Stomatal regulation prevents plants from critical water potentials during drought: Result of a model linking soil–plant hydraulics to abscisic acid dynamics

Understanding stomatal regulation during drought is essential to correctly predict vegetation‐atmosphere fluxes. Stomatal optimization models posit that stomata maximize the carbon gain relative to a penalty caused by water loss, such as xylem cavitation. However, a mechanism that allows the stomata...

Full description

Saved in:
Bibliographic Details
Published inEcohydrology Vol. 15; no. 5
Main Authors Wankmüller, Fabian J. P., Carminati, Andrea
Format Journal Article
LanguageEnglish
Published Oxford Wiley Subscription Services, Inc 01.07.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Understanding stomatal regulation during drought is essential to correctly predict vegetation‐atmosphere fluxes. Stomatal optimization models posit that stomata maximize the carbon gain relative to a penalty caused by water loss, such as xylem cavitation. However, a mechanism that allows the stomata to behave optimally is unknown. Here, we introduce a model of stomatal regulation that results in similar stomatal behaviour without presupposing an optimality principle. By contrast, the proposed model explains stomatal closure based on a well‐known component of stomatal regulation: abscisic acid (ABA). The ABA level depends on its production rate, which is assumed to increase with declining leaf water potential, and on its degradation rate, which is assumed to increase with assimilation rate. Our model predicts that stomata open until the ratio of leaf water potential to assimilation rate, proportional to ABA level, is at a minimum. As a prerequisite, the model simulates soil–plant hydraulics and leaf photosynthesis under varying environmental conditions. The model predicts that in wet soils and at low vapour pressure deficit (VPD), when there is no water limitation, stomatal closure is controlled by the relationship between photosynthesis and stomatal conductance. In dry soils or at high VPD, when the soil hydraulic conductivity limits the water supply, stomatal closure is triggered by the sharp decline in leaf water potential as transpiration rate increases. Being adaptive to changing soil and atmospheric conditions, the proposed model can explain how plants are enabled to avoid critical water potentials during drought for varying soil properties and atmospheric conditions.
AbstractList Understanding stomatal regulation during drought is essential to correctly predict vegetation‐atmosphere fluxes. Stomatal optimization models posit that stomata maximize the carbon gain relative to a penalty caused by water loss, such as xylem cavitation. However, a mechanism that allows the stomata to behave optimally is unknown. Here, we introduce a model of stomatal regulation that results in similar stomatal behaviour without presupposing an optimality principle. By contrast, the proposed model explains stomatal closure based on a well‐known component of stomatal regulation: abscisic acid (ABA). The ABA level depends on its production rate, which is assumed to increase with declining leaf water potential, and on its degradation rate, which is assumed to increase with assimilation rate. Our model predicts that stomata open until the ratio of leaf water potential to assimilation rate, proportional to ABA level, is at a minimum. As a prerequisite, the model simulates soil–plant hydraulics and leaf photosynthesis under varying environmental conditions. The model predicts that in wet soils and at low vapour pressure deficit (VPD), when there is no water limitation, stomatal closure is controlled by the relationship between photosynthesis and stomatal conductance. In dry soils or at high VPD, when the soil hydraulic conductivity limits the water supply, stomatal closure is triggered by the sharp decline in leaf water potential as transpiration rate increases. Being adaptive to changing soil and atmospheric conditions, the proposed model can explain how plants are enabled to avoid critical water potentials during drought for varying soil properties and atmospheric conditions.
Author Wankmüller, Fabian J. P.
Carminati, Andrea
Author_xml – sequence: 1
  givenname: Fabian J. P.
  orcidid: 0000-0002-3165-6980
  surname: Wankmüller
  fullname: Wankmüller, Fabian J. P.
  email: fabian.wankmueller@usys.ethz.ch
  organization: ETH Zurich
– sequence: 2
  givenname: Andrea
  surname: Carminati
  fullname: Carminati, Andrea
  organization: ETH Zurich
