Sensing dynamic displacements in masonry rail bridges using 2D digital image correlation

Summary Dynamic displacement measurements provide useful information for the assessment of masonry rail bridges, which constitute a significant part of the bridge stock in the United Kingdom and Europe. Commercial 2D digital image correlation (DIC) techniques are well suited for this purpose. These...

Full description

Saved in:
Bibliographic Details
Published inStructural control and health monitoring Vol. 25; no. 8; pp. e2187 - n/a
Main Authors Acikgoz, Sinan, DeJong, Matthew J., Soga, Kenichi
Format Journal Article
LanguageEnglish
Published Pavia John Wiley & Sons, Inc 01.08.2018
Subjects
Online AccessGet full text
ISSN1545-2255
1545-2263
DOI10.1002/stc.2187

Cover

Loading…
Abstract Summary Dynamic displacement measurements provide useful information for the assessment of masonry rail bridges, which constitute a significant part of the bridge stock in the United Kingdom and Europe. Commercial 2D digital image correlation (DIC) techniques are well suited for this purpose. These systems provide precise noncontact displacement measurements simultaneously at many locations of the bridge with an easily configured camera set‐up. However, various sources of errors can affect the resolution, repeatability, and accuracy of DIC field measurements. Typically, these errors are application specific and are not automatically corrected by commercial software. To address this limitation, this paper presents a survey of relevant DIC errors and discusses methods to minimise the influence of these errors during equipment set‐up and data processing. A case study application of DIC for multipoint displacement measurement of a masonry viaduct in Leeds is then described, where potential errors due to lighting changes, image texture, and camera movements are minimised with an appropriate set‐up. Pixel‐metric scaling errors are kept to a minimum with the use of a calibration method, which utilises vanishing points in the image. However, comparisons of DIC relative displacement measurements to complementary strain measurements from the bridge demonstrate that other errors may have significant influence on the DIC measurement accuracy. Therefore, the influence of measurement errors due to lens radial distortion and out‐of‐plane movements is quantified theoretically with pinhole camera and division distortion models. A method to correct for errors due to potential out‐of‐plane movements is then proposed.
AbstractList Summary Dynamic displacement measurements provide useful information for the assessment of masonry rail bridges, which constitute a significant part of the bridge stock in the United Kingdom and Europe. Commercial 2D digital image correlation (DIC) techniques are well suited for this purpose. These systems provide precise noncontact displacement measurements simultaneously at many locations of the bridge with an easily configured camera set‐up. However, various sources of errors can affect the resolution, repeatability, and accuracy of DIC field measurements. Typically, these errors are application specific and are not automatically corrected by commercial software. To address this limitation, this paper presents a survey of relevant DIC errors and discusses methods to minimise the influence of these errors during equipment set‐up and data processing. A case study application of DIC for multipoint displacement measurement of a masonry viaduct in Leeds is then described, where potential errors due to lighting changes, image texture, and camera movements are minimised with an appropriate set‐up. Pixel‐metric scaling errors are kept to a minimum with the use of a calibration method, which utilises vanishing points in the image. However, comparisons of DIC relative displacement measurements to complementary strain measurements from the bridge demonstrate that other errors may have significant influence on the DIC measurement accuracy. Therefore, the influence of measurement errors due to lens radial distortion and out‐of‐plane movements is quantified theoretically with pinhole camera and division distortion models. A method to correct for errors due to potential out‐of‐plane movements is then proposed.
Dynamic displacement measurements provide useful information for the assessment of masonry rail bridges, which constitute a significant part of the bridge stock in the United Kingdom and Europe. Commercial 2D digital image correlation (DIC) techniques are well suited for this purpose. These systems provide precise noncontact displacement measurements simultaneously at many locations of the bridge with an easily configured camera set‐up. However, various sources of errors can affect the resolution, repeatability, and accuracy of DIC field measurements. Typically, these errors are application specific and are not automatically corrected by commercial software. To address this limitation, this paper presents a survey of relevant DIC errors and discusses methods to minimise the influence of these errors during equipment set‐up and data processing. A case study application of DIC for multipoint displacement measurement of a masonry viaduct in Leeds is then described, where potential errors due to lighting changes, image texture, and camera movements are minimised with an appropriate set‐up. Pixel‐metric scaling errors are kept to a minimum with the use of a calibration method, which utilises vanishing points in the image. However, comparisons of DIC relative displacement measurements to complementary strain measurements from the bridge demonstrate that other errors may have significant influence on the DIC measurement accuracy. Therefore, the influence of measurement errors due to lens radial distortion and out‐of‐plane movements is quantified theoretically with pinhole camera and division distortion models. A method to correct for errors due to potential out‐of‐plane movements is then proposed.
