Stomatal regulation prevents plants from critical water potentials during drought: Result of a model linking soil–plant hydraulics to abscisic acid dynamics
Understanding stomatal regulation during drought is essential to correctly predict vegetation‐atmosphere fluxes. Stomatal optimization models posit that stomata maximize the carbon gain relative to a penalty caused by water loss, such as xylem cavitation. However, a mechanism that allows the stomata...
Saved in:
Published in | Ecohydrology Vol. 15; no. 5 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Oxford
Wiley Subscription Services, Inc
01.07.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Understanding stomatal regulation during drought is essential to correctly predict vegetation‐atmosphere fluxes. Stomatal optimization models posit that stomata maximize the carbon gain relative to a penalty caused by water loss, such as xylem cavitation. However, a mechanism that allows the stomata to behave optimally is unknown. Here, we introduce a model of stomatal regulation that results in similar stomatal behaviour without presupposing an optimality principle. By contrast, the proposed model explains stomatal closure based on a well‐known component of stomatal regulation: abscisic acid (ABA). The ABA level depends on its production rate, which is assumed to increase with declining leaf water potential, and on its degradation rate, which is assumed to increase with assimilation rate. Our model predicts that stomata open until the ratio of leaf water potential to assimilation rate, proportional to ABA level, is at a minimum. As a prerequisite, the model simulates soil–plant hydraulics and leaf photosynthesis under varying environmental conditions. The model predicts that in wet soils and at low vapour pressure deficit (VPD), when there is no water limitation, stomatal closure is controlled by the relationship between photosynthesis and stomatal conductance. In dry soils or at high VPD, when the soil hydraulic conductivity limits the water supply, stomatal closure is triggered by the sharp decline in leaf water potential as transpiration rate increases. Being adaptive to changing soil and atmospheric conditions, the proposed model can explain how plants are enabled to avoid critical water potentials during drought for varying soil properties and atmospheric conditions. |
---|---|
AbstractList | Understanding stomatal regulation during drought is essential to correctly predict vegetation‐atmosphere fluxes. Stomatal optimization models posit that stomata maximize the carbon gain relative to a penalty caused by water loss, such as xylem cavitation. However, a mechanism that allows the stomata to behave optimally is unknown. Here, we introduce a model of stomatal regulation that results in similar stomatal behaviour without presupposing an optimality principle. By contrast, the proposed model explains stomatal closure based on a well‐known component of stomatal regulation: abscisic acid (ABA). The ABA level depends on its production rate, which is assumed to increase with declining leaf water potential, and on its degradation rate, which is assumed to increase with assimilation rate. Our model predicts that stomata open until the ratio of leaf water potential to assimilation rate, proportional to ABA level, is at a minimum. As a prerequisite, the model simulates soil–plant hydraulics and leaf photosynthesis under varying environmental conditions. The model predicts that in wet soils and at low vapour pressure deficit (VPD), when there is no water limitation, stomatal closure is controlled by the relationship between photosynthesis and stomatal conductance. In dry soils or at high VPD, when the soil hydraulic conductivity limits the water supply, stomatal closure is triggered by the sharp decline in leaf water potential as transpiration rate increases. Being adaptive to changing soil and atmospheric conditions, the proposed model can explain how plants are enabled to avoid critical water potentials during drought for varying soil properties and atmospheric conditions. |
Author | Wankmüller, Fabian J. P. Carminati, Andrea |
Author_xml | – sequence: 1 givenname: Fabian J. P. orcidid: 0000-0002-3165-6980 surname: Wankmüller fullname: Wankmüller, Fabian J. P. email: fabian.wankmueller@usys.ethz.ch organization: ETH Zurich – sequence: 2 givenname: Andrea surname: Carminati fullname: Carminati, Andrea organization: ETH Zurich |
BookMark | eNp10cFu1DAQBmALFYm2IPEII3Hhsosde4PNDa1ailSpUoFzNGtPti5OHGyn1d76Dtz7cDwJyS7igMppLPmbGdn_CTvqY0-MvRZ8KTiv3pGNy0rq-hk7FkbWC74y1dHfs1Yv2EnOt5zXQq3kMXv8UmKHBQMk2o4Bi489DInuqC8ZhoBzaVPswCZfvJ3gPRZKMMQyEY8hgxuT77fgUhy3N-UDXFMeQ4HYAkIXHQUIvv8-kxx9-PXwcz8WbnYu4Ri8zVAi4CZbn70FtN6B2_XYTTcv2fN2WkGv_tRT9u387Ov6YnF59enz-uPlwsr5YU6-p9pI1FZsqBUctdy0VMuKU61aaXBlSCmytdBWC1dpq1ArJ5RxitSqkqfszWHukOKPkXJpbuOY-mllU9VGGVVpIya1PCibYs6J2sb6sv-yktCHRvBmzqCZMmjmDKaGt_80DMl3mHZP0cWB3vtAu_-65mx9tfe_AdCznHY |