BookMark eNp10cFu1DAQBmALFYm2IPEII3Hhsosde4PNDa1ailSpUoFzNGtPti5OHGyn1d76Dtz7cDwJyS7igMppLPmbGdn_CTvqY0-MvRZ8KTiv3pGNy0rq-hk7FkbWC74y1dHfs1Yv2EnOt5zXQq3kMXv8UmKHBQMk2o4Bi489DInuqC8ZhoBzaVPswCZfvJ3gPRZKMMQyEY8hgxuT77fgUhy3N-UDXFMeQ4HYAkIXHQUIvv8-kxx9-PXwcz8WbnYu4Ri8zVAi4CZbn70FtN6B2_XYTTcv2fN2WkGv_tRT9u387Ov6YnF59enz-uPlwsr5YU6-p9pI1FZsqBUctdy0VMuKU61aaXBlSCmytdBWC1dpq1ArJ5RxitSqkqfszWHukOKPkXJpbuOY-mllU9VGGVVpIya1PCibYs6J2sb6sv-yktCHRvBmzqCZMmjmDKaGt_80DMl3mHZP0cWB3vtAu_-65mx9tfe_AdCznHY
CitedBy_id crossref_primary_10_1016_j_plaphy_2024_109299
crossref_primary_10_1007_s11104_022_05656_2
crossref_primary_10_1016_j_plaphy_2024_108762
crossref_primary_10_1111_ppl_14030
crossref_primary_10_32615_ps_2023_001
crossref_primary_10_3390_f13040619
crossref_primary_10_3390_f14102087
crossref_primary_10_1029_2024JG008404
crossref_primary_10_1071_FP23036
crossref_primary_10_1002_fes3_458
crossref_primary_10_1093_treephys_tpae158
crossref_primary_10_1038_s41586_024_08089_2
crossref_primary_10_1093_jxb_erad221
crossref_primary_10_1111_pce_14658
crossref_primary_10_1111_pce_14536
crossref_primary_10_1016_j_stress_2024_100506
crossref_primary_10_1002_eco_2456
crossref_primary_10_3389_fpls_2023_1140938
crossref_primary_10_1007_s00271_024_00930_w
crossref_primary_10_1111_pce_15012
crossref_primary_10_1111_pce_15087
crossref_primary_10_1111_nph_20020
crossref_primary_10_3389_fpls_2022_1079283
Cites_doi 10.1007/978-94-017-0519-6_48
10.1007/s11738-012-1051-6
10.1111/1365-2435.12289
10.1111/pce.12817
10.1093/jxb/erh212
10.1093/jxb/49.323.945
10.1104/pp.20.00426
10.1016/S0015-3796(11)80234-9
10.1029/2018GL078131
10.1093/aobpla/plaa025
10.1038/s41467-019-11006-1
10.1104/pp.17.00078
10.1111/ele.12851
10.1111/nph.16548
10.1093/jxb/eri282
10.1111/nph.13846
10.1371/journal.pone.0185481
10.1104/pp.17.00912
10.7554/eLife.01739
10.1016/j.tplants.2018.04.001
10.1023/A:1001064502869
10.1111/j.1365-313X.2007.03234.x
10.1063/1.1745010
10.1111/j.1365-2486.2010.02375.x
10.1104/pp.98.2.540
10.1104/pp.84.1.157
10.1111/nph.13354
10.1111/pce.12669
10.1093/jxb/erx124
10.2136/vzj2007.0114
10.1111/j.1365-3040.1993.tb00880.x
10.1111/j.1469-8137.2011.03847.x
10.1111/j.1365-3040.2010.02234.x
10.3389/fpls.2019.01695
10.1093/aob/mcz005
10.1016/0378-4290(91)90025-Q
10.1046/j.1365-3040.2003.01035.x
10.1111/nph.16572
10.1016/j.tplants.2020.04.003
10.1111/jipb.12534
10.1111/pce.12852
10.1029/WR014i003p00479
10.1111/nph.15899
10.1016/j.pbi.2015.10.010
10.1111/pce.13939
10.3389/fpls.2017.01602
10.1093/jxb/erq260
10.1111/j.1365-3040.1995.tb00370.x
10.1093/jxb/48.6.1281
10.1126/scisignal.2001346
10.1016/j.jplph.2017.12.019
10.1111/pce.12140
10.1104/pp.16.00380
10.1111/nph.16649
10.1111/j.1469-8137.2008.02592.x
10.1093/jxb/49.Special_Issue.419
10.1093/jxb/eraa392
10.1016/j.envexpbot.2009.02.001
10.1111/pce.12997
10.1111/j.1365-3040.1995.tb00539.x
10.1111/j.1365-3040.1995.tb00371.x
10.1046/j.1365-313X.1994.6050665.x
10.1078/0176-1617-00177
10.1016/j.cell.2006.07.034
10.2136/vzj2006.0056
10.1046/j.0016-8025.2001.00824.x
10.1046/j.1365-3040.2003.01094.x
10.1038/s41586-018-0240-x
10.1104/pp.17.01829
10.1038/221281a0
10.1111/nph.16177
10.1007/s11104-019-04408-z
10.1371/journal.pbio.0040312
10.1007/BF00386419
10.1093/jexbot/53.373.1503
10.1073/pnas.1615144113
10.3389/fenvs.2018.00013
10.1097/00010694-196002000-00001
10.1104/pp.16.01816
10.1007/BF00386231
10.1016/S0176-1617(11)80467-0
10.1002/2015JG003114
ContentType Journal Article
Copyright 2021 The Authors. published by John Wiley & Sons Ltd.
2021. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 The Authors. published by John Wiley & Sons Ltd.
– notice: 2021. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
7QH
7UA
C1K
F1W
H96
H97
L.G
DOI 10.1002/eco.2386
DatabaseName Wiley Online Library Open Access
CrossRef
Aqualine
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Aquatic Science & Fisheries Abstracts (ASFA) Professional
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
Aqualine
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional

CrossRef
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Ecology
EISSN 1936-0592
EndPage n/a
ExternalDocumentID 10_1002_eco_2386
ECO2386
Genre article
GroupedDBID 05W
0R~
1OC
24P
31~
33P
3SF
4.4
4P2
52U
5DZ
5GY
66C
8-0
8-1
8UM
A00
AAESR
AAEVG
AAHBH
AAHHS
AAHQN
AAIHA
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZFZN
AZVAB
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
C45
DCZOG
DR2
DRFUL
DRSTM
DU5
EBD
EBS
ECGQY
EDH
EJD
F1Z
FEDTE
G-S
GODZA
HGLYW
HVGLF
HZ~
IX1
LATKE
LEEKS
LH4
LITHE
LOXES
LUTES
LW6
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY.
