From sorting to sequencing in the molecular era: the evolution of the cancer stem cell model in medulloblastoma
The cancer stem cell (CSC) model posits that tumors contain subpopulations that display defining features of normal stem cells including self‐renewal capacity and differentiation. Tumor cells exhibiting these features are now considered to be responsible for tumor propagation and drug resistance in...
Saved in:
Published in | The FEBS journal Vol. 289; no. 7; pp. 1765 - 1778 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
England
Blackwell Publishing Ltd
01.04.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The cancer stem cell (CSC) model posits that tumors contain subpopulations that display defining features of normal stem cells including self‐renewal capacity and differentiation. Tumor cells exhibiting these features are now considered to be responsible for tumor propagation and drug resistance in a wide variety of cancers. Therefore, the identification of robust CSC markers and characterization of CSC‐specific molecular signatures may lead to the identification of novel therapeutics that selectively abolish this clinically relevant cell population while preserving normal tissue. Brain tumor researchers have been at the forefront of the CSC field. From initial in vitro cell sorting experiments to the sophisticated bioinformatic technologies that now exquisitely resolve primary brain tumors at a single‐cell level, recent glioma and medulloblastoma (MB) studies have integrated developmental state with genomic and transcriptome data to identify the spectrum of cell types that may drive tumor progression. This review will examine the last two decades of CSC studies in the field. Seminal discoveries, emerging controversies, and outstanding questions will be covered with a particular focus on MB, the most common malignant primary brain tumor in children.
The last two decades have seen significant gains in the understanding of the extensive inter‐ and intratumoral heterogeneity observed in the most malignant brain tumors including medulloblastoma. Cancer stem cells (CSCs) are major contributors to brain tumor cellular heterogeneity. This review will examine the seminal discoveries, emerging controversies, and outstanding questions in the CSC field with a specific focus on medulloblastoma, the most common malignant primary brain tumor in children. |
---|---|
AbstractList | The cancer stem cell (CSC) model posits that tumors contain subpopulations that display defining features of normal stem cells including self‐renewal capacity and differentiation. Tumor cells exhibiting these features are now considered to be responsible for tumor propagation and drug resistance in a wide variety of cancers. Therefore, the identification of robust CSC markers and characterization of CSC‐specific molecular signatures may lead to the identification of novel therapeutics that selectively abolish this clinically relevant cell population while preserving normal tissue. Brain tumor researchers have been at the forefront of the CSC field. From initial in vitro cell sorting experiments to the sophisticated bioinformatic technologies that now exquisitely resolve primary brain tumors at a single‐cell level, recent glioma and medulloblastoma (MB) studies have integrated developmental state with genomic and transcriptome data to identify the spectrum of cell types that may drive tumor progression. This review will examine the last two decades of CSC studies in the field. Seminal discoveries, emerging controversies, and outstanding questions will be covered with a particular focus on MB, the most common malignant primary brain tumor in children. The cancer stem cell (CSC) model posits that tumors contain subpopulations that display defining features of normal stem cells including self‐renewal capacity and differentiation. Tumor cells exhibiting these features are now considered to be responsible for tumor propagation and drug resistance in a wide variety of cancers. Therefore, the identification of robust CSC markers and characterization of CSC‐specific molecular signatures may lead to the identification of novel therapeutics that selectively abolish this clinically relevant cell population while preserving normal tissue. Brain tumor researchers have been at the forefront of the CSC field. From initial in vitro cell sorting experiments to the sophisticated bioinformatic technologies that now exquisitely resolve primary brain tumors at a single‐cell level, recent glioma and medulloblastoma (MB) studies have integrated developmental state with genomic and transcriptome data to identify the spectrum of cell types that may drive tumor progression. This review will examine the last two decades of CSC studies in the field. Seminal discoveries, emerging controversies, and outstanding questions will be covered with a particular focus on MB, the most common malignant primary brain tumor in children. The cancer stem cell (CSC) model posits that tumors contain subpopulations that display defining features of normal stem cells including self‐renewal capacity and differentiation. Tumor cells exhibiting these features are now considered to be responsible for tumor propagation and drug resistance in a wide variety of cancers. Therefore, the identification of robust CSC markers and characterization of CSC‐specific molecular signatures may lead to the identification of novel therapeutics that selectively abolish this clinically relevant cell population while preserving normal tissue. Brain tumor researchers have been at the forefront of the CSC field. From initial in vitro cell sorting experiments to the sophisticated bioinformatic technologies that now exquisitely resolve primary brain tumors at a single‐cell level, recent glioma and medulloblastoma (MB) studies have integrated developmental state with genomic and transcriptome data to identify the spectrum of cell types that may drive tumor progression. This review will examine the last two decades of CSC studies in the field. Seminal discoveries, emerging controversies, and outstanding questions will be covered with a particular focus on MB, the most common malignant primary brain tumor in children. The last two decades have seen significant gains in the understanding of the extensive inter‐ and intratumoral heterogeneity observed in the most malignant brain tumors including medulloblastoma. Cancer stem cells (CSCs) are major contributors to brain tumor cellular heterogeneity. This review will examine the seminal discoveries, emerging controversies, and outstanding questions in the CSC field with a specific focus on medulloblastoma, the most common malignant primary brain tumor in children. |