CitedBy_id | crossref_primary_10_1016_j_plaphy_2024_109299 crossref_primary_10_1007_s11104_022_05656_2 crossref_primary_10_1016_j_plaphy_2024_108762 crossref_primary_10_1111_ppl_14030 crossref_primary_10_32615_ps_2023_001 crossref_primary_10_3390_f13040619 crossref_primary_10_3390_f14102087 crossref_primary_10_1029_2024JG008404 crossref_primary_10_1071_FP23036 crossref_primary_10_1002_fes3_458 crossref_primary_10_1093_treephys_tpae158 crossref_primary_10_1038_s41586_024_08089_2 crossref_primary_10_1093_jxb_erad221 crossref_primary_10_1111_pce_14658 crossref_primary_10_1111_pce_14536 crossref_primary_10_1016_j_stress_2024_100506 crossref_primary_10_1002_eco_2456 crossref_primary_10_3389_fpls_2023_1140938 crossref_primary_10_1007_s00271_024_00930_w crossref_primary_10_1111_pce_15012 crossref_primary_10_1111_pce_15087 crossref_primary_10_1111_nph_20020 crossref_primary_10_3389_fpls_2022_1079283 |
Cites_doi | 10.1007/978-94-017-0519-6_48 10.1007/s11738-012-1051-6 10.1111/1365-2435.12289 10.1111/pce.12817 10.1093/jxb/erh212 10.1093/jxb/49.323.945 10.1104/pp.20.00426 10.1016/S0015-3796(11)80234-9 10.1029/2018GL078131 10.1093/aobpla/plaa025 10.1038/s41467-019-11006-1 10.1104/pp.17.00078 10.1111/ele.12851 10.1111/nph.16548 10.1093/jxb/eri282 10.1111/nph.13846 10.1371/journal.pone.0185481 10.1104/pp.17.00912 10.7554/eLife.01739 10.1016/j.tplants.2018.04.001 10.1023/A:1001064502869 10.1111/j.1365-313X.2007.03234.x 10.1063/1.1745010 10.1111/j.1365-2486.2010.02375.x 10.1104/pp.98.2.540 10.1104/pp.84.1.157 10.1111/nph.13354 10.1111/pce.12669 10.1093/jxb/erx124 10.2136/vzj2007.0114 10.1111/j.1365-3040.1993.tb00880.x 10.1111/j.1469-8137.2011.03847.x 10.1111/j.1365-3040.2010.02234.x 10.3389/fpls.2019.01695 10.1093/aob/mcz005 10.1016/0378-4290(91)90025-Q 10.1046/j.1365-3040.2003.01035.x 10.1111/nph.16572 10.1016/j.tplants.2020.04.003 10.1111/jipb.12534 10.1111/pce.12852 10.1029/WR014i003p00479 10.1111/nph.15899 10.1016/j.pbi.2015.10.010 10.1111/pce.13939 10.3389/fpls.2017.01602 10.1093/jxb/erq260 10.1111/j.1365-3040.1995.tb00370.x 10.1093/jxb/48.6.1281 10.1126/scisignal.2001346 10.1016/j.jplph.2017.12.019 10.1111/pce.12140 10.1104/pp.16.00380 10.1111/nph.16649 10.1111/j.1469-8137.2008.02592.x 10.1093/jxb/49.Special_Issue.419 10.1093/jxb/eraa392 10.1016/j.envexpbot.2009.02.001 10.1111/pce.12997 10.1111/j.1365-3040.1995.tb00539.x 10.1111/j.1365-3040.1995.tb00371.x 10.1046/j.1365-313X.1994.6050665.x 10.1078/0176-1617-00177 10.1016/j.cell.2006.07.034 10.2136/vzj2006.0056 10.1046/j.0016-8025.2001.00824.x 10.1046/j.1365-3040.2003.01094.x 10.1038/s41586-018-0240-x 10.1104/pp.17.01829 10.1038/221281a0 10.1111/nph.16177 10.1007/s11104-019-04408-z 10.1371/journal.pbio.0040312 10.1007/BF00386419 10.1093/jexbot/53.373.1503 10.1073/pnas.1615144113 10.3389/fenvs.2018.00013 10.1097/00010694-196002000-00001 10.1104/pp.16.01816 10.1007/BF00386231 10.1016/S0176-1617(11)80467-0 10.1002/2015JG003114 |
ContentType | Journal Article |
Copyright | 2021 The Authors. published by John Wiley & Sons Ltd. 2021. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2021 The Authors. published by John Wiley & Sons Ltd. – notice: 2021. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION 7QH 7UA C1K F1W H96 H97 L.G |
DOI | 10.1002/eco.2386 |
DatabaseName | Wiley Online Library Open Access CrossRef Aqualine Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Aquatic Science & Fisheries Abstracts (ASFA) Professional |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts Aqualine Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Water Resources Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional CrossRef |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Ecology |
EISSN | 1936-0592 |
EndPage | n/a |
ExternalDocumentID | 10_1002_eco_2386 ECO2386 |
Genre | article |
GroupedDBID | 05W 0R~ 1OC 24P 31~ 33P 3SF 4.4 4P2 52U 5DZ 5GY 66C 8-0 8-1 8UM A00 AAESR AAEVG AAHBH AAHHS AAHQN AAIHA AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCUV ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZFZN AZVAB BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI C45 DCZOG DR2 DRFUL DRSTM DU5 EBD EBS ECGQY EDH EJD F1Z FEDTE G-S GODZA HGLYW HVGLF HZ~ IX1 LATKE LEEKS LH4 LITHE LOXES LUTES LW6 LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY. MY~ NNB O66 O9- OIG OVD P2P P2W P4E ROL SUPJJ TEORI W99 WBKPD WIH WIK WOHZO WUPDE WXSBR WYISQ WYJ XV2 ZZTAW ~S- AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION 7QH 7UA AAMMB AEFGJ AGXDD AIDQK AIDYY C1K F1W H96 H97 L.G |
ID | FETCH-LOGICAL-c3936-d37e693a8c1bef10a83bfe6320e64f39a59e44ec618c81d28c4a84d149d4e4523 |
IEDL.DBID | DR2 |
ISSN | 1936-0584 |