MY~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P4E
ROL
SUPJJ
TEORI
W99
WBKPD
WIH
WIK
WOHZO
WUPDE
WXSBR
WYISQ
WYJ
XV2
ZZTAW
~S-
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
7QH
7UA
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
F1W
H96
H97
L.G
ID FETCH-LOGICAL-c3936-d37e693a8c1bef10a83bfe6320e64f39a59e44ec618c81d28c4a84d149d4e4523
IEDL.DBID DR2
ISSN 1936-0584
IngestDate Fri Jul 25 12:22:35 EDT 2025
Tue Jul 01 02:38:07 EDT 2025
Thu Apr 24 23:02:38 EDT 2025
Wed Jan 22 16:23:52 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License Attribution-NonCommercial
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3936-d37e693a8c1bef10a83bfe6320e64f39a59e44ec618c81d28c4a84d149d4e4523
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3165-6980
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Feco.2386
PQID 2694942891
PQPubID 866379
PageCount 15
ParticipantIDs proquest_journals_2694942891
crossref_citationtrail_10_1002_eco_2386
crossref_primary_10_1002_eco_2386
wiley_primary_10_1002_eco_2386_ECO2386
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2022
PublicationDateYYYYMMDD 2022-07-01
PublicationDate_xml – month: 07
  year: 2022
  text: July 2022
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Ecohydrology
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 40
1998; 49
2017; 8
2002; 53
2019; 10
1997; 48
2011; 62
2019; 124
2008; 7
2020; 447
2011; 192
2020; 12
2020; 10
2014; 28
2011; 17
2018; 45
2016; 39
1992; 98
1990; 186
1980; 148
1980; 149
2018; 6
2018; 177
2018; 176
1987; 84
2014; 3
1960; 89
1987
2016; 113
1977; 31
2006; 126
2009; 66
2017; 20
2021; 44
2016; 209
2018; 227
2015; 120
2017; 68
2020; 183
2020; 226
2020; 225
2006; 5
1993; 141
2019; 224
2020; 227
2017; 174
2006; 4
2011; 34
2015; 207
1978; 14
1964; 24
2007; 52
1995; 18
2011; 4
2018; 23
1969; 221
2008; 180
2004; 55
2002; 25
1991; 27
2015; 28
2013; 36
1993; 16
2017; 59
2013; 35
2018; 558
2020; 71
2017; 12
2003; 26
1997; 39
2020; 25
2016; 171
2005; 56
1931; 1
2001; 158
1994; 6
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
Brooks R. H. (e_1_2_7_10_1) 1964
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_83_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_81_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_85_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
Cowan I. R. (e_1_2_7_24_1) 1977; 31
e_1_2_7_73_1
e_1_2_7_50_1
e_1_2_7_71_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_77_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_75_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_79_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_80_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_84_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_61_1
e_1_2_7_82_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_63_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_65_1
e_1_2_7_86_1
e_1_2_7_46_1
e_1_2_7_67_1
e_1_2_7_48_1
e_1_2_7_69_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_72_1
e_1_2_7_51_1
e_1_2_7_70_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_76_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_74_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_78_1
e_1_2_7_38_1
References_xml – volume: 5
  start-page: 1264
  issue: 4
  year: 2006
  end-page: 1277
  article-title: Root water extraction and limiting soil hydraulic conditions estimated by numerical simulation
  publication-title: Vadose Zone Journal
– volume: 10
  start-page: 3398
  issue: 1
  year: 2019
  article-title: A stomatal safety‐efficiency trade‐off constrains responses to leaf dehydration
  publication-title: Nature Communications
– volume: 227
  start-page: 1804
  issue: 6
  year: 2020
  end-page: 1817
  article-title: Drought‐induced lacuna formation in the stem causes hydraulic conductance to decline before xylem embolism in selaginella
  publication-title: New Phytologist
– volume: 4
  start-page: ra32
  issue: 173
  year: 2011
  article-title: Stomatal closure by fast abscisic acid signaling is mediated by the guard cell anion channel SLAH3 and the receptor RCAR1
  publication-title: Science Signaling
– volume: 4
  issue: 10
  year: 2006
  article-title: Predicting essential components of signal transduction networks: A dynamic model of guard cell abscisic acid signaling
  publication-title: PLOS Biology
– volume: 40
  start-page: 1940
  issue: 9
  year: 2017
  end-page: 1959
  article-title: Persistent negative temperature response of mesophyll conductance in red raspberry (Rubus idaeus L.) leaves under both high and low vapour pressure deficits: A role for abscisic acid?
  publication-title: Plant, Cell & Environment
– volume: 120
  start-page: 1894
  issue: 10
  year: 2015
  end-page: 1911
  article-title: Evaluating stomatal models and their atmospheric drought response in a land surface scheme: A multibiome analysis
  publication-title: Journal of Geophysical Research: Biogeosciences
– volume: 35
  start-page: 95
  issue: 1
  year: 2013
  end-page: 105
  article-title: Biomass accumulation and partitioning, photosynthesis, and photosynthetic induction in field‐grown maize (Zea mays L.) under low‐ and high‐nitrogen conditions
  publication-title: Acta Physiologiae Plantarum
– volume: 34
  start-page: 162
  issue: 1
  year: 2011
  end-page: 178
  article-title: A new, vapour‐phase mechanism for stomatal responses to humidity and temperature
  publication-title: Plant, Cell & Environment
– volume: 221
  start-page: 281
  issue: 5177
  year: 1969
  end-page: 282
  article-title: Stomatal closure and inhibition of transpiration induced by (RS)‐abscisic acid
  publication-title: Nature
– volume: 39
  start-page: 219
  issue: 2
  year: 1997
  end-page: 228