Author | Werbowetski‐Ogilvie, Tamra E. |
Author_xml | – sequence: 1 givenname: Tamra E. orcidid: 0000-0002-5469-0559 surname: Werbowetski‐Ogilvie fullname: Werbowetski‐Ogilvie, Tamra E. email: Tamra.Ogilvie@umanitoba.ca organization: CancerCare Manitoba |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33714236$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU1vFSEUholpYz904w8wJG6MyW35HMBdbXq1SZMu1MQdAeag0zBQYUbTf-_MvbULF7IBTh6eHM57gg5yyYDQK0rO6LLOI_h2RqWm6hk6pkqwjeikPng6i29H6KS1O0K4FMY8R0ecKyoY745R2dYy4lbqNOTveCq4wc8ZclhvQ8bTD8BjSRDm5CqG6t7vSvCrpHkaSsYl7grB5QAVtwlGHCCl5VEPaTWM0M8pFZ9cm8roXqDD6FKDl4_7Kfq6vfpy-Wlzc_vx-vLiZhO44WrTeUZ8MMR7o0CDoVFoJ5niXnTOeKZpHyWwPoARjGjNfR9j6KLiSmpQHT9Fb_fe-1qWD7XJjkNbO3MZytwsk4QyqbWSC_rmH_SuzDUv3VnWic4QQ6leqHd7KtTSWoVo7-swuvpgKbFrDHaNwe5iWODXj8rZLwN4Qv_OfQHoHvg9JHj4j8purz583kv_ANXWlLY |
CitedBy_id | crossref_primary_10_3390_cancers14092095 crossref_primary_10_1038_s41467_023_38049_9 crossref_primary_10_1007_s40778_022_00213_0 crossref_primary_10_17116_neiro20228606199 crossref_primary_10_1007_s11033_022_07962_5 |
Cites_doi | 10.1073/pnas.1005529108 10.1038/nature09587 10.1016/j.stem.2020.04.008 10.1016/j.ccell.2019.07.009 10.1073/pnas.97.26.14720 10.1016/j.stem.2019.10.005 10.1038/s41586-019-1434-6 10.1038/nature07567 10.1038/nm0797-730 10.1007/s00401-011-0922-z 10.1200/JCO.2009.27.4324 10.1158/0008-5472.CAN-18-0027 10.18632/oncotarget.6195 10.1016/j.ccr.2014.02.004 10.18632/oncotarget.2767 10.1038/nature11284 10.1038/s41467-019-09853-z 10.1002/stem.1401 10.1016/j.ccell.2018.08.002 10.1002/stem.1017 10.1126/sciadv.abb5427 10.1158/0008-5472.CAN-20-1655 10.1006/dbio.1996.0090 10.1200/JCO.2010.28.5148 10.1002/stem.582 10.1073/pnas.1813495116 10.1038/nature03128 10.1038/s41467-020-17186-5 10.1038/nature11329 10.1126/science.aao4750 10.1158/0008-5472.CAN-14-2415 10.1016/j.ccell.2017.05.005 10.1038/s41586-019-1158-7 10.1016/j.stem.2009.01.007 10.1002/ijc.23130 10.1101/cshperspect.a018838 10.1200/JCO.2017.35.15_suppl.2059 10.1016/j.ccr.2014.05.005 10.1158/2159-8290.CD-19-0329 10.1038/nature16478 10.1016/j.cell.2019.06.024 10.1038/s41467-020-19175-0 10.1001/archneurpsyc.1925.02200140055002 10.1038/s41467-019-13989-3 10.1038/nature16546 10.1038/ng.127 10.1016/j.ccr.2006.03.030 10.1016/S1470-2045(17)30243-7 10.1038/s41467-019-13657-6 10.1007/s00109-008-0357-8 10.1016/j.ccell.2018.08.004 10.1016/j.stem.2019.11.015 10.1038/s41568-018-0056-x 10.1073/pnas.0530291100 10.1593/neo.13148 10.7554/eLife.64090 10.1158/0008-5472.CAN-09-0342 10.1038/nature22973 10.1038/s41568-019-0223-8 10.1038/nature23666 10.1016/j.ccell.2020.04.001 10.1089/scd.2008.0338 10.1038/onc.2017.110 10.1158/0008-5472.CAN-09-1820 10.1126/science.1553558 10.1038/s41598-020-77115-w 10.1038/s43018-020-00154-9 10.1084/jem.12.4.556 10.1227/01.neu.0000316019.28421.95 10.1016/j.ccell.2020.06.004 10.1016/j.ejca.2013.09.004 10.1158/0008-5472.CAN-06-2030 10.1126/science.1179386 10.1016/j.celrep.2020.108597 10.1038/nature05236 10.1038/s41588-019-0531-7 10.1186/1476-4598-5-67 10.1200/JCO.2012.48.5052 10.1038/nn.3553 10.1126/science.aai8478 10.4161/cc.8.1.7533 10.1093/neuonc/noaa259 10.1007/s00401-016-1569-6 10.1016/j.ccr.2009.12.020 10.1038/nature20123 10.1016/j.ccr.2008.12.016 10.1016/j.ccr.2008.07.005 10.1158/1078-0432.CCR-07-0932 10.1200/JCO.2014.60.1591 10.1158/0008-5472.CAN-10-2876 10.1038/367645a0 10.1038/labinvest.2008.57 10.1038/s41467-020-17357-4 10.1038/nature05384 10.1016/j.stem.2019.05.013 10.1038/nm.4409 10.1016/j.ccr.2011.12.023 10.1016/j.ccr.2011.12.021 10.1158/0008-5472.CAN-13-0238 10.1016/j.ccr.2009.12.049 10.1200/JCO.20.01372 10.1158/0008-5472.CAN-08-0364 10.1200/JCO.2005.04.4974 10.1038/nature11327 10.1101/gad.324301.119 10.1158/1078-0432.CCR-08-0644 10.1016/j.brainresrev.2010.10.001 10.1093/brain/awt025 10.1016/j.ccr.2008.07.003 10.1038/s41587-020-0472-9 10.1371/journal.pone.0003088 10.1002/stem.236 10.1186/s40169-018-0198-1 |
ContentType | Journal Article |
Copyright | 2021 Federation of European Biochemical Societies 2021 Federation of European Biochemical Societies. Copyright © 2022 Federation of European Biochemical Societies |
Copyright_xml | – notice: 2021 Federation of European Biochemical Societies – notice: 2021 Federation of European Biochemical Societies. – notice: Copyright © 2022 Federation of European Biochemical Societies |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QL 7QP 7QR 7TK 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 |
DOI | 10.1111/febs.15817 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Virology and AIDS Abstracts Technology Research Database Nucleic Acids Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Genetics Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | Virology and AIDS Abstracts MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
EISSN | 1742-4658 |
EndPage | 1778 |
ExternalDocumentID | 10_1111_febs_15817 33714236 FEBS15817 |
Genre | reviewArticle Journal Article Review |
GrantInformation_xml | – fundername: Canadian Institutes of Health Research – fundername: Canada Research Chairs Tier 2 Program – fundername: Rally Foundation – fundername: CancerCare Manitoba Foundation – fundername: CIHR |