IngestDate | Fri Jul 25 12:22:35 EDT 2025 Tue Jul 01 02:38:07 EDT 2025 Thu Apr 24 23:02:38 EDT 2025 Wed Jan 22 16:23:52 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | Attribution-NonCommercial |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3936-d37e693a8c1bef10a83bfe6320e64f39a59e44ec618c81d28c4a84d149d4e4523 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-3165-6980 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Feco.2386 |
PQID | 2694942891 |
PQPubID | 866379 |
PageCount | 15 |
ParticipantIDs | proquest_journals_2694942891 crossref_citationtrail_10_1002_eco_2386 crossref_primary_10_1002_eco_2386 wiley_primary_10_1002_eco_2386_ECO2386 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2022 |
PublicationDateYYYYMMDD | 2022-07-01 |
PublicationDate_xml | – month: 07 year: 2022 text: July 2022 |
PublicationDecade | 2020 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Ecohydrology |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 40 1998; 49 2017; 8 2002; 53 2019; 10 1997; 48 2011; 62 2019; 124 2008; 7 2020; 447 2011; 192 2020; 12 2020; 10 2014; 28 2011; 17 2018; 45 2016; 39 1992; 98 1990; 186 1980; 148 1980; 149 2018; 6 2018; 177 2018; 176 1987; 84 2014; 3 1960; 89 1987 2016; 113 1977; 31 2006; 126 2009; 66 2017; 20 2021; 44 2016; 209 2018; 227 2015; 120 2017; 68 2020; 183 2020; 226 2020; 225 2006; 5 1993; 141 2019; 224 2020; 227 2017; 174 2006; 4 2011; 34 2015; 207 1978; 14 1964; 24 2007; 52 1995; 18 2011; 4 2018; 23 1969; 221 2008; 180 2004; 55 2002; 25 1991; 27 2015; 28 2013; 36 1993; 16 2017; 59 2013; 35 2018; 558 2020; 71 2017; 12 2003; 26 1997; 39 2020; 25 2016; 171 2005; 56 1931; 1 2001; 158 1994; 6 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 Brooks R. H. (e_1_2_7_10_1) 1964 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_83_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_81_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_85_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_68_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 Cowan I. R. (e_1_2_7_24_1) 1977; 31 e_1_2_7_73_1 e_1_2_7_50_1 e_1_2_7_71_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_77_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_75_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_79_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_80_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_84_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_61_1 e_1_2_7_82_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_63_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_65_1 e_1_2_7_86_1 e_1_2_7_46_1 e_1_2_7_67_1 e_1_2_7_48_1 e_1_2_7_69_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_72_1 e_1_2_7_51_1 e_1_2_7_70_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_76_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_74_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_78_1 e_1_2_7_38_1 |
References_xml | – volume: 5 start-page: 1264 issue: 4 year: 2006 end-page: 1277 article-title: Root water extraction and limiting soil hydraulic conditions estimated by numerical simulation publication-title: Vadose Zone Journal – volume: 10 start-page: 3398 issue: 1 year: 2019 article-title: A stomatal safety‐efficiency trade‐off constrains responses to leaf dehydration publication-title: Nature Communications – volume: 227 start-page: 1804 issue: 6 year: 2020 end-page: 1817 article-title: Drought‐induced lacuna formation in the stem causes hydraulic conductance to decline before xylem embolism in selaginella publication-title: New Phytologist – volume: 4 start-page: ra32 issue: 173 year: 2011 article-title: Stomatal closure by fast abscisic acid signaling is mediated by the guard cell anion channel SLAH3 and the receptor RCAR1 publication-title: Science Signaling – volume: 4 issue: 10 year: 2006 article-title: Predicting essential components of signal transduction networks: A dynamic model of guard cell abscisic acid signaling publication-title: PLOS Biology – volume: 40 start-page: 1940 issue: 9 year: 2017 end-page: 1959 article-title: Persistent negative temperature response of mesophyll conductance in red raspberry (Rubus idaeus L.) leaves under both high and low vapour pressure deficits: A role for abscisic acid? publication-title: Plant, Cell & Environment – volume: 120 start-page: 1894 issue: 10 year: 2015 end-page: 1911 article-title: Evaluating stomatal models and their atmospheric drought response in a land surface scheme: A multibiome analysis publication-title: Journal of Geophysical Research: Biogeosciences – volume: 35 start-page: 95 issue: 1 year: 2013 end-page: 105 article-title: Biomass accumulation and partitioning, photosynthesis, and photosynthetic induction in field‐grown maize (Zea mays L.) under low‐ and high‐nitrogen conditions publication-title: Acta Physiologiae Plantarum – volume: 34 start-page: 162 issue: 1 year: 2011 end-page: 178 article-title: A new, vapour‐phase mechanism for stomatal responses to humidity and