Hollow Mesoporous Zirconia Nanocapsules for Drug Delivery
Hollow mesoporous zirconia nanocapsules (hm‐ZrO2) with a hollow core/porous shell structure are demonstrated as effective vehicles for anti‐cancer drug delivery. While the highly porous feature of the shell allows the drug, doxorubicin(DOX), to easily pass through between the inner void space and su...
Saved in:
Published in | Advanced functional materials Vol. 20; no. 15; pp. 2442 - 2447 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
WILEY-VCH Verlag
09.08.2010
WILEY‐VCH Verlag |
Subjects | |
Online Access | Get full text |
ISSN | 1616-301X 1616-3028 |
DOI | 10.1002/adfm.201000647 |
Cover
Loading…
Abstract | Hollow mesoporous zirconia nanocapsules (hm‐ZrO2) with a hollow core/porous shell structure are demonstrated as effective vehicles for anti‐cancer drug delivery. While the highly porous feature of the shell allows the drug, doxorubicin(DOX), to easily pass through between the inner void space and surrounding environment of the particles, the void space in the core endows the nanocapsules with high drug loading capacity. The larger the inner hollow diameter, the higher their DOX loading capacity. A loading of 102% related to the weight of hm‐ZrO2 is achieved by the nanocapsules with an inner diameter of 385 nm. Due to their pH‐dependent charge nature, hm‐ZrO2 loaded DOX exhibit pH‐dependent drug releasing kinetics. A lower pH offers a faster DOX release rate from hm‐ZrO2. Such a property makes the loaded DOX easily release from the nanocapsules when up‐taken by living cells. Although the flow cytometry reveals more uptake of hm‐ZrO2 particles by normal cells, hm‐ZrO2 loaded DOX release more drugs in cancer cells than in normal cells, leading to more cytotoxicity toward tumor cells and less cytotoxicity to healthy cells than free DOX.
Inorganic nanocapsules improve anticancer drug delivery:Highly biocompatible hollow mesoporous ZrO2 nanospheres exhibit high loading capacity of doxorubicin. DOX loaded ZrO2 nanocapsules release more drugs in cancer cells than in normal cells, therefore displaying more cytotoxicity toward tumor cells and less cytotoxicity to normal cells than free DOX. |
---|---|
AbstractList | Hollow mesoporous zirconia nanocapsules (
hm
‐ZrO
2
) with a hollow core/porous shell structure are demonstrated as effective vehicles for anti‐cancer drug delivery. While the highly porous feature of the shell allows the drug, doxorubicin(DOX), to easily pass through between the inner void space and surrounding environment of the particles, the void space in the core endows the nanocapsules with high drug loading capacity. The larger the inner hollow diameter, the higher their DOX loading capacity. A loading of 102% related to the weight of
hm
‐ZrO
2
is achieved by the nanocapsules with an inner diameter of 385 nm. Due to their pH‐dependent charge nature,
hm
‐ZrO
2
loaded DOX exhibit pH‐dependent drug releasing kinetics. A lower pH offers a faster DOX release rate from
hm
‐ZrO
2
. Such a property makes the loaded DOX easily release from the nanocapsules when up‐taken by living cells. Although the flow cytometry reveals more uptake of
hm
‐ZrO
2
particles by normal cells,
hm
‐ZrO
2
loaded DOX release more drugs in cancer cells than in normal cells, leading to more cytotoxicity toward tumor cells and less cytotoxicity to healthy cells than free DOX. Hollow mesoporous zirconia nanocapsules (hm‐ZrO2) with a hollow core/porous shell structure are demonstrated as effective vehicles for anti‐cancer drug delivery. While the highly porous feature of the shell allows the drug, doxorubicin(DOX), to easily pass through between the inner void space and surrounding environment of the particles, the void space in the core endows the nanocapsules with high drug loading capacity. The larger the inner hollow diameter, the higher their DOX loading capacity. A loading of 102% related to the weight of hm‐ZrO2 is achieved by the nanocapsules with an inner diameter of 385 nm. Due to their pH‐dependent charge nature, hm‐ZrO2 loaded DOX exhibit pH‐dependent drug releasing kinetics. A lower pH offers a faster DOX release rate from hm‐ZrO2. Such a property makes the loaded DOX easily release from the nanocapsules when up‐taken by living cells. Although the flow cytometry reveals more uptake of hm‐ZrO2 particles by normal cells, hm‐ZrO2 loaded DOX release more drugs in cancer cells than in normal cells, leading to more cytotoxicity toward tumor cells and less cytotoxicity to healthy cells than free DOX. Inorganic nanocapsules improve anticancer drug delivery:Highly biocompatible hollow mesoporous ZrO2 nanospheres exhibit high loading capacity of doxorubicin. DOX loaded ZrO2 nanocapsules release more drugs in cancer cells than in normal cells, therefore displaying more cytotoxicity toward tumor cells and less cytotoxicity to normal cells than free DOX. |
