD53 protein kinase controls multiple checkpoints and DNA damage‐induced transcription in yeast publication-title: Genes Dev – volume: 532 start-page: 227 year: 2003 end-page: 243 article-title: Apoptosis‐like yeast cell death in response to DNA damage and replication defects publication-title: Mutat Res – volume: 145 start-page: 382 year: 1981 end-page: 390 article-title: Isolation and characterization of linear deoxyribonucleic acid plasmids from and the plasmid‐associated killer character publication-title: J Bacteriol – volume: 20 start-page: 1993 year: 2001 end-page: 2003 article-title: elongator mutations confer resistance to the zymocin publication-title: EMBO J – volume: 12 start-page: 2987 year: 2001 end-page: 3003 article-title: Genomic expression responses to DNA‐damaging agents and the regulatory role of the yeast ATR homolog Mec1p publication-title: Mol Biol Cell – volume: 164 start-page: 443 year: 2003 end-page: 455 article-title: Delineating the requirements for spontaneous DNA damage resistance pathways and viability in publication-title: Genetics – volume: 278 start-page: 15136 year: 2003 end-page: 15141 article-title: Inactivation of Cdc13p triggers MEC1‐dependet apoptotic signals in yeast publication-title: J Biol Chem – volume: 99 start-page: 283 year: 1999 end-page: 291 article-title: A molecular target for viral killer toxin: TOK1 potassium channels publication-title: Cell – volume: 145 start-page: 757 year: 1999 end-page: 767 article-title: Oxygen stress: a regulator of apoptosis in yeast publication-title: J Cell Biol – volume: 10 start-page: 369 year: 1997 end-page: 400 article-title: Yeast killer systems publication-title: Clin Microbiol Rev – volume: 6 start-page: 1 year: 1990 end-page: 29 article-title: The plasmid encoded killer system of a review publication-title: Yeast – volume: 117 start-page: 115 year: 2004 end-page: 126 article-title: The HtrA‐like protein Nma111p is a nuclear serine protease that mediates yeast apoptosis publication-title: J Cell Sci – volume: 13 start-page: 2598 year: 2002 end-page: 2606 article-title: Cytochrome release and mitochondria involvement in programmed cell death induced by acetic acid in publication-title: Mol Biol Cell – volume: 6 start-page: 513 year: 2000 end-page: 519 article-title: Mitochondrial control of cell death publication-title: Nat Med – volume: 26 start-page: 257 year: 2002 end-page: 276 article-title: The viral killer system in yeast: from molecular biology to application publication-title: FEMS Microbiol Rev – volume: 274 start-page: 1664 year: 1996 end-page: 1672 article-title: Cell cycle checkpoints: preventing an identity crisis publication-title: Science – volume: 8 start-page: 652 year: 1994 end-page: 665 article-title: Mitotic checkpoint genes in budding yeast and the dependence of mitosis on DNA replication and repair publication-title: Genes Dev – volume: 11 start-page: 367 year: 2001 end-page: 370 article-title: DNA replication: building the perfect switch publication-title: Curr Biol – volume: 48 start-page: 142 year: 2002 end-page: 148 article-title: Linear plasmids pWR1A and pWR1B of the