temperature publication-title: Plant, Cell & Environment – volume: 221 start-page: 281 issue: 5177 year: 1969 end-page: 282 article-title: Stomatal closure and inhibition of transpiration induced by (RS)‐abscisic acid publication-title: Nature – volume: 39 start-page: 219 issue: 2 year: 1997 end-page: 228 article-title: Age‐specific changes of acidity, phosphoenolpyruvate carboxylase, ribulose‐1,5‐bisphosphate carboxylase/oxygenase, abscisic acid and leaf water potential in Mesembryanthemum nodiflorum publication-title: Biologia Plantarum – volume: 186 start-page: 357 issue: 5 year: 1990 end-page: 366 article-title: Stomatal responses of plants in drying soil publication-title: Biochemie und Physiologie der Pflanzen – volume: 12 start-page: plaa025 issue: 4 year: 2020 article-title: Osmotic adjustment and hormonal regulation of stomatal responses to vapour pressure deficit in sunflower publication-title: AoB PLANTS – volume: 180 start-page: 642 issue: 3 year: 2008 end-page: 651 article-title: An abscisic acid‐related reduced transpiration promotes gradual embolism repair when grapevines are rehydrated after drought publication-title: New Phytologist – volume: 27 start-page: 103 issue: 1 year: 1991 end-page: 117 article-title: Responses of seven diverse rice cultivars to water deficits. III. Accumulation of abscisic acid and proline in relation to leaf water‐potential and osmotic adjustment publication-title: Field Crops Research – volume: 28 start-page: 1313 issue: 6 year: 2014 end-page: 1320 article-title: The variability of stomatal sensitivity to leaf water potential across tree species indicates a continuum between isohydric and anisohydric behaviours publication-title: Functional Ecology – volume: 44 start-page: 425 issue: 2 year: 2021 end-page: 431 article-title: Stomatal closure of tomato under drought is driven by an increase in soil–root hydraulic resistance publication-title: Plant, Cell & Environment – volume: 209 start-page: 1403 issue: 4 year: 2016 end-page: 1409 article-title: Visual quantification of embolism reveals leaf vulnerability to hydraulic failure publication-title: New Phytologist – start-page: 221 year: 1987 end-page: 224 – volume: 18 start-page: 357 issue: 4 year: 1995 end-page: 364 article-title: A reinterpretation of stomatal responses to humidity publication-title: Plant, Cell & Environment – volume: 126 start-page: 1109 issue: 6 year: 2006 end-page: 1120 article-title: Activation of glucosidase via stress‐induced polymerization rapidly increases active pools of abscisic acid publication-title: Cell – volume: 113 start-page: E7222 issue: 46 year: 2016 end-page: E7230 article-title: Optimal stomatal behavior with competition for water and risk of hydraulic impairment publication-title: Proceedings of the National Academy of Sciences – volume: 59 start-page: 356 issue: 6 year: 2017 end-page: 389 article-title: Plant xylem hydraulics: What we understand, current research, and future challenges publication-title: Journal of Integrative Plant Biology – volume: 18 start-page: 339 issue: 4 year: 1995 end-page: 355 article-title: A critical appraisal of a combined stomatal‐photosynthesis model for C3 plants publication-title: Plant, Cell & Environment – volume: 226 start-page: 1535 issue: 6 year: 2020 end-page: 1538 article-title: Plant hydraulics play a critical role in earth system fluxes publication-title: New Phytologist – volume: 39 start-page: 652 issue: 3 year: 2016 end-page: 659 article-title: Shoot‐derived abscisic acid promotes root growth publication-title: Plant, Cell & Environment – volume: 174 start-page: 764 issue: 2 year: 2017 end-page: 775 article-title: Stomatal closure, basal leaf embolism, and shedding protect the hydraulic integrity of grape stems publication-title: Plant Physiology – volume: 23 start-page: 513 issue: 6 year: 2018 end-page: 522 article-title: ABA transport and plant water stress responses publication-title: Trends in Plant Science – volume: 36 start-page: 1691 issue: 9 year: 2013 end-page: 1699 article-title: Modelling stomatal conductance in response to environmental factors: Modelling stomatal conductance publication-title: Plant, Cell & Environment – volume: 14 start-page: 479 issue: 3 year: 1978 end-page: 484 article-title: The statistical mechanical theory of water transport through unsaturated soil: 2. Derivation of the buckingham‐darcy flux law publication-title: Water Resources Research – volume: 53 start-page: 1503 issue: 373 year: 2002 end-page: 1514 article-title: Stomatal control in tomato with ABA‐deficient roots: response of grafted plants to soil drying publication-title: Journal of Experimental Botany – volume: 56 start-page: 2877 issue: 421 year: 2005 end-page: 2883 article-title: Diurnal variation of cytokinin, auxin and abscisic acid levels in tobacco leaves publication-title: Journal of Experimental