Author Acikgoz, Sinan
DeJong, Matthew J.
Soga, Kenichi
Author_xml – sequence: 1
  givenname: Sinan
  orcidid: 0000-0002-3901-574X
  surname: Acikgoz
  fullname: Acikgoz, Sinan
  email: sinan.acikgoz@eng.ox.ac.uk
  organization: University of Oxford
– sequence: 2
  givenname: Matthew J.
  surname: DeJong
  fullname: DeJong, Matthew J.
  organization: University of Cambridge
– sequence: 3
  givenname: Kenichi
  surname: Soga
  fullname: Soga, Kenichi
  organization: University of California
BookMark eNp1kF9LwzAUxYNMcFPBjxDwxZfOJmmb9lHmXxj4sAm-hTS5KRltOpMO2bc33cQH0ad7H37n3HvODE1c7wChK5LOSZrS2zCoOSUlP0FTkmd5QmnBJj97np-hWQibSBa0zKfofQUuWNdgvXeyswprG7atVNCBGwK2Dncy9M7vsZe2xbW3uoGAdwcNvY94YwfZYtvJBrDqvYdWDrZ3F-jUyDbA5fc8R2-PD-vFc7J8fXpZ3C0TxSrGk6wu09JUXAPTWakybWpTa6hYXYOqJTeME1XIGIIw4FlFipKYiBrKpQbK2Dm6Pvpuff-xgzCITb_zLp4UNC14kTKSF5G6OVLK9yF4MGLr48t-L0gqxt5E7E2MvUV0_gtVMeEYaRgr-EuQHAWftoX9v8ZitV4c-C_RU4F_
CitedBy_id crossref_primary_10_1016_j_engappai_2023_106889
crossref_primary_10_1155_2024_1763285
crossref_primary_10_1155_2024_1224481
crossref_primary_10_3390_s21124023
crossref_primary_10_1007_s13349_020_00437_w
crossref_primary_10_1155_2020_8855140
crossref_primary_10_1016_j_istruc_2025_108714
crossref_primary_10_1016_j_engstruct_2018_04_054
crossref_primary_10_1680_jgeot_19_P_243
crossref_primary_10_1002_stc_2382
crossref_primary_10_1007_s11069_024_06973_8
crossref_primary_10_1016_j_autcon_2020_103516
crossref_primary_10_3390_s19040837
crossref_primary_10_1680_jenhh_21_00007
crossref_primary_10_3390_app11157032
crossref_primary_10_1016_j_engstruct_2022_115233
crossref_primary_10_1016_j_engfailanal_2024_109185
crossref_primary_10_3390_s20247067
crossref_primary_10_1016_j_ymssp_2024_111252
crossref_primary_10_3390_app112311086
crossref_primary_10_1016_j_engstruct_2020_110945
crossref_primary_10_1111_mice_13452
crossref_primary_10_1016_j_conbuildmat_2023_132347
crossref_primary_10_1007_s40799_022_00617_x
crossref_primary_10_1002_stc_2321
crossref_primary_10_1186_s43251_024_00155_z
crossref_primary_10_1016_j_engstruct_2018_06_094
crossref_primary_10_1016_j_autcon_2022_104459
crossref_primary_10_3390_s20236844
crossref_primary_10_1111_mice_12836
crossref_primary_10_1177_0309524X211027814
crossref_primary_10_1002_stc_2832
crossref_primary_10_1002_stc_2314
crossref_primary_10_1002_stc_2473
crossref_primary_10_1007_s41062_024_01535_0
crossref_primary_10_1007_s40799_019_00315_1
crossref_primary_10_1016_j_autcon_2024_105766
crossref_primary_10_1016_j_measurement_2020_108880
crossref_primary_10_1016_j_measurement_2020_108683
crossref_primary_10_1111_mice_12653
crossref_primary_10_3390_infrastructures6120176
crossref_primary_10_1016_j_softx_2022_101154
crossref_primary_10_1016_j_aei_2024_102650
crossref_primary_10_1016_j_ymssp_2020_107061
crossref_primary_10_1111_mice_12846
crossref_primary_10_1177_1056789520974423
crossref_primary_10_1016_j_istruc_2020_08_008
crossref_primary_10_3390_s21155058
crossref_primary_10_1002_stc_2744
crossref_primary_10_1016_j_ijimpeng_2023_104597
crossref_primary_10_1016_j_conbuildmat_2021_126069
crossref_primary_10_1016_j_jcsr_2020_106448
crossref_primary_10_1177_03611981221113565
crossref_primary_10_1016_j_prostr_2022_02_022
crossref_primary_10_1016_j_engstruct_2025_119800
crossref_primary_10_1002_stc_2587
crossref_primary_10_1002_stc_2664