  article-title: Age‐specific changes of acidity, phosphoenolpyruvate carboxylase, ribulose‐1,5‐bisphosphate carboxylase/oxygenase, abscisic acid and leaf water potential in Mesembryanthemum nodiflorum
  publication-title: Biologia Plantarum
– volume: 186
  start-page: 357
  issue: 5
  year: 1990
  end-page: 366
  article-title: Stomatal responses of plants in drying soil
  publication-title: Biochemie und Physiologie der Pflanzen
– volume: 12
  start-page: plaa025
  issue: 4
  year: 2020
  article-title: Osmotic adjustment and hormonal regulation of stomatal responses to vapour pressure deficit in sunflower
  publication-title: AoB PLANTS
– volume: 180
  start-page: 642
  issue: 3
  year: 2008
  end-page: 651
  article-title: An abscisic acid‐related reduced transpiration promotes gradual embolism repair when grapevines are rehydrated after drought
  publication-title: New Phytologist
– volume: 27
  start-page: 103
  issue: 1
  year: 1991
  end-page: 117
  article-title: Responses of seven diverse rice cultivars to water deficits. III. Accumulation of abscisic acid and proline in relation to leaf water‐potential and osmotic adjustment
  publication-title: Field Crops Research
– volume: 28
  start-page: 1313
  issue: 6
  year: 2014
  end-page: 1320
  article-title: The variability of stomatal sensitivity to leaf water potential across tree species indicates a continuum between isohydric and anisohydric behaviours
  publication-title: Functional Ecology
– volume: 44
  start-page: 425
  issue: 2
  year: 2021
  end-page: 431
  article-title: Stomatal closure of tomato under drought is driven by an increase in soil–root hydraulic resistance
  publication-title: Plant, Cell & Environment
– volume: 209
  start-page: 1403
  issue: 4
  year: 2016
  end-page: 1409
  article-title: Visual quantification of embolism reveals leaf vulnerability to hydraulic failure
  publication-title: New Phytologist
– start-page: 221
  year: 1987
  end-page: 224
– volume: 18
  start-page: 357
  issue: 4
  year: 1995
  end-page: 364
  article-title: A reinterpretation of stomatal responses to humidity
  publication-title: Plant, Cell & Environment
– volume: 126
  start-page: 1109
  issue: 6
  year: 2006
  end-page: 1120
  article-title: Activation of glucosidase via stress‐induced polymerization rapidly increases active pools of abscisic acid
  publication-title: Cell
– volume: 113
  start-page: E7222
  issue: 46
  year: 2016
  end-page: E7230
  article-title: Optimal stomatal behavior with competition for water and risk of hydraulic impairment
  publication-title: Proceedings of the National Academy of Sciences
– volume: 59
  start-page: 356
  issue: 6
  year: 2017
  end-page: 389
  article-title: Plant xylem hydraulics: What we understand, current research, and future challenges
  publication-title: Journal of Integrative Plant Biology
– volume: 18
  start-page: 339
  issue: 4
  year: 1995
  end-page: 355
  article-title: A critical appraisal of a combined stomatal‐photosynthesis model for C3 plants
  publication-title: Plant, Cell & Environment
– volume: 226
  start-page: 1535
  issue: 6
  year: 2020
  end-page: 1538
  article-title: Plant hydraulics play a critical role in earth system fluxes
  publication-title: New Phytologist
– volume: 39
  start-page: 652
  issue: 3
  year: 2016
  end-page: 659
  article-title: Shoot‐derived abscisic acid promotes root growth
  publication-title: Plant, Cell & Environment
– volume: 174
  start-page: 764
  issue: 2
  year: 2017
  end-page: 775
  article-title: Stomatal closure, basal leaf embolism, and shedding protect the hydraulic integrity of grape stems
  publication-title: Plant Physiology
– volume: 23
  start-page: 513
  issue: 6
  year: 2018
  end-page: 522
  article-title: ABA transport and plant water stress responses
  publication-title: Trends in Plant Science
– volume: 36
  start-page: 1691
  issue: 9
  year: 2013
  end-page: 1699
  article-title: Modelling stomatal conductance in response to environmental factors: Modelling stomatal conductance
  publication-title: Plant, Cell & Environment
– volume: 14
  start-page: 479
  issue: 3
  year: 1978
  end-page: 484
  article-title: The statistical mechanical theory of water transport through unsaturated soil: 2. Derivation of the buckingham‐darcy flux law
  publication-title: Water Resources Research
– volume: 53
  start-page: 1503
  issue: 373
  year: 2002
  end-page: 1514
  article-title: Stomatal control in tomato with ABA‐deficient roots: response of grafted plants to soil drying
  publication-title: Journal of Experimental Botany
– volume: 56
  start-page: 2877
  issue: 421
  year: 2005
  end-page: 2883
  article-title: Diurnal variation of cytokinin, auxin and abscisic acid levels in tobacco leaves
  publication-title: Journal of Experimental Botany
– volume: 49
  start-page: 419
  year: 1998
  end-page: 432
  article-title: Variability among species of stomatal control under fluctuating soil water status and evaporative demand: modelling isohydric and anisohydric behaviours
  publication-title: Journal of Experimental Botany
– volume: 20
  start-page: 1437
  issue: 11
  year: 2017
  end-page: 1447
  article-title: Plant resistance to drought depends on timely stomatal closure
  publication-title: Ecology Letters
– volume: 227
  start-page: 311
  issue: 2
  year: 2020
  end-page: 325
  article-title: A theoretical and empirical assessment of stomatal optimization modeling
  publication-title: New Phytologist
– volume: 207
  start-page: 14
  issue: 1
  year: 2015
  end-page: 27
  article-title: What plant hydraulics can tell us about responses to climate‐change droughts
  publication-title: New Phytologist
– volume: 49
  start-page: 945
  issue: 323
  year: 1998
  end-page: 952
  article-title: Diurnal control of the drought‐inducible putative histone H1 gene in tomato (Lycopersicon esculentum Mill. L.)