Botany – volume: 49 start-page: 419 year: 1998 end-page: 432 article-title: Variability among species of stomatal control under fluctuating soil water status and evaporative demand: modelling isohydric and anisohydric behaviours publication-title: Journal of Experimental Botany – volume: 20 start-page: 1437 issue: 11 year: 2017 end-page: 1447 article-title: Plant resistance to drought depends on timely stomatal closure publication-title: Ecology Letters – volume: 227 start-page: 311 issue: 2 year: 2020 end-page: 325 article-title: A theoretical and empirical assessment of stomatal optimization modeling publication-title: New Phytologist – volume: 207 start-page: 14 issue: 1 year: 2015 end-page: 27 article-title: What plant hydraulics can tell us about responses to climate‐change droughts publication-title: New Phytologist – volume: 49 start-page: 945 issue: 323 year: 1998 end-page: 952 article-title: Diurnal control of the drought‐inducible putative histone H1 gene in tomato (Lycopersicon esculentum Mill. L.) publication-title: Journal of Experimental Botany – volume: 192 start-page: 640 issue: 3 year: 2011 end-page: 652 article-title: Effects of stomatal delays on the economics of leaf gas exchange under intermittent light regimes publication-title: New Phytologist – volume: 26 start-page: 1767 issue: 10 year: 2003 end-page: 1785 article-title: A hydromechanical and biochemical model of stomatal conductance publication-title: Plant, Cell & Environment – volume: 447 start-page: 565 issue: 1 year: 2020 end-page: 578 article-title: Linear relation between leaf xylem water potential and transpiration in pearl millet during soil drying publication-title: Plant and Soil – volume: 10 start-page: 1695 year: 2020 article-title: Transpiration reduction in maize (Zea mays L) in response to soil drying publication-title: Frontiers in Plant Science – volume: 12 issue: 10 year: 2017 article-title: Plant water potential improves prediction of empirical stomatal models publication-title: PlOS ONE – volume: 66 start-page: 341 issue: 2 year: 2009 end-page: 346 article-title: Hydraulic conductance and vulnerability to cavitation in corn (Zea mays L.) hybrids of differing drought resistance publication-title: Environmental and Experimental Botany – volume: 1 start-page: 318 issue: 5 year: 1931 end-page: 333 article-title: Capillary conduction of liquids through porous mediums publication-title: Physics – volume: 148 start-page: 174 issue: 2 year: 1980 end-page: 182 article-title: Correlation between loss of turgor and accumulation of abscisic acid in detached leaves publication-title: Planta – volume: 16 start-page: 341 issue: 4 year: 1993 end-page: 349 article-title: Integration of hydraulic and chemical signalling in the control of stomatal conductance and water status of droughted plants publication-title: Plant, Cell & Environment – volume: 227 start-page: 31 year: 2018 end-page: 44 article-title: Hydraulic conductivity of soil‐grown lupine and maize unbranched roots and maize root‐shoot junctions publication-title: Journal of Plant Physiology – volume: 71 start-page: 7286 issue: 22 year: 2020 end-page: 7300 article-title: Coordinated decline of leaf hydraulic and stomatal conductances under drought is not linked to leaf xylem embolism for different grapevine cultivars publication-title: Journal of Experimental Botany – volume: 62 start-page: 195 issue: 1 year: 2011 end-page: 203 article-title: Augmentation of abscisic acid (ABA) levels by drought does not induce short‐term stomatal sensitivity to CO in two divergent conifer species publication-title: Journal of Experimental Botany – volume: 17 start-page: 2134 issue: 6 year: 2011 end-page: 2144 article-title: Reconciling the optimal and empirical approaches to modelling stomatal conductance publication-title: Global Change Biology – volume: 171 start-page: 2008 issue: 3 year: 2016 end-page: 2016 article-title: Linking turgor with ABA biosynthesis: Implications for stomatal responses to vapor pressure deficit across land plants publication-title: Plant Physiology – volume: 40 start-page: 872 issue: 6 year: 2017 end-page: 880 article-title: Xylem and stomata, coordinated through time and space: Functional linkages between xylem and stomata publication-title: Plant, Cell & Environment – volume: 89 start-page: 63 issue: 2 year: 1960 end-page: 73 article-title: Dynamic aspects of water availability to plants publication-title: Soil Science – volume: 224 start-page: 21 issue: 1 year: 2019 end-page: 36 article-title: How do stomata respond to water status? publication-title: New Phytologist – year: 1987 – volume: 45 start-page: 6495 issue: 13 year: 2018 end-page: 6503 article-title: Soil moisture stress as a major driver of carbon cycle uncertainty publication-title: Geophysical Research Letters – volume: 8 start-page: 1602 year: 2017 