Author | Zheng, Nanfeng Huang, Xiaoqing Chen, Xiaolan Tang, Shaoheng |
Author_xml | – sequence: 1 givenname: Shaoheng surname: Tang fullname: Tang, Shaoheng organization: State Key Laboratory for Physical Chemistry of Solid Surfaces and Department of Chemistry College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 (China) – sequence: 2 givenname: Xiaoqing surname: Huang fullname: Huang, Xiaoqing organization: State Key Laboratory for Physical Chemistry of Solid Surfaces and Department of Chemistry College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 (China) – sequence: 3 givenname: Xiaolan surname: Chen fullname: Chen, Xiaolan organization: State Key Laboratory for Physical Chemistry of Solid Surfaces and Department of Chemistry College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 (China) – sequence: 4 givenname: Nanfeng surname: Zheng fullname: Zheng, Nanfeng email: nfzheng@xmu.edu.cn organization: State Key Laboratory for Physical Chemistry of Solid Surfaces and Department of Chemistry College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 (China) |
BookMark | eNqFj11LwzAUhoNMcJveet0_0Jo0bdJeztVt4jZv_GI3IUsTiWbNSFpn_70dkyGCeHE4L7w85_AMQK-ylQTgEsEIQRhf8VJtohh2GZKEnoA-IoiEGMZZ75jRyxkYeP8GIaIUJ32Qz6wxdhcspLdb62zjg5V2wlaaB0teWcG3vjHSB8q6oHDNa1BIoz-ka8_BqeLGy4vvPQSPk5uH8Syc309vx6N5KHCOaYhjqkS-ViXGeQkVIZhALiESJJU5WitaKpKRjHddinhXZ5BmNElJiinG3QxBdLgrnPXeScW2Tm-4axmCbC_O9uLsKN4ByS9A6JrX2la149r8jeUHbKeNbP95wkbFZPGTDQ-s9rX8PLLcvTNCMU3Z83LKims6pqunOxbjL7Mjfe0 |
CitedBy_id | crossref_primary_10_1039_C9QI00165D crossref_primary_10_1016_j_ceramint_2024_03_177 crossref_primary_10_1039_c2cc31708g crossref_primary_10_1002_chem_201303752 crossref_primary_10_1016_j_jddst_2023_104152 crossref_primary_10_1088_1361_6528_abe4fe crossref_primary_10_1021_bm4002574 crossref_primary_10_1002_cssc_201300416 crossref_primary_10_1016_j_jhazmat_2020_124458 crossref_primary_10_1039_c2ce06411a crossref_primary_10_1080_13102818_2019_1649094 crossref_primary_10_1002_adhm_201600219 crossref_primary_10_1007_s12274_013_0392_9 crossref_primary_10_1016_j_jtice_2016_05_015 crossref_primary_10_1021_acsami_5b04819 crossref_primary_10_1002_smll_201201735 crossref_primary_10_1016_j_molliq_2020_113307 crossref_primary_10_1016_j_actbio_2015_03_006 crossref_primary_10_1021_nn5027214 crossref_primary_10_1021_acs_molpharmaceut_0c00489 crossref_primary_10_1021_acsami_7b07567 crossref_primary_10_1039_c3ce41542b crossref_primary_10_1039_C6TB01102K crossref_primary_10_1039_D2NA00367H crossref_primary_10_1016_j_matchemphys_2014_02_015 crossref_primary_10_1016_j_porgcoat_2019_105276 crossref_primary_10_1039_c2cs15308d crossref_primary_10_1007_s11706_023_0631_2 crossref_primary_10_1016_j_porgcoat_2020_106086 crossref_primary_10_1002_anie_202017117 crossref_primary_10_1016_j_ejpb_2014_02_009 crossref_primary_10_1016_j_eml_2016_03_015 crossref_primary_10_1021_acsomega_6b00062 crossref_primary_10_1039_c3nr33695f crossref_primary_10_1007_s12274_014_0701_y crossref_primary_10_1016_j_optmat_2012_09_007 crossref_primary_10_1016_j_micromeso_2022_112109 crossref_primary_10_1007_s13204_015_0405_y crossref_primary_10_1002_adfm_201402755 crossref_primary_10_1016_j_apt_2013_08_005 crossref_primary_10_1016_j_nantod_2014_09_003 crossref_primary_10_1039_C4TA01943A crossref_primary_10_1021_acsabm_9b01244 crossref_primary_10_1002_adma_201305319 crossref_primary_10_1038_srep46540 crossref_primary_10_1016_j_ejpb_2017_10_012 crossref_primary_10_1039_c2jm15353j crossref_primary_10_1016_j_tsf_2011_12_028 crossref_primary_10_1002_adma_202005215 crossref_primary_10_1016_j_cej_2017_03_012 crossref_primary_10_1002_adma_201606134 crossref_primary_10_1039_C1JM14303D crossref_primary_10_3390_coatings13071273 crossref_primary_10_1002_adfm_201101960 crossref_primary_10_1039_c3tb21694b crossref_primary_10_1039_C7PY00161D crossref_primary_10_1021_acsami_6b07603 crossref_primary_10_1039_c0jm04115g crossref_primary_10_1002_zaac_201400340 crossref_primary_10_1016_j_msec_2019_110032 