GroupedDBID | --- -DZ -~X .3N .55 .GA .Y3 05W 0R~ 10A 1OC 24P 29H 31~ 33P 36B 3O- 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 A8Z AAESR AAEVG AAHBH AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDBF ABEFU ABEML ABPVW ABQWH ABXGK ACAHQ ACCFJ ACCZN ACFBH ACGFS ACGOF ACIWK ACMXC ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AIACR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BMXJE BROTX BRXPI BY8 C1A C45 CAG COF CS3 D-6 D-7 D-E D-F DCZOG DIK DPXWK DR2 DRFUL DRMAN DRSTM E3Z EAD EAP EAS EAU EBB EBC EBD EBS EBX EJD EMB EMK EMOBN EST ESTFP ESX EX3 F00 F01 F04 F5P FIJ FUBAC G-S G.N GODZA GX1 H.X HF~ HGLYW HH5 HZI HZ~ IHE IX1 J0M KBYEO LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MVM MXFUL MXMAN MXSTM N04 N05 N9A NF~ O66 O9- OBS OIG OK1 OVD P2W P2X P2Z P4B P4D PQQKQ Q.N Q11 QB0 R.K RNS ROL RX1 SUPJJ SV3 TEORI TR2 TUS UB1 V8K W8V W99 WBFHL WBKPD WIH WIJ WIK WIN WOHZO WOQ WOW WQJ WRC WXI WXSBR WYISQ X7M XG1 Y6R ~IA ~KM ~WT CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QL 7QP 7QR 7TK 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 |
ID | FETCH-LOGICAL-c3937-6b20bc90bb97e8e91f48a5273b46a9b281df5e2dce9420883bdffc6f73758e763 |
IEDL.DBID | DR2 |
ISSN | 1742-464X |
IngestDate | Fri Aug 16 07:33:01 EDT 2024 Thu Oct 10 22:06:43 EDT 2024 Fri Aug 23 03:14:58 EDT 2024 Sat Sep 28 08:21:18 EDT 2024 Sat Aug 24 01:22:04 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | transcriptomes scRNA-seq cancer stem cells xenografts medulloblastoma sorting |
Language | English |
License | 2021 Federation of European Biochemical Societies. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3937-6b20bc90bb97e8e91f48a5273b46a9b281df5e2dce9420883bdffc6f73758e763 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-3 content type line 23 ObjectType-Review-1 |
ORCID | 0000-0002-5469-0559 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/febs.15817 |
PMID | 33714236 |
PQID | 2646909118 |
PQPubID | 28478 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_2501258875 proquest_journals_2646909118 crossref_primary_10_1111_febs_15817 pubmed_primary_33714236 wiley_primary_10_1111_febs_15817_FEBS15817 |
PublicationCentury | 2000 |
PublicationDate | April 2022 |
PublicationDateYYYYMMDD | 2022-04-01 |
PublicationDate_xml | – month: 04 year: 2022 text: April 2022 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Oxford |
PublicationTitle | The FEBS journal |
PublicationTitleAlternate | FEBS J |
PublicationYear | 2022 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | 2018; 360 2019; 51 2012; 123 2020; 20 2010; 468 2010; 17 2019; 10 2015; 75 2015; 33 2014; 26 2014; 25 2008; 3 2020; 11 2020; 10 2012; 488 1997; 3 2017; 355 2018; 7 2017; 31 2020; 6 2013; 15 1925; 14 2021; 34 2013; 16 2006; 24 2017; 36 2011; 71 2021; 39 2017; 35 2000; 97 2019; 25 2019; 116 2011; 66 2008; 68 1996; 175 2010; 70 2018; 78 2018; 34 2008; 62 2014; 50 2007; 67 2011; 29 2012; 21 2009; 15 2006; 444 2009; 18 2009; 326 2007; 445 2009; 69 2019; 9 2015; 6 2021; 2 2019; 33 2006; 9 2020; 80 2017; 23 2019; 36 2016; 529 2008; 14 2020; 38 2020; 37 2006; 5 1910; 12 2008; 122 2009; 27 2012; 30 2017; 549 2018; 18 2021; 10 2011; 108 1994; 367 2004; 432 2016; 539 1992; 255 2013; 73 2013; 31 2016; 530 2013; 136 2020; 26 2009; 8 2016 2008; 456 2020; 23 2008; 88 2017; 18 2008; 86 2009; 4 2008; 40 2003; 63 2003; 100 2016; 131 2016; 8 2019; 178 2019; 572 2017; 547 e_1_2_11_70_1 e_1_2_11_93_1 e_1_2_11_32_1 e_1_2_11_55_1 e_1_2_11_78_1 e_1_2_11_36_1 e_1_2_11_51_1 e_1_2_11_74_1 e_1_2_11_97_1 e_1_2_11_13_1 e_1_2_11_29_1 e_1_2_11_4_1 e_1_2_11_106_1 e_1_2_11_48_1 e_1_2_11_102_1 e_1_2_11_81_1 e_1_2_11_20_1 e_1_2_11_66_1 e_1_2_11_47_1 e_1_2_11_89_1 e_1_2_11_24_1 e_1_2_11_62_1 e_1_2_11_8_1 e_1_2_11_43_1 e_1_2_11_85_1 e_1_2_11_17_1 e_1_2_11_59_1 e_1_2_11_113_1 Singh SK (e_1_2_11_26_1) 2003; 63 e_1_2_11_50_1 e_1_2_11_92_1 e_1_2_11_31_1 e_1_2_11_77_1 e_1_2_11_58_1 e_1_2_11_35_1 e_1_2_11_73_1 e_1_2_11_12_1 e_1_2_11_54_1 Louis D (e_1_2_11_65_1) 2016 e_1_2_11_96_1 e_1_2_11_103_1 e_1_2_11_28_1 e_1_2_11_5_1 e_1_2_11_61_1 e_1_2_11_80_1 e_1_2_11_46_1 e_1_2_11_69_1 e_1_2_11_88_1 e_1_2_11_107_1 e_1_2_11_9_1 e_1_2_11_23_1 e_1_2_11_42_1 e_1_2_11_84_1 e_1_2_11_114_1 e_1_2_11_16_1 e_1_2_11_110_1 e_1_2_11_39_1 e_1_2_11_72_1 e_1_2_11_91_1 e_1_2_11_30_1 e_1_2_11_57_1 e_1_2_11_99_1 e_1_2_11_34_1 e_1_2_11_53_1 e_1_2_11_76_1 e_1_2_11_95_1 e_1_2_11_11_1 e_1_2_11_6_1 e_1_2_11_104_1 e_1_2_11_27_1 e_1_2_11_2_1 e_1_2_11_100_1 e_1_2_11_83_1 e_1_2_11_60_1 e_1_2_11_45_1 e_1_2_11_68_1 e_1_2_11_41_1 e_1_2_11_87_1 e_1_2_11_108_1 e_1_2_11_22_1 e_1_2_11_64_1 e_1_2_11_115_1 e_1_2_11_15_1 e_1_2_11_111_1 e_1_2_11_38_1 e_1_2_11_19_1 e_1_2_11_94_1 e_1_2_11_71_1 e_1_2_11_90_1 e_1_2_11_10_1 e_1_2_11_56_1 e_1_2_11_79_1 e_1_2_11_14_1 e_1_2_11_52_1 e_1_2_11_98_1 e_1_2_11_33_1 e_1_2_11_75_1 e_1_2_11_7_1 e_1_2_11_105_1 e_1_2_11_3_1 e_1_2_11_49_1 e_1_2_11_101_1 e_1_2_11_82_1 e_1_2_11_21_1 e_1_2_11_44_1 e_1_2_11_67_1 e_1_2_11_25_1 e_1_2_11_40_1 e_1_2_11_63_1 e_1_2_11_86_1 e_1_2_11_109_1 e_1_2_11_18_1 e_1_2_11_116_1 e_1_2_11_37_1 e_1_2_11_112_1 |
References_xml | – volume: 29 start-page: 1424 year: 2011 end-page: 1430 article-title: Integrative genomic analysis of medulloblastoma identifies a molecular subgroup that drives poor clinical outcome publication-title: J Clin Oncol – volume: 34 start-page: 396 year: 2018 end-page: 410 e8 article-title: Proteomics, post‐translational modifications, and integrative analyses reveal molecular heterogeneity within medulloblastoma subgroups publication-title: Cancer Cell – volume: 488 start-page: 106 year: 2012 end-page: 110 article-title: Medulloblastoma exome sequencing uncovers subtype‐specific somatic mutations publication-title: Nature – volume: 24 start-page: 1924 year: 2006 end-page: 1931 article-title: Genomics identifies medulloblastoma subgroups that are enriched for specific genetic alterations publication-title: J Clin Oncol – volume: 36 start-page: 302 year: 2019 end-page: 318.e7 article-title: Single‐cell transcriptomics in medulloblastoma reveals tumor‐initiating progenitors and oncogenic cascades during tumorigenesis and relapse publication-title: Cancer Cell – volume: 20 start-page: 42 year: 2020 end-page: 56 article-title: Medulloblastomics revisited: biological and clinical insights from thousands of patients publication-title: Nat Rev Cancer – volume: 3 start-page: 730 year: 1997 end-page: 737 article-title: Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell publication-title: Nat Med – volume: 178 start-page: 