From sorting to sequencing in the molecular era: the evolution of the cancer stem cell model in medulloblastoma

The cancer stem cell (CSC) model posits that tumors contain subpopulations that display defining features of normal stem cells including self‐renewal capacity and differentiation. Tumor cells exhibiting these features are now considered to be responsible for tumor propagation and drug resistance in...

Full description

Saved in:
Bibliographic Details
Published inThe FEBS journal Vol. 289; no. 7; pp. 1765 - 1778
Main Author Werbowetski‐Ogilvie, Tamra E.
Format Journal Article
LanguageEnglish
Published England Blackwell Publishing Ltd 01.04.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The cancer stem cell (CSC) model posits that tumors contain subpopulations that display defining features of normal stem cells including self‐renewal capacity and differentiation. Tumor cells exhibiting these features are now considered to be responsible for tumor propagation and drug resistance in a wide variety of cancers. Therefore, the identification of robust CSC markers and characterization of CSC‐specific molecular signatures may lead to the identification of novel therapeutics that selectively abolish this clinically relevant cell population while preserving normal tissue. Brain tumor researchers have been at the forefront of the CSC field. From initial in vitro cell sorting experiments to the sophisticated bioinformatic technologies that now exquisitely resolve primary brain tumors at a single‐cell level, recent glioma and medulloblastoma (MB) studies have integrated developmental state with genomic and transcriptome data to identify the spectrum of cell types that may drive tumor progression. This review will examine the last two decades of CSC studies in the field. Seminal discoveries, emerging controversies, and outstanding questions will be covered with a particular focus on MB, the most common malignant primary brain tumor in children. The last two decades have seen significant gains in the understanding of the extensive inter‐ and intratumoral heterogeneity observed in the most malignant brain tumors including medulloblastoma. Cancer stem cells (CSCs) are major contributors to brain tumor cellular heterogeneity. This review will examine the seminal discoveries, emerging controversies, and outstanding questions in the CSC field with a specific focus on medulloblastoma, the most common malignant primary brain tumor in children.
AbstractList The cancer stem cell (CSC) model posits that tumors contain subpopulations that display defining features of normal stem cells including self‐renewal capacity and differentiation. Tumor cells exhibiting these features are now considered to be responsible for tumor propagation and drug resistance in a wide variety of cancers. Therefore, the identification of robust CSC markers and characterization of CSC‐specific molecular signatures may lead to the identification of novel therapeutics that selectively abolish this clinically relevant cell population while preserving normal tissue. Brain tumor researchers have been at the forefront of the CSC field. From initial in vitro cell sorting experiments to the sophisticated bioinformatic technologies that now exquisitely resolve primary brain tumors at a single‐cell level, recent glioma and medulloblastoma (MB) studies have integrated developmental state with genomic and transcriptome data to identify the spectrum of cell types that may drive tumor progression. This review will examine the last two decades of CSC studies in the field. Seminal discoveries, emerging controversies, and outstanding questions will be covered with a particular focus on MB, the most common malignant primary brain tumor in children.
The cancer stem cell (CSC) model posits that tumors contain subpopulations that display defining features of normal stem cells including self‐renewal capacity and differentiation. Tumor cells exhibiting these features are now considered to be responsible for tumor propagation and drug resistance in a wide variety of cancers. Therefore, the identification of robust CSC markers and characterization of CSC‐specific molecular signatures may lead to the identification of novel therapeutics that selectively abolish this clinically relevant cell population while preserving normal tissue. Brain tumor researchers have been at the forefront of the CSC field. From initial in vitro cell sorting experiments to the sophisticated bioinformatic technologies that now exquisitely resolve primary brain tumors at a single‐cell level, recent glioma and medulloblastoma (MB) studies have integrated developmental state with genomic and transcriptome data to identify the spectrum of cell types that may drive tumor progression. This review will examine the last two decades of CSC studies in the field. Seminal discoveries, emerging controversies, and outstanding questions will be covered with a particular focus on MB, the most common malignant primary brain tumor in children.
The cancer stem cell (CSC) model posits that tumors contain subpopulations that display defining features of normal stem cells including self‐renewal capacity and differentiation. Tumor cells exhibiting these features are now considered to be responsible for tumor propagation and drug resistance in a wide variety of cancers. Therefore, the identification of robust CSC markers and characterization of CSC‐specific molecular signatures may lead to the identification of novel therapeutics that selectively abolish this clinically relevant cell population while preserving normal tissue. Brain tumor researchers have been at the forefront of the CSC field. From initial in vitro cell sorting experiments to the sophisticated bioinformatic technologies that now exquisitely resolve primary brain tumors at a single‐cell level, recent glioma and medulloblastoma (MB) studies have integrated developmental state with genomic and transcriptome data to identify the spectrum of cell types that may drive tumor progression. This review will examine the last two decades of CSC studies in the field. Seminal discoveries, emerging controversies, and outstanding questions will be covered with a particular focus on MB, the most common malignant primary brain tumor in children. The last two decades have seen significant gains in the understanding of the extensive inter‐ and intratumoral heterogeneity observed in the most malignant brain tumors including medulloblastoma. Cancer stem cells (CSCs) are major contributors to brain tumor cellular heterogeneity. This review will examine the seminal discoveries, emerging controversies, and outstanding questions in the CSC field with a specific focus on medulloblastoma, the most common malignant primary brain tumor in children.
Author Werbowetski‐Ogilvie, Tamra E.
Author_xml – sequence: 1
  givenname: Tamra E.
  orcidid: 0000-0002-5469-0559
  surname: Werbowetski‐Ogilvie
  fullname: Werbowetski‐Ogilvie, Tamra E.