crossref_primary_10_1021_cm202281m crossref_primary_10_1016_j_ceramint_2021_06_083 crossref_primary_10_5006_1090 crossref_primary_10_3390_ijms241914687 crossref_primary_10_1039_C5TA00417A crossref_primary_10_1039_C7RA04358A crossref_primary_10_1002_ange_201105190 crossref_primary_10_1002_wnan_132 crossref_primary_10_1007_s11051_017_3971_y crossref_primary_10_1002_smll_201401360 crossref_primary_10_1007_s12039_017_1296_0 crossref_primary_10_1039_c1dt10996k crossref_primary_10_1016_j_micromeso_2019_109886 crossref_primary_10_1039_C4CP05733C crossref_primary_10_1039_C6RA23761D crossref_primary_10_1021_ja203316q crossref_primary_10_1039_c1ee01123e crossref_primary_10_1039_c2jm32020g crossref_primary_10_1007_s11242_021_01618_x crossref_primary_10_1016_j_jallcom_2018_08_308 crossref_primary_10_1016_j_msec_2014_12_079 crossref_primary_10_1021_acs_inorgchem_1c00718 crossref_primary_10_1016_j_ejmcr_2023_100126 crossref_primary_10_1016_j_jallcom_2017_10_138 crossref_primary_10_1002_anie_201105190 crossref_primary_10_1007_s10971_022_05747_7 crossref_primary_10_1021_acs_est_6b05295 crossref_primary_10_1039_c3dt50243k crossref_primary_10_1016_j_matlet_2013_04_077 crossref_primary_10_1039_c1cc10659g crossref_primary_10_1016_j_ceramint_2022_01_127 crossref_primary_10_1002_ange_202017117 crossref_primary_10_1021_acsbiomaterials_6b00093 crossref_primary_10_1016_j_partic_2013_06_003 crossref_primary_10_1039_C4CE02037E crossref_primary_10_1016_j_jcis_2011_11_055 crossref_primary_10_1016_j_actbio_2011_06_028 crossref_primary_10_1002_tcr_202300018 crossref_primary_10_1021_am5068723 crossref_primary_10_1016_j_apsusc_2019_07_047 crossref_primary_10_1039_c3tb20365d crossref_primary_10_1021_am200364e crossref_primary_10_1021_am4031104 crossref_primary_10_1039_c3nr34006f crossref_primary_10_1039_C4BM00158C crossref_primary_10_54097_hset_v6i_957 crossref_primary_10_1002_tcr_202200084 crossref_primary_10_1039_C5TB00832H crossref_primary_10_1016_j_actbio_2017_11_049 crossref_primary_10_1016_j_colsurfa_2024_134427 crossref_primary_10_1039_C5RA05489C crossref_primary_10_1021_am405375s crossref_primary_10_1021_acsmacrolett_6b00447 crossref_primary_10_1007_s10971_015_3707_3 crossref_primary_10_3390_nano11092166 crossref_primary_10_1002_asia_201701204 crossref_primary_10_1016_j_micromeso_2013_06_015 crossref_primary_10_1021_acsanm_2c04425 crossref_primary_10_1016_j_ccr_2013_03_007 crossref_primary_10_1208_s12249_017_0740_2 crossref_primary_10_1016_j_biomaterials_2011_12_014 crossref_primary_10_1021_ja211279u crossref_primary_10_1016_j_jddst_2022_103957 crossref_primary_10_1007_s00396_012_2716_9 crossref_primary_10_1016_j_biomaterials_2012_10_002 crossref_primary_10_1021_la402080y crossref_primary_10_1016_j_mtcomm_2024_108541 crossref_primary_10_1016_j_jallcom_2011_06_111 crossref_primary_10_1038_s43586_022_00104_y crossref_primary_10_1016_j_apsusc_2019_06_187 crossref_primary_10_1016_j_actbio_2013_10_028 crossref_primary_10_1038_srep07638 crossref_primary_10_1016_j_jhazmat_2020_122530 crossref_primary_10_1021_ja4083792 crossref_primary_10_1021_nn3011703 crossref_primary_10_1002_adfm_201200082 crossref_primary_10_1039_c3cp54899f crossref_primary_10_1016_j_biomaterials_2010_09_069 crossref_primary_10_1039_C2NR33130F crossref_primary_10_1039_C4RA13735C crossref_primary_10_1039_C6RA00673F crossref_primary_10_1039_c3tb20068j crossref_primary_10_1016_j_msec_2016_08_060 crossref_primary_10_1007_s10853_013_7726_6 crossref_primary_10_1039_C4NR03746D crossref_primary_10_1021_jacs_6b00773 crossref_primary_10_1039_C4TB00416G crossref_primary_10_1039_D1CS01022K crossref_primary_10_1016_j_addr_2020_06_020 crossref_primary_10_1080_00150193_2013_845483 crossref_primary_10_1039_C1CE06155K crossref_primary_10_1016_j_mtcomm_2020_101378 crossref_primary_10_1021_acsomega_2c00060 crossref_primary_10_1039_c3ra40992a crossref_primary_10_1021_acs_langmuir_6b02954 crossref_primary_10_1021_la304551y crossref_primary_10_1039_c4tb00507d crossref_primary_10_1039_C6RA07444H crossref_primary_10_1039_C2RA22261B crossref_primary_10_1007_s12274_012_0252_z crossref_primary_10_1039_C4DT03113J crossref_primary_10_1007_s10934_017_0508_9 crossref_primary_10_1016_j_actbio_2013_05_006 crossref_primary_10_1021_ja309142j crossref_primary_10_1039_C3TA13447D crossref_primary_10_3390_pharmaceutics14010110 crossref_primary_10_1016_j_apcatb_2019_05_021 crossref_primary_10_1039_C4DT02549K crossref_primary_10_3390_polym7020235 crossref_primary_10_1016_j_ceramint_2014_03_016 crossref_primary_10_1016_j_msec_2015_11_010 crossref_primary_10_1016_j_matchemphys_2012_07_043 crossref_primary_10_1016_j_carbpol_2022_119458 |