  publication-title: Journal of Experimental Botany
– volume: 192
  start-page: 640
  issue: 3
  year: 2011
  end-page: 652
  article-title: Effects of stomatal delays on the economics of leaf gas exchange under intermittent light regimes
  publication-title: New Phytologist
– volume: 26
  start-page: 1767
  issue: 10
  year: 2003
  end-page: 1785
  article-title: A hydromechanical and biochemical model of stomatal conductance
  publication-title: Plant, Cell & Environment
– volume: 447
  start-page: 565
  issue: 1
  year: 2020
  end-page: 578
  article-title: Linear relation between leaf xylem water potential and transpiration in pearl millet during soil drying
  publication-title: Plant and Soil
– volume: 10
  start-page: 1695
  year: 2020
  article-title: Transpiration reduction in maize (Zea mays L) in response to soil drying
  publication-title: Frontiers in Plant Science
– volume: 12
  issue: 10
  year: 2017
  article-title: Plant water potential improves prediction of empirical stomatal models
  publication-title: PlOS ONE
– volume: 66
  start-page: 341
  issue: 2
  year: 2009
  end-page: 346
  article-title: Hydraulic conductance and vulnerability to cavitation in corn (Zea mays L.) hybrids of differing drought resistance
  publication-title: Environmental and Experimental Botany
– volume: 1
  start-page: 318
  issue: 5
  year: 1931
  end-page: 333
  article-title: Capillary conduction of liquids through porous mediums
  publication-title: Physics
– volume: 148
  start-page: 174
  issue: 2
  year: 1980
  end-page: 182
  article-title: Correlation between loss of turgor and accumulation of abscisic acid in detached leaves
  publication-title: Planta
– volume: 16
  start-page: 341
  issue: 4
  year: 1993
  end-page: 349
  article-title: Integration of hydraulic and chemical signalling in the control of stomatal conductance and water status of droughted plants
  publication-title: Plant, Cell & Environment
– volume: 227
  start-page: 31
  year: 2018
  end-page: 44
  article-title: Hydraulic conductivity of soil‐grown lupine and maize unbranched roots and maize root‐shoot junctions
  publication-title: Journal of Plant Physiology
– volume: 71
  start-page: 7286
  issue: 22
  year: 2020
  end-page: 7300
  article-title: Coordinated decline of leaf hydraulic and stomatal conductances under drought is not linked to leaf xylem embolism for different grapevine cultivars
  publication-title: Journal of Experimental Botany
– volume: 62
  start-page: 195
  issue: 1
  year: 2011
  end-page: 203
  article-title: Augmentation of abscisic acid (ABA) levels by drought does not induce short‐term stomatal sensitivity to CO in two divergent conifer species
  publication-title: Journal of Experimental Botany
– volume: 17
  start-page: 2134
  issue: 6
  year: 2011
  end-page: 2144
  article-title: Reconciling the optimal and empirical approaches to modelling stomatal conductance
  publication-title: Global Change Biology
– volume: 171
  start-page: 2008
  issue: 3
  year: 2016
  end-page: 2016
  article-title: Linking turgor with ABA biosynthesis: Implications for stomatal responses to vapor pressure deficit across land plants
  publication-title: Plant Physiology
– volume: 40
  start-page: 872
  issue: 6
  year: 2017
  end-page: 880
  article-title: Xylem and stomata, coordinated through time and space: Functional linkages between xylem and stomata
  publication-title: Plant, Cell & Environment
– volume: 89
  start-page: 63
  issue: 2
  year: 1960
  end-page: 73
  article-title: Dynamic aspects of water availability to plants
  publication-title: Soil Science
– volume: 224
  start-page: 21
  issue: 1
  year: 2019
  end-page: 36
  article-title: How do stomata respond to water status?
  publication-title: New Phytologist
– year: 1987
– volume: 45
  start-page: 6495
  issue: 13
  year: 2018
  end-page: 6503
  article-title: Soil moisture stress as a major driver of carbon cycle uncertainty
  publication-title: Geophysical Research Letters
– volume: 8
  start-page: 1602
  year: 2017
  article-title: Temperature variation under continuous light restores tomato leaf photosynthesis and maintains the diurnal pattern in stomatal conductance
  publication-title: Frontiers in Plant Science
– volume: 177
  start-page: 911
  issue: 3
  year: 2018
  end-page: 917
  article-title: Mesophyll cells are the main site of abscisic acid biosynthesis in water‐stressed leaves
  publication-title: Plant Physiology
– volume: 18
  start-page: 13
  issue: 1
  year: 1995
  end-page: 22
  article-title: Abscisic acid concentrations and fluxes in droughted conifer saplings
  publication-title: Plant, Cell & Environment
– volume: 24
  start-page: 37
  year: 1964
– volume: 225
  start-page: 126
  issue: 1
  year: 2020
  end-page: 134
  article-title: Declining root water transport drives stomatal closure in olive under moderate water stress
  publication-title: New Phytologist
– volume: 141
  start-page: 624
  issue: 5
  year: 1993
  end-page: 626
  article-title: Studies on the diurnal courses of the contents of abscisic acid, 1‐aminocyclopropane carboxylic acid and its malonyl conjugate in needles of damaged and undamaged spruce trees
  publication-title: Journal of Plant Physiology
– volume: 26
  start-page: 1097
  issue: 7
  year: 2003
  end-page: 1116
  article-title: A coupled model of stomatal conductance, photosynthesis and transpiration
  publication-title: Plant, Cell & Environment
– volume: 7
  start-page: 1089
  issue: 3
  year: 2008
  end-page: 1098
  article-title: Effect of local soil hydraulic conductivity drop using a three‐dimensional root water uptake model
  publication-title: Vadose Zone Journal
– volume: 124
  start-page: 627
  issue: 4
  year: 2019
  end-page: 643
  article-title: Dynamic changes in ABA content in water‐stressed populus nigra: Effects on carbon fixation and soluble carbohydrates
  publication-title: Annals of Botany
– volume: 149
  start-page: 78
  issue: 1
  year: 1980
  end-page: 90
  article-title: A biochemical model of photosynthetic CO assimilation in leaves of C species
  publication-title: Planta
– volume: 3
  year: 2014
  article-title: FRET‐based reporters for the direct visualization of abscisic acid concentration changes and distribution in Arabidopsis
  publication-title: eLife
– volume: 25
  start-page: 195
  issue: 2
  year: 2002
  end-page: 210
  article-title: ABA‐based chemical signalling: The co‐ordination of responses to stress in plants
  publication-title: Plant, Cell & Environment
– volume: 48
  start-page: 1281
  issue: 6
  year: 1997
  end-page: 1288
  article-title: The role of abscisic acid and water relations in drought responses of subterranean clover
  publication-title: Journal of Experimental Botany
– volume: 6
  start-page: 13
  year: 2018
  article-title: The contributions of Lewis Fry Richardson to drainage theory, soil physics, and the soil‐plant‐atmosphere continuum
  publication-title: Frontiers in Environmental Science
– volume: 55
  start-page: 1963
  issue: 405
  year: 2004
  end-page: 1976
  article-title: Are diurnal patterns of stomatal movement the result of alternating metabolism of endogenous guard cell ABA and accumulation of ABA delivered to the apoplast around guard cells by transpiration?