  email: Tamra.Ogilvie@umanitoba.ca
  organization: CancerCare Manitoba
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33714236$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1vFSEUholpYz904w8wJG6MyW35HMBdbXq1SZMu1MQdAeag0zBQYUbTf-_MvbULF7IBTh6eHM57gg5yyYDQK0rO6LLOI_h2RqWm6hk6pkqwjeikPng6i29H6KS1O0K4FMY8R0ecKyoY745R2dYy4lbqNOTveCq4wc8ZclhvQ8bTD8BjSRDm5CqG6t7vSvCrpHkaSsYl7grB5QAVtwlGHCCl5VEPaTWM0M8pFZ9cm8roXqDD6FKDl4_7Kfq6vfpy-Wlzc_vx-vLiZhO44WrTeUZ8MMR7o0CDoVFoJ5niXnTOeKZpHyWwPoARjGjNfR9j6KLiSmpQHT9Fb_fe-1qWD7XJjkNbO3MZytwsk4QyqbWSC_rmH_SuzDUv3VnWic4QQ6leqHd7KtTSWoVo7-swuvpgKbFrDHaNwe5iWODXj8rZLwN4Qv_OfQHoHvg9JHj4j8purz583kv_ANXWlLY
CitedBy_id crossref_primary_10_3390_cancers14092095
crossref_primary_10_1038_s41467_023_38049_9
crossref_primary_10_1007_s40778_022_00213_0
crossref_primary_10_17116_neiro20228606199
crossref_primary_10_1007_s11033_022_07962_5
Cites_doi 10.1073/pnas.1005529108
10.1038/nature09587
10.1016/j.stem.2020.04.008
10.1016/j.ccell.2019.07.009
10.1073/pnas.97.26.14720
10.1016/j.stem.2019.10.005
10.1038/s41586-019-1434-6
10.1038/nature07567
10.1038/nm0797-730
10.1007/s00401-011-0922-z
10.1200/JCO.2009.27.4324
10.1158/0008-5472.CAN-18-0027
10.18632/oncotarget.6195
10.1016/j.ccr.2014.02.004
10.18632/oncotarget.2767
10.1038/nature11284
10.1038/s41467-019-09853-z
10.1002/stem.1401
10.1016/j.ccell.2018.08.002
10.1002/stem.1017
10.1126/sciadv.abb5427
10.1158/0008-5472.CAN-20-1655
10.1006/dbio.1996.0090
10.1200/JCO.2010.28.5148
10.1002/stem.582
10.1073/pnas.1813495116
10.1038/nature03128
10.1038/s41467-020-17186-5
10.1038/nature11329
10.1126/science.aao4750
10.1158/0008-5472.CAN-14-2415
10.1016/j.ccell.2017.05.005
10.1038/s41586-019-1158-7
10.1016/j.stem.2009.01.007
10.1002/ijc.23130
10.1101/cshperspect.a018838
10.1200/JCO.2017.35.15_suppl.2059
10.1016/j.ccr.2014.05.005
10.1158/2159-8290.CD-19-0329
10.1038/nature16478
10.1016/j.cell.2019.06.024
10.1038/s41467-020-19175-0
10.1001/archneurpsyc.1925.02200140055002
10.1038/s41467-019-13989-3
10.1038/nature16546
10.1038/ng.127
10.1016/j.ccr.2006.03.030
10.1016/S1470-2045(17)30243-7
10.1038/s41467-019-13657-6
10.1007/s00109-008-0357-8
10.1016/j.ccell.2018.08.004
10.1016/j.stem.2019.11.015
10.1038/s41568-018-0056-x
10.1073/pnas.0530291100
10.1593/neo.13148
10.7554/eLife.64090
10.1158/0008-5472.CAN-09-0342
10.1038/nature22973
10.1038/s41568-019-0223-8
10.1038/nature23666
10.1016/j.ccell.2020.04.001
10.1089/scd.2008.0338
10.1038/onc.2017.110
10.1158/0008-5472.CAN-09-1820
10.1126/science.1553558
10.1038/s41598-020-77115-w
10.1038/s43018-020-00154-9
10.1084/jem.12.4.556
10.1227/01.neu.0000316019.28421.95
10.1016/j.ccell.2020.06.004
10.1016/j.ejca.2013.09.004
10.1158/0008-5472.CAN-06-2030
10.1126/science.1179386
10.1016/j.celrep.2020.108597
10.1038/nature05236
10.1038/s41588-019-0531-7
10.1186/1476-4598-5-67
10.1200/JCO.2012.48.5052
10.1038/nn.3553
10.1126/science.aai8478
10.4161/cc.8.1.7533
10.1093/neuonc/noaa259
10.1007/s00401-016-1569-6
10.1016/j.ccr.2009.12.020
10.1038/nature20123
10.1016/j.ccr.2008.12.016
10.1016/j.ccr.2008.07.005
10.1158/1078-0432.CCR-07-0932
10.1200/JCO.2014.60.1591
10.1158/0008-5472.CAN-10-2876
10.1038/367645a0
10.1038/labinvest.2008.57
10.1038/s41467-020-17357-4
10.1038/nature05384
10.1016/j.stem.2019.05.013
10.1038/nm.4409
10.1016/j.ccr.2011.12.023
10.1016/j.ccr.2011.12.021
10.1158/0008-5472.CAN-13-0238
10.1016/j.ccr.2009.12.049
10.1200/JCO.20.01372
10.1158/0008-5472.CAN-08-0364
10.1200/JCO.2005.04.4974
10.1038/nature11327
10.1101/gad.324301.119
10.1158/1078-0432.CCR-08-0644
10.1016/j.brainresrev.2010.10.001
10.1093/brain/awt025
10.1016/j.ccr.2008.07.003
10.1038/s41587-020-0472-9
10.1371/journal.pone.0003088
10.1002/stem.236
10.1186/s40169-018-0198-1
ContentType Journal Article
Copyright 2021 Federation of European Biochemical Societies
2021 Federation of European Biochemical Societies.
Copyright © 2022 Federation of European Biochemical Societies
Copyright_xml – notice: 2021 Federation of European Biochemical Societies
– notice: 2021 Federation of European Biochemical Societies.
– notice: Copyright © 2022 Federation of European Biochemical Societies
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QL
7QP
7QR
7TK
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
DOI 10.1111/febs.15817
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Virology and AIDS Abstracts
Technology Research Database
Nucleic Acids Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList Virology and AIDS Abstracts
MEDLINE
CrossRef

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1742-4658
EndPage 1778
ExternalDocumentID 10_1111_febs_15817
33714236
FEBS15817
Genre reviewArticle
Journal Article
Review
GrantInformation_xml – fundername: Canadian Institutes of Health Research
– fundername: Canada Research Chairs Tier 2 Program
– fundername: Rally Foundation
– fundername: CancerCare Manitoba Foundation
– fundername: CIHR
GroupedDBID ---
-DZ
-~X
.3N
.55
.GA
.Y3
05W
0R~
10A
1OC
24P
29H
31~
33P
36B
3O-
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
A8Z
AAESR
AAEVG
AAHBH
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABEFU
ABEML
ABPVW
ABQWH
ABXGK
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACGOF
ACIWK
ACMXC
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C1A
C45
CAG
COF
CS3
D-6
D-7
D-E
D-F
DCZOG
DIK
DPXWK
DR2
DRFUL
DRMAN
DRSTM
E3Z
EAD
EAP
EAS
EAU
EBB
EBC
EBD
EBS
EBX
EJD
EMB
EMK
EMOBN
EST
ESTFP
ESX
EX3
F00
F01
F04
F5P
FIJ
FUBAC
G-S
G.N
GODZA
GX1
H.X
HF~
HGLYW
HH5
HZI
HZ~
IHE
IX1
J0M
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MVM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OBS
OIG
OK1
OVD
P2W
P2X
P2Z
P4B
P4D
PQQKQ
Q.N
Q11
QB0
R.K
RNS
ROL
RX1
SUPJJ
SV3
TEORI
TR2
TUS
UB1
V8K
W8V
W99
WBFHL
WBKPD
WIH
WIJ
WIK
WIN
WOHZO
WOQ
WOW
WQJ
WRC
WXI
WXSBR
WYISQ
X7M
XG1
Y6R
~IA
~KM
~WT
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QL
7QP
7QR
7TK
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
ID FETCH-LOGICAL-c3937-6b20bc90bb97e8e91f48a5273b46a9b281df5e2dce9420883bdffc6f73758e763
IEDL.DBID DR2
ISSN 1742-464X
IngestDate Fri Aug 16 07:33:01 EDT 2024
Thu Oct 10 22:06:43 EDT 2024
Fri Aug 23 03:14:58 EDT 2024
Sat Sep 28 08:21:18 EDT 2024
Sat Aug 24 01:22:04 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords transcriptomes
scRNA-seq
cancer stem cells
xenografts
medulloblastoma
sorting
Language English
License 2021 Federation of European Biochemical Societies.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3937-6b20bc90bb97e8e91f48a5273b46a9b281df5e2dce9420883bdffc6f73758e763
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-3