yeast are associated with a killer phenotype publication-title: Plasmid – year: 2004 – volume: 10 start-page: 403 year: 1994 end-page: 414 article-title: Isolation and sequence analysis of a gene from the linear DNA plasmid pPacl‐2 of that shows similarity to a killer toxin gene of publication-title: Yeast – volume: 12 start-page: R233 year: 2002 end-page: R235 article-title: Pheromone induces programmed cell death in publication-title: Curr Biol – volume: 270 start-page: 190 year: 2003 end-page: 199 article-title: Structural and functional analysis of the killer element pPin1‐3 from publication-title: Mol Genet Genomics – volume: 5 start-page: 1995 year: 1986 end-page: 2002 article-title: The killer toxin of characterization of the toxin subunits and identification of the genes which encode them publication-title: EMBO J – volume: 395 start-page: 615 year: 1998 end-page: 618 article-title: A Mec1‐ and Rad53‐dependent checkpoint controls late‐firing origins of DNA replication publication-title: Nature – volume: 194 start-page: 149 year: 1991 end-page: 167 article-title: Analysis and manipulation of yeast mitochondrial genes publication-title: Methods Enzymol – volume: 139 start-page: 729 year: 1997 end-page: 734 article-title: A yeast mutant showing diagnostic markers of early and late apoptosis publication-title: J Cell Biol – volume: 1067 start-page: 139 year: 1991 end-page: 144 article-title: Changes of the compositional asymmetry of phospholipids associated to the increment in the membrane surface potential publication-title: Biochim Biophys Acta – volume: 18 start-page: 1285 year: 2001a end-page: 1299 article-title: cell wall chitin, the potential zymocin receptor publication-title: Yeast – volume: 42 start-page: 1095 year: 2001b end-page: 1105 article-title: zymocin mode of action is linked to RNA polymerase II function via elongator publication-title: Mol Microbiol – ident: b39_428 doi: 10.1101/gad.239802 – ident: b15_406 doi: 10.1007/BF00309600 – ident: b31_402 doi: 10.1016/S0014-5793(00)01474-5 – ident: b16_409 doi: 10.1016/S0147-619X(02)00101-4 – volume: 164 start-page: 443 year: 2003 ident: b43_421 publication-title: Genetics doi: 10.1093/genetics/164.2.443 – volume: 91 start-page: 35 year: 1979 ident: b27_432 publication-title: Genetics doi: 10.1093/genetics/91.1.35 – ident: b10_407 doi: 10.1002/yea.776 – volume: 513 start-page: 183 year: 2002 ident: b40_396 publication-title: Mutat Res doi: 10.1016/S1383-5718(01)00310-2 – volume: 10 start-page: 369 year: 1997 ident: b1_420 publication-title: Clin Microbiol Rev doi: 10.1128/CMR.10.3.369 – volume: 5 start-page: 1995 year: 1986 ident: b8_429 publication-title: EMBO J doi: 10.1002/j.1460-2075.1986.tb04455.x – ident: b29_419 doi: 10.1007/s00294-002-0310-2 – volume: 137 start-page: 1749 year: 1991 ident: b11_394 publication-title: J Gen Microbiol doi: 10.1099/00221287-137-7-1749 – ident: b17_410 doi: 10.1007/s00438-003-0920-5 – volume-title: Topics in Current Genetics: Microbial Protein Toxins. year: 2004 ident: b3_424 – ident: b28_427 doi: 10.1016/S0960-9822(02)00776-5 – volume: 12 start-page: 2987 year: 2001 ident: b24_404 