crossref_primary_10_1016_j_ymssp_2024_111506
crossref_primary_10_1016_j_measurement_2020_108449
crossref_primary_10_1007_s10706_023_02389_6
crossref_primary_10_3390_app13020968
crossref_primary_10_1515_mt_2021_2056
crossref_primary_10_1520_JTE20240044
crossref_primary_10_1016_j_prostr_2024_09_426
crossref_primary_10_1061__ASCE_AE_1943_5568_0000369
Cites_doi 10.1080/15732471003645666
10.3389/fbuil.2017.00023
10.1007/PL00013394
10.1007/s11340-013-9784-8
10.1088/0957-0233/20/6/062001
10.1016/j.sna.2008.04.008
10.2320/matertrans.I-M2011843
10.5244/C.19.9
10.1002/stc.1850
10.1016/0141-0296(93)90054-8
10.1002/stc.1852
10.3390/s16091344
10.1007/s11340-006-6124-2
10.1016/j.optlaseng.2009.08.010
10.1016/j.optlaseng.2008.05.005
10.1016/j.ndteint.2004.06.012
10.1007/s13349-017-0261-4
10.1080/15732470903068557
10.1680/jphmg.15.00055
10.1016/j.optlaseng.2012.08.012
10.1109/CVPR.2001.990465
10.1680/geot.2003.53.7.619
10.1016/j.optlastec.2011.06.019
10.1016/j.jsv.2015.01.024
ContentType Journal Article
Copyright 2018 The Authors. Structural Control and Health Monitoring published by John Wiley & Sons Ltd.
2018 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2018 The Authors. Structural Control and Health Monitoring published by John Wiley & Sons Ltd.
– notice: 2018 John Wiley & Sons, Ltd.
DBID 24P
AAYXX
CITATION
7ST
8FD
C1K
FR3
KR7
SOI
DOI 10.1002/stc.2187
DatabaseName Wiley Online Library Open Access
CrossRef
Environment Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Civil Engineering Abstracts
Environment Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Environment Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
Civil Engineering Abstracts
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1545-2263
EndPage n/a
ExternalDocumentID 10_1002_stc_2187
STC2187
Genre article
GrantInformation_xml – fundername: EPSRC
– fundername: Innovate UK
  funderid: EP/L010917/1
GroupedDBID .3N
.GA
.Y3
05W
0R~
123
1L6
1OC
24P
31~
33P
3SF
3WU
4.4
50Y
50Z
52M
52O
52T
52U
52W
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAJEY
AANHP
AAONW
AASGY
AAXRX
AAZKR
ABCUV
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCMX
ACCZN
ACGFO
ACGFS
ACPOU
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIMD
AENEX
AEQDE
AEUQT
AFBPY
AFGKR
AFPWT
AFZJQ
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
F21
FEDTE
G-S
G.N
GNP
GODZA
GROUPED_DOAJ
H.T
H.X
H13
HBH
HF~
HHY
HVGLF
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OIG
P2W
P2X
P4D
Q.N
QB0
QRW
R.K
RHX
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
V8K
W8V
W99
WBKPD
WIH
WIK
WLBEL
WOHZO
WYISQ
XV2
~IA
~WT
AAMMB
AAYXX
ABJCF
ADMLS
AEFGJ
AEUYN
AFKRA
AGQPQ
AGXDD
AIDQK
AIDYY
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
M7S
PHGZM
PHGZT
PQGLB
PTHSS
1OB
7ST
8FD
C1K
FR3
KR7
SOI
ID FETCH-LOGICAL-c3937-4b808f97de3d48c4dfbfbde93bbecba7f371c6a26313e7491681f3d4f27ade233
IEDL.DBID DR2
ISSN 1545-2255
IngestDate Wed Aug 13 09:52:24 EDT 2025
Thu Apr 24 22:54:20 EDT 2025
Thu Jul 10 07:36:49 EDT 2025
Wed Jan 22 16:42:33 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License Attribution
http://creativecommons.org/licenses/by/4.0
http://doi.wiley.com/10.1002/tdm_license_1.1
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3937-4b808f97de3d48c4dfbfbde93bbecba7f371c6a26313e7491681f3d4f27ade233
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3901-574X