content type line 23
ObjectType-Review-1
ORCID 0000-0002-5469-0559
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/febs.15817
PMID 33714236
PQID 2646909118
PQPubID 28478
PageCount 14
ParticipantIDs proquest_miscellaneous_2501258875
proquest_journals_2646909118
crossref_primary_10_1111_febs_15817
pubmed_primary_33714236
wiley_primary_10_1111_febs_15817_FEBS15817
PublicationCentury 2000
PublicationDate April 2022
PublicationDateYYYYMMDD 2022-04-01
PublicationDate_xml – month: 04
  year: 2022
  text: April 2022
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle The FEBS journal
PublicationTitleAlternate FEBS J
PublicationYear 2022
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References 2018; 360
2019; 51
2012; 123
2020; 20
2010; 468
2010; 17
2019; 10
2015; 75
2015; 33
2014; 26
2014; 25
2008; 3
2020; 11
2020; 10
2012; 488
1997; 3
2017; 355
2018; 7
2017; 31
2020; 6
2013; 15
1925; 14
2021; 34
2013; 16
2006; 24
2017; 36
2011; 71
2021; 39
2017; 35
2000; 97
2019; 25
2019; 116
2011; 66
2008; 68
1996; 175
2010; 70
2018; 78
2018; 34
2008; 62
2014; 50
2007; 67
2011; 29
2012; 21
2009; 15
2006; 444
2009; 18
2009; 326
2007; 445
2009; 69
2019; 9
2015; 6
2021; 2
2019; 33
2006; 9
2020; 80
2017; 23
2019; 36
2016; 529
2008; 14
2020; 38
2020; 37
2006; 5
1910; 12
2008; 122
2009; 27
2012; 30
2017; 549
2018; 18
2021; 10
2011; 108
1994; 367
2004; 432
2016; 539
1992; 255
2013; 73
2013; 31
2016; 530
2013; 136
2020; 26
2009; 8
2016
2008; 456
2020; 23
2008; 88
2017; 18
2008; 86
2009; 4
2008; 40
2003; 63
2003; 100
2016; 131
2016; 8
2019; 178
2019; 572
2017; 547
e_1_2_11_70_1
e_1_2_11_93_1
e_1_2_11_32_1
e_1_2_11_55_1
e_1_2_11_78_1
e_1_2_11_36_1
e_1_2_11_51_1
e_1_2_11_74_1
e_1_2_11_97_1
e_1_2_11_13_1
e_1_2_11_29_1
e_1_2_11_4_1
e_1_2_11_106_1
e_1_2_11_48_1
e_1_2_11_102_1
e_1_2_11_81_1
e_1_2_11_20_1
e_1_2_11_66_1
e_1_2_11_47_1
e_1_2_11_89_1
e_1_2_11_24_1
e_1_2_11_62_1
e_1_2_11_8_1
e_1_2_11_43_1
e_1_2_11_85_1
e_1_2_11_17_1
e_1_2_11_59_1
e_1_2_11_113_1
Singh SK (e_1_2_11_26_1) 2003; 63
e_1_2_11_50_1
e_1_2_11_92_1
e_1_2_11_31_1
e_1_2_11_77_1
e_1_2_11_58_1
e_1_2_11_35_1
e_1_2_11_73_1
e_1_2_11_12_1
e_1_2_11_54_1
Louis D (e_1_2_11_65_1) 2016
e_1_2_11_96_1
e_1_2_11_103_1
e_1_2_11_28_1
e_1_2_11_5_1
e_1_2_11_61_1
e_1_2_11_80_1
e_1_2_11_46_1
e_1_2_11_69_1
e_1_2_11_88_1
e_1_2_11_107_1
e_1_2_11_9_1
e_1_2_11_23_1
e_1_2_11_42_1
e_1_2_11_84_1
e_1_2_11_114_1
e_1_2_11_16_1
e_1_2_11_110_1
e_1_2_11_39_1
e_1_2_11_72_1
e_1_2_11_91_1
e_1_2_11_30_1
e_1_2_11_57_1
e_1_2_11_99_1
e_1_2_11_34_1
e_1_2_11_53_1
e_1_2_11_76_1
e_1_2_11_95_1
e_1_2_11_11_1
e_1_2_11_6_1
e_1_2_11_104_1
e_1_2_11_27_1
e_1_2_11_2_1
e_1_2_11_100_1
e_1_2_11_83_1
e_1_2_11_60_1
e_1_2_11_45_1
e_1_2_11_68_1
e_1_2_11_41_1
e_1_2_11_87_1
e_1_2_11_108_1
e_1_2_11_22_1
e_1_2_11_64_1
e_1_2_11_115_1
e_1_2_11_15_1
e_1_2_11_111_1
e_1_2_11_38_1
e_1_2_11_19_1
e_1_2_11_94_1
e_1_2_11_71_1
e_1_2_11_90_1
e_1_2_11_10_1
e_1_2_11_56_1
e_1_2_11_79_1
e_1_2_11_14_1
e_1_2_11_52_1
e_1_2_11_98_1
e_1_2_11_33_1
e_1_2_11_75_1
e_1_2_11_7_1
e_1_2_11_105_1
e_1_2_11_3_1
e_1_2_11_49_1
e_1_2_11_101_1
e_1_2_11_82_1
e_1_2_11_21_1
e_1_2_11_44_1
e_1_2_11_67_1
e_1_2_11_25_1
e_1_2_11_40_1
e_1_2_11_63_1
e_1_2_11_86_1
e_1_2_11_109_1
e_1_2_11_18_1
e_1_2_11_116_1
e_1_2_11_37_1
e_1_2_11_112_1
References_xml – volume: 29
  start-page: 1424
  year: 2011
  end-page: 1430
  article-title: Integrative genomic analysis of medulloblastoma identifies a molecular subgroup that drives poor clinical outcome
  publication-title: J Clin Oncol
– volume: 34
  start-page: 396
  year: 2018
  end-page: 410 e8
  article-title: Proteomics, post‐translational modifications, and integrative analyses reveal molecular heterogeneity within medulloblastoma subgroups
  publication-title: Cancer Cell
– volume: 488
  start-page: 106
  year: 2012
  end-page: 110
  article-title: Medulloblastoma exome sequencing uncovers subtype‐specific somatic mutations
  publication-title: Nature
– volume: 24
  start-page: 1924
  year: 2006
  end-page: 1931
  article-title: Genomics identifies medulloblastoma subgroups that are enriched for specific genetic alterations
  publication-title: J Clin Oncol
– volume: 36
  start-page: 302
  year: 2019
  end-page: 318.e7
  article-title: Single‐cell transcriptomics in medulloblastoma reveals tumor‐initiating progenitors and oncogenic cascades during tumorigenesis and relapse
  publication-title: Cancer Cell
– volume: 20
  start-page: 42
  year: 2020
  end-page: 56
  article-title: Medulloblastomics revisited: biological and clinical insights from thousands of patients
  publication-title: Nat Rev Cancer
– volume: 3
  start-page: 730
  year: 1997
  end-page: 737
  article-title: Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell
  publication-title: Nat Med
– volume: 178
  start-page: 835
  year: 2019
  end-page: 849 e21
  article-title: An integrative model of cellular states, plasticity, and genetics for glioblastoma
  publication-title: Cell
– volume: 11
  start-page: 3627
  year: 2020
  article-title: An OTX2‐PAX3 signaling axis regulates Group 3 medulloblastoma cell fate
  publication-title: Nat Commun
– volume: 88
  start-page: 808
  year: 2008
  end-page: 815
  article-title: Clinical and biological implications of CD133‐positive and CD133‐negative cells in glioblastomas
  publication-title: Lab Invest
– volume: 444
  start-page: 756
  year: 2006
  end-page: 760
  article-title: Glioma stem cells promote radioresistance by preferential activation of the DNA damage response
  publication-title: Nature
– volume: 547
  start-page: 311
  year: 2017
  end-page: 317
  article-title: The whole‐genome landscape of medulloblastoma subtypes
  publication-title: Nature
– volume: 66
  start-page: 220
  year: 2011
  end-page: 245
  article-title: The unipolar brush cell: a remarkable neuron finally receiving deserved attention
  publication-title: Brain Res Rev
– volume: 38
  start-page: 44
  year: 2020
  end-page: 59 e9
  article-title: Single‐cell RNA‐seq reveals cellular hierarchies and impaired developmental trajectories in pediatric ependymoma
  publication-title: Cancer Cell
– volume: 51
  start-page: 1702
  year: 2019
  end-page: 1713
  article-title: Stalled developmental programs at the root of pediatric brain tumors
  publication-title: Nat Genet
– volume: 86
  start-page: 1025
  year: 2008
  end-page: 1032
  article-title: The utility and limitations of glycosylated human CD133 epitopes in defining cancer stem cells
  publication-title: J Mol Med (Berl)
– volume: 69
  start-page: 4682
  year: 2009
  end-page: 4690