Cites_doi | 10.1002/anie.200803387 10.1021/nn800072t 10.1021/ja028650l 10.1021/nn800669n 10.1021/ja710193c 10.1021/ja807798g 10.1111/j.1551-2916.2008.02722.x 10.1007/s11095-008-9811-0 10.1039/b914842f 10.1038/nmat2118 10.1046/j.1469-7580.2002.00059.x 10.1021/ja046275m 10.1016/S0009-2509(03)00234-3 10.1002/smll.200800808 10.1016/S0167-8140(84)80077-8 10.1021/ja051113r 10.1016/j.addr.2008.03.016 10.1021/nn700040t 10.2174/138955708783498078 10.1002/adfm.200601217 10.1016/j.addr.2008.03.012 10.1021/cm052580a 10.1039/b806051g 10.1016/j.jconrel.2004.03.005 10.1002/chem.200600226 10.1016/j.chembiol.2003.09.011 10.1016/S1053-4296(98)80043-X 10.1007/s12030-008-9003-3 10.1021/ja0772086 10.1016/S0046-8177(75)80045-1 10.1166/jbn.2009.1005 10.1002/anie.200503389 10.4028/www.scientific.net/KEM.377.133 10.1039/b902462j 10.1021/ja803688x 10.1039/b800389k 10.1002/anie.200902208 10.1021/ja803383k 10.1021/ja073506r 10.1002/adfm.200601191 10.1021/ar700089b 10.1158/0008-5472.CAN-08-1468 10.1002/anie.200603507 10.1517/17425247.1.1.57 |
ContentType | Journal Article |
Copyright | Copyright © 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: Copyright © 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | BSCLL AAYXX CITATION |
DOI | 10.1002/adfm.201000647 |
DatabaseName | Istex CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | 2447 |
ExternalDocumentID | 10_1002_adfm_201000647 ADFM201000647 ark_67375_WNG_DB7C7ZVK_2 |
Genre | article |
GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OC 23M 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT AAHQN AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX AEYWJ AGQPQ AGYGG CITATION |
ID | FETCH-LOGICAL-c3937-327fc9bfd339d0f66360ae01c65e91bf7df6868ad0f51a6638078745653733373 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Tue Jul 01 01:29:55 EDT 2025 Thu Apr 24 23:01:28 EDT 2025 Wed Jan 22 16:51:45 EST 2025 Wed Oct 30 09:52:12 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 15 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3937-327fc9bfd339d0f66360ae01c65e91bf7df6868ad0f51a6638078745653733373 |
Notes | ArticleID:ADFM201000647 ark:/67375/WNG-DB7C7ZVK-2 istex:5BEC9E87C95FF51F4F4D204A871C4DFDFDB68C67 |
PageCount | 6 |
ParticipantIDs | crossref_primary_10_1002_adfm_201000647 crossref_citationtrail_10_1002_adfm_201000647 wiley_primary_10_1002_adfm_201000647_ADFM201000647 istex_primary_ark_67375_WNG_DB7C7ZVK_2 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 9, 2010 |
PublicationDateYYYYMMDD | 2010-08-09 |
PublicationDate_xml | – month: 08 year: 2010 text: August 9, 2010 day: 09 |
PublicationDecade | 2010 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Advanced functional materials |
PublicationTitleAlternate | Adv. Funct. Mater |
PublicationYear | 2010 |
Publisher | WILEY-VCH Verlag WILEY‐VCH Verlag |
Publisher_xml | – name: WILEY-VCH Verlag – name: WILEY‐VCH Verlag |
References | W. Zhao, J. Gu, L. Zhang, H. Chen, J. Shi, J. Am. Chem. Soc. 2005, 127, 8916. I. I. Slowing, B. G. Trewyn, S. Giri, V. S. Y. Lin, Adv. Funct. Mater. 2007, 17, 1225. A. Bianco, Expert Opin. Drug Delivery 2004, 1, 57. X. Q. Huang, C. Y. Guo, L. Q. Zuo, N. F. Zheng, G. D. Stucky, Small 2009, 5, 361. M. Y. Ma, Y. J. Zhu, L. Li, S. W. Cao, J. Mater. Chem. 2008, 18, 2722. D. Davis, U. Akhtar, B. Keaster, K. Grozinger, L. Washington, S. Kelsey, A. Sarkar, R. K. DeLong, J. Biomed. Nanotechnol. 2009, 5, 36. C. S. S. R. Kumar, Nanomaterials for Cancer Therapy, 1st ed., Wiley-VCH, Weinheim 2006. Z. Liu, J. T. Robinson, X. M. Sun, H. J. Dai, J. Am. Chem. Soc. 2008, 130, 10876. P. M. Arnal, M. Comotti, F. Schuth, Angew. Chem. Int. Ed. 2006, 45, 8224. H. S. Nalwa, T. J. Webster, Cancer Nanotechnology: Nanomaterials for Cancer Diagnosis and Therapy, American Scientific Publishers, Stevenson Ranch, CA 2007. M. Vallet-Regi, Chem. -Eur. J. 2006, 12, 5934. I. Izquierdo-Barba, M. Manzano, M. Colilla, M. Vallet-Regi, Key Eng. Mater. 2008, 377, 133. W. J. Rieter, K. M. Pott, K. M. L. Taylor, W. Lin, J. Am. Chem. Soc. 2008, 130, 11584. E. Boisselier, D. Astruc, Chem. Soc. Rev. 2009, 38, 1759. M. Colilla, M. Manzano, M. Vallet-Regi, Int. J. Nanomed. 