835 year: 2019 end-page: 849 e21 article-title: An integrative model of cellular states, plasticity, and genetics for glioblastoma publication-title: Cell – volume: 11 start-page: 3627 year: 2020 article-title: An OTX2‐PAX3 signaling axis regulates Group 3 medulloblastoma cell fate publication-title: Nat Commun – volume: 88 start-page: 808 year: 2008 end-page: 815 article-title: Clinical and biological implications of CD133‐positive and CD133‐negative cells in glioblastomas publication-title: Lab Invest – volume: 444 start-page: 756 year: 2006 end-page: 760 article-title: Glioma stem cells promote radioresistance by preferential activation of the DNA damage response publication-title: Nature – volume: 547 start-page: 311 year: 2017 end-page: 317 article-title: The whole‐genome landscape of medulloblastoma subtypes publication-title: Nature – volume: 66 start-page: 220 year: 2011 end-page: 245 article-title: The unipolar brush cell: a remarkable neuron finally receiving deserved attention publication-title: Brain Res Rev – volume: 38 start-page: 44 year: 2020 end-page: 59 e9 article-title: Single‐cell RNA‐seq reveals cellular hierarchies and impaired developmental trajectories in pediatric ependymoma publication-title: Cancer Cell – volume: 51 start-page: 1702 year: 2019 end-page: 1713 article-title: Stalled developmental programs at the root of pediatric brain tumors publication-title: Nat Genet – volume: 86 start-page: 1025 year: 2008 end-page: 1032 article-title: The utility and limitations of glycosylated human CD133 epitopes in defining cancer stem cells publication-title: J Mol Med (Berl) – volume: 69 start-page: 4682 year: 2009 end-page: 4690 article-title: Multipotent CD15+ cancer stem cells in patched‐1‐deficient mouse medulloblastoma publication-title: Cancer Res – volume: 12 start-page: 556 year: 1910 end-page: 561 article-title: Neurocytoma or neuroblastoma, a kind of tumor not generally recognized publication-title: J Exp Med – volume: 530 start-page: 57 year: 2016 end-page: 62 article-title: Active medulloblastoma enhancers reveal subgroup‐specific cellular origins publication-title: Nature – volume: 31 start-page: 737 year: 2017 end-page: 754 e6 article-title: Intertumoral heterogeneity within medulloblastoma subgroups publication-title: Cancer Cell – volume: 78 start-page: 4745 year: 2018 end-page: 4759 article-title: CD271(+) cells are diagnostic and prognostic and exhibit elevated MAPK activity in SHH medulloblastoma publication-title: Cancer Res – volume: 21 start-page: 168 year: 2012 end-page: 180 article-title: A mouse model of the most aggressive subgroup of human medulloblastoma publication-title: Cancer Cell – volume: 40 start-page: 499 year: 2008 end-page: 507 article-title: An embryonic stem cell‐like gene expression signature in poorly differentiated aggressive human tumors publication-title: Nat Genet – volume: 10 start-page: 5829 year: 2019 article-title: scRNA‐seq in medulloblastoma shows cellular heterogeneity and lineage expansion support resistance to SHH inhibitor therapy publication-title: Nat Commun – volume: 50 start-page: 137 year: 2014 end-page: 149 article-title: Identification of brain tumour initiating cells using the stem cell marker aldehyde dehydrogenase publication-title: Eur J Cancer – volume: 23 start-page: 1124 year: 2017 end-page: 1134 article-title: Cancer stem cells revisited publication-title: Nat Med – volume: 71 start-page: 435 year: 2011 end-page: 444 article-title: Small molecule inhibition of GDC‐0449 refractory smoothened mutants and downstream mechanisms of drug resistance publication-title: Cancer Res – volume: 8 year: 2016 article-title: Diversity of neural precursors in the adult mammalian brain publication-title: Cold Spring Harb Perspect Biol – volume: 488 start-page: 100 year: 2012 end-page: 105 article-title: Dissecting the genomic complexity underlying medulloblastoma publication-title: Nature – volume: 14 start-page: 135 year: 2008 end-page: 145 article-title: Medulloblastoma can be initiated by deletion of Patched in lineage‐restricted progenitors or stem cells publication-title: Cancer Cell – volume: 34 start-page: 379 year: 2018 end-page: 395 e7 article-title: Aberrant ERBB4‐SRC signaling as a hallmark of group 4 medulloblastoma revealed by integrative phosphoproteomic profiling publication-title: Cancer Cell – volume: 25 start-page: 855 year: 2019 end-page: 870 e11 article-title: Humanized stem cell models of pediatric medulloblastoma reveal an Oct4/mTOR axis that promotes malignancy publication-title: Cell Stem Cell – volume: 97 start-page: 14720 year: 2000 end-page: 14725 article-title: Direct isolation of human central nervous system stem cells publication-title: Proc Natl Acad Sci USA – volume: 10 year: 2020 article-title: DCX(+) neuronal progenitors contribute to new oligodendrocytes during remyelination in the hippocampus publication-title: Sci Rep – volume: 62 start-page: 505 year: 2008 end-page: 514 article-title: Identification of A2B5+CD133‐ tumor‐initiating cells in adult human gliomas publication-title: Neurosurgery – volume: 14 start-page: 192 year: 1925 end-page: 224 article-title: Medulloblastoma cerebelli: a common type of midcerebellar glioma of childhood publication-title: Arch Neurol Psychiatry – year: 2016 – volume: 10 year: 2021 article-title: Single‐cell chromatin accessibility profiling of glioblastoma identifies an invasive cancer stem cell population associated with lower survival publication-title: eLife – volume: 468 start-page: 1095 year: 2010 end-page: 1099 article-title: Subtypes of medulloblastoma have distinct developmental origins publication-title: Nature – volume: 17 start-page: 98 year: 2010 end-page: 110 article-title: Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1 publication-title: Cancer Cell – volume: 33 start-page: 591 year: 2019 end-page: 609 article-title: Glioblastoma stem cells: lessons from the tumor hierarchy in a lethal cancer publication-title: Genes Dev – volume: 67 start-page: 1030 year: 2007 end-page: 1037 article-title: Identification of pancreatic cancer stem cells publication-title: Cancer Res – volume: 360 start-page: 331 year: 2018 end-page: 335 article-title: Developmental and oncogenic programs in H3K27M gliomas dissected by single‐cell RNA‐seq publication-title: Science – volume: 30 start-page: 392 year: 2012 end-page: 404 article-title: In vivo generation of neural tumors from neoplastic pluripotent stem cells models early human pediatric brain tumor formation publication-title: Stem Cells – volume: 572 start-page: 67 year: 2019 end-page: 73 article-title: Childhood cerebellar tumours mirror conserved fetal transcriptional programs publication-title: Nature – volume: 33 start-page: 2646 year: 2015 end-page: 2654 article-title: Vismodegib exerts targeted efficacy against recurrent sonic hedgehog‐subgroup medulloblastoma: results from phase II pediatric brain tumor consortium studies PBTC‐025B and PBTC‐032 publication-title: J Clin Oncol – volume: 488 start-page: 49 year: 2012 end-page: 56 article-title: Subgroup‐specific structural variation across 1,000 medulloblastoma genomes publication-title: Nature – volume: 25 start-page: 393 year: 2014 end-page: 405 article-title: Genome sequencing of SHH medulloblastoma predicts genotype‐related response to smoothened inhibition publication-title: Cancer Cell – volume: 29 start-page: 1408 year: 2011 end-page: 1414 article-title: Medulloblastoma comprises four distinct molecular variants publication-title: J Clin Oncol – volume: 16 start-page: 1737 year: 2013 end-page: 1744 article-title: A population of Nestin‐expressing progenitors in the cerebellum exhibits increased tumorigenicity publication-title: Nat Neurosci – volume: 11 start-page: 3406 year: 2020 article-title: Single‐cell RNA‐seq reveals that glioblastoma recapitulates a normal neurodevelopmental hierarchy publication-title: Nat Commun – volume: 100 start-page: 3983 year: 2003 end-page: 3988 article-title: Prospective identification of tumorigenic breast cancer cells publication-title: Proc Natl Acad Sci USA – volume: 3 year: 2008 article-title: Integrated genomics identifies five medulloblastoma subtypes with distinct genetic profiles, pathway signatures and clinicopathological features publication-title: PLoS One – volume: 175 start-page: 1 year: 1996 end-page: 13 article-title: Clonal and population analyses demonstrate that an EGF‐responsive mammalian embryonic CNS precursor is a stem cell publication-title: Dev Biol – volume: 80 start-page: 5393 year: 2020 end-page: 5407 article-title: Functional precision medicine identifies new therapeutic candidates for medulloblastoma publication-title: Cancer Res – volume: 18 start-page: 958 year: 2017 end-page: 971 article-title: Novel molecular subgroups for clinical classification and outcome prediction in childhood medulloblastoma: a cohort study publication-title: Lancet Oncol – volume: 122 start-page: 761 year: 2008 end-page: 768 article-title: CD133 negative glioma cells form tumors in nude rats and give rise to CD133 positive cells publication-title: Int J Cancer – volume: 116 start-page: 19098 year: 2019 end-page: 19108 article-title: Comprehensive genomic profiling of glioblastoma tumors, BTICs, and xenografts reveals stability and adaptation to growth environments publication-title: Proc Natl Acad Sci USA – volume: 8 start-page: 158 year: 2009 end-page: 166 article-title: Molecular phenotyping of human ovarian cancer stem cells unravels the mechanisms for repair and chemoresistance publication-title: Cell Cycle – volume: 15 start-page: 135 year: 2009 end-page: 147 article-title: Identification of CD15 as a marker for tumor‐propagating cells in a mouse model of medulloblastoma publication-title: Cancer Cell – volume: 23 start-page: 199 year: 2020 end-page: 213 article-title: The evolution of the cancer stem cell state in glioblastoma – emerging insights into the next‐generation of functional interactions publication-title: Neuro Oncol – volume: 29 start-page: 452 year: 2011 end-page: 461 article-title: Side population is not necessary or sufficient for a cancer stem cell phenotype in glioblastoma multiforme publication-title: Stem Cells – volume: 31 start-page: 2927 year: 2013 end-page: 2935 article-title: Subgroup‐specific prognostic implications of TP53 mutation in medulloblastoma publication-title: J Clin Oncol – volume: 35 start-page: 2059 year: 2017 end-page: 2059 article-title: Immunological targeting of CD133 in recurrent glioblastoma: a multi‐center phase I translational and clinical study of autologous CD133 dendritic cell immunotherapy publication-title: J Clin Oncol – volume: 572 start-page: 74 year: 2019 end-page: 79 article-title: Resolving medulloblastoma cellular architecture by single‐cell genomics publication-title: Nature – volume: 25 start-page: 433 year: 2019 end-page: 446 e7 article-title: Engineering genetic predisposition in human neuroepithelial stem cells recapitulates medulloblastoma tumorigenesis publication-title: Cell Stem Cell – volume: 68 start-page: 4311 year: 2008 end-page: 4320 article-title: Identification and characterization of ovarian cancer‐initiating cells from primary human tumors publication-title: Cancer Res – volume: 10 start-page: 1787 year: 2019 article-title: Stem cell‐associated heterogeneity in Glioblastoma results from intrinsic tumor plasticity shaped by the microenvironment publication-title: Nat Commun – volume: 255 start-page: 1707 year: 1992 end-page: 1710 article-title: Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system publication-title: Science – volume: 75 start-page: 2166 year: 2015 end-page: 2176 article-title: Effective eradication of glioblastoma stem cells by local application of an AC133/CD133‐specific T‐cell‐engaging antibody and CD8 T cells publication-title: Cancer Res – volume: 37 start-page: 630 year: 2020 end-page: 636 article-title: The glioma stem cell model in the era of single‐cell genomics publication-title: Cancer Cell – volume: 14 start-page: 123 year: 2008 end-page: 129 article-title: Stem cell marker CD133 affects clinical outcome in glioma patients publication-title: Clin Cancer Res – volume: 36 start-page: 5231 year: 2017 end-page: 5242 article-title: Novel MYC‐driven medulloblastoma models from multiple embryonic cerebellar cells publication-title: Oncogene – volume: 39 start-page: 822 year: 2021 end-page: 835 article-title: Outcomes by clinical and molecular features in children with medulloblastoma treated with risk‐adapted therapy: results of an international phase III trial (SJMB03) publication-title: J Clin Oncol – volume: 14 start-page: 8205 year: 2008 end-page: 8212 article-title: Cancer stem cell analysis and clinical outcome in patients with glioblastoma multiforme publication-title: Clin Cancer Res – volume: 34 year: 2021 article-title: Cancer stemness meets immunity: from mechanism to therapy publication-title: Cell Rep – volume: 432 start-page: 396 year: 2004 end-page: 401 article-title: Identification of human brain tumour initiating cells publication-title: Nature – volume: 70 start-page: 719 year: 2010 end-page: 729 article-title: The AC133 epitope, but not the CD133 protein, is lost upon cancer stem cell differentiation publication-title: Cancer Res – volume: 21 start-page: 155 year: 2012 end-page: 167 article-title: An animal model of MYC‐driven medulloblastoma publication-title: Cancer Cell – volume: 2 start-page: 157 year: 2021 end-page: 173 article-title: Gradient of developmental and injury response transcriptional states defines functional vulnerabilities underpinning glioblastoma heterogeneity publication-title: Nat Cancer – volume: 63 start-page: 5821 year: 2003 end-page: 5828 article-title: Identification of a cancer stem cell in human brain tumors publication-title: Cancer Res – volume: 14 start-page: 123 year: 2008 end-page: 134 article-title: Acquisition of granule neuron precursor identity is a critical determinant of progenitor cell competence to form Shh‐induced medulloblastoma publication-title: Cancer Cell – volume: 26 start-page: 832 year: 2020 end-page: 844 e6 article-title: The Rational development of CD133‐targeting immunotherapies for glioblastoma publication-title: Cell Stem Cell – volume: 131 start-page: 821 year: 2016 end-page: 831 article-title: Risk stratification of childhood medulloblastoma in the molecular era: the current consensus publication-title: Acta Neuropathol – volume: 11 start-page: 5376 year: 2020 article-title: Circulating tumour DNA from the cerebrospinal fluid allows the characterisation and monitoring of medulloblastoma publication-title: Nat Commun – volume: 17 start-page: 362 year: 2010 end-page: 375 article-title: A hierarchy of self‐renewing tumor‐initiating cell types in glioblastoma publication-title: Cancer Cell – volume: 6 start-page: 171 year: 2015 end-page: 184 article-title: Patient‐derived glioblastoma stem cells are killed by CD133‐specific CAR T cells but induce the T cell aging marker CD57 publication-title: Oncotarget – volume: 355 year: 2017 article-title: Decoupling genetics, lineages, and microenvironment in IDH‐mutant gliomas by single‐cell RNA‐seq publication-title: Science – volume: 18 start-page: 669 year: 2018 end-page: 680 article-title: Stem cell fate in cancer growth, progression and therapy resistance publication-title: Nat Rev Cancer – volume: 73 start-page: 3796 year: 2013 end-page: 3807 article-title: Sox2 requirement in sonic hedgehog‐associated medulloblastoma publication-title: Cancer Res – volume: 9 start-page: 1708 year: 2019 end-page: 1719 article-title: The phenotypes of proliferating glioblastoma cells reside on a single axis of variation publication-title: Cancer Discov – volume: 326 start-page: 572 year: 2009 end-page: 574 article-title: Smoothened mutation confers resistance to a Hedgehog pathway inhibitor in medulloblastoma publication-title: Science – volume: 11 start-page: 583 year: 2020 article-title: Modeling medulloblastoma in vivo and with human cerebellar organoids publication-title: Nat Commun – volume: 5 start-page: 67 year: 2006 article-title: Analysis of gene expression and chemoresistance of CD133+ cancer stem cells in glioblastoma publication-title: Mol Cancer – volume: 26 start-page: 33 year: 2014 end-page: 47 article-title: Quiescent sox2(+) cells drive hierarchical growth and relapse in sonic hedgehog subgroup medulloblastoma publication-title: Cancer Cell – volume: 31 start-page: 1266 year: 2013 end-page: 1277 article-title: FoxG1 interacts with Bmi1 to regulate self‐renewal and tumorigenicity of medulloblastoma stem cells publication-title: Stem Cells – volume: 4 start-page: 226 year: 2009 end-page: 235 article-title: PTEN/PI3K/Akt pathway regulates the side population phenotype and ABCG2 activity in glioma tumor stem‐like cells publication-title: Cell Stem Cell – volume: 27 start-page: 2875 year: 2009 end-page: 2883 article-title: CD133 expression defines a tumor initiating cell population in primary human ovarian cancer publication-title: Stem Cells – volume: 9 start-page: 391 year: 2006 end-page: 403 article-title: Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum‐cultured cell lines publication-title: Cancer Cell – volume: 6 year: 2020 article-title: Reliable tumor detection by whole‐genome methylation sequencing of cell‐free DNA in cerebrospinal fluid of pediatric medulloblastoma publication-title: Sci Adv – volume: 26 start-page: 48 year: 2020 end-page: 63 e6 article-title: Outer radial glia‐like cancer stem cells contribute to heterogeneity of glioblastoma publication-title: Cell Stem Cell – volume: 549 start-page: 227 year: 2017 end-page: 232 article-title: Fate mapping of human glioblastoma reveals an invariant stem cell hierarchy publication-title: Nature – volume: 15 start-page: 384 year: 2013 end-page: 398 article-title: Deconstruction of medulloblastoma cellular heterogeneity reveals differences between the most highly invasive and self‐renewing phenotypes publication-title: Neoplasia – volume: 6 start-page: 38881 year: 2015 end-page: 38900 article-title: Characterization of novel biomarkers in selecting for subtype specific medulloblastoma phenotypes publication-title: Oncotarget – volume: 529 start-page: 351 year: 2016 end-page: 357 article-title: Divergent clonal selection dominates medulloblastoma at recurrence publication-title: Nature – volume: 539 start-page: 309 year: 2016 end-page: 313 article-title: Single‐cell RNA‐seq supports a developmental hierarchy in human oligodendroglioma publication-title: Nature – volume: 18 start-page: 1127 year: 2009 end-page: 1134 article-title: CD133 as a marker for cancer stem cells: progresses and concerns publication-title: Stem Cells Dev – volume: 456 start-page: 593 year: 2008 end-page: 598 article-title: Efficient tumour formation by single human melanoma cells publication-title: Nature – volume: 7 start-page: 18 year: 2018 article-title: The role of CD133 in cancer: a concise review publication-title: Clin Transl Med – volume: 136 start-page: 1462 year: 2013 end-page: 1475 article-title: Side population in human glioblastoma is non‐tumorigenic and characterizes brain endothelial cells publication-title: Brain – volume: 367 start-page: 645 year: 1994 end-page: 648 article-title: A cell initiating human acute myeloid leukaemia after transplantation into SCID mice publication-title: Nature – volume: 123 start-page: 465 year: 2012 end-page: 472 article-title: Molecular subgroups of medulloblastoma: the current consensus publication-title: Acta Neuropathol – volume: 108 start-page: 6468 year: 2011 end-page: 6473 article-title: Phenotypic heterogeneity and instability of human ovarian tumor‐initiating cells publication-title: Proc Natl Acad Sci USA – volume: 445 start-page: 111 year: 2007 end-page: 115 article-title: Identification and expansion of human colon‐cancer‐initiating cells publication-title: Nature – volume: 38 start-page: 586 year: 2020 end-page: 599 article-title: Multiplex digital spatial profiling of proteins and RNA in fixed tissue publication-title: Nat Biotechnol – ident: e_1_2_11_24_1 doi: 10.1073/pnas.1005529108 – ident: e_1_2_11_94_1 doi: 10.1038/nature09587 – ident: e_1_2_11_110_1 doi: 10.1016/j.stem.2020.04.008 – ident: e_1_2_11_13_1 doi: 10.1016/j.ccell.2019.07.009 – ident: e_1_2_11_32_1 doi: 10.1073/pnas.97.26.14720 – ident: e_1_2_11_100_1 doi: 10.1016/j.stem.2019.10.005 – ident: e_1_2_11_16_1 doi: 10.1038/s41586-019-1434-6 – ident: e_1_2_11_6_1 doi: 10.1038/nature07567 – ident: e_1_2_11_3_1 doi: 10.1038/nm0797-730 – ident: e_1_2_11_64_1 doi: 10.1007/s00401-011-0922-z – ident: e_1_2_11_60_1 doi: 10.1200/JCO.2009.27.4324 – ident: e_1_2_11_53_1 doi: 10.1158/0008-5472.CAN-18-0027 – volume-title: WHO Classification of Tumours of the Central Nervous System year: 2016 ident: e_1_2_11_65_1 contributor: fullname: Louis D – ident: e_1_2_11_54_1 doi: 10.18632/oncotarget.6195 – ident: e_1_2_11_78_1 doi: 10.1016/j.ccr.2014.02.004 – ident: e_1_2_11_109_1 doi: 10.18632/oncotarget.2767 – ident: e_1_2_11_67_1 doi: 10.1038/nature11284 – ident: e_1_2_11_86_1 doi: 10.1038/s41467-019-09853-z – ident: e_1_2_11_82_1 doi: 10.1002/stem.1401 – ident: e_1_2_11_80_1 doi: 10.1016/j.ccell.2018.08.002 – ident: e_1_2_11_101_1 doi: 10.1002/stem.1017 – ident: e_1_2_11_98_1 doi: 10.1126/sciadv.abb5427 – ident: e_1_2_11_113_1 doi: 10.1158/0008-5472.CAN-20-1655 – ident: e_1_2_11_30_1 doi: 10.1006/dbio.1996.0090 – ident: e_1_2_11_62_1 doi: 10.1200/JCO.2010.28.5148 – ident: e_1_2_11_58_1 doi: 10.1002/stem.582 – ident: e_1_2_11_104_1 doi: 10.1073/pnas.1813495116 – ident: e_1_2_11_27_1 doi: 10.1038/nature03128 – ident: e_1_2_11_84_1 doi: 10.1038/s41467-020-17186-5 – ident: e_1_2_11_66_1 doi: 10.1038/nature11329 – ident: e_1_2_11_9_1 doi: 10.1126/science.aao4750 – ident: e_1_2_11_108_1 doi: 10.1158/0008-5472.CAN-14-2415 – ident: e_1_2_11_70_1 doi: 10.1016/j.ccell.2017.05.005 – ident: e_1_2_11_14_1 doi: 10.1038/s41586-019-1158-7 – ident: e_1_2_11_57_1 doi: 10.1016/j.stem.2009.01.007 – ident: e_1_2_11_44_1 doi: 10.1002/ijc.23130 – ident: e_1_2_11_116_1 doi: 10.1101/cshperspect.a018838 – ident: e_1_2_11_111_1 doi: 10.1200/JCO.2017.35.15_suppl.2059 – ident: e_1_2_11_51_1 doi: 10.1016/j.ccr.2014.05.005 – ident: e_1_2_11_85_1 doi: 10.1158/2159-8290.CD-19-0329 – ident: e_1_2_11_95_1 doi: 10.1038/nature16478 – ident: e_1_2_11_10_1 doi: 10.1016/j.cell.2019.06.024 – ident: e_1_2_11_97_1 doi: 10.1038/s41467-020-19175-0 – ident: e_1_2_11_29_1 doi: 10.1001/archneurpsyc.1925.02200140055002 – ident: e_1_2_11_99_1 doi: 10.1038/s41467-019-13989-3 – ident: e_1_2_11_72_1 doi: 10.1038/nature16546 – ident: e_1_2_11_83_1 doi: 10.1038/ng.127 – ident: e_1_2_11_45_1 doi: 10.1016/j.ccr.2006.03.030 – ident: e_1_2_11_71_1 doi: 10.1016/S1470-2045(17)30243-7 – ident: e_1_2_11_96_1 doi: 10.1038/s41467-019-13657-6 – ident: e_1_2_11_38_1 doi: 10.1007/s00109-008-0357-8 – ident: e_1_2_11_81_1 doi: 10.1016/j.ccell.2018.08.004 – ident: e_1_2_11_87_1 doi: 10.1016/j.stem.2019.11.015 – ident: e_1_2_11_5_1 doi: 10.1038/s41568-018-0056-x – ident: e_1_2_11_19_1 doi: 10.1073/pnas.0530291100 – volume: 63 start-page: 5821 year: 2003 ident: e_1_2_11_26_1 article-title: Identification of a cancer stem cell in human brain tumors publication-title: Cancer Res contributor: fullname: Singh SK – ident: e_1_2_11_55_1 doi: 10.1593/neo.13148 – ident: e_1_2_11_88_1 doi: 10.7554/eLife.64090 – ident: e_1_2_11_46_1 doi: 10.1158/0008-5472.CAN-09-0342 – ident: e_1_2_11_93_1 doi: 10.1038/nature22973 – ident: e_1_2_11_73_1 doi: 10.1038/s41568-019-0223-8 – ident: e_1_2_11_106_1 doi: 10.1038/nature23666 – ident: e_1_2_11_11_1 doi: 10.1016/j.ccell.2020.04.001 – ident: e_1_2_11_37_1 doi: 10.1089/scd.2008.0338 – ident: e_1_2_11_90_1 doi: 10.1038/onc.2017.110 – ident: e_1_2_11_40_1 doi: 10.1158/0008-5472.CAN-09-1820 – ident: e_1_2_11_31_1 doi: 10.1126/science.1553558 – ident: e_1_2_11_115_1 doi: 10.1038/s41598-020-77115-w – ident: e_1_2_11_103_1 doi: 10.1038/s43018-020-00154-9 – ident: e_1_2_11_28_1 doi: 10.1084/jem.12.4.556 – ident: e_1_2_11_43_1 doi: 10.1227/01.neu.0000316019.28421.95 – ident: e_1_2_11_112_1 doi: 10.1016/j.ccell.2020.06.004 – ident: e_1_2_11_56_1 doi: 10.1016/j.ejca.2013.09.004 – ident: e_1_2_11_21_1 doi: 10.1158/0008-5472.CAN-06-2030 – ident: e_1_2_11_75_1 doi: 10.1126/science.1179386 – ident: e_1_2_11_107_1 doi: 10.1016/j.celrep.2020.108597 – ident: e_1_2_11_33_1 doi: 10.1038/nature05236 – ident: e_1_2_11_15_1 doi: 10.1038/s41588-019-0531-7 – ident: e_1_2_11_34_1 