  article-title: Multipotent CD15+ cancer stem cells in patched‐1‐deficient mouse medulloblastoma
  publication-title: Cancer Res
– volume: 12
  start-page: 556
  year: 1910
  end-page: 561
  article-title: Neurocytoma or neuroblastoma, a kind of tumor not generally recognized
  publication-title: J Exp Med
– volume: 530
  start-page: 57
  year: 2016
  end-page: 62
  article-title: Active medulloblastoma enhancers reveal subgroup‐specific cellular origins
  publication-title: Nature
– volume: 31
  start-page: 737
  year: 2017
  end-page: 754 e6
  article-title: Intertumoral heterogeneity within medulloblastoma subgroups
  publication-title: Cancer Cell
– volume: 78
  start-page: 4745
  year: 2018
  end-page: 4759
  article-title: CD271(+) cells are diagnostic and prognostic and exhibit elevated MAPK activity in SHH medulloblastoma
  publication-title: Cancer Res
– volume: 21
  start-page: 168
  year: 2012
  end-page: 180
  article-title: A mouse model of the most aggressive subgroup of human medulloblastoma
  publication-title: Cancer Cell
– volume: 40
  start-page: 499
  year: 2008
  end-page: 507
  article-title: An embryonic stem cell‐like gene expression signature in poorly differentiated aggressive human tumors
  publication-title: Nat Genet
– volume: 10
  start-page: 5829
  year: 2019
  article-title: scRNA‐seq in medulloblastoma shows cellular heterogeneity and lineage expansion support resistance to SHH inhibitor therapy
  publication-title: Nat Commun
– volume: 50
  start-page: 137
  year: 2014
  end-page: 149
  article-title: Identification of brain tumour initiating cells using the stem cell marker aldehyde dehydrogenase
  publication-title: Eur J Cancer
– volume: 23
  start-page: 1124
  year: 2017
  end-page: 1134
  article-title: Cancer stem cells revisited
  publication-title: Nat Med
– volume: 71
  start-page: 435
  year: 2011
  end-page: 444
  article-title: Small molecule inhibition of GDC‐0449 refractory smoothened mutants and downstream mechanisms of drug resistance
  publication-title: Cancer Res
– volume: 8
  year: 2016
  article-title: Diversity of neural precursors in the adult mammalian brain
  publication-title: Cold Spring Harb Perspect Biol
– volume: 488
  start-page: 100
  year: 2012
  end-page: 105
  article-title: Dissecting the genomic complexity underlying medulloblastoma
  publication-title: Nature
– volume: 14
  start-page: 135
  year: 2008
  end-page: 145
  article-title: Medulloblastoma can be initiated by deletion of Patched in lineage‐restricted progenitors or stem cells
  publication-title: Cancer Cell
– volume: 34
  start-page: 379
  year: 2018
  end-page: 395 e7
  article-title: Aberrant ERBB4‐SRC signaling as a hallmark of group 4 medulloblastoma revealed by integrative phosphoproteomic profiling
  publication-title: Cancer Cell
– volume: 25
  start-page: 855
  year: 2019
  end-page: 870 e11
  article-title: Humanized stem cell models of pediatric medulloblastoma reveal an Oct4/mTOR axis that promotes malignancy
  publication-title: Cell Stem Cell
– volume: 97
  start-page: 14720
  year: 2000
  end-page: 14725
  article-title: Direct isolation of human central nervous system stem cells
  publication-title: Proc Natl Acad Sci USA
– volume: 10
  year: 2020
  article-title: DCX(+) neuronal progenitors contribute to new oligodendrocytes during remyelination in the hippocampus
  publication-title: Sci Rep
– volume: 62
  start-page: 505
  year: 2008
  end-page: 514
  article-title: Identification of A2B5+CD133‐ tumor‐initiating cells in adult human gliomas
  publication-title: Neurosurgery
– volume: 14
  start-page: 192
  year: 1925
  end-page: 224
  article-title: Medulloblastoma cerebelli: a common type of midcerebellar glioma of childhood
  publication-title: Arch Neurol Psychiatry
– year: 2016
– volume: 10
  year: 2021
  article-title: Single‐cell chromatin accessibility profiling of glioblastoma identifies an invasive cancer stem cell population associated with lower survival
  publication-title: eLife
– volume: 468
  start-page: 1095
  year: 2010
  end-page: 1099
  article-title: Subtypes of medulloblastoma have distinct developmental origins
  publication-title: Nature
– volume: 17
  start-page: 98
  year: 2010
  end-page: 110
  article-title: Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1
  publication-title: Cancer Cell
– volume: 33
  start-page: 591
  year: 2019
  end-page: 609
  article-title: Glioblastoma stem cells: lessons from the tumor hierarchy in a lethal cancer
  publication-title: Genes Dev
– volume: 67
  start-page: 1030
  year: 2007
  end-page: 1037
  article-title: Identification of pancreatic cancer stem cells
  publication-title: Cancer Res
– volume: 360
  start-page: 331
  year: 2018
  end-page: 335
  article-title: Developmental and oncogenic programs in H3K27M gliomas dissected by single‐cell RNA‐seq
  publication-title: Science
– volume: 30
  start-page: 392
  year: 2012
  end-page: 404
  article-title: In vivo generation of neural tumors from neoplastic pluripotent stem cells models early human pediatric brain tumor formation
  publication-title: Stem Cells
– volume: 572
  start-page: 67
  year: 2019
  end-page: 73
  article-title: Childhood cerebellar tumours mirror conserved fetal transcriptional programs
  publication-title: Nature
– volume: 33
  start-page: 2646
  year: 2015
  end-page: 2654
  article-title: Vismodegib exerts targeted efficacy against recurrent sonic hedgehog‐subgroup medulloblastoma: results from phase II pediatric brain tumor consortium studies PBTC‐025B and PBTC‐032
  publication-title: J Clin Oncol
– volume: 488
  start-page: 49
  year: 2012
  end-page: 56
  article-title: Subgroup‐specific structural variation across 1,000 medulloblastoma genomes
  publication-title: Nature
– volume: 25
  start-page: 393
  year: 2014
  end-page: 405
  article-title: Genome sequencing of SHH medulloblastoma predicts genotype‐related response to smoothened inhibition
  publication-title: Cancer Cell
– volume: 29
  start-page: 1408
  year: 2011
  end-page: 1414
  article-title: Medulloblastoma comprises four distinct molecular variants
  publication-title: J Clin Oncol
– volume: 16
  start-page: 1737
  year: 2013
  end-page: 1744
  article-title: A population of Nestin‐expressing progenitors in the cerebellum exhibits increased tumorigenicity
  publication-title: Nat Neurosci
– volume: 11
  start-page: 3406
  year: 2020
  article-title: Single‐cell RNA‐seq reveals that glioblastoma recapitulates a normal neurodevelopmental hierarchy
  publication-title: Nat Commun