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fstc.2187
PQID 2067603156
PQPubID 2034347
PageCount 24
ParticipantIDs proquest_journals_2067603156
crossref_primary_10_1002_stc_2187
crossref_citationtrail_10_1002_stc_2187
wiley_primary_10_1002_stc_2187_STC2187
PublicationCentury 2000
PublicationDate August 2018
PublicationDateYYYYMMDD 2018-08-01
PublicationDate_xml – month: 08
  year: 2018
  text: August 2018
PublicationDecade 2010
PublicationPlace Pavia
PublicationPlace_xml – name: Pavia
PublicationTitle Structural control and health monitoring
PublicationYear 2018
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2017; 8
2012; 165
2017; 3
2009; 20
2012
2015; 345
2017; 24
2017; 170
2006
2005
2004
2003
2008; 147
2016; 16
2003; 53
2012; 53
1993; 15
2010; 48
2000; 16
2006; 46
2017; 17
2013; 51
2015; 20
2018
2008; 46
2016
2014
2001; 1
2005; 38
2012; 44
2010; 6
2012; 8
2014; 54
2016; 23
Pan (10.1002/stc.2187-BIB0012|stc2187-cit-0013) 2009; 20
Waterfall (10.1002/stc.2187-BIB0037|stc2187-cit-0038) 2012
Majumder (10.1002/stc.2187-BIB0039|stc2187-cit-0040) 2008; 147
Brownjohn (10.1002/stc.2187-BIB0032|stc2187-cit-0033) 2017; 3
Ye (10.1002/stc.2187-BIB0041|stc2187-cit-0042) 2018
Khuc (10.1002/stc.2187-BIB0022|stc2187-cit-0023) 2017; 24
Sutton (10.1002/stc.2187-BIB0038|stc2187-cit-0039) 2008; 46
UIC Masonry Arch Bridges Study Group (10.1002/stc.2187-BIB0003|stc2187-cit-0004) 2004
10.1002/stc.2187-BIB0005|stc2187-cit-0006
10.1002/stc.2187-BIB0030|stc2187-cit-0031
Yoon (10.1002/stc.2187-BIB0035|stc2187-cit-0036) 2016; 23
Lord (10.1002/stc.2187-BIB0013|stc2187-cit-0014) 2012; 165
Gibbons (10.1002/stc.2187-BIB0007|stc2187-cit-0008) 2014
Acikgoz (10.1002/stc.2187-BIB0040|stc2187-cit-0041) 2018
Pan (10.1002/stc.2187-BIB0028|stc2187-cit-0029) 2013; 51
Orban (10.1002/stc.2187-BIB0001|stc2187-cit-0002) 2004
McKibbins (10.1002/stc.2187-BIB0002|stc2187-cit-0003) 2006
Yoneyama (10.1002/stc.2187-BIB0017|stc2187-cit-0018) 2012; 53
Hoag (10.1002/stc.2187-BIB0019|stc2187-cit-0020) 2017; 170
10.1002/stc.2187-BIB0006|stc2187-cit-0007
Tian (10.1002/stc.2187-BIB0020|stc2187-cit-0021) 2016; 16
10.1002/stc.2187-BIB0008|stc2187-cit-0009
Hartley (10.1002/stc.2187-BIB0023|stc2187-cit-0024) 2003
Chen (10.1002/stc.2187-BIB0034|stc2187-cit-0035) 2015; 345
10.1002/stc.2187-BIB0025|stc2187-cit-0026
Nassif (10.1002/stc.2187-BIB0010|stc2187-cit-0011) 2005; 38
10.1002/stc.2187-BIB0031|stc2187-cit-0032
Stephen (10.1002/stc.2187-BIB0015|stc2187-cit-0016) 1993; 15
White (10.1002/stc.2187-BIB0014|stc2187-cit-0015) 2003; 53
Guillou (10.1002/stc.2187-BIB0024|stc2187-cit-0025) 2000; 16
Busca (10.1002/stc.2187-BIB0027|stc2187-cit-0028) 2014; 54
Xu (10.1002/stc.2187-BIB0029|stc2187-cit-0030) 2017; 8
Helmerich (10.1002/stc.2187-BIB0009|stc2187-cit-0010) 2012; 8
10.1002/stc.2187-BIB0018|stc2187-cit-0019
Pan (10.1002/stc.2187-BIB0026|stc2187-cit-0027) 2012; 44
Feng (10.1002/stc.2187-BIB0033|stc2187-cit-0034) 2015; 20
Pan (10.1002/stc.2187-BIB0036|stc2187-cit-0037) 2010; 48
Gentile (10.1002/stc.2187-BIB0011|stc2187-cit-0012) 2010; 6
Lee (10.1002/stc.2187-BIB0016|stc2187-cit-0017) 2006; 46
Network Rail (10.1002/stc.2187-BIB0004|stc2187-cit-0005) 2006
Murray (10.1002/stc.2187-BIB0021|stc2187-cit-0022) 2017; 17
References_xml – volume: 20
  start-page: 1
  year: 2009
  publication-title: Meas. Sci. Technol.