2008, 3, 403. M. Liong, J. Lu, M. Kovochich, T. Xia, S. G. Ruehm, A. E. Nel, F. Tamanoi, J. I. Zink, ACS Nano 2008, 2, 889. N. W. S. Kam, Z. Liu, H. Dai, Angew. Chem. Int. Ed. 2006, 45, 577. Y. Klichko, M. Liong, E. Choi, S. Angelos, A. E. Nel, J. F. Stoddart, F. Tamanoi, J. I. Zink, J. Am. Ceram. Soc. 2008, 92, S2. A. Corma, U. Diaz, M. Arrrica, E. Fernandez, I. Ortega, Angew. Chem. Int. Ed. 2009, 48, 6247. C.-Y. Lai, B. G. Trewyn, D. M. Jeftinija, K. Jeftinija, S. Xu, S. Jeftinija, V. S. Y. Lin, J. Am. Chem. Soc. 2003, 125, 4451. Z. Liu, X. M. Sun, N. Nakayama-Ratchford, H. J. Dai, ACS Nano 2007, 1, 50. D. R. Radu, C.-Y. Lai, K. Jeftinija, E. W. Rowe, S. Jeftinija, V. S. Y. Lin, J. Am. Chem. Soc. 2004, 126, 13216. J. Lu, M. Liong, S. Sherman, T. Xia, M. Kovochich, A. E. Nel, J. I. Zink, F. Tamanoi, NanoBiotechnology 2007, 3, 89. K. Patel, S. Angelos, W. R. Dichtel, A. Coskun, Y.-W. Yang, J. I. Zink, J. F. Stoddart, J. Am. Chem. Soc. 2008, 130, 2382. D. Pantarotto, D. Partidos Charalambos, J. Hoebeke, F. Brown, E. Kramer, J.-P. Briand, S. Muller, M. Prato, A. Bianco, Chem. Biol. 2003, 10, 961. P. M. Arnal, C. Weidenthaler, F. Schuth, Chem. Mater. 2006, 18, 2733. A. L. Doadrio, E. M. B. Sousa, J. C. Doadrio, J. Perez Pariente, I. Izquierdo-Barba, M. Vallet-Regi, J. Controlled Release 2004, 97, 125. S. Angelos, E. Johansson, J. F. Stoddart, J. I. Zink, Adv. Funct. Mater. 2007, 17, 2261. I. I. Slowing, J. L. Vivero-Escoto, C.-W. Wu, V. S. Y. Lin, Adv. Drug Delivery Rev. 2008, 60, 1278. W. J. Rieter, K. M. L. Taylor, W. Lin, J. Am. Chem. Soc. 2007, 129, 9852. G. Pastorin, Pharm. Res. 2009, 26, 746. J. L. Wike-Hooley, J. Haveman, H. S. Reinhold, Radiother. Oncol. 1984, 2, 343. D. P. Ferris, Y.-L. Zhao, N. M. Khashab, H. A. Khatib, J. F. Stoddart, J. I. Zink, J. Am. Chem. Soc. 2009, 131, 1686. V. Pathak, Nanotechnology for Cancer Therapy, Pearl Books, New Delhi 2007. W. Lin, J. W. Rieter, K. M. L. Taylor, Angew. Chem. Int. Ed. 2009, 48, 650. J. A. Firth, J. Anat. 2002, 200, 541. M. Liong, S. Angelos, E. Choi, K. Patel, J. F. Stoddart, J. I. Zink, J. Mater. Chem. 2009, 19, 6251. J. Cheon, J. Mater. Chem. 2009, 19, 6249. K. M. L. Taylor, J. S. Kim, W. J. Rieter, H. An, W. Lin, W. Lin, J. Am. Chem. Soc. 2008, 130, 2154. M. Prato, K. Kostarelos, A. Bianco, Acc. Chem. Res. 2008, 41, 60. Z. Liu, K. Chen, C. Davis, S. Sherlock, Q. Cao, X. Chen, H. Dai, Cancer Res. 2008, 68, 6652. Y. Piao, J. Kim, H. Bin Na, D. Kim, J. S. Baek, M. K. Ko, J. H. Lee, M. Shokouhimehr, T. Hyeon, Nat. Mater. 2008, 7, 242. A. Hirano, T. Matsui, Hum. Pathol. 1975, 6, 611. S. S. Feng, S. Chien, Chem. Eng. Sci. 2003, 58, 4087. T. Murakami, K. Tsuchida, Mini-Rev. Med. Chem. 2008, 8, 175. L. E. Gerweck, Semin. Radiat. Oncol. 1998, 8, 176. J. H. Rao, ACS Nano 2008, 2, 1984. P. Ghosh, G. Han, M. De, C. K. Kim, V. M. Rotello, Adv. Drug Delivery Rev. 2008, 60, 1307. 2007; 17 2007; 129 2004; 126 2006; 12 2008; 18 2003; 58 2007 2008; 7 2006; 18 2006 2008; 8 2008; 3 2009; 131 2004; 1 2008; 2 2008; 92 2003; 10 2009; 26 2009; 48 2004; 97 2006; 45 1984; 2 2005; 127 2002; 200 2008; 68 2009; 5 2008; 41 2008; 377 2007; 3 2009; 19 2003; 125 2007; 1 2008; 60 2009; 38 2008; 130 1975; 6 1998; 8 e_1_2_6_31_2 e_1_2_6_30_2 Pathak V. (e_1_2_6_5_2) 2007 Colilla M. (e_1_2_6_13_2) 2008; 3 Kumar C. S. S. R. (e_1_2_6_4_2) 2006 e_1_2_6_18_2 e_1_2_6_19_2 Nalwa H. S. (e_1_2_6_6_2) 2007 e_1_2_6_12_2 e_1_2_6_35_2 e_1_2_6_34_2 e_1_2_6_10_2 e_1_2_6_33_2 e_1_2_6_11_2 e_1_2_6_32_2 e_1_2_6_16_2 e_1_2_6_39_2 e_1_2_6_17_2 e_1_2_6_38_2 e_1_2_6_14_2 e_1_2_6_37_2 e_1_2_6_15_2 e_1_2_6_36_2 e_1_2_6_42_2 e_1_2_6_20_2 e_1_2_6_41_2 e_1_2_6_40_2 e_1_2_6_8_2 e_1_2_6_7_2 e_1_2_6_9_2 e_1_2_6_29_2 e_1_2_6_3_2 e_1_2_6_24_2 e_1_2_6_47_2 e_1_2_6_23_2 e_1_2_6_48_2 e_1_2_6_2_2 e_1_2_6_22_2 e_1_2_6_1_2 e_1_2_6_21_2 e_1_2_6_28_2 e_1_2_6_43_2 e_1_2_6_27_2 e_1_2_6_44_2 e_1_2_6_26_2 e_1_2_6_45_2 e_1_2_6_25_2 e_1_2_6_46_2 |
References_xml | – reference: I. I. Slowing, B. G. Trewyn, S. Giri, V. S. Y. Lin, Adv. Funct. Mater. 2007, 17, 1225. – reference: Z. Liu, K. Chen, C. Davis, S. Sherlock, Q. Cao, X. Chen, H. Dai, Cancer Res. 2008, 68, 6652. – reference: W. J. Rieter, K. M. L. Taylor, W. Lin, J. Am. Chem. Soc. 2007, 129, 9852. – reference: E. Boisselier, D. Astruc, Chem. Soc. Rev. 2009, 38, 1759. – reference: W. J. Rieter, K. M. Pott, K. M. L. Taylor, W. Lin, J. Am. Chem. Soc. 2008, 130, 11584. – reference: A. L. Doadrio, E. M. B. Sousa, J. C. Doadrio, J. Perez Pariente, I. Izquierdo-Barba, M. Vallet-Regi, J. Controlled Release 2004, 97, 125. – reference: J. Lu, M. Liong, S. Sherman, T. Xia, M. Kovochich, A. E. Nel, J. I. Zink, F. Tamanoi, NanoBiotechnology 2007, 3, 89. – reference: N. W. S. Kam, Z. Liu, H. Dai, Angew. Chem. Int. Ed. 2006, 45, 577. – reference: S. Angelos, E. Johansson, J. F. Stoddart, J. I. Zink, Adv. Funct. Mater. 