– volume: 100
  start-page: 3983
  year: 2003
  end-page: 3988
  article-title: Prospective identification of tumorigenic breast cancer cells
  publication-title: Proc Natl Acad Sci USA
– volume: 3
  year: 2008
  article-title: Integrated genomics identifies five medulloblastoma subtypes with distinct genetic profiles, pathway signatures and clinicopathological features
  publication-title: PLoS One
– volume: 175
  start-page: 1
  year: 1996
  end-page: 13
  article-title: Clonal and population analyses demonstrate that an EGF‐responsive mammalian embryonic CNS precursor is a stem cell
  publication-title: Dev Biol
– volume: 80
  start-page: 5393
  year: 2020
  end-page: 5407
  article-title: Functional precision medicine identifies new therapeutic candidates for medulloblastoma
  publication-title: Cancer Res
– volume: 18
  start-page: 958
  year: 2017
  end-page: 971
  article-title: Novel molecular subgroups for clinical classification and outcome prediction in childhood medulloblastoma: a cohort study
  publication-title: Lancet Oncol
– volume: 122
  start-page: 761
  year: 2008
  end-page: 768
  article-title: CD133 negative glioma cells form tumors in nude rats and give rise to CD133 positive cells
  publication-title: Int J Cancer
– volume: 116
  start-page: 19098
  year: 2019
  end-page: 19108
  article-title: Comprehensive genomic profiling of glioblastoma tumors, BTICs, and xenografts reveals stability and adaptation to growth environments
  publication-title: Proc Natl Acad Sci USA
– volume: 8
  start-page: 158
  year: 2009
  end-page: 166
  article-title: Molecular phenotyping of human ovarian cancer stem cells unravels the mechanisms for repair and chemoresistance
  publication-title: Cell Cycle
– volume: 15
  start-page: 135
  year: 2009
  end-page: 147
  article-title: Identification of CD15 as a marker for tumor‐propagating cells in a mouse model of medulloblastoma
  publication-title: Cancer Cell
– volume: 23
  start-page: 199
  year: 2020
  end-page: 213
  article-title: The evolution of the cancer stem cell state in glioblastoma – emerging insights into the next‐generation of functional interactions
  publication-title: Neuro Oncol
– volume: 29
  start-page: 452
  year: 2011
  end-page: 461
  article-title: Side population is not necessary or sufficient for a cancer stem cell phenotype in glioblastoma multiforme
  publication-title: Stem Cells
– volume: 31
  start-page: 2927
  year: 2013
  end-page: 2935
  article-title: Subgroup‐specific prognostic implications of TP53 mutation in medulloblastoma
  publication-title: J Clin Oncol
– volume: 35
  start-page: 2059
  year: 2017
  end-page: 2059
  article-title: Immunological targeting of CD133 in recurrent glioblastoma: a multi‐center phase I translational and clinical study of autologous CD133 dendritic cell immunotherapy
  publication-title: J Clin Oncol
– volume: 572
  start-page: 74
  year: 2019
  end-page: 79
  article-title: Resolving medulloblastoma cellular architecture by single‐cell genomics
  publication-title: Nature
– volume: 25
  start-page: 433
  year: 2019
  end-page: 446 e7
  article-title: Engineering genetic predisposition in human neuroepithelial stem cells recapitulates medulloblastoma tumorigenesis
  publication-title: Cell Stem Cell
– volume: 68
  start-page: 4311
  year: 2008
  end-page: 4320
  article-title: Identification and characterization of ovarian cancer‐initiating cells from primary human tumors
  publication-title: Cancer Res
– volume: 10
  start-page: 1787
  year: 2019
  article-title: Stem cell‐associated heterogeneity in Glioblastoma results from intrinsic tumor plasticity shaped by the microenvironment
  publication-title: Nat Commun
– volume: 255
  start-page: 1707
  year: 1992
  end-page: 1710
  article-title: Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system
  publication-title: Science
– volume: 75
  start-page: 2166
  year: 2015
  end-page: 2176
  article-title: Effective eradication of glioblastoma stem cells by local application of an AC133/CD133‐specific T‐cell‐engaging antibody and CD8 T cells
  publication-title: Cancer Res
– volume: 37
  start-page: 630
  year: 2020
  end-page: 636
  article-title: The glioma stem cell model in the era of single‐cell genomics
  publication-title: Cancer Cell
– volume: 14
  start-page: 123
  year: 2008
  end-page: 129
  article-title: Stem cell marker CD133 affects clinical outcome in glioma patients
  publication-title: Clin Cancer Res
– volume: 36
  start-page: 5231
  year: 2017
  end-page: 5242
  article-title: Novel MYC‐driven medulloblastoma models from multiple embryonic cerebellar cells
  publication-title: Oncogene
– volume: 39
  start-page: 822
  year: 2021
  end-page: 835
  article-title: Outcomes by clinical and molecular features in children with medulloblastoma treated with risk‐adapted therapy: results of an international phase III trial (SJMB03)
  publication-title: J Clin Oncol
– volume: 14
  start-page: 8205
  year: 2008
  end-page: 8212
  article-title: Cancer stem cell analysis and clinical outcome in patients with glioblastoma multiforme
  publication-title: Clin Cancer Res
– volume: 34
  year: 2021
  article-title: Cancer stemness meets immunity: from mechanism to therapy
  publication-title: Cell Rep
– volume: 432
  start-page: 396
  year: 2004
  end-page: 401
  article-title: Identification of human brain tumour initiating cells
  publication-title: Nature
– volume: 70
  start-page: 719
  year: 2010
  end-page: 729
  article-title: The AC133 epitope, but not the CD133 protein, is lost upon cancer stem cell differentiation
  publication-title: Cancer Res
– volume: 21
  start-page: 155
  year: 2012
  end-page: 167
  article-title: An animal model of MYC‐driven medulloblastoma
  publication-title: Cancer Cell
– volume: 2
  start-page: 157
  year: 2021
  end-page: 173
  article-title: Gradient of developmental and injury response transcriptional states defines functional vulnerabilities underpinning glioblastoma heterogeneity
  publication-title: Nat Cancer
– volume: 63
  start-page: 5821
  year: 2003
  end-page: 5828
  article-title: Identification of a cancer stem cell in human brain tumors
  publication-title: Cancer Res
– volume: 14
  start-page: 123
  year: 2008
  end-page: 134
  article-title: Acquisition of granule neuron precursor identity is a critical determinant of progenitor cell competence to form Shh‐induced medulloblastoma
  publication-title: Cancer Cell
– volume: 26
  start-page: 832
  year: 2020
  end-page: 844 e6