article-title: Temperature variation under continuous light restores tomato leaf photosynthesis and maintains the diurnal pattern in stomatal conductance publication-title: Frontiers in Plant Science – volume: 177 start-page: 911 issue: 3 year: 2018 end-page: 917 article-title: Mesophyll cells are the main site of abscisic acid biosynthesis in water‐stressed leaves publication-title: Plant Physiology – volume: 18 start-page: 13 issue: 1 year: 1995 end-page: 22 article-title: Abscisic acid concentrations and fluxes in droughted conifer saplings publication-title: Plant, Cell & Environment – volume: 24 start-page: 37 year: 1964 – volume: 225 start-page: 126 issue: 1 year: 2020 end-page: 134 article-title: Declining root water transport drives stomatal closure in olive under moderate water stress publication-title: New Phytologist – volume: 141 start-page: 624 issue: 5 year: 1993 end-page: 626 article-title: Studies on the diurnal courses of the contents of abscisic acid, 1‐aminocyclopropane carboxylic acid and its malonyl conjugate in needles of damaged and undamaged spruce trees publication-title: Journal of Plant Physiology – volume: 26 start-page: 1097 issue: 7 year: 2003 end-page: 1116 article-title: A coupled model of stomatal conductance, photosynthesis and transpiration publication-title: Plant, Cell & Environment – volume: 7 start-page: 1089 issue: 3 year: 2008 end-page: 1098 article-title: Effect of local soil hydraulic conductivity drop using a three‐dimensional root water uptake model publication-title: Vadose Zone Journal – volume: 124 start-page: 627 issue: 4 year: 2019 end-page: 643 article-title: Dynamic changes in ABA content in water‐stressed populus nigra: Effects on carbon fixation and soluble carbohydrates publication-title: Annals of Botany – volume: 149 start-page: 78 issue: 1 year: 1980 end-page: 90 article-title: A biochemical model of photosynthetic CO assimilation in leaves of C species publication-title: Planta – volume: 3 year: 2014 article-title: FRET‐based reporters for the direct visualization of abscisic acid concentration changes and distribution in Arabidopsis publication-title: eLife – volume: 25 start-page: 195 issue: 2 year: 2002 end-page: 210 article-title: ABA‐based chemical signalling: The co‐ordination of responses to stress in plants publication-title: Plant, Cell & Environment – volume: 48 start-page: 1281 issue: 6 year: 1997 end-page: 1288 article-title: The role of abscisic acid and water relations in drought responses of subterranean clover publication-title: Journal of Experimental Botany – volume: 6 start-page: 13 year: 2018 article-title: The contributions of Lewis Fry Richardson to drainage theory, soil physics, and the soil‐plant‐atmosphere continuum publication-title: Frontiers in Environmental Science – volume: 55 start-page: 1963 issue: 405 year: 2004 end-page: 1976 article-title: Are diurnal patterns of stomatal movement the result of alternating metabolism of endogenous guard cell ABA and accumulation of ABA delivered to the apoplast around guard cells by transpiration? publication-title: Journal of Experimental Botany – volume: 558 start-page: 531 issue: 7711 year: 2018 end-page: 539 article-title: Triggers of tree mortality under drought publication-title: Nature – volume: 28 start-page: 154 year: 2015 end-page: 162 article-title: Mechanisms of abscisic acid‐mediated control of stomatal aperture publication-title: Current Opinion in Plant Biology – volume: 176 start-page: 851 issue: 1 year: 2018 end-page: 864 article-title: Stomatal VPD response: There is more to the story than ABA publication-title: Plant Physiology – volume: 98 start-page: 540 issue: 2 year: 1992 end-page: 545 article-title: Stomatal response to abscisic acid is a function of current plant water status publication-title: Plant Physiology – volume: 6 start-page: 665 issue: 5 year: 1994 end-page: 672 article-title: Analysis of phytochrome‐ and ABA‐deficient mutants suggests that ABA degradation is controlled by light in nicotiana plumbaginifolia publication-title: The Plant Journal – volume: 31 start-page: 471 year: 1977 end-page: 505 article-title: Stomatal function in relation to leaf metabolism and environment publication-title: Symposia of the Society for Experimental Biology – volume: 158 start-page: 861 issue: 7 year: 2001 end-page: 874 article-title: An attempt to establish a synthetic model of photosynthesis‐transpiration based on stomatal behavior for maize and soybean plants grown in field publication-title: Journal of Plant Physiology – volume: 40 start-page: 816 issue: 6 year: 2017 end-page: 830 article-title: Predicting stomatal responses to the environment from the optimization of photosynthetic gain and hydraulic cost publication-title: Plant, Cell & Environment – volume: 183 start-page: 1612 issue: 4 year: 2020 end-page: 1621 article-title: Leaf carbon export and nonstructural carbohydrates in relation to diurnal water dynamics in mature oak trees publication-title: Plant Physiology – volume: 68 start-page: 2913 issue: 11 year: 2017 end-page: 2918 article-title: Up‐regulation of NCED3 and ABA biosynthesis occur within minutes of a decrease in leaf turgor but AHK1 is not required publication-title: Journal of Experimental Botany – volume: 174 start-page: 639 issue: 2 year: 2017 end-page: 649 article-title: Evolution of the stomatal regulation of plant water content publication-title: Plant Physiology – volume: 52 start-page: 167 issue: 1 year: 2007 end-page: 174 article-title: A hydraulic signal in root‐to‐shoot signalling of water shortage publication-title: The Plant Journal – volume: 84 start-page: 157 issue: 1 year: 1987 end-page: 163 article-title: The catabolism of (±)‐abscisic acid by excised leaves of Hordeum vulgare L. cv dyan and its modification by chemical and environmental factors publication-title: Plant Physiology – volume: 25 start-page: 868 issue: 9 year: 2020 end-page: 880 article-title: Soil rather than xylem vulnerability controls stomatal response to drought publication-title: Trends in Plant Science – ident: e_1_2_7_6_1 doi: 10.1007/978-94-017-0519-6_48 – ident: e_1_2_7_19_1 doi: 10.1007/s11738-012-1051-6 – ident: e_1_2_7_39_1 doi: 10.1111/1365-2435.12289 – ident: e_1_2_7_8_1 doi: 10.1111/pce.12817 – ident: e_1_2_7_72_1 doi: 10.1093/jxb/erh212 – ident: e_1_2_7_22_1 doi: 10.1093/jxb/49.323.945 – ident: e_1_2_7_32_1 doi: 10.1104/pp.20.00426 – ident: e_1_2_7_25_1 doi: 10.1016/S0015-3796(11)80234-9 – ident: e_1_2_7_76_1 doi: 10.1029/2018GL078131 – start-page: 37 volume-title: Hydraulic properties of porous media year: 1964 ident: e_1_2_7_10_1 – ident: e_1_2_7_16_1 doi: 10.1093/aobpla/plaa025 – ident: e_1_2_7_35_1 doi: 10.1038/s41467-019-11006-1 – ident: e_1_2_7_7_1 doi: 10.1104/pp.17.00078 – ident: e_1_2_7_48_1 doi: 10.1111/ele.12851 – ident: e_1_2_7_4_1 doi: 10.1111/nph.16548 – ident: e_1_2_7_59_1 doi: 10.1093/jxb/eri282 – ident: e_1_2_7_9_1 doi: 10.1111/nph.13846 – ident: e_1_2_7_5_1 doi: 10.1371/journal.pone.0185481 – ident: e_1_2_7_54_1 doi: 10.1104/pp.17.00912 – ident: e_1_2_7_81_1 doi: 10.7554/eLife.01739 – ident: e_1_2_7_42_1 doi: 10.1016/j.tplants.2018.04.001 – ident: e_1_2_7_28_1 doi: 10.1023/A:1001064502869 – ident: e_1_2_7_21_1 doi: 10.1111/j.1365-313X.2007.03234.x – ident: e_1_2_7_64_1 doi: 10.1063/1.1745010 – ident: e_1_2_7_53_1 doi: 10.1111/j.1365-2486.2010.02375.x – ident: e_1_2_7_73_1 doi: 10.1104/pp.98.2.540 – ident: e_1_2_7_23_1 doi: 10.1104/pp.84.1.157 – ident: e_1_2_7_68_1 doi: 10.1111/nph.13354 – ident: e_1_2_7_51_1 doi: 10.1111/pce.12669 – ident: e_1_2_7_71_1 doi: 10.1093/jxb/erx124 – ident: e_1_2_7_66_1 doi: 10.2136/vzj2007.0114 – ident: e_1_2_7_74_1 doi: 10.1111/j.1365-3040.1993.tb00880.x – ident: e_1_2_7_80_1 doi: 10.1111/j.1469-8137.2011.03847.x – ident: e_1_2_7_60_1 doi: 10.1111/j.1365-3040.2010.02234.x – ident: e_1_2_7_34_1 doi: 10.3389/fpls.2019.01695 – ident: e_1_2_7_11_1 doi: 10.1093/aob/mcz005 – ident: e_1_2_7_27_1 doi: 10.1016/0378-4290(91)90025-Q – ident: e_1_2_7_77_1 doi: 10.1046/j.1365-3040.2003.01035.x – ident: e_1_2_7_82_1 doi: 10.1111/nph.16572 – ident: e_1_2_7_18_1 doi: 10.1016/j.tplants.2020.04.003 – ident: e_1_2_7_79_1 doi: 10.1111/jipb.12534 – ident: e_1_2_7_69_1 doi: 10.1111/pce.12852 – ident: e_1_2_7_70_1 doi: 10.1029/WR014i003p00479 – ident: e_1_2_7_12_1 doi: 10.1111/nph.15899 – ident: e_1_2_7_58_1 doi: 10.1016/j.pbi.2015.10.010 – volume: 31 start-page: 471 year: 1977 ident: e_1_2_7_24_1 article-title: Stomatal function in relation to leaf metabolism and environment publication-title: Symposia of the Society for Experimental Biology – ident: e_1_2_7_2_1 doi: 10.1111/pce.13939 – ident: e_1_2_7_33_1 doi: 10.3389/fpls.2017.01602 – ident: e_1_2_7_52_1 doi: 10.1093/jxb/erq260 – ident: e_1_2_7_44_1 doi: 10.1111/j.1365-3040.1995.tb00370.x – ident: e_1_2_7_67_1 doi: 10.1093/jxb/48.6.1281 – ident: e_1_2_7_31_1 doi: 10.1126/scisignal.2001346 – ident: e_1_2_7_55_1 doi: 10.1016/j.jplph.2017.12.019 – ident: e_1_2_7_13_1 doi: 10.1111/pce.12140 – ident: e_1_2_7_49_1 doi: 10.1104/pp.16.00380 – ident: e_1_2_7_17_1 doi: 10.1111/nph.16649 – ident: e_1_2_7_47_1 doi: 10.1111/j.1469-8137.2008.02592.x – ident: e_1_2_7_75_1 doi: 10.1093/jxb/49.Special_Issue.419 – ident: e_1_2_7_3_1 doi: 10.1093/jxb/eraa392 – ident: e_1_2_7_46_1 doi: 10.1016/j.envexpbot.2009.02.001 – ident: e_1_2_7_62_1 doi: 10.1111/pce.12997 – ident: e_1_2_7_38_1 doi: 10.1111/j.1365-3040.1995.tb00539.x – ident: e_1_2_7_57_1 doi: 10.1111/j.1365-3040.1995.tb00371.x – ident: e_1_2_7_41_1 doi: 10.1046/j.1365-313X.1994.6050665.x – ident: e_1_2_7_86_1 doi: 10.1078/0176-1617-00177 – ident: e_1_2_7_43_1 doi: 10.1016/j.cell.2006.07.034 – ident: e_1_2_7_78_1 doi: 10.2136/vzj2006.0056 – ident: e_1_2_7_83_1 doi: 