  publication-title: Journal of Experimental Botany
– volume: 558
  start-page: 531
  issue: 7711
  year: 2018
  end-page: 539
  article-title: Triggers of tree mortality under drought
  publication-title: Nature
– volume: 28
  start-page: 154
  year: 2015
  end-page: 162
  article-title: Mechanisms of abscisic acid‐mediated control of stomatal aperture
  publication-title: Current Opinion in Plant Biology
– volume: 176
  start-page: 851
  issue: 1
  year: 2018
  end-page: 864
  article-title: Stomatal VPD response: There is more to the story than ABA
  publication-title: Plant Physiology
– volume: 98
  start-page: 540
  issue: 2
  year: 1992
  end-page: 545
  article-title: Stomatal response to abscisic acid is a function of current plant water status
  publication-title: Plant Physiology
– volume: 6
  start-page: 665
  issue: 5
  year: 1994
  end-page: 672
  article-title: Analysis of phytochrome‐ and ABA‐deficient mutants suggests that ABA degradation is controlled by light in nicotiana plumbaginifolia
  publication-title: The Plant Journal
– volume: 31
  start-page: 471
  year: 1977
  end-page: 505
  article-title: Stomatal function in relation to leaf metabolism and environment
  publication-title: Symposia of the Society for Experimental Biology
– volume: 158
  start-page: 861
  issue: 7
  year: 2001
  end-page: 874
  article-title: An attempt to establish a synthetic model of photosynthesis‐transpiration based on stomatal behavior for maize and soybean plants grown in field
  publication-title: Journal of Plant Physiology
– volume: 40
  start-page: 816
  issue: 6
  year: 2017
  end-page: 830
  article-title: Predicting stomatal responses to the environment from the optimization of photosynthetic gain and hydraulic cost
  publication-title: Plant, Cell & Environment
– volume: 183
  start-page: 1612
  issue: 4
  year: 2020
  end-page: 1621
  article-title: Leaf carbon export and nonstructural carbohydrates in relation to diurnal water dynamics in mature oak trees
  publication-title: Plant Physiology
– volume: 68
  start-page: 2913
  issue: 11
  year: 2017
  end-page: 2918
  article-title: Up‐regulation of NCED3 and ABA biosynthesis occur within minutes of a decrease in leaf turgor but AHK1 is not required
  publication-title: Journal of Experimental Botany
– volume: 174
  start-page: 639
  issue: 2
  year: 2017
  end-page: 649
  article-title: Evolution of the stomatal regulation of plant water content
  publication-title: Plant Physiology
– volume: 52
  start-page: 167
  issue: 1
  year: 2007
  end-page: 174
  article-title: A hydraulic signal in root‐to‐shoot signalling of water shortage
  publication-title: The Plant Journal
– volume: 84
  start-page: 157
  issue: 1
  year: 1987
  end-page: 163
  article-title: The catabolism of (±)‐abscisic acid by excised leaves of Hordeum vulgare L. cv dyan and its modification by chemical and environmental factors
  publication-title: Plant Physiology
– volume: 25
  start-page: 868
  issue: 9
  year: 2020
  end-page: 880
  article-title: Soil rather than xylem vulnerability controls stomatal response to drought
  publication-title: Trends in Plant Science
– ident: e_1_2_7_6_1
  doi: 10.1007/978-94-017-0519-6_48
– ident: e_1_2_7_19_1
  doi: 10.1007/s11738-012-1051-6
– ident: e_1_2_7_39_1
  doi: 10.1111/1365-2435.12289
– ident: e_1_2_7_8_1
  doi: 10.1111/pce.12817
– ident: e_1_2_7_72_1
  doi: 10.1093/jxb/erh212
– ident: e_1_2_7_22_1
  doi: 10.1093/jxb/49.323.945
– ident: e_1_2_7_32_1
  doi: 10.1104/pp.20.00426
– ident: e_1_2_7_25_1
  doi: 10.1016/S0015-3796(11)80234-9
– ident: e_1_2_7_76_1
  doi: 10.1029/2018GL078131
– start-page: 37
  volume-title: Hydraulic properties of porous media
  year: 1964
  ident: e_1_2_7_10_1
– ident: e_1_2_7_16_1
  doi: 10.1093/aobpla/plaa025
– ident: e_1_2_7_35_1
  doi: 10.1038/s41467-019-11006-1
– ident: e_1_2_7_7_1
  doi: 10.1104/pp.17.00078
– ident: e_1_2_7_48_1
  doi: 10.1111/ele.12851
– ident: e_1_2_7_4_1