  article-title: The Rational development of CD133‐targeting immunotherapies for glioblastoma
  publication-title: Cell Stem Cell
– volume: 131
  start-page: 821
  year: 2016
  end-page: 831
  article-title: Risk stratification of childhood medulloblastoma in the molecular era: the current consensus
  publication-title: Acta Neuropathol
– volume: 11
  start-page: 5376
  year: 2020
  article-title: Circulating tumour DNA from the cerebrospinal fluid allows the characterisation and monitoring of medulloblastoma
  publication-title: Nat Commun
– volume: 17
  start-page: 362
  year: 2010
  end-page: 375
  article-title: A hierarchy of self‐renewing tumor‐initiating cell types in glioblastoma
  publication-title: Cancer Cell
– volume: 6
  start-page: 171
  year: 2015
  end-page: 184
  article-title: Patient‐derived glioblastoma stem cells are killed by CD133‐specific CAR T cells but induce the T cell aging marker CD57
  publication-title: Oncotarget
– volume: 355
  year: 2017
  article-title: Decoupling genetics, lineages, and microenvironment in IDH‐mutant gliomas by single‐cell RNA‐seq
  publication-title: Science
– volume: 18
  start-page: 669
  year: 2018
  end-page: 680
  article-title: Stem cell fate in cancer growth, progression and therapy resistance
  publication-title: Nat Rev Cancer
– volume: 73
  start-page: 3796
  year: 2013
  end-page: 3807
  article-title: Sox2 requirement in sonic hedgehog‐associated medulloblastoma
  publication-title: Cancer Res
– volume: 9
  start-page: 1708
  year: 2019
  end-page: 1719
  article-title: The phenotypes of proliferating glioblastoma cells reside on a single axis of variation
  publication-title: Cancer Discov
– volume: 326
  start-page: 572
  year: 2009
  end-page: 574
  article-title: Smoothened mutation confers resistance to a Hedgehog pathway inhibitor in medulloblastoma
  publication-title: Science
– volume: 11
  start-page: 583
  year: 2020
  article-title: Modeling medulloblastoma in vivo and with human cerebellar organoids
  publication-title: Nat Commun
– volume: 5
  start-page: 67
  year: 2006
  article-title: Analysis of gene expression and chemoresistance of CD133+ cancer stem cells in glioblastoma
  publication-title: Mol Cancer
– volume: 26
  start-page: 33
  year: 2014
  end-page: 47
  article-title: Quiescent sox2(+) cells drive hierarchical growth and relapse in sonic hedgehog subgroup medulloblastoma
  publication-title: Cancer Cell
– volume: 31
  start-page: 1266
  year: 2013
  end-page: 1277
  article-title: FoxG1 interacts with Bmi1 to regulate self‐renewal and tumorigenicity of medulloblastoma stem cells
  publication-title: Stem Cells
– volume: 4
  start-page: 226
  year: 2009
  end-page: 235
  article-title: PTEN/PI3K/Akt pathway regulates the side population phenotype and ABCG2 activity in glioma tumor stem‐like cells
  publication-title: Cell Stem Cell
– volume: 27
  start-page: 2875
  year: 2009
  end-page: 2883
  article-title: CD133 expression defines a tumor initiating cell population in primary human ovarian cancer
  publication-title: Stem Cells
– volume: 9
  start-page: 391
  year: 2006
  end-page: 403
  article-title: Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum‐cultured cell lines
  publication-title: Cancer Cell
– volume: 6
  year: 2020
  article-title: Reliable tumor detection by whole‐genome methylation sequencing of cell‐free DNA in cerebrospinal fluid of pediatric medulloblastoma
  publication-title: Sci Adv
– volume: 26
  start-page: 48
  year: 2020
  end-page: 63 e6
  article-title: Outer radial glia‐like cancer stem cells contribute to heterogeneity of glioblastoma
  publication-title: Cell Stem Cell
– volume: 549
  start-page: 227
  year: 2017
  end-page: 232
  article-title: Fate mapping of human glioblastoma reveals an invariant stem cell hierarchy
  publication-title: Nature
– volume: 15
  start-page: 384
  year: 2013
  end-page: 398
  article-title: Deconstruction of medulloblastoma cellular heterogeneity reveals differences between the most highly invasive and self‐renewing phenotypes
  publication-title: Neoplasia
– volume: 6
  start-page: 38881
  year: 2015
  end-page: 38900
  article-title: Characterization of novel biomarkers in selecting for subtype specific medulloblastoma phenotypes
  publication-title: Oncotarget
– volume: 529
  start-page: 351
  year: 2016
  end-page: 357
  article-title: Divergent clonal selection dominates medulloblastoma at recurrence
  publication-title: Nature
– volume: 539
  start-page: 309
  year: 2016
  end-page: 313
  article-title: Single‐cell RNA‐seq supports a developmental hierarchy in human oligodendroglioma
  publication-title: Nature
– volume: 18
  start-page: 1127
  year: 2009
  end-page: 1134
  article-title: CD133 as a marker for cancer stem cells: progresses and concerns
  publication-title: Stem Cells Dev
– volume: 456
  start-page: 593
  year: 2008
  end-page: 598
  article-title: Efficient tumour formation by single human melanoma cells
  publication-title: Nature
– volume: 7
  start-page: 18
  year: 2018
  article-title: The role of CD133 in cancer: a concise review
  publication-title: Clin Transl Med
– volume: 136
  start-page: 1462
  year: 2013
  end-page: 1475
  article-title: Side population in human glioblastoma is non‐tumorigenic and characterizes brain endothelial cells
  publication-title: Brain
– volume: 367
  start-page: 645
  year: 1994
  end-page: 648
  article-title: A cell initiating human acute myeloid leukaemia after transplantation into SCID mice
  publication-title: Nature
– volume: 123
  start-page: 465
  year: 2012
  end-page: 472
  article-title: Molecular subgroups of medulloblastoma: the current consensus
  publication-title: Acta Neuropathol
– volume: 108
  start-page: 6468
  year: 2011
  end-page: 6473
  article-title: Phenotypic heterogeneity and instability of human ovarian tumor‐initiating cells
  publication-title: Proc Natl Acad Sci USA
– volume: 445
  start-page: 111
  year: 2007
  end-page: 115
  article-title: Identification and expansion of human colon‐cancer‐initiating cells
  publication-title: Nature
– volume: 38
  start-page: 586
  year: 2020
  end-page: 599
  article-title: Multiplex digital spatial profiling of proteins and RNA in fixed tissue
  publication-title: Nat Biotechnol
– ident: e_1_2_11_24_1
  doi: 10.1073/pnas.1005529108
– ident: e_1_2_11_94_1
  doi: 10.1038/nature09587
– ident: e_1_2_11_110_1
  doi: 10.1016/j.stem.2020.04.008
– ident: e_1_2_11_13_1
  doi: 10.1016/j.ccell.2019.07.009
– ident: e_1_2_11_32_1
  doi: 10.1073/pnas.97.26.14720