doi: 10.1186/1476-4598-5-67 – ident: e_1_2_11_69_1 doi: 10.1200/JCO.2012.48.5052 – ident: e_1_2_11_50_1 doi: 10.1038/nn.3553 – ident: e_1_2_11_8_1 doi: 10.1126/science.aai8478 – ident: e_1_2_11_22_1 doi: 10.4161/cc.8.1.7533 – ident: e_1_2_11_17_1 doi: 10.1093/neuonc/noaa259 – ident: e_1_2_11_79_1 doi: 10.1007/s00401-016-1569-6 – ident: e_1_2_11_12_1 doi: 10.1016/j.ccr.2009.12.020 – ident: e_1_2_11_7_1 doi: 10.1038/nature20123 – ident: e_1_2_11_47_1 doi: 10.1016/j.ccr.2008.12.016 – ident: e_1_2_11_48_1 doi: 10.1016/j.ccr.2008.07.005 – ident: e_1_2_11_35_1 doi: 10.1158/1078-0432.CCR-07-0932 – ident: e_1_2_11_77_1 doi: 10.1200/JCO.2014.60.1591 – ident: e_1_2_11_76_1 doi: 10.1158/0008-5472.CAN-10-2876 – ident: e_1_2_11_2_1 doi: 10.1038/367645a0 – ident: e_1_2_11_41_1 doi: 10.1038/labinvest.2008.57 – ident: e_1_2_11_102_1 doi: 10.1038/s41467-020-17357-4 – ident: e_1_2_11_20_1 doi: 10.1038/nature05384 – ident: e_1_2_11_105_1 doi: 10.1016/j.stem.2019.05.013 – ident: e_1_2_11_4_1 doi: 10.1038/nm.4409 – ident: e_1_2_11_89_1 doi: 10.1016/j.ccr.2011.12.023 – ident: e_1_2_11_91_1 doi: 10.1016/j.ccr.2011.12.021 – ident: e_1_2_11_52_1 doi: 10.1158/0008-5472.CAN-13-0238 – ident: e_1_2_11_42_1 doi: 10.1016/j.ccr.2009.12.049 – ident: e_1_2_11_74_1 doi: 10.1200/JCO.20.01372 – ident: e_1_2_11_25_1 doi: 10.1158/0008-5472.CAN-08-0364 – ident: e_1_2_11_63_1 doi: 10.1200/JCO.2005.04.4974 – ident: e_1_2_11_68_1 doi: 10.1038/nature11327 – ident: e_1_2_11_18_1 doi: 10.1101/gad.324301.119 – ident: e_1_2_11_36_1 doi: 10.1158/1078-0432.CCR-08-0644 – ident: e_1_2_11_92_1 doi: 10.1016/j.brainresrev.2010.10.001 – ident: e_1_2_11_59_1 doi: 10.1093/brain/awt025 – ident: e_1_2_11_49_1 doi: 10.1016/j.ccr.2008.07.003 – ident: e_1_2_11_114_1 doi: 10.1038/s41587-020-0472-9 – ident: e_1_2_11_61_1 doi: 10.1371/journal.pone.0003088 – ident: e_1_2_11_23_1 doi: 10.1002/stem.236 – ident: e_1_2_11_39_1 doi: 10.1186/s40169-018-0198-1 |
SSID | ssj0035499 |
Score | 2.4623246 |
SecondaryResourceType | review_article |
Snippet | The cancer stem cell (CSC) model posits that tumors contain subpopulations that display defining features of normal stem cells including self‐renewal capacity... The cancer stem cell (CSC) model posits that tumors contain subpopulations that display defining features of normal stem cells including self-renewal capacity... |
SourceID | proquest crossref pubmed wiley |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 1765 |
SubjectTerms | Brain Brain cancer Brain tumors Cancer cancer stem cells Cell differentiation Cell Movement Cell self-renewal Cerebellar Neoplasms - genetics Cerebellar Neoplasms - metabolism Cerebellar Neoplasms - pathology Child Drug resistance Glioma cells Humans Medulloblastoma Medulloblastoma - genetics Medulloblastoma - metabolism Medulloblastoma - pathology Neoplastic Stem Cells - pathology scRNA‐seq sorting Stem cells Subpopulations Transcriptome Transcriptomes Tumor cells Tumors xenografts |
Title | From sorting to sequencing in the molecular era: the evolution of the cancer stem cell model in medulloblastoma |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Ffebs.15817 https://www.ncbi.nlm.nih.gov/pubmed/33714236 https://www.proquest.com/docview/2646909118 https://search.proquest.com/docview/2501258875 |
Volume | 289 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4hLu0FKBQIBeSKigNSVhvHcZKKC68VD8GBh7QXFNleGyG0CdpHpfbXd8ZJlkelSu0tbzvjsecbe-YzwDfphHJOZ6GjtB6hpQm1yV0o0Dpxh_ZDGZqHvLySp3fivJ_052C_zYWp-SFmE27UM_x4TR1c6fGrTu6sHneiJIsolTyKU4rnOr6ecUfF5PjU2ZA8FFL0G25SCuN5efWtNfoDYr5FrN7k9Bbhvq1sHWny1JlOdMf8esfj-L9_swQLDRZlB7XyfII5Wy7DykGJfvjwJ9tlPjrUT7svw4ejdme4Fah6o2rIxhUREDywScWaeGw6eywZQko2bHfdZXakvvtL9kej5axy_oIhhRsxYpJmtH7A_K489AWUCXrGlUZkj1VRn-Gud3J7dBo2GzeEhvj1Qql5F1u8q3We2szmkROZIqY3LaTKNUeM7BLLB8bmtLqfxXrgnJEujdF7sTjircJ8WZV2HRgiJDNQPM1Tk4uBUwrfi2UmZTflVkgewE7bgMVzzc9RtH4NybTwMg1gs23boumj4wKhoMwRLkVZAF9nt1GU9MuqtNUUn0nQgCc4ECcBrNU6MSsmJrJDrEwAe75l_1J-0Ts5vPFHG__y8Bf4yCnbwgcKbcL8ZDS1W4iBJnobdf3sYttr_G8i3gPE |
link.rule.ids | 315,783,787,1378,27937,27938,46307,46731 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5RONBLebU0sICrVhwqZbXrOE7CbXmsti1waEHaW2R7bYSqTap9INFf3xkn2UKRKsEtbzv2jOcbe_wNwCfphHJOp6GjbT1CSxNqk7lQoHXiDu2HMjQPeXEpB9fi6zAe1rE5tBem4odYTLiRZvjxmhScJqQfaLmzetruxmk3eQUrqO8R6eXp9wV7VESuT7UfkodCimHNTkqBPH_ffWyPnoDMx5jVG53-WpVZdeq5CinW5Gd7PtNt8_sfJscX_886vKnhKOtV8rMBS7bYhK1ega74-J4dMh8g6mfeN2H1pEkOtwVlf1KO2bQkDoIbNitZHZJNZ7cFQ1TJxk3iXWYn6shfsne1oLPS-QuGZG7CiEya0RIC84l56AvYKFjvUiO4x6qot3DdP7s6GYR17obQEMVeKDXvYKd3tM4Sm9qs60SqiOxNC6kyzREmu9jykbEZLfCnkR45Z6RLInRgLA5672C5KAv7HhiCJDNSPMkSk4mRUwrfi2QqZSfhVkgewMemB_NfFUVH3rg21Ka5b9MAWk3n5rWaTnNEgzJDxNRNA_iwuI1NSb-sClvO8ZkYbXiMY3EcwHYlFItiIuI7xMoE8Nl37X_Kz_tnxz_80c5zHj6A1cHVxXl-_uXy2y685rT5wscNtWB5NpnbPYREM73vBf8PKOMG5A |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9UwFD9BSNAXRfBjClgi8cFkN_d2XbcZX_haUIEYlOS-kKXtWkPI3cj9MMG_nnO67QqamODb1rXr12nP77SnvwJsSyeUczoNHR3rEVqaUJvMhQK1E3eoP5ShdcjjE3l4Jj4P4-ECfOzOwjT8EPMFNxoZfr6mAX5VuluD3Fk96Q3idJA8gCUhUVYJEp3OyaMisnya45A8FFIMW3JS8uP5nfauOvoLY96FrF7n5E_gvCtt42py2ZtNdc_8-oPI8X-rswKPWzDKdhrpeQoLtlqFtZ0KDfHRNXvHvHuoX3dfhYd73dVwa1Dn43rEJjUxEPxg05q1Dtn0dlExxJRs1F27y-xYffBB9mcr5qx2PsCQxI0ZUUkz2kBg_loe-gO2CZrGtUZoj0VRz-AsP_i-dxi2NzeEhgj2Qql5H7u8r3WW2NRmAydSRVRvWkiVaY4g2cWWl8ZmtL2fRrp0zkiXRGi-WJzynsNiVVf2JTCESKZUPMkSk4nSKYXpIplK2U-4FZIH8LbrwOKqIegoOsOG2rTwbRrAete3RTtIJwViQZkhXhqkAWzNP2NTUpVVZesZxolRg8c4E8cBvGhkYp5NRGyHWJgA3vue_Uf-RX6w-80_vbpP5Dew_HU_L44-nXx5DY84nbzwTkPrsDgdz-wG4qGp3vRifwMU4wWT |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=From+sorting+to+sequencing+in+the+molecular+era%3A+the+evolution+of+the+cancer+stem+cell+model+in+medulloblastoma&rft.jtitle=The+FEBS+journal&rft.au=Tamra+E+Werbowetski%E2%80%90Ogilvie&rft.date=2022-04-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=1742-464X&rft.eissn=1742-4658&rft.volume=289&rft.issue=7&rft.spage=1765&rft.epage=1778&rft_id=info:doi/10.1111%2Ffebs.15817&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1742-464X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1742-464X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1742-464X&client=summon |