  doi: 10.1111/nph.16548
– ident: e_1_2_7_59_1
  doi: 10.1093/jxb/eri282
– ident: e_1_2_7_9_1
  doi: 10.1111/nph.13846
– ident: e_1_2_7_5_1
  doi: 10.1371/journal.pone.0185481
– ident: e_1_2_7_54_1
  doi: 10.1104/pp.17.00912
– ident: e_1_2_7_81_1
  doi: 10.7554/eLife.01739
– ident: e_1_2_7_42_1
  doi: 10.1016/j.tplants.2018.04.001
– ident: e_1_2_7_28_1
  doi: 10.1023/A:1001064502869
– ident: e_1_2_7_21_1
  doi: 10.1111/j.1365-313X.2007.03234.x
– ident: e_1_2_7_64_1
  doi: 10.1063/1.1745010
– ident: e_1_2_7_53_1
  doi: 10.1111/j.1365-2486.2010.02375.x
– ident: e_1_2_7_73_1
  doi: 10.1104/pp.98.2.540
– ident: e_1_2_7_23_1
  doi: 10.1104/pp.84.1.157
– ident: e_1_2_7_68_1
  doi: 10.1111/nph.13354
– ident: e_1_2_7_51_1
  doi: 10.1111/pce.12669
– ident: e_1_2_7_71_1
  doi: 10.1093/jxb/erx124
– ident: e_1_2_7_66_1
  doi: 10.2136/vzj2007.0114
– ident: e_1_2_7_74_1
  doi: 10.1111/j.1365-3040.1993.tb00880.x
– ident: e_1_2_7_80_1
  doi: 10.1111/j.1469-8137.2011.03847.x
– ident: e_1_2_7_60_1
  doi: 10.1111/j.1365-3040.2010.02234.x
– ident: e_1_2_7_34_1
  doi: 10.3389/fpls.2019.01695
– ident: e_1_2_7_11_1
  doi: 10.1093/aob/mcz005
– ident: e_1_2_7_27_1
  doi: 10.1016/0378-4290(91)90025-Q
– ident: e_1_2_7_77_1
  doi: 10.1046/j.1365-3040.2003.01035.x
– ident: e_1_2_7_82_1
  doi: 10.1111/nph.16572
– ident: e_1_2_7_18_1
  doi: 10.1016/j.tplants.2020.04.003
– ident: e_1_2_7_79_1
  doi: 10.1111/jipb.12534
– ident: e_1_2_7_69_1
  doi: 10.1111/pce.12852
– ident: e_1_2_7_70_1
  doi: 10.1029/WR014i003p00479
– ident: e_1_2_7_12_1
  doi: 10.1111/nph.15899
– ident: e_1_2_7_58_1
  doi: 10.1016/j.pbi.2015.10.010
– volume: 31
  start-page: 471
  year: 1977
  ident: e_1_2_7_24_1
  article-title: Stomatal function in relation to leaf metabolism and environment
  publication-title: Symposia of the Society for Experimental Biology
– ident: e_1_2_7_2_1
  doi: 10.1111/pce.13939
– ident: e_1_2_7_33_1
  doi: 10.3389/fpls.2017.01602
– ident: e_1_2_7_52_1
  doi: 10.1093/jxb/erq260
– ident: e_1_2_7_44_1
  doi: 10.1111/j.1365-3040.1995.tb00370.x
– ident: e_1_2_7_67_1
  doi: 10.1093/jxb/48.6.1281
– ident: e_1_2_7_31_1
  doi: 10.1126/scisignal.2001346
– ident: e_1_2_7_55_1
  doi: 10.1016/j.jplph.2017.12.019
– ident: e_1_2_7_13_1
  doi: 10.1111/pce.12140
– ident: e_1_2_7_49_1
  doi: 10.1104/pp.16.00380
– ident: e_1_2_7_17_1
  doi: 10.1111/nph.16649
– ident: e_1_2_7_47_1
  doi: 10.1111/j.1469-8137.2008.02592.x
– ident: e_1_2_7_75_1
  doi: 10.1093/jxb/49.Special_Issue.419
– ident: e_1_2_7_3_1
  doi: 10.1093/jxb/eraa392
– ident: e_1_2_7_46_1
  doi: 10.1016/j.envexpbot.2009.02.001
– ident: e_1_2_7_62_1
  doi: 10.1111/pce.12997
– ident: e_1_2_7_38_1
  doi: 10.1111/j.1365-3040.1995.tb00539.x
– ident: e_1_2_7_57_1
  doi: 10.1111/j.1365-3040.1995.tb00371.x
– ident: e_1_2_7_41_1
  doi: 10.1046/j.1365-313X.1994.6050665.x
– ident: e_1_2_7_86_1
  doi: 10.1078/0176-1617-00177
– ident: e_1_2_7_43_1
  doi: 10.1016/j.cell.2006.07.034
– ident: e_1_2_7_78_1
  doi: 10.2136/vzj2006.0056
– ident: e_1_2_7_83_1
  doi: 10.1046/j.0016-8025.2001.00824.x
– ident: e_1_2_7_14_1
  doi: 10.1046/j.1365-3040.2003.01094.x
– ident: e_1_2_7_20_1
  doi: 10.1038/s41586-018-0240-x
– ident: e_1_2_7_50_1
  doi: 10.1104/pp.17.01829
– ident: e_1_2_7_56_1
  doi: 10.1038/221281a0
– ident: e_1_2_7_65_1
  doi: 10.1111/nph.16177
– ident: e_1_2_7_15_1
  doi: 10.1007/s11104-019-04408-z
– ident: e_1_2_7_45_1
  doi: 10.1371/journal.pbio.0040312
– ident: e_1_2_7_61_1
  doi: 10.1007/BF00386419
– ident: e_1_2_7_37_1
  doi: 10.1093/jexbot/53.373.1503
– ident: e_1_2_7_84_1
  doi: 10.1073/pnas.1615144113
– ident: e_1_2_7_63_1
  doi: 10.3389/fenvs.2018.00013
– ident: e_1_2_7_30_1
  doi: 10.1097/00010694-196002000-00001
– ident: e_1_2_7_36_1
  doi: 10.1104/pp.16.01816
– ident: e_1_2_7_26_1
– ident: e_1_2_7_29_1
  doi: 10.1007/BF00386231
– ident: e_1_2_7_85_1
  doi: 10.1016/S0176-1617(11)80467-0
– ident: e_1_2_7_40_1
  doi: 10.1002/2015JG003114
SSID ssj0061453
Score 2.4104877