– volume: 46
  start-page: 746
  issue: 10
  year: 2008
  publication-title: Opt. Lasers Eng.
– volume: 23
  start-page: 1405
  year: 2016
  publication-title: Struct. Control Health Monit.
– year: 2018
  publication-title: Eng. Struct.
– year: 2005
– volume: 24
  start-page: 1
  year: 2017
  publication-title: Struct. Control Health Monit.
– volume: 3
  start-page: 1
  year: 2017
  publication-title: Front. Built Environ.
– volume: 147
  start-page: 150
  issue: 1
  year: 2008
  publication-title: Sens. Actuators, A
– year: 2003
– volume: 53
  start-page: 619
  issue: 7
  year: 2003
  publication-title: Geotechnique
– volume: 1
  start-page: I‐125
  year: 2001
  end-page: I‐132
– volume: 53
  start-page: 285
  issue: 2
  year: 2012
  publication-title: Mater. Trans.
– volume: 54
  start-page: 255
  year: 2014
  publication-title: Exp. Mech.
– volume: 20
  start-page: 1
  issue: 12
  year: 2015
  publication-title: J. Bridge Eng.
– volume: 8
  start-page: 91
  year: 2017
  publication-title: J. Civil Struct. Health Monit.
– year: 2016
– year: 2014
– volume: 38
  start-page: 213
  issue: 3
  year: 2005
  publication-title: NDT&E Int.
– volume: 17
  start-page: 41
  issue: 1
  year: 2017
  publication-title: Int. J. Phys. Model. Geotechnics
– year: 2012
  publication-title: The Ninth International Conf. on Condition Monitoring and Machinery Failure Prevention Technologies
– volume: 170
  start-page: 168
  issue: BE3
  year: 2017
  publication-title: in Proceedings of the ICE Bridge Eng.
– year: 2012
– volume: 48
  start-page: 469
  issue: 4
  year: 2010
  publication-title: Opt. Lasers Eng.
– volume: 6
  start-page: 521
  issue: 5
  year: 2010
  publication-title: Struct. Infrastruct. Eng.
– volume: 51
  start-page: 140
  issue: 2
  year: 2013
  publication-title: Opt. Lasers Eng.
– volume: 16
  start-page: 1
  issue: 9
  year: 2016
  publication-title: Sensors
– volume: 165
  start-page: 185
  issue: 4
  year: 2012
  publication-title: Proc. ICE Civil Eng.
– year: 2006
– volume: 16
  start-page: 396
  year: 2000
  publication-title: Vis. Comput.
– year: 2004
– volume: 15
  start-page: 197
  issue: 3
  year: 1993
  publication-title: Eng. Struct.
– volume: 8
  start-page: 27
  issue: 1
  year: 2012
  publication-title: Struct. Infrastruct. Eng.
– volume: 345
  start-page: 58
  year: 2015
  publication-title: J. Sound Vib.
– volume: 44
  start-page: 204
  issue: 1
  year: 2012
  publication-title: Opt. Laser Technol.
– volume: 46
  start-page: 105
  year: 2006
  publication-title: Exp. Mech.
– volume: 8
  start-page: 27
  issue: 1
  year: 2012
  ident: 10.1002/stc.2187-BIB0009|stc2187-cit-0010
  publication-title: Struct. Infrastruct. Eng.
  doi: 10.1080/15732471003645666
– volume-title: Assessment, Reliability and Maintenance of Masonry Arch Bridges, State-of-the-Art Research Report
  year: 2004
  ident: 10.1002/stc.2187-BIB0003|stc2187-cit-0004
– volume: 3
  start-page: 1
  year: 2017
  ident: 10.1002/stc.2187-BIB0032|stc2187-cit-0033
  publication-title: Front. Built Environ.
  doi: 10.3389/fbuil.2017.00023
– volume: 16
  start-page: 396
  year: 2000
  ident: 10.1002/stc.2187-BIB0024|stc2187-cit-0025
  publication-title: Vis. Comput.
  doi: 10.1007/PL00013394
– volume: 54
  start-page: 255
  year: 2014
  ident: 10.1002/stc.2187-BIB0027|stc2187-cit-0028
  publication-title: Exp. Mech.
  doi: 10.1007/s11340-013-9784-8
– volume: 20
  start-page: 1
  issue: 12
  year: 2015
  ident: 10.1002/stc.2187-BIB0033|stc2187-cit-0034
  publication-title: J. Bridge Eng.
– volume: 20
  start-page: 1
  year: 2009
  ident: 10.1002/stc.2187-BIB0012|stc2187-cit-0013
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/0957-0233/20/6/062001
– volume: 147
  start-page: 150
  issue: 1
  year: 2008
  ident: 10.1002/stc.2187-BIB0039|stc2187-cit-0040
  publication-title: Sens. Actuators, A
  doi: 10.1016/j.sna.2008.04.008
– volume: 53
  start-page: 285
  issue: 2
  year: 2012
  ident: 10.1002/stc.2187-BIB0017|stc2187-cit-0018
  publication-title: Mater. Trans.
  doi: 10.2320/matertrans.I-M2011843
– ident: 10.1002/stc.2187-BIB0018|stc2187-cit-0019
– ident: 10.1002/stc.2187-BIB0031|stc2187-cit-0032
  doi: 10.5244/C.19.9
– year: 2018
  ident: 10.1002/stc.2187-BIB0041|stc2187-cit-0042
  publication-title: Eng. Struct.
– volume: 23
  start-page: 1405
  year: 2016
  ident: 10.1002/stc.2187-BIB0035|stc2187-cit-0036
  publication-title: Struct. Control Health Monit.
  doi: 10.1002/stc.1850
– year: 2018
  ident: 10.1002/stc.2187-BIB0040|stc2187-cit-0041
  publication-title: Eng. Struct.
– volume: 165
  start-page: 185
  issue: 4
  year: 2012
  ident: 10.1002/stc.2187-BIB0013|stc2187-cit-0014
  publication-title: Proc. ICE Civil Eng.
– volume: 15
  start-page: 197
  issue: 3
  year: 1993
  ident: 10.1002/stc.2187-BIB0015|stc2187-cit-0016
  publication-title: Eng. Struct.
  doi: 10.1016/0141-0296(93)90054-8
– volume: 24
  start-page: 1
  year: 2017
  ident: 10.1002/stc.2187-BIB0022|stc2187-cit-0023
  publication-title: Struct. Control Health Monit.
  doi: 10.1002/stc.1852
– ident: 10.1002/stc.2187-BIB0025|stc2187-cit-0026
– volume-title: CIRIA C656: Masonry arch bridges: condition appraisal and remedial treatment
  year: 2006
  ident: 10.1002/stc.2187-BIB0002|stc2187-cit-0003
– volume: 16
  start-page: 1
  issue: 9
  year: 2016
  ident: 10.1002/stc.2187-BIB0020|stc2187-cit-0021
  publication-title: Sensors
  doi: 10.3390/s16091344
– volume-title: Multiple View Geometry in Computer Vision
  year: 2003
  ident: 10.1002/stc.2187-BIB0023|stc2187-cit-0024
– ident: 10.1002/stc.2187-BIB0008|stc2187-cit-0009
– volume-title: Modelling and Assessment of Masonry Arch Bridges
  year: 2014
  ident: 10.1002/stc.2187-BIB0007|stc2187-cit-0008
– volume: 46
  start-page: 105
  year: 2006
  ident: 10.1002/stc.2187-BIB0016|stc2187-cit-0017
  publication-title: Exp. Mech.
  doi: 10.1007/s11340-006-6124-2
– volume: 48
  start-page: 469
  issue: 4
  year: 2010
  ident: 10.1002/stc.2187-BIB0036|stc2187-cit-0037
  publication-title: Opt. Lasers Eng.