publication-title: Mol Biol Cell doi: 10.1091/mbc.12.10.2987 – volume: 1067 start-page: 139 year: 1991 ident: b33_395 publication-title: Biochim Biophys Acta doi: 10.1016/0005-2736(91)90035-7 – ident: b41_397 doi: 10.1016/S0960-9822(01)00196-8 – ident: b13_408 doi: 10.1046/j.1365-2958.2001.02705.x – volume: 8 start-page: 652 year: 1994 ident: b20_431 publication-title: Genes Dev doi: 10.1101/gad.8.6.652 – ident: b18_411 doi: 10.1111/j.1365-2958.2004.04119.x – ident: b12_403 doi: 10.1093/emboj/20.8.1993 – ident: b38_422 doi: 10.1074/jbc.M212808200 – ident: b6_390 doi: 10.1016/S0092-8674(00)81659-1 – volume: 194 start-page: 149 year: 1991 ident: b42_401 publication-title: Methods Enzymol doi: 10.1016/0076-6879(91)94013-3 – volume: 142 start-page: 2655 year: 1996 ident: b4_426 publication-title: Microbiology doi: 10.1099/00221287-142-9-2655 – ident: b37_415 doi: 10.1091/mbc.E01-12-0161 – ident: b2_425 doi: 10.1111/j.1574-6976.2002.tb00614.x – ident: b23_423 doi: 10.1038/27001 – volume: 145 start-page: 382 year: 1981 ident: b7_405 publication-title: J Bacteriol doi: 10.1128/JB.145.1.382-390.1981 – volume: 6 start-page: 1 year: 1990 ident: b9_430 publication-title: Yeast doi: 10.1002/yea.320060102 – ident: b21_399 doi: 10.1126/science.274.5293.1664 – ident: b44_400 doi: 10.1242/jcs.00848 – volume: 140 start-page: 425 year: 1994 ident: b26_416 publication-title: Microbiology doi: 10.1099/13500872-140-2-425 – volume: 10 start-page: 403 year: 1994 ident: b25_392 publication-title: Yeast doi: 10.1002/yea.320100314 – volume: 532 start-page: 41 year: 2003 ident: b22_413 publication-title: Mutat Res doi: 10.1016/j.mrfmmm.2003.08.009 – volume: 20 start-page: 2401 year: 1994 ident: b19_391 publication-title: Genes Dev doi: 10.1101/gad.8.20.2401 – ident: b14_433 doi: 10.1007/BF00321119 – ident: b36_412 doi: 10.1038/74994 – ident: b30_417 doi: 10.1083/jcb.139.3.729 – volume: 147 start-page: 2409 year: 2001 ident: b35_414 publication-title: Microbiology doi: 10.1099/00221287-147-9-2409 – ident: b32_393 doi: 10.1016/j.mrfmmm.2003.08.019 – ident: b5_398 doi: 10.1046/j.1365-2958.2000.02063.x – ident: b34_418 doi: 10.1083/jcb.145.4.757 |
SSID | ssj0016711 |
Score | 1.9842378 |
Snippet | Summary
The cellular response of Saccharomyces cerevisiae to a linear plasmid encoded killer toxin from Pichia acaciae was analysed. As for the Kluyveromyces... The cellular response of Saccharomyces cerevisiae to a linear plasmid encoded killer toxin from Pichia acaciae was analysed. As for the Kluyveromyces lactis... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 393 |
SubjectTerms | Apoptosis Chitin Synthase - genetics Chitin Synthase - metabolism DNA Damage DNA Fragmentation In Situ Nick-End Labeling Killer Factors, Yeast Kluyveromyces lactis Mutation Mycotoxins - genetics Mycotoxins - metabolism Pichia - metabolism Pichia acaciae Reactive Oxygen Species - metabolism S Phase Saccharomyces cerevisiae Saccharomyces cerevisiae - cytology Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae - physiology Saccharomyces cerevisiae Proteins - biosynthesis Time Factors |
Title | Induction of DNA damage and apoptosis in Saccharomyces cerevisiae by a yeast killer toxin |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1462-5822.2004.00469.x https://www.ncbi.nlm.nih.gov/pubmed/15679842 https://www.proquest.com/docview/17846576 https://www.proquest.com/docview/67388051 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9swDCaGFgN26WNbu7Rdp8OuDuxIsqxj-gi6AethW4HuZNCSAgRZ7aB2gKa_vqLsZEi3AsXQm1-0JZmkSInkB_A5trGRFjHSjqtIZIWOtDYi0plOXRHbBE2I8r1ML67E12t53cU_US5MWx9iteBGkhH0NQk4FvVjIfeOlJ_hgpvXD65en-xJCt0i--j7qpJUkqoAxduRJGI9qOefL1qfqf4yP9et2TAdjbZhuuxIG4Uy7c-bom_uH9V4fJme7sBWZ7WyYctmu_DKlW_hdYtjuXgHvwgAJCRIsGrMzi6HzOKNV1QMS8twVs2aqp7UbFKyH2goz6u6WXj9xEwIMq4n6FixYMgWBCTEpiE9kTXV3aR8D1ej85-nF1GH2RAZrrmOUHLHjZNxYo3wzVRxiuiEv5V5W08qJdOxjMepVd6ztMogz4wdSEQxsNoKyfdgo6xK9wGYv0Ko4wax4KLIxlpYx2nZzCjpT2QP1PL_5KYraE64Gr_zNcdmkNPAEdymyMPA5Xc9SFaUs7aoxzNoPi1ZIPcSSNsqWLpqXueJ70rq3bannyBk1cxrvx7st7zz56uSdsHEoAcycMCzm5OffvviDw7-k-4Q3oQatCGY7gg2mtu5--itq6Y4hs3hydnJ6DjIzwM2YhSq |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VrRBcaHmVhUJ9gGNWedhxfOBQdal2absHaKVyMo7tlValyYpkxYa_xl_hxzB2sou2gFQh9cAtr1H8mBnP2DPzAbwKTaiZUSoQNuEBzXIRCKFpIDKR2jw0kdI-ynecDs_puwt2sQHfl7kwbX2I1Yabkwyvr52Auw3p61KOnhQucd7P63tfr7_oIiyPbfMV_bfqzWiAk_06jo_enh0Ogw5iINCJSESgWGITbVkYGU2RnIepUpbiqwxNE8Y5SycsnKSGoyNkuFZJpk3MlKKxEYY6yAjU_1sOUNwV7h-8X9WuilLuwX-7NkZ0PYzojy1fXxt_M3jX7We_AB5tw4_l0LVxL5f9eZ339bdrVSX_07HdgfudYU4OWkl6ABu2eAh3WqjO5hF8dBgnPgeElBMyGB8Qo65QFxNVGKJm5awuq2lFpgX5oLRLZSuvGlTBRPs46mqqLMkbokjjsJLIpc_AJHW5mBaP4fxW-vUENouysE-B4BMHrK6VyhOaZxNBjU3czqDmDG9YD_iSIaTuarY76JDPcs13i6WbKIcoSqWfKLnoQbSinLV1S25As7_kOYlKxp0cqcKW80pG2JUUPdO_f-HAYzNU8D3YbZn111-ZO-ijcQ-YZ7kbN0ceno7w4tk_0u3D3eHZ6Yk8GY2Pn8M9X3LXxw7uwWb9ZW5foDFZ5y-90BL4dNuc_BPxEm77 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VRSAu5V2WV32AY1Z52HF84FB1WXUprBBQqZyMYzvSqjRZNVmx4afxV_gzjJ3soi0gVUg9cMtrFD9mxjP2zHwAz0MTamaUCoRNeECzXARCaBqITKQ2D02ktI_ynaaHx_T1CTvZgu-rXJiuPsR6w81JhtfXTsDnprgo5OhI4Qrn3byhd_WGyz7A8si2X9F9q19ORjjXL-J4_OrjwWHQIwwEOhGJCBRLbKItCyOjKZLzMFXKUnyVoWXCOGdpwcIiNRz9IMO1SjJtYqYUjY0w1CFGoPq_RtNQONiI0ft16aoo5R77t29jRDejiP7Y8s2l8Td7d9N89uvf-Bb8WI1cF_ZyOlw0-VB_u1BU8v8c2tuw05vlZL-TozuwZcu7cL0D6mzvwSeHcOIzQEhVkNF0nxh1hpqYqNIQNa_mTVXPajIryQelXSJbddaiAibaR1HXM2VJ3hJFWoeURE59_iVpquWsvA_HV9KvB7BdVqV9CASfOFh1rVSe0DwrBDU2cfuCmjO8YQPgK36Quq_Y7oBDvsgNzy2WbqIcniiVfqLkcgDRmnLeVS25BM3eiuUkqhh3bqRKWy1qGWFXUvRL__6Fg47NUL0PYLfj1V9_Ze6Yj8YDYJ7jLt0cefB2gheP_pFuD268G43lm8n06DHc9PV2feDgE9huzhf2KVqSTf7MiyyBz1fNyD8B_c9tqg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Induction+of+DNA+damage+and+apoptosis+in+Saccharomyces+cerevisiae+by+a+yeast+killer+toxin&rft.jtitle=Cellular+microbiology&rft.au=Klassen%2C+Roland&rft.au=Meinhardt%2C+Friedhelm&rft.date=2005-03-01&rft.issn=1462-5814&rft.eissn=1462-5822&rft.volume=7&rft.issue=3&rft.spage=393&rft.epage=401&rft_id=info:doi/10.1111%2Fj.1462-5822.2004.00469.x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_j_1462_5822_2004_00469_x |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1462-5814&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1462-5814&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1462-5814&client=summon |