Snippet Understanding stomatal regulation during drought is essential to correctly predict vegetation‐atmosphere fluxes. Stomatal optimization models posit that...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Abscisic acid
abscisic acid (ABA)
Assimilation
Atmospheric conditions
Atmospheric correction
Atmospheric models
Cavitation
Drought
Environmental conditions
Fluid flow
Hydraulics
Leaves
Optimization models
Photosynthesis
Plants
root water uptake
Soil conditions
Soil conductivity
Soil dynamics
Soil properties
Soils
soil–plant hydraulics
Stomata
Stomatal conductance
stomatal regulation
Transpiration
Vapor pressure
Vapour pressure
Water loss
Water potential
Water shortages
Water supply
Xylem
Title Stomatal regulation prevents plants from critical water potentials during drought: Result of a model linking soil–plant hydraulics to abscisic acid dynamics
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Feco.2386
https://www.proquest.com/docview/2694942891
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Na9wwEBVNoNBL-pGUbJMuUyjpyZu1pLXl3sqyIfTQlrSBQA5GlmS6xLte1l7C9tT_0Ht_XH9JZ2R705YGQk4-WDK2ZuR5I2beY-w1mlmFJtG4kZQJJDcyyEwuAhslNh5aRVGTqi0-RKfn8v3F6KKtqqRemIYfYnPgRjvD_69pg-usOr4hDcXsbIDxhti2qVSL8NDZhjkKg44noER4ggkzBtmOd3bIj7uJf0eiG3j5J0j1UebkMbvs3q8pLrkarOpsYL79Q914vw94wnZa8AnvGm95yh64-TP2cOKJq9e77OfnupzRcQ4sG4V6tBksGo6nChYFlcwA9aOAaQUS4Bqh6hIWZU1FR-jJ0LQ9gvXqP_VbOHPVqqihzEGDV92BVq0BqnJa_Pr-wz8Wvq7tUq-KqamgLgG_gJR_DGgztWDXcz3DO3vs_GTyZXwatPoNgRG07lbELkqEVibMXB4OtRJZ7iLBhy6SuUj0KHFSOhOhmyBs5spIraTFnM1KJzFDfs625-Xc7TMIHce4GcfCxFaORkaJ0CEQcbFTuXZc9NibzpapacnNSWOjSBtaZp7iaqe02j32ajNy0RB6_GfMYecOabulq5RafhNM1pKwx468XW-dn07GH-n64q4DD9gjTm0Vvgz4kG3Xy5V7iWCnzvpsi8tPfe_cvwFERQCi
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFLWqIgQbylMMLXCReKwyTWwncSqxQO1UU1qKVFqpu9SxHRiRTkaTjKph1X9gzw_wK3wFX8K1k0wBgcSmC1ZZxHnI923dew4hT1HMIlCJREMSyuNUcS9TOfN0lOjY18JGTdttsR8Nj_jr4_B4iXztZmEafIjFgZu1DOevrYHbA-n1C9RQLM_6GHCitqNy18zPsF6rXu5soXCfUbo9ONwcei2lgKdYwiJPs9hECZNCBZnJA18KluUmYtQ3Ec9ZIsPEcG5UhH-OmRwVikvBNZYRmhseWpQD9PdXLIG4BerfOlhgVWGYc5CXgf2Mj2G9Q7r16Xr3p7_GvouE9ue02MW17RXyrduRpp3lY39WZ3316TewyP9ky26SG21-Da8ag7hFlsz4Nrk6cNjc8zvky7u6PLUnVjA171vmMpg0MFYVTArbFQR25AZUywEBZ5iNT2FS1ravCo0VmslO0I7gqN6AA1PNihrKHCQ4YiFoCSmgKkfF9_PP7rXwYa6nclaMVAV1CRL99QgtBKQaadDzsTzFO3fJ0aVszj2yPC7H5j6BwFBMDeKYqVjzMFSCBQZzLRMbkUtDWY-86JQnVS1-u6URKdIGeZqmKN3USrdHnixWThrMkj-sWev0L229VpXaqeYE69Ek6JHnTpH--nw62Hxrrw_-deFjcm14-GYv3dvZ310l16mdInFdz2tkuZ7OzEPM7erskbMpICeXrZE_APUtXTg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELaqViAuiF-xUGCQ-DmFJraTOEgcULurlqJSAZV6C157oq6UbqJNVtXe-g7ceQAeiydh7CQtSCBx6SkHO4mVb_7szHzD2HOCWUUm06RIygSSGxlMTSECm2Q2Da1yXtNlWxwku0fy_XF8vMZ-DLUwHT_ExYGb0wxvr52C17bYuiQNpd3Za_I3SZ9QuY-rM9quNW_3dgjbF5xPxl-2d4O-o0BgRCaSwIoUk0xoZaIpFlGolZgWmAgeYiILkek4QynRJLRwCuS4MlIraWkXYSXK2JEckLnfcP8WXfoYl4eD1Scv5xkvI_eakMYHotuQbw0r_dP1Xcazv0fF3q1NbrGbfTwK7zoBus3WcH6HXRt7LuvVXfb9c1uduhMeWHRN6wlGqDvapwbq0mXRgCtRAdP3TIAzil4XUFety0Mi4YauEhKsbwjUvoFP2CzLFqoCNPhGPNA3cICmmpU_z7_5x8LJyi70spyZBtoKNNm3GUkUaDOzYFdzfUoj99jRlQBwn63Pqzk-YBAhJ1eapsKkVsaxUSJCik0wRVVo5GLEXg1fOzc937lru1HmHVMzzwmX3OEyYs8uZtYdx8df5mwOgOW9lje5qwLOaP-WRSP20oP4z_vz8fZHd334vxOfsuuHO5P8w97B_iN2g7uiC58kvMnW28USH1Mo1E6feBkE9vWqhf4Xhd0cFA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stomatal+regulation+prevents+plants+from+critical+water+potentials+during+drought%3A+Result+of+a+model+linking+soil%E2%80%93plant+hydraulics+to+abscisic+acid+dynamics&rft.jtitle=Ecohydrology&rft.au=Wankm%C3%BCller%2C+Fabian+J.+P.&rft.au=Carminati%2C+Andrea&rft.date=2022-07-01&rft.issn=1936-0584&rft.eissn=1936-0592&rft.volume=15&rft.issue=5&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Feco.2386&rft.externalDBID=10.1002%252Feco.2386&rft.externalDocID=ECO2386
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0584&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0584&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0584&client=summon