2007, 17, 2261. – reference: S. S. Feng, S. Chien, Chem. Eng. Sci. 2003, 58, 4087. – reference: M. Prato, K. Kostarelos, A. Bianco, Acc. Chem. Res. 2008, 41, 60. – reference: M. Liong, S. Angelos, E. Choi, K. Patel, J. F. Stoddart, J. I. Zink, J. Mater. Chem. 2009, 19, 6251. – reference: M. Y. Ma, Y. J. Zhu, L. Li, S. W. Cao, J. Mater. Chem. 2008, 18, 2722. – reference: I. I. Slowing, J. L. Vivero-Escoto, C.-W. Wu, V. S. Y. Lin, Adv. Drug Delivery Rev. 2008, 60, 1278. – reference: Z. Liu, X. M. Sun, N. Nakayama-Ratchford, H. J. Dai, ACS Nano 2007, 1, 50. – reference: C. S. S. R. Kumar, Nanomaterials for Cancer Therapy, 1st ed., Wiley-VCH, Weinheim 2006. – reference: V. Pathak, Nanotechnology for Cancer Therapy, Pearl Books, New Delhi 2007. – reference: A. Hirano, T. Matsui, Hum. Pathol. 1975, 6, 611. – reference: G. Pastorin, Pharm. Res. 2009, 26, 746. – reference: A. Bianco, Expert Opin. Drug Delivery 2004, 1, 57. – reference: J. Cheon, J. Mater. Chem. 2009, 19, 6249. – reference: I. Izquierdo-Barba, M. Manzano, M. Colilla, M. Vallet-Regi, Key Eng. Mater. 2008, 377, 133. – reference: X. Q. Huang, C. Y. Guo, L. Q. Zuo, N. F. Zheng, G. D. Stucky, Small 2009, 5, 361. – reference: J. A. Firth, J. Anat. 2002, 200, 541. – reference: M. Liong, J. Lu, M. Kovochich, T. Xia, S. G. Ruehm, A. E. Nel, F. Tamanoi, J. I. Zink, ACS Nano 2008, 2, 889. – reference: P. M. Arnal, C. Weidenthaler, F. Schuth, Chem. Mater. 2006, 18, 2733. – reference: D. Davis, U. Akhtar, B. Keaster, K. Grozinger, L. Washington, S. Kelsey, A. Sarkar, R. K. DeLong, J. Biomed. Nanotechnol. 2009, 5, 36. – reference: K. M. L. Taylor, J. S. Kim, W. J. Rieter, H. An, W. Lin, W. Lin, J. Am. Chem. Soc. 2008, 130, 2154. – reference: D. P. Ferris, Y.-L. Zhao, N. M. Khashab, H. A. Khatib, J. F. Stoddart, J. I. Zink, J. Am. Chem. Soc. 2009, 131, 1686. – reference: Y. Piao, J. Kim, H. Bin Na, D. Kim, J. S. Baek, M. K. Ko, J. H. Lee, M. Shokouhimehr, T. Hyeon, Nat. Mater. 2008, 7, 242. – reference: M. Vallet-Regi, Chem. -Eur. J. 2006, 12, 5934. – reference: M. Colilla, M. Manzano, M. Vallet-Regi, Int. J. Nanomed. 2008, 3, 403. – reference: K. Patel, S. Angelos, W. R. Dichtel, A. Coskun, Y.-W. Yang, J. I. Zink, J. F. Stoddart, J. Am. Chem. Soc. 2008, 130, 2382. – reference: P. M. Arnal, M. Comotti, F. Schuth, Angew. Chem. Int. Ed. 2006, 45, 8224. – reference: D. R. Radu, C.-Y. Lai, K. Jeftinija, E. W. Rowe, S. Jeftinija, V. S. Y. Lin, J. Am. Chem. Soc. 2004, 126, 13216. – reference: J. L. Wike-Hooley, J. Haveman, H. S. Reinhold, Radiother. Oncol. 1984, 2, 343. – reference: H. S. Nalwa, T. J. Webster, Cancer Nanotechnology: Nanomaterials for Cancer Diagnosis and Therapy, American Scientific Publishers, Stevenson Ranch, CA 2007. – reference: L. E. Gerweck, Semin. Radiat. Oncol. 1998, 8, 176. – reference: Y. Klichko, M. Liong, E. Choi, S. Angelos, A. E. Nel, J. F. Stoddart, F. Tamanoi, J. I. Zink, J. Am. Ceram. Soc. 2008, 92, S2. – reference: P. Ghosh, G. Han, M. De, C. K. Kim, V. M. Rotello, Adv. Drug Delivery Rev. 2008, 60, 1307. – reference: W. Zhao, J. Gu, L. Zhang, H. Chen, J. Shi, J. Am. Chem. Soc. 2005, 127, 8916. – reference: Z. Liu, J. T. Robinson, X. M. Sun, H. J. Dai, J. Am. Chem. Soc. 2008, 130, 10876. – reference: C.-Y. Lai, B. G. Trewyn, D. M. Jeftinija, K. Jeftinija, S. Xu, S. Jeftinija, V. S. Y. Lin, J. Am. Chem. Soc. 2003, 125, 4451. – reference: D. Pantarotto, D. Partidos Charalambos, J. Hoebeke, F. Brown, E. Kramer, J.-P. Briand, S. Muller, M. Prato, A. Bianco, Chem. Biol. 2003, 10, 961. – reference: W. Lin, J. W. Rieter, K. M. L. Taylor, Angew. Chem. Int. Ed. 2009, 48, 650. – reference: T. Murakami, K. Tsuchida, Mini-Rev. Med. Chem. 2008, 8, 175. – reference: J. H. Rao, ACS Nano 2008, 2, 1984. – reference: A. Corma, U. Diaz, M. Arrrica, E. Fernandez, I. Ortega, Angew. Chem. Int. Ed. 2009, 48, 6247. – volume: 48 start-page: 650 year: 2009 publication-title: Angew. Chem. Int. Ed. – volume: 18 start-page: 2733 year: 2006 publication-title: Chem. Mater. – volume: 2 start-page: 1984 year: 2008 publication-title: ACS Nano – volume: 3 start-page: 403 year: 2008 publication-title: Int. J. Nanomed. – volume: 58 start-page: 4087 year: 2003 publication-title: Chem. Eng. Sci. – volume: 