10.1046/j.0016-8025.2001.00824.x – ident: e_1_2_7_14_1 doi: 10.1046/j.1365-3040.2003.01094.x – ident: e_1_2_7_20_1 doi: 10.1038/s41586-018-0240-x – ident: e_1_2_7_50_1 doi: 10.1104/pp.17.01829 – ident: e_1_2_7_56_1 doi: 10.1038/221281a0 – ident: e_1_2_7_65_1 doi: 10.1111/nph.16177 – ident: e_1_2_7_15_1 doi: 10.1007/s11104-019-04408-z – ident: e_1_2_7_45_1 doi: 10.1371/journal.pbio.0040312 – ident: e_1_2_7_61_1 doi: 10.1007/BF00386419 – ident: e_1_2_7_37_1 doi: 10.1093/jexbot/53.373.1503 – ident: e_1_2_7_84_1 doi: 10.1073/pnas.1615144113 – ident: e_1_2_7_63_1 doi: 10.3389/fenvs.2018.00013 – ident: e_1_2_7_30_1 doi: 10.1097/00010694-196002000-00001 – ident: e_1_2_7_36_1 doi: 10.1104/pp.16.01816 – ident: e_1_2_7_26_1 – ident: e_1_2_7_29_1 doi: 10.1007/BF00386231 – ident: e_1_2_7_85_1 doi: 10.1016/S0176-1617(11)80467-0 – ident: e_1_2_7_40_1 doi: 10.1002/2015JG003114 |
SSID | ssj0061453 |
Score | 2.4104877 |
Snippet | Understanding stomatal regulation during drought is essential to correctly predict vegetation‐atmosphere fluxes. Stomatal optimization models posit that... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Abscisic acid abscisic acid (ABA) Assimilation Atmospheric conditions Atmospheric correction Atmospheric models Cavitation Drought Environmental conditions Fluid flow Hydraulics Leaves Optimization models Photosynthesis Plants root water uptake Soil conditions Soil conductivity Soil dynamics Soil properties Soils soil–plant hydraulics Stomata Stomatal conductance stomatal regulation Transpiration Vapor pressure Vapour pressure Water loss Water potential Water shortages Water supply Xylem |
Title | Stomatal regulation prevents plants from critical water potentials during drought: Result of a model linking soil–plant hydraulics to abscisic acid dynamics |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Feco.2386 https://www.proquest.com/docview/2694942891 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Na9wwEBVNoNBL-pGUbJMuUyjpyZu1pLXl3sqyIfTQlrSBQA5GlmS6xLte1l7C9tT_0Ht_XH9JZ2R705YGQk4-WDK2ZuR5I2beY-w1mlmFJtG4kZQJJDcyyEwuAhslNh5aRVGTqi0-RKfn8v3F6KKtqqRemIYfYnPgRjvD_69pg-usOr4hDcXsbIDxhti2qVSL8NDZhjkKg44noER4ggkzBtmOd3bIj7uJf0eiG3j5J0j1UebkMbvs3q8pLrkarOpsYL79Q914vw94wnZa8AnvGm95yh64-TP2cOKJq9e77OfnupzRcQ4sG4V6tBksGo6nChYFlcwA9aOAaQUS4Bqh6hIWZU1FR-jJ0LQ9gvXqP_VbOHPVqqihzEGDV92BVq0BqnJa_Pr-wz8Wvq7tUq-KqamgLgG_gJR_DGgztWDXcz3DO3vs_GTyZXwatPoNgRG07lbELkqEVibMXB4OtRJZ7iLBhy6SuUj0KHFSOhOhmyBs5spIraTFnM1KJzFDfs625-Xc7TMIHce4GcfCxFaORkaJ0CEQcbFTuXZc9NibzpapacnNSWOjSBtaZp7iaqe02j32ajNy0RB6_GfMYecOabulq5RafhNM1pKwx468XW-dn07GH-n64q4DD9gjTm0Vvgz4kG3Xy5V7iWCnzvpsi8tPfe_cvwFERQCi |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFLWqIgQbylMMLXCReKwyTWwncSqxQO1UU1qKVFqpu9SxHRiRTkaTjKph1X9gzw_wK3wFX8K1k0wBgcSmC1ZZxHnI923dew4hT1HMIlCJREMSyuNUcS9TOfN0lOjY18JGTdttsR8Nj_jr4_B4iXztZmEafIjFgZu1DOevrYHbA-n1C9RQLM_6GHCitqNy18zPsF6rXu5soXCfUbo9ONwcei2lgKdYwiJPs9hECZNCBZnJA18KluUmYtQ3Ec9ZIsPEcG5UhH-OmRwVikvBNZYRmhseWpQD9PdXLIG4BerfOlhgVWGYc5CXgf2Mj2G9Q7r16Xr3p7_GvouE9ue02MW17RXyrduRpp3lY39WZ3316TewyP9ky26SG21-Da8ag7hFlsz4Nrk6cNjc8zvky7u6PLUnVjA171vmMpg0MFYVTArbFQR25AZUywEBZ5iNT2FS1ravCo0VmslO0I7gqN6AA1PNihrKHCQ4YiFoCSmgKkfF9_PP7rXwYa6nclaMVAV1CRL99QgtBKQaadDzsTzFO3fJ0aVszj2yPC7H5j6BwFBMDeKYqVjzMFSCBQZzLRMbkUtDWY-86JQnVS1-u6URKdIGeZqmKN3USrdHnixWThrMkj-sWev0L229VpXaqeYE69Ek6JHnTpH--nw62Hxrrw_-deFjcm14-GYv3dvZ310l16mdInFdz2tkuZ7OzEPM7erskbMpICeXrZE_APUtXTg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELaqViAuiF-xUGCQ-DmFJraTOEgcULurlqJSAZV6C157oq6UbqJNVtXe-g7ceQAeiydh7CQtSCBx6SkHO4mVb_7szHzD2HOCWUUm06RIygSSGxlMTSECm2Q2Da1yXtNlWxwku0fy_XF8vMZ-DLUwHT_ExYGb0wxvr52C17bYuiQNpd3Za_I3SZ9QuY-rM9quNW_3dgjbF5xPxl-2d4O-o0BgRCaSwIoUk0xoZaIpFlGolZgWmAgeYiILkek4QynRJLRwCuS4MlIraWkXYSXK2JEckLnfcP8WXfoYl4eD1Scv5xkvI_eakMYHotuQbw0r_dP1Xcazv0fF3q1NbrGbfTwK7zoBus3WcH6HXRt7LuvVXfb9c1uduhMeWHRN6wlGqDvapwbq0mXRgCtRAdP3TIAzil4XUFety0Mi4YauEhKsbwjUvoFP2CzLFqoCNPhGPNA3cICmmpU_z7_5x8LJyi70spyZBtoKNNm3GUkUaDOzYFdzfUoj99jRlQBwn63Pqzk-YBAhJ1eapsKkVsaxUSJCik0wRVVo5GLEXg1fOzc937lru1HmHVMzzwmX3OEyYs8uZtYdx8df5mwOgOW9lje5qwLOaP-WRSP20oP4z_vz8fZHd334vxOfsuuHO5P8w97B_iN2g7uiC58kvMnW28USH1Mo1E6feBkE9vWqhf4Xhd0cFA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stomatal+regulation+prevents+plants+from+critical+water+potentials+during+drought%3A+Result+of+a+model+linking+soil%E2%80%93plant+hydraulics+to+abscisic+acid+dynamics&rft.jtitle=Ecohydrology&rft.au=Wankm%C3%BCller%2C+Fabian+J.+P.&rft.au=Carminati%2C+Andrea&rft.date=2022-07-01&rft.issn=1936-0584&rft.eissn=1936-0592&rft.volume=15&rft.issue=5&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Feco.2386&rft.externalDBID=10.1002%252Feco.2386&rft.externalDocID=ECO2386 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0584&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0584&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0584&client=summon |