– ident: e_1_2_11_100_1
  doi: 10.1016/j.stem.2019.10.005
– ident: e_1_2_11_16_1
  doi: 10.1038/s41586-019-1434-6
– ident: e_1_2_11_6_1
  doi: 10.1038/nature07567
– ident: e_1_2_11_3_1
  doi: 10.1038/nm0797-730
– ident: e_1_2_11_64_1
  doi: 10.1007/s00401-011-0922-z
– ident: e_1_2_11_60_1
  doi: 10.1200/JCO.2009.27.4324
– ident: e_1_2_11_53_1
  doi: 10.1158/0008-5472.CAN-18-0027
– volume-title: WHO Classification of Tumours of the Central Nervous System
  year: 2016
  ident: e_1_2_11_65_1
  contributor:
    fullname: Louis D
– ident: e_1_2_11_54_1
  doi: 10.18632/oncotarget.6195
– ident: e_1_2_11_78_1
  doi: 10.1016/j.ccr.2014.02.004
– ident: e_1_2_11_109_1
  doi: 10.18632/oncotarget.2767
– ident: e_1_2_11_67_1
  doi: 10.1038/nature11284
– ident: e_1_2_11_86_1
  doi: 10.1038/s41467-019-09853-z
– ident: e_1_2_11_82_1
  doi: 10.1002/stem.1401
– ident: e_1_2_11_80_1
  doi: 10.1016/j.ccell.2018.08.002
– ident: e_1_2_11_101_1
  doi: 10.1002/stem.1017
– ident: e_1_2_11_98_1
  doi: 10.1126/sciadv.abb5427
– ident: e_1_2_11_113_1
  doi: 10.1158/0008-5472.CAN-20-1655
– ident: e_1_2_11_30_1
  doi: 10.1006/dbio.1996.0090
– ident: e_1_2_11_62_1
  doi: 10.1200/JCO.2010.28.5148
– ident: e_1_2_11_58_1
  doi: 10.1002/stem.582
– ident: e_1_2_11_104_1
  doi: 10.1073/pnas.1813495116
– ident: e_1_2_11_27_1
  doi: 10.1038/nature03128
– ident: e_1_2_11_84_1
  doi: 10.1038/s41467-020-17186-5
– ident: e_1_2_11_66_1
  doi: 10.1038/nature11329
– ident: e_1_2_11_9_1
  doi: 10.1126/science.aao4750
– ident: e_1_2_11_108_1
  doi: 10.1158/0008-5472.CAN-14-2415
– ident: e_1_2_11_70_1
  doi: 10.1016/j.ccell.2017.05.005
– ident: e_1_2_11_14_1
  doi: 10.1038/s41586-019-1158-7
– ident: e_1_2_11_57_1
  doi: 10.1016/j.stem.2009.01.007
– ident: e_1_2_11_44_1
  doi: 10.1002/ijc.23130
– ident: e_1_2_11_116_1
  doi: 10.1101/cshperspect.a018838
– ident: e_1_2_11_111_1
  doi: 10.1200/JCO.2017.35.15_suppl.2059
– ident: e_1_2_11_51_1
  doi: 10.1016/j.ccr.2014.05.005
– ident: e_1_2_11_85_1
  doi: 10.1158/2159-8290.CD-19-0329
– ident: e_1_2_11_95_1
  doi: 10.1038/nature16478
– ident: e_1_2_11_10_1
  doi: 10.1016/j.cell.2019.06.024
– ident: e_1_2_11_97_1
  doi: 10.1038/s41467-020-19175-0
– ident: e_1_2_11_29_1
  doi: 10.1001/archneurpsyc.1925.02200140055002
– ident: e_1_2_11_99_1
  doi: 10.1038/s41467-019-13989-3
– ident: e_1_2_11_72_1
  doi: 10.1038/nature16546
– ident: e_1_2_11_83_1
  doi: 10.1038/ng.127
– ident: e_1_2_11_45_1
  doi: 10.1016/j.ccr.2006.03.030
– ident: e_1_2_11_71_1
  doi: 10.1016/S1470-2045(17)30243-7
– ident: e_1_2_11_96_1
  doi: 10.1038/s41467-019-13657-6
– ident: e_1_2_11_38_1
  doi: 10.1007/s00109-008-0357-8
– ident: e_1_2_11_81_1
  doi: 10.1016/j.ccell.2018.08.004
– ident: e_1_2_11_87_1
  doi: 10.1016/j.stem.2019.11.015
– ident: e_1_2_11_5_1
  doi: 10.1038/s41568-018-0056-x
– ident: e_1_2_11_19_1
  doi: 10.1073/pnas.0530291100
– volume: 63
  start-page: 5821
  year: 2003
  ident: e_1_2_11_26_1
  article-title: Identification of a cancer stem cell in human brain tumors
  publication-title: Cancer Res
  contributor:
    fullname: Singh SK
– ident: e_1_2_11_55_1
  doi: 10.1593/neo.13148
– ident: e_1_2_11_88_1
  doi: 10.7554/eLife.64090
– ident: e_1_2_11_46_1
  doi: 10.1158/0008-5472.CAN-09-0342
– ident: e_1_2_11_93_1
  doi: 10.1038/nature22973
– ident: e_1_2_11_73_1
  doi: 10.1038/s41568-019-0223-8
– ident: e_1_2_11_106_1
  doi: 10.1038/nature23666
– ident: e_1_2_11_11_1
  doi: 10.1016/j.ccell.2020.04.001
– ident: e_1_2_11_37_1
  doi: 10.1089/scd.2008.0338
– ident: e_1_2_11_90_1
  doi: 10.1038/onc.2017.110
– ident: e_1_2_11_40_1
  doi: 10.1158/0008-5472.CAN-09-1820
– ident: e_1_2_11_31_1
  doi: 10.1126/science.1553558
– ident: e_1_2_11_115_1
  doi: 10.1038/s41598-020-77115-w
– ident: e_1_2_11_103_1
  doi: 10.1038/s43018-020-00154-9
– ident: e_1_2_11_28_1
  doi: 10.1084/jem.12.4.556
– ident: e_1_2_11_43_1
  doi: 10.1227/01.neu.0000316019.28421.95
– ident: e_1_2_11_112_1
  doi: 10.1016/j.ccell.2020.06.004
– ident: e_1_2_11_56_1
  doi: 10.1016/j.ejca.2013.09.004
– ident: e_1_2_11_21_1
  doi: 10.1158/0008-5472.CAN-06-2030
– ident: e_1_2_11_75_1
  doi: 10.1126/science.1179386
– ident: e_1_2_11_107_1
  doi: 10.1016/j.celrep.2020.108597
– ident: e_1_2_11_33_1
  doi: 10.1038/nature05236
– ident: e_1_2_11_15_1
  doi: 10.1038/s41588-019-0531-7
– ident: e_1_2_11_34_1
  doi: 10.1186/1476-4598-5-67
– ident: e_1_2_11_69_1
  doi: 10.1200/JCO.2012.48.5052
– ident: e_1_2_11_50_1
  doi: 10.1038/nn.3553
– ident: e_1_2_11_8_1
  doi: 10.1126/science.aai8478
– ident: e_1_2_11_22_1
  doi: 10.4161/cc.8.1.7533
– ident: e_1_2_11_17_1
  doi: 10.1093/neuonc/noaa259
– ident: e_1_2_11_79_1
  doi: 10.1007/s00401-016-1569-6
– ident: e_1_2_11_12_1
  doi: 10.1016/j.ccr.2009.12.020
– ident: e_1_2_11_7_1
  doi: 10.1038/nature20123
– ident: e_1_2_11_47_1
  doi: 10.1016/j.ccr.2008.12.016
– ident: e_1_2_11_48_1
  doi: 10.1016/j.ccr.2008.07.005
– ident: e_1_2_11_35_1
  doi: 10.1158/1078-0432.CCR-07-0932
– ident: e_1_2_11_77_1
  doi: 10.1200/JCO.2014.60.1591
– ident: e_1_2_11_76_1
  doi: 10.1158/0008-5472.CAN-10-2876
– ident: e_1_2_11_2_1
  doi: 10.1038/367645a0
– ident: e_1_2_11_41_1
  doi: 10.1038/labinvest.2008.57
– ident: e_1_2_11_102_1
  doi: 10.1038/s41467-020-17357-4
– ident: e_1_2_11_20_1
  doi: 10.1038/nature05384
– ident: e_1_2_11_105_1
  doi: 10.1016/j.stem.2019.05.013
– ident: e_1_2_11_4_1
  doi: 10.1038/nm.4409
– ident: e_1_2_11_89_1
  doi: 10.1016/j.ccr.2011.12.023
– ident: e_1_2_11_91_1
  doi: 10.1016/j.ccr.2011.12.021
– ident: e_1_2_11_52_1
  doi: 10.1158/0008-5472.CAN-13-0238
– ident: e_1_2_11_42_1
  doi: 10.1016/j.ccr.2009.12.049
– ident: e_1_2_11_74_1
  doi: 10.1200/JCO.20.01372
– ident: e_1_2_11_25_1
  doi: 10.1158/0008-5472.CAN-08-0364
– ident: e_1_2_11_63_1
  doi: 10.1200/JCO.2005.04.4974
– ident: e_1_2_11_68_1
  doi: 10.1038/nature11327
– ident: e_1_2_11_18_1
  doi: 10.1101/gad.324301.119
– ident: e_1_2_11_36_1
  doi: 10.1158/1078-0432.CCR-08-0644
– ident: e_1_2_11_92_1
  doi: 10.1016/j.brainresrev.2010.10.001
– ident: e_1_2_11_59_1
  doi: 10.1093/brain/awt025
– ident: e_1_2_11_49_1
  doi: 10.1016/j.ccr.2008.07.003
– ident: e_1_2_11_114_1
  doi: 10.1038/s41587-020-0472-9
– ident: e_1_2_11_61_1
  doi: 10.1371/journal.pone.0003088
– ident: e_1_2_11_23_1
  doi: 10.1002/stem.236
– ident: e_1_2_11_39_1
  doi: 10.1186/s40169-018-0198-1
SSID ssj0035499
Score 2.4623246
SecondaryResourceType review_article
Snippet The cancer stem cell (CSC) model posits that tumors contain subpopulations that display defining features of normal stem cells including self‐renewal capacity...