130 start-page: 2154 year: 2008 publication-title: J. Am. Chem. Soc. – volume: 8 start-page: 176 year: 1998 publication-title: Semin. Radiat. Oncol. – volume: 1 start-page: 50 year: 2007 publication-title: ACS Nano – volume: 377 start-page: 133 year: 2008 publication-title: Key Eng. Mater. – volume: 127 start-page: 8916 year: 2005 publication-title: J. Am. Chem. Soc. – volume: 18 start-page: 2722 year: 2008 publication-title: J. Mater. Chem. – volume: 45 start-page: 8224 year: 2006 publication-title: Angew. Chem. Int. Ed. – volume: 17 start-page: 1225 year: 2007 publication-title: Adv. Funct. Mater. – volume: 130 start-page: 11584 year: 2008 publication-title: J. Am. Chem. Soc. – volume: 6 start-page: 611 year: 1975 publication-title: Hum. Pathol. – volume: 19 start-page: 6249 year: 2009 publication-title: J. Mater. Chem. – volume: 45 start-page: 577 year: 2006 publication-title: Angew. Chem. Int. Ed. – year: 2007 – volume: 1 start-page: 57 year: 2004 publication-title: Expert Opin. Drug Delivery – volume: 41 start-page: 60 year: 2008 publication-title: Acc. Chem. Res. – volume: 2 start-page: 889 year: 2008 publication-title: ACS Nano – volume: 7 start-page: 242 year: 2008 publication-title: Nat. Mater. – volume: 125 start-page: 4451 year: 2003 publication-title: J. Am. Chem. Soc. – volume: 5 start-page: 361 year: 2009 publication-title: Small – volume: 10 start-page: 961 year: 2003 publication-title: Chem. Biol. – volume: 68 start-page: 6652 year: 2008 publication-title: Cancer Res. – volume: 5 start-page: 36 year: 2009 publication-title: J. Biomed. Nanotechnol. – volume: 12 start-page: 5934 year: 2006 publication-title: Chem. ‐Eur. J. – volume: 8 start-page: 175 year: 2008 publication-title: Mini‐Rev. Med. Chem. – volume: 131 start-page: 1686 year: 2009 publication-title: J. Am. Chem. Soc. – volume: 3 start-page: 89 year: 2007 publication-title: NanoBiotechnology – volume: 129 start-page: 9852 year: 2007 publication-title: J. Am. Chem. Soc. – volume: 97 start-page: 125 year: 2004 publication-title: J. Controlled Release – volume: 2 start-page: 343 year: 1984 publication-title: Radiother. Oncol. – year: 2006 – volume: 200 start-page: 541 year: 2002 publication-title: J. Anat. – volume: 92 start-page: S2 year: 2008 publication-title: J. Am. Ceram. Soc. – volume: 60 start-page: 1278 year: 2008 publication-title: Adv. Drug Delivery Rev. – volume: 60 start-page: 1307 year: 2008 publication-title: Adv. Drug Delivery Rev. – volume: 130 start-page: 2382 year: 2008 publication-title: J. Am. Chem. Soc. – volume: 48 start-page: 6247 year: 2009 publication-title: Angew. Chem. Int. Ed. – volume: 130 start-page: 10876 year: 2008 publication-title: J. Am. Chem. Soc. – volume: 126 start-page: 13216 year: 2004 publication-title: J. Am. Chem. Soc. – volume: 17 start-page: 2261 year: 2007 publication-title: Adv. Funct. Mater. – volume: 38 start-page: 1759 year: 2009 publication-title: Chem. Soc. Rev. – volume: 26 start-page: 746 year: 2009 publication-title: Pharm. Res. – volume: 19 start-page: 6251 year: 2009 publication-title: J. Mater. Chem. – ident: e_1_2_6_37_2 doi: 10.1002/anie.200803387 – volume-title: Cancer Nanotechnology: Nanomaterials for Cancer Diagnosis and Therapy year: 2007 ident: e_1_2_6_6_2 – ident: e_1_2_6_19_2 doi: 10.1021/nn800072t – ident: e_1_2_6_27_2 doi: 10.1021/ja028650l – ident: e_1_2_6_12_2 doi: 10.1021/nn800669n – ident: e_1_2_6_24_2 doi: 10.1021/ja710193c – ident: e_1_2_6_15_2 doi: 10.1021/ja807798g – ident: e_1_2_6_17_2 doi: 10.1111/j.1551-2916.2008.02722.x – ident: e_1_2_6_30_2 doi: 10.1007/s11095-008-9811-0 – ident: e_1_2_6_7_2 doi: 10.1039/b914842f – ident: e_1_2_6_36_2 doi: 10.1038/nmat2118 – ident: e_1_2_6_2_2 doi: 10.1046/j.1469-7580.2002.00059.x – ident: e_1_2_6_22_2 doi: 10.1021/ja046275m – ident: e_1_2_6_1_2 doi: 10.1016/S0009-2509(03)00234-3 – ident: e_1_2_6_46_2 doi: 10.1002/smll.200800808 – volume-title: Nanotechnology for Cancer Therapy year: 2007 ident: e_1_2_6_5_2 – ident: e_1_2_6_43_2 doi: 10.1016/S0167-8140(84)80077-8 – ident: e_1_2_6_26_2 doi: 10.1021/ja051113r – volume-title: Nanomaterials for Cancer Therapy year: 2006 ident: e_1_2_6_4_2 – ident: e_1_2_6_10_2 doi: 10.1016/j.addr.2008.03.016 – ident: e_1_2_6_47_2 doi: 10.1021/nn700040t – ident: e_1_2_6_11_2 doi: 10.2174/138955708783498078 – ident: e_1_2_6_41_2 doi: 10.1002/adfm.200601217 – ident: e_1_2_6_40_2 doi: 10.1016/j.addr.2008.03.012 – ident: e_1_2_6_45_2 doi: 