  doi: 10.1016/j.optlaseng.2009.08.010
– volume: 46
  start-page: 746
  issue: 10
  year: 2008
  ident: 10.1002/stc.2187-BIB0038|stc2187-cit-0039
  publication-title: Opt. Lasers Eng.
  doi: 10.1016/j.optlaseng.2008.05.005
– volume: 38
  start-page: 213
  issue: 3
  year: 2005
  ident: 10.1002/stc.2187-BIB0010|stc2187-cit-0011
  publication-title: NDT&E Int.
  doi: 10.1016/j.ndteint.2004.06.012
– volume: 8
  start-page: 91
  year: 2017
  ident: 10.1002/stc.2187-BIB0029|stc2187-cit-0030
  publication-title: J. Civil Struct. Health Monit.
  doi: 10.1007/s13349-017-0261-4
– volume-title: Arch Bridges IV-Advances in Assessment, Structural Design and Construction
  year: 2004
  ident: 10.1002/stc.2187-BIB0001|stc2187-cit-0002
– ident: 10.1002/stc.2187-BIB0006|stc2187-cit-0007
– year: 2012
  ident: 10.1002/stc.2187-BIB0037|stc2187-cit-0038
  publication-title: The Ninth International Conf. on Condition Monitoring and Machinery Failure Prevention Technologies
– volume-title: NR/GN/CIV/025: The Structural Assessment of Underbridges
  year: 2006
  ident: 10.1002/stc.2187-BIB0004|stc2187-cit-0005
– volume: 6
  start-page: 521
  issue: 5
  year: 2010
  ident: 10.1002/stc.2187-BIB0011|stc2187-cit-0012
  publication-title: Struct. Infrastruct. Eng.
  doi: 10.1080/15732470903068557
– volume: 17
  start-page: 41
  issue: 1
  year: 2017
  ident: 10.1002/stc.2187-BIB0021|stc2187-cit-0022
  publication-title: Int. J. Phys. Model. Geotechnics
  doi: 10.1680/jphmg.15.00055
– ident: 10.1002/stc.2187-BIB0005|stc2187-cit-0006
– volume: 170
  start-page: 168
  issue: BE3
  year: 2017
  ident: 10.1002/stc.2187-BIB0019|stc2187-cit-0020
  publication-title: in Proceedings of the ICE Bridge Eng.
– volume: 51
  start-page: 140
  issue: 2
  year: 2013
  ident: 10.1002/stc.2187-BIB0028|stc2187-cit-0029
  publication-title: Opt. Lasers Eng.
  doi: 10.1016/j.optlaseng.2012.08.012
– ident: 10.1002/stc.2187-BIB0030|stc2187-cit-0031
  doi: 10.1109/CVPR.2001.990465
– volume: 53
  start-page: 619
  issue: 7
  year: 2003
  ident: 10.1002/stc.2187-BIB0014|stc2187-cit-0015
  publication-title: Geotechnique
  doi: 10.1680/geot.2003.53.7.619
– volume: 44
  start-page: 204
  issue: 1
  year: 2012
  ident: 10.1002/stc.2187-BIB0026|stc2187-cit-0027
  publication-title: Opt. Laser Technol.
  doi: 10.1016/j.optlastec.2011.06.019
– volume: 345
  start-page: 58
  year: 2015
  ident: 10.1002/stc.2187-BIB0034|stc2187-cit-0035
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2015.01.024
SSID ssj0026285
Score 2.4504497
Snippet Summary Dynamic displacement measurements provide useful information for the assessment of masonry rail bridges, which constitute a significant part of the...
Dynamic displacement measurements provide useful information for the assessment of masonry rail bridges, which constitute a significant part of the bridge...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage e2187
SubjectTerms Cameras
Correlation analysis
Data processing
digital image correlation
Digital imaging
Displacement measurement
Distortion
field testing and monitoring
Masonry
masonry arch bridge
measurement error
out‐of‐plane movement
pinhole camera
Pinhole cameras
Pinholes
Railway bridges
Scaling
Title Sensing dynamic displacements in masonry rail bridges using 2D digital image correlation
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fstc.2187
https://www.proquest.com/docview/2067603156
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1LS8QwEMcHHxc9-BbXxxJB9FTdpEmaHsVVRFTEVVjwUJKmkUWtso-DfnozfawPFMRTLzPQZpLMnzLzG4AdmxmpY2cDJp0IuNAyiIWlQSqUUT5huFhio_DFpTy95Wdd0a2qKrEXpuRDjH-44cko7ms84NoMDj6goQMkEFKFjeQ0lIjNb1-PyVEMOwMLVCoXgd-youbOtthB7fg1E33Iy88itcgyJ_NwV79fWVzysD8amv307Ru68X8fsABzlfgkh-VuWYSJLF-C2U9IwmXodrCiPb8nthxVT2xvUNRtFa1wpJeTJ-0lev-V9HXvkVSUCDIqfFjbm9_jGBLSe_IXFUlx9kdZbbcCtyfHN0enQTV9IUgRkhdwo1rKxZHNQstVyq0zztgsDo0Pu9GRCyOaSs1kSMMs4l5mKuq8qWORthkLw1WYyp_zbA2IF4E8Etp59aC5EVRp51xEjeCGypYyDdirI5GkFZocJ2Q8JiVUmSV-rRJcqwZsjy1fShzHDzabdTCT6kAOEqTU40BtIRuwW0TlV_-kc3OEz_W_Gm7AjJdRqiwL3ISpYX-UbXmpMjRNmGT8qgnTh-2L806z2KLvOA7p3Q
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB5qPagH8YnVqhFET0ub3SSbxZNUS9W2CG2htyXZbEqhXaWPg__eZB9tBQVPe5m5zGQy34aZ7wO4VbFkItDKcZmmDqGCOQFV2Ikol9w0DB0wuyjc6bLWgLwO6bAED8UuTMYPsXpws5WR3te2wO2DdG3NGjq3FISY-1uwTQwst_N8Lnlf_W3Z3cCULJVQxxxaWjDP1t1a4fmzF60B5iZMTftM8wD2c4CIHrOMHkIpTo5gb4M28BiGPTt1noyQyuTkkRrP09mqdF0NjRM0FQZGz77QTIwnKGdyQMvUx30y5iMrFYLGU3OZoMjqc2QTcScwaD73Gy0nV0hwIktk5xDJ61wHvoo9RXhElJZaqjjwpEmNFL72fBwx4TIPe7FPDBTkWBtT7fpCxa7nnUI5-UjiM0AGqBGfCm06vCCSYi601j6WlEjM6lxW4L6IVRjl9OFWxWISZsTHbmiiGtqoVuBmZfmZUWb8YlMtwh3mRTMPLZO8Fb2mrAJ3aQr-9A97_Yb9nv_X8Bp2Wv1OO2y_dN8uYNfAHp6N8VWhvJgt40sDLRbyKj1C30qYywI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1LSwMxEMcHrSB68C1Wq0YQPa1tdpNs9iitxTfiAwoelmSzKcV2LX0c9NOb7KNWURBPe5mB3UyS-bPM_AbgUMWSiUArx2WaOoQK5gRUYSeiXHKTMHTAbKPwzS07fyKXLdrKqyptL0zGh5j8cLMnI72v7QHvK139hIYOLYEQc38W5ggzQsIKovsJOsq1rYEpK5VQx-xZWoBna2618Pyaij715bRKTdNMcxmeixfMqkteTsYjeRK9f2M3_u8LVmApV5_oNNsuqzATJ2uwOMUkXIfWgy1pT9pIZbPqkeoM08KttBcOdRLUE0ajD97QQHS6KMdEoHHq4zaMedvOIUGdnrmpUGSHf2Tldhvw1Dx7rJ87-fgFJ7KUPIdIXuM68FXsKcIjorTUUsWBJ03cpfC15-OICZd52It9YnQmx9qYatcXKnY9bxNKyWsSbwEyKpD4VGgjHwSRFHOhtfaxpERiEztZhuMiEmGUs8ntiIxumFGV3dCsVWjXqgwHE8t-xuP4waZSBDPMT-QwtJh6O1GbsjIcpVH51T98eKzb5_ZfDfdh_q7RDK8vbq92YMFIKp6VCFagNBqM410jW0ZyL92fH1Pr6kA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sensing+dynamic+displacements+in+masonry+rail+bridges+using+2D+digital+image+correlation&rft.jtitle=Structural+control+and+health+monitoring&rft.au=Acikgoz%2C+Sinan&rft.au=DeJong%2C+Matthew+J.&rft.au=Soga%2C+Kenichi&rft.date=2018-08-01&rft.issn=1545-2255&rft.volume=25&rft.issue=8&rft.spage=e2187&rft_id=info:doi/10.1002%2Fstc.2187&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_stc_2187
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-2255&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-2255&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-2255&client=summon