The cancer stem cell (CSC) model posits that tumors contain subpopulations that display defining features of normal stem cells including self-renewal capacity...
SourceID proquest
crossref
pubmed
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage 1765
SubjectTerms Brain
Brain cancer
Brain tumors
Cancer
cancer stem cells
Cell differentiation
Cell Movement
Cell self-renewal
Cerebellar Neoplasms - genetics
Cerebellar Neoplasms - metabolism
Cerebellar Neoplasms - pathology
Child
Drug resistance
Glioma cells
Humans
Medulloblastoma
Medulloblastoma - genetics
Medulloblastoma - metabolism
Medulloblastoma - pathology
Neoplastic Stem Cells - pathology
scRNA‐seq
sorting
Stem cells
Subpopulations
Transcriptome
Transcriptomes
Tumor cells
Tumors
xenografts
Title From sorting to sequencing in the molecular era: the evolution of the cancer stem cell model in medulloblastoma
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Ffebs.15817
https://www.ncbi.nlm.nih.gov/pubmed/33714236
https://www.proquest.com/docview/2646909118
https://search.proquest.com/docview/2501258875
Volume 289
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4hLu0FKBQIBeSKigNSVhvHcZKKC68VD8GBh7QXFNleGyG0CdpHpfbXd8ZJlkelSu0tbzvjsecbe-YzwDfphHJOZ6GjtB6hpQm1yV0o0Dpxh_ZDGZqHvLySp3fivJ_052C_zYWp-SFmE27UM_x4TR1c6fGrTu6sHneiJIsolTyKU4rnOr6ecUfF5PjU2ZA8FFL0G25SCuN5efWtNfoDYr5FrN7k9Bbhvq1sHWny1JlOdMf8esfj-L9_swQLDRZlB7XyfII5Wy7DykGJfvjwJ9tlPjrUT7svw4ejdme4Fah6o2rIxhUREDywScWaeGw6eywZQko2bHfdZXakvvtL9kej5axy_oIhhRsxYpJmtH7A_K489AWUCXrGlUZkj1VRn-Gud3J7dBo2GzeEhvj1Qql5F1u8q3We2szmkROZIqY3LaTKNUeM7BLLB8bmtLqfxXrgnJEujdF7sTjircJ8WZV2HRgiJDNQPM1Tk4uBUwrfi2UmZTflVkgewE7bgMVzzc9RtH4NybTwMg1gs23boumj4wKhoMwRLkVZAF9nt1GU9MuqtNUUn0nQgCc4ECcBrNU6MSsmJrJDrEwAe75l_1J-0Ts5vPFHG__y8Bf4yCnbwgcKbcL8ZDS1W4iBJnobdf3sYttr_G8i3gPE
link.rule.ids 315,783,787,1378,27937,27938,46307,46731
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5RONBLebU0sICrVhwqZbXrOE7CbXmsti1waEHaW2R7bYSqTap9INFf3xkn2UKRKsEtbzv2jOcbe_wNwCfphHJOp6GjbT1CSxNqk7lQoHXiDu2HMjQPeXEpB9fi6zAe1rE5tBem4odYTLiRZvjxmhScJqQfaLmzetruxmk3eQUrqO8R6eXp9wV7VESuT7UfkodCimHNTkqBPH_ffWyPnoDMx5jVG53-WpVZdeq5CinW5Gd7PtNt8_sfJscX_886vKnhKOtV8rMBS7bYhK1ega74-J4dMh8g6mfeN2H1pEkOtwVlf1KO2bQkDoIbNitZHZJNZ7cFQ1TJxk3iXWYn6shfsne1oLPS-QuGZG7CiEya0RIC84l56AvYKFjvUiO4x6qot3DdP7s6GYR17obQEMVeKDXvYKd3tM4Sm9qs60SqiOxNC6kyzREmu9jykbEZLfCnkR45Z6RLInRgLA5672C5KAv7HhiCJDNSPMkSk4mRUwrfi2QqZSfhVkgewMemB_NfFUVH3rg21Ka5b9MAWk3n5rWaTnNEgzJDxNRNA_iwuI1NSb-sClvO8ZkYbXiMY3EcwHYlFItiIuI7xMoE8Nl37X_Kz_tnxz_80c5zHj6A1cHVxXl-_uXy2y685rT5wscNtWB5NpnbPYREM73vBf8PKOMG5A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9UwFD9BSNAXRfBjClgi8cFkN_d2XbcZX_haUIEYlOS-kKXtWkPI3cj9MMG_nnO67QqamODb1rXr12nP77SnvwJsSyeUczoNHR3rEVqaUJvMhQK1E3eoP5ShdcjjE3l4Jj4P4-ECfOzOwjT8EPMFNxoZfr6mAX5VuluD3Fk96Q3idJA8gCUhUVYJEp3OyaMisnya45A8FFIMW3JS8uP5nfauOvoLY96FrF7n5E_gvCtt42py2ZtNdc_8-oPI8X-rswKPWzDKdhrpeQoLtlqFtZ0KDfHRNXvHvHuoX3dfhYd73dVwa1Dn43rEJjUxEPxg05q1Dtn0dlExxJRs1F27y-xYffBB9mcr5qx2PsCQxI0ZUUkz2kBg_loe-gO2CZrGtUZoj0VRz-AsP_i-dxi2NzeEhgj2Qql5H7u8r3WW2NRmAydSRVRvWkiVaY4g2cWWl8ZmtL2fRrp0zkiXRGi-WJzynsNiVVf2JTCESKZUPMkSk4nSKYXpIplK2U-4FZIH8LbrwOKqIegoOsOG2rTwbRrAete3RTtIJwViQZkhXhqkAWzNP2NTUpVVZesZxolRg8c4E8cBvGhkYp5NRGyHWJgA3vue_Uf-RX6w-80_vbpP5Dew_HU_L44-nXx5DY84nbzwTkPrsDgdz-wG4qGp3vRifwMU4wWT
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=From+sorting+to+sequencing+in+the+molecular+era%3A+the+evolution+of+the+cancer+stem+cell+model+in+medulloblastoma&rft.jtitle=The+FEBS+journal&rft.au=Tamra+E+Werbowetski%E2%80%90Ogilvie&rft.date=2022-04-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=1742-464X&rft.eissn=1742-4658&rft.volume=289&rft.issue=7&rft.spage=1765&rft.epage=1778&rft_id=info:doi/10.1111%2Ffebs.15817&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1742-464X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1742-464X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1742-464X&client=summon