10.1021/cm052580a – ident: e_1_2_6_8_2 doi: 10.1039/b806051g – ident: e_1_2_6_14_2 doi: 10.1016/j.jconrel.2004.03.005 – ident: e_1_2_6_25_2 doi: 10.1002/chem.200600226 – ident: e_1_2_6_28_2 doi: 10.1016/j.chembiol.2003.09.011 – ident: e_1_2_6_42_2 doi: 10.1016/S1053-4296(98)80043-X – ident: e_1_2_6_20_2 doi: 10.1007/s12030-008-9003-3 – ident: e_1_2_6_21_2 doi: 10.1021/ja0772086 – ident: e_1_2_6_3_2 doi: 10.1016/S0046-8177(75)80045-1 – ident: e_1_2_6_9_2 doi: 10.1166/jbn.2009.1005 – ident: e_1_2_6_33_2 doi: 10.1002/anie.200503389 – ident: e_1_2_6_16_2 doi: 10.4028/www.scientific.net/KEM.377.133 – ident: e_1_2_6_18_2 doi: 10.1039/b902462j – ident: e_1_2_6_48_2 doi: 10.1021/ja803688x – ident: e_1_2_6_34_2 doi: 10.1039/b800389k – ident: e_1_2_6_35_2 doi: 10.1002/anie.200902208 – ident: e_1_2_6_38_2 doi: 10.1021/ja803383k – ident: e_1_2_6_39_2 doi: 10.1021/ja073506r – ident: e_1_2_6_23_2 doi: 10.1002/adfm.200601191 – ident: e_1_2_6_31_2 doi: 10.1021/ar700089b – ident: e_1_2_6_32_2 doi: 10.1158/0008-5472.CAN-08-1468 – volume: 3 start-page: 403 year: 2008 ident: e_1_2_6_13_2 publication-title: Int. J. Nanomed. – ident: e_1_2_6_44_2 doi: 10.1002/anie.200603507 – ident: e_1_2_6_29_2 doi: 10.1517/17425247.1.1.57 |
SSID | ssj0017734 |
Score | 2.4311714 |
Snippet | Hollow mesoporous zirconia nanocapsules (hm‐ZrO2) with a hollow core/porous shell structure are demonstrated as effective vehicles for anti‐cancer drug... Hollow mesoporous zirconia nanocapsules ( hm ‐ZrO 2 ) with a hollow core/porous shell structure are demonstrated as effective vehicles for anti‐cancer drug... |
SourceID | crossref wiley istex |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 2442 |
SubjectTerms | doxorubicin drug delivery hollow nanostructure nanocapsules |
Title | Hollow Mesoporous Zirconia Nanocapsules for Drug Delivery |
URI | https://api.istex.fr/ark:/67375/WNG-DB7C7ZVK-2/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.201000647 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LT8IwGG8MXvTg24iv7GD0NGAtW-kRmUg0cDCihMvS9WEIyMxg8fHX-3WDCSbGRA87LP26dN-rv25ff0XojCgwugPOW9UQ5FUslF0TEtuYV7ShM2NYms3J7Y7X6lZvem5vYRd_xg-Rf3AzkZHmaxPgPJyUv0hDudTPaWlWul8SkrAp2DKo6C7nj3IozX4re44p8HJ6c9bGCi4vd1-alVaNgt-W0Wo63TQ3EZ8PNKsyGZaSaVgSH984HP_zJltoY4ZFrXrmPNtoRY130PoCQ-EuYi3wk-jVaqtJBEg9SiZWfxDDGnrALUjMMBHCKnukJhZgX8uPkyfLh8FAeLzvoW7z6r7RsmenLdjCkOLZBFMtWKglIUyCoQyRGFcVR3iuYk6oqdRezatxaHMdDs2GqZ4aQEgoIXDto8I4GqsDZOlQcEkl45JDggg505QBMJUOFURTzYrInms7EDMqcnMixijISJRxYFQS5Copootc_iUj4fhR8jw1Xi7G46EpXaNu8Ni5DvxL2qD9h9sAFxFOTfLL84K632znd4d_6XSE1rKKA1NmcowK0zhRJwBkpuFp6qyf0H3n3A |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT9swFH8Cehg7bDCG1sG2HBA7hTZOG9dHaNZ19OMwtQz1Yjn-QFW7duqHNvjreS9psxUJTYJDDpHtyH4f9rPz8-8BnIQWlR6g8VYcOnmFaevXtGE-U2VHdGaCGbqc3OlGzX7l8rq6RhPSXZiMHyI_cCPPSOdrcnA6kC79ZQ1Vxv1MsVnphcltKFBab0piEH_PGaQCzrMfy1FAEK_ges3bWGalzfYb61KBRPxnM15NF5zGa0jWXc1wJqOz5SI503cPWByfNZY9eLUKR73zzH72YctO3sDLf0gKD0A00VSmv72OnU8xWJ8u595gOMNt9FB5ODfjWogb7bGdexj-evFseePF2Bv0kNu30G986dWb_irhgq-JF88PGXdaJM6EoTCoK-ISU7Yc6KhqRZA4blxUi2oKy6qBwmIiq-cUE4Y8DPE5hJ3JdGLfgecSrQw3QhmFc0SihOMCY1MTcB067kQR_LW4pV6xkVNSjLHMeJSZJJHIXCRF-JzX_5XxcDxa8zTVXl5NzUaEXuNV-aP7VcYXvM4HVy3JisBSnfzne_I8bnTyt_dPafQJXjR7nbZsf-u2jmA3AyAQ6uQYdhazpf2Acc0i-Zha7j1g8ev2 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8NAFH6oBdGDu1jXHERP0WbSZjpHNdZqbRFxKV6GySxSWlvpgsuv903SRiuIoIccwsyEyVu_Sd58A7Dra1S6h8abN-jkeSK1W5SKuETkjKUzY0TZzcnVWlC-zV_UC_Uvu_gTfoj0g5v1jDheWwd_VubwkzRUKPMUl2bF-yUnIZMP0GMsLLpOCaQ8SpP_yoFnK7y8-oi2MUcOx8ePpaWMlfDrOFyN801pHsRopkmZSfNg0I8O5Ps3Esf_vMoCzA3BqHOUWM8iTOj2Esx-oShcBlZGQ-m8OFXd6yBU7wx6zkOji4vohnAwMmMmxGV2S_ccBL9O2B08OiFOBv3jbQVuS6c3J2V3eNyCKy0rnusTaiSLjPJ9plBTlklM6Jwng4JmXmSoMkExKApsK3gCmy1VPbWI0Ke-j9cqTLU7bb0GjomkUFQxoQRGiEgwQxkiU-VR6RtqWBbckbS5HHKR2yMxWjxhUSbcioSnIsnCftr_OWHh-LHnXqy8tJvoNm3tGi3w-9oZD4_pCX24q3CSBRKr5Jfn8aOwVE3v1v8yaAemr8ISvzyvVTZgJqk-sCUnmzDV7w70FoKafrQd2-0Hu0nqrg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hollow+Mesoporous+Zirconia+Nanocapsules+for+Drug+Delivery&rft.jtitle=Advanced+functional+materials&rft.au=Tang%2C+Shaoheng&rft.au=Huang%2C+Xiaoqing&rft.au=Chen%2C+Xiaolan&rft.au=Zheng%2C+Nanfeng&rft.date=2010-08-09&rft.pub=WILEY-VCH+Verlag&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=20&rft.issue=15&rft.spage=2442&rft.epage=2447&rft_id=info:doi/10.1002%2Fadfm.201000647&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_DB7C7ZVK_2 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |