ExpressGesture: Expressive gesture generation from speech through database matching
Co‐speech gestures are a vital ingredient in making virtual agents more human‐like and engaging. Automatically generated gestures based on speech‐input often lack realistic and defined gesture form. We present a database‐driven approach guaranteeing defined gesture form. We built a large corpus of o...
Saved in:
Published in | Computer animation and virtual worlds Vol. 32; no. 3-4 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Chichester
Wiley Subscription Services, Inc
01.06.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Co‐speech gestures are a vital ingredient in making virtual agents more human‐like and engaging. Automatically generated gestures based on speech‐input often lack realistic and defined gesture form. We present a database‐driven approach guaranteeing defined gesture form. We built a large corpus of over 23,000 motion‐captured co‐speech gestures and select individual gestures based on expressive gesture characteristics that can be estimated from speech audio. The expressive parameters are gesture velocity and acceleration, gesture size, arm swivel, and finger extension. Individual, parameter‐matched gestures are then combined into animated sequences. We evaluate our gesture generation system in two perceptual studies. The first study compares our method to the ground truth gestures as well as mismatched gestures. The second study compares our method to five current generative machine learning models. Our method outperformed mismatched gesture selection in the first study and showed competitive performance in the second.
We present a system for automatic gesture generation from speech audio, together with a database of over 23,000 motion‐captured gestures. Using a hybrid approach of machine learning and database‐sampling, our system guarantees defined gesture form. Our system selects individual gestures based on expressive gesture characteristics that can be estimated from speech audio and then combines selected gestures into animated sequences. Our method outperforms mismatched gesture selection and shows competitive performance to current generative machine learning models. |
---|---|
AbstractList | Co‐speech gestures are a vital ingredient in making virtual agents more human‐like and engaging. Automatically generated gestures based on speech‐input often lack realistic and defined gesture form. We present a database‐driven approach guaranteeing defined gesture form. We built a large corpus of over 23,000 motion‐captured co‐speech gestures and select individual gestures based on expressive gesture characteristics that can be estimated from speech audio. The expressive parameters are gesture velocity and acceleration, gesture size, arm swivel, and finger extension. Individual, parameter‐matched gestures are then combined into animated sequences. We evaluate our gesture generation system in two perceptual studies. The first study compares our method to the ground truth gestures as well as mismatched gestures. The second study compares our method to five current generative machine learning models. Our method outperformed mismatched gesture selection in the first study and showed competitive performance in the second.
We present a system for automatic gesture generation from speech audio, together with a database of over 23,000 motion‐captured gestures. Using a hybrid approach of machine learning and database‐sampling, our system guarantees defined gesture form. Our system selects individual gestures based on expressive gesture characteristics that can be estimated from speech audio and then combines selected gestures into animated sequences. Our method outperforms mismatched gesture selection and shows competitive performance to current generative machine learning models. Co‐speech gestures are a vital ingredient in making virtual agents more human‐like and engaging. Automatically generated gestures based on speech‐input often lack realistic and defined gesture form. We present a database‐driven approach guaranteeing defined gesture form. We built a large corpus of over 23,000 motion‐captured co‐speech gestures and select individual gestures based on expressive gesture characteristics that can be estimated from speech audio. The expressive parameters are gesture velocity and acceleration, gesture size, arm swivel, and finger extension. Individual, parameter‐matched gestures are then combined into animated sequences. We evaluate our gesture generation system in two perceptual studies. The first study compares our method to the ground truth gestures as well as mismatched gestures. The second study compares our method to five current generative machine learning models. Our method outperformed mismatched gesture selection in the first study and showed competitive performance in the second. |
Author | Ferstl, Ylva Neff, Michael McDonnell, Rachel |
Author_xml | – sequence: 1 givenname: Ylva orcidid: 0000-0001-7259-0378 surname: Ferstl fullname: Ferstl, Ylva email: yferstl@tcd.ie organization: Trinity College Dublin – sequence: 2 givenname: Michael surname: Neff fullname: Neff, Michael organization: University of California – sequence: 3 givenname: Rachel surname: McDonnell fullname: McDonnell, Rachel organization: Trinity College Dublin |
BookMark | eNp1kMtOwkAUhicGEwFNfIQmbtwU59J2pu4IQTQhcSEx7ibDzCktgbbOtCBv70CJC6Orc8n3n8s_QL2yKgGhW4JHBGP6oNVuRDFJLlCfxFESRpR_9H7yhFyhgXNrTyaU4D56m37VFpybgWtaC4_BuS52EKy6no8lWNUUVRlkttoGrgbQedDktmpXeWBUo5bKQbBVjc6LcnWNLjO1cXBzjkO0eJouJs_h_HX2MhnPQ81SloREUCKyjEeKishkKVapIqAV5gxHy1TES8Yzw41hBpjWKSNCCWoYcM6FYWyI7rqxta0-W3-rXFetLf1GSeMYUypwmnpq1FHaVs5ZyKQumtMzjVXFRhIsj75J75s8-uYF978EtS22yh7-QsMO3RcbOPzLycn4_cR_A77afvo |
CitedBy_id | crossref_primary_10_1016_j_neucom_2024_127831 crossref_primary_10_1016_j_robot_2022_104154 crossref_primary_10_1145_3694905 crossref_primary_10_3390_electronics13163315 crossref_primary_10_1007_s10055_024_00941_0 crossref_primary_10_1145_3549530 crossref_primary_10_1145_3656374 crossref_primary_10_1145_3658134 |
Cites_doi | 10.1111/cgf.13946 10.1111/cgf.14114 10.1109/TAFFC.2015.2457417 10.1007/978-3-642-15892-6_24 10.1145/3383652.3423882 10.1145/2485895.2485900 10.1145/1873951.1874246 10.1007/978-3-642-04380-2_12 10.1016/j.specom.2013.06.005 10.1145/2448196.2448199 10.1145/3439795 10.1145/3382507.3418815 10.1145/1015706.1015753 10.1109/CVPR.2019.00361 10.1515/9783110813098.207 10.1007/978-3-642-40415-3_33 10.1145/3267851.3267898 10.1145/1330511.1330516 10.1109/TCYB.2020.2966730 10.1145/3386569.3392440 10.1002/cav.1674 10.1016/j.cag.2020.04.007 |
ContentType | Journal Article |
Copyright | 2021 The Authors. published by John Wiley & Sons, Ltd. 2021. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2021 The Authors. published by John Wiley & Sons, Ltd. – notice: 2021. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1002/cav.2016 |
DatabaseName | Wiley Online Library Open Access CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts CrossRef |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Visual Arts |
EISSN | 1546-427X |
EndPage | n/a |
ExternalDocumentID | 10_1002_cav_2016 CAV2016 |
Genre | article |
GrantInformation_xml | – fundername: Science Foundation Ireland funderid: 13/RC/2106 |
GroupedDBID | .3N .4S .DC .GA .Y3 05W 0R~ 10A 1L6 1OC 24P 29F 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 6J9 702 7PT 8-0 8-1 8-3 8-4 8-5 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ARCSS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EDO EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA HF~ HGLYW HHY HVGLF HZ~ I-F ITG ITH IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N9A NF~ O66 O9- OIG P2W P4D PQQKQ Q.N Q11 QB0 QRW R.K ROL RWI RX1 RYL SUPJJ TN5 TUS UB1 V2E V8K W8V W99 WBKPD WIH WIK WQJ WRC WXSBR WYISQ WZISG XG1 XV2 ~IA ~WT AAYXX ADMLS AGHNM AGQPQ AGYGG CITATION 7SC 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c3936-18218ff74a284df90a9a1eca07304b985b37fd7dd3de3cc9318a82d3e7778d33 |
IEDL.DBID | DR2 |
ISSN | 1546-4261 |
IngestDate | Fri Jul 25 05:48:42 EDT 2025 Thu Apr 24 22:55:46 EDT 2025 Tue Jul 01 02:42:23 EDT 2025 Wed Jan 22 16:28:15 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3-4 |
Language | English |
License | Attribution-NonCommercial |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3936-18218ff74a284df90a9a1eca07304b985b37fd7dd3de3cc9318a82d3e7778d33 |
Notes | Funding information Science Foundation Ireland, 13/RC/2106 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-7259-0378 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcav.2016 |
PQID | 2550228099 |
PQPubID | 2034909 |
PageCount | 11 |
ParticipantIDs | proquest_journals_2550228099 crossref_citationtrail_10_1002_cav_2016 crossref_primary_10_1002_cav_2016 wiley_primary_10_1002_cav_2016_CAV2016 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June-July 2021 |
PublicationDateYYYYMMDD | 2021-06-01 |
PublicationDate_xml | – month: 06 year: 2021 text: June-July 2021 |
PublicationDecade | 2020 |
PublicationPlace | Chichester |
PublicationPlace_xml | – name: Chichester |
PublicationTitle | Computer animation and virtual worlds |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 1980; 25 2016; 7 2001 2021 2010; 29 2010 2020 2020; 50 2008; 27 2004; 23 2009 2020; 39 2019 2008 2018 Estoril, Portugal; 2008 2014; 57 2005 2015 2013 2016; 27 1972; 7 2021; 40 e_1_2_7_6_1 e_1_2_7_5_1 Cassell J (e_1_2_7_4_1) 2001 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_16_1 Kendon A (e_1_2_7_23_1) 1972; 7 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_14_1 e_1_2_7_13_1 Levine S (e_1_2_7_17_1) 2010; 29 e_1_2_7_12_1 e_1_2_7_11_1 e_1_2_7_10_1 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_22_1 e_1_2_7_21_1 e_1_2_7_20_1 |
References_xml | – volume: 40 start-page: 1 issue: 1 year: 2021 end-page: 16 article-title: A conversational agent framework with multi‐modal personality expression publication-title: ACM Trans Graph – year: 2009 – volume: 25 start-page: 207 issue: 1980 year: 1980 end-page: 27 article-title: Gesticulation and speech: two aspects of the process of utterance publication-title: Relationship Verbal Nonverbal Commun – year: 2020 article-title: Statistics‐based motion synthesis for social conversations publication-title: Comput Graph Forum – year: 2005 – volume: 7 start-page: 90 issue: 177 year: 1972 article-title: Some relationships between body motion and speech publication-title: Stud Dyadic Commun – year: 2021 – volume: 57 start-page: 331 year: 2014 end-page: 50 article-title: Gesture synthesis adapted to speech emphasis publication-title: Speech Commun – volume: 50 start-page: 1 year: 2020 end-page: 10 article-title: Audio‐driven robot upper‐body motion synthesis publication-title: IEEE Trans Cybern – year: 2018 – year: Estoril, Portugal; 2008 – year: 2010 – volume: 23 start-page: 506 issue: 3 year: 2004 end-page: 13 article-title: Speaking with hands: creating animated conversational characters from recordings of human performance publication-title: ACM Trans Graph – volume: 27 start-page: 484 issue: 5 year: 2016 end-page: 500 article-title: Assessing similarity models for human‐motion retrieval applications publication-title: Comput Animat Virtual Worlds – volume: 7 start-page: 190 issue: 2 year: 2016 end-page: 202 article-title: The geneva minimalistic acoustic parameter set (GeMAPS) for voice research and affective computing publication-title: IEEE Trans Affect Comput – volume: 27 start-page: 1 issue: 1 year: 2008 end-page: 24 article-title: Gesture modeling and animation based on a probabilistic re‐creation of speaker style publication-title: ACM Trans Graph – year: 2008 – year: 2020 – volume: 39 start-page: 53 issue: 4 year: 2020 end-page: 1 article-title: Learned motion matching publication-title: ACM Trans Graph – start-page: 477 year: 2001 end-page: 86 article-title: BEAT: the behavior expression animation toolkit publication-title: ACM Trans Graph – year: 2020 article-title: Adversarial gesture generation with realistic gesture phasing publication-title: Comput Graph – year: 2020 article-title: Style‐controllable speech‐driven gesture synthesis using normalising flows publication-title: Comput Graph Forum – volume: 29 start-page: 1 issue: 4 year: 2010 end-page: 11 article-title: Gesture controllers publication-title: ACM SIGGRAPH 2010 papers – year: 2019 – year: 2015 – year: 2013 – ident: e_1_2_7_16_1 doi: 10.1111/cgf.13946 – ident: e_1_2_7_10_1 doi: 10.1111/cgf.14114 – ident: e_1_2_7_26_1 doi: 10.1109/TAFFC.2015.2457417 – ident: e_1_2_7_32_1 doi: 10.1007/978-3-642-15892-6_24 – ident: e_1_2_7_2_1 doi: 10.1145/3383652.3423882 – ident: e_1_2_7_6_1 doi: 10.1145/2485895.2485900 – ident: e_1_2_7_29_1 – volume: 29 start-page: 1 issue: 4 year: 2010 ident: e_1_2_7_17_1 article-title: Gesture controllers publication-title: ACM SIGGRAPH 2010 papers – ident: e_1_2_7_3_1 – ident: e_1_2_7_27_1 doi: 10.1145/1873951.1874246 – ident: e_1_2_7_8_1 doi: 10.1007/978-3-642-04380-2_12 – ident: e_1_2_7_9_1 doi: 10.1016/j.specom.2013.06.005 – ident: e_1_2_7_28_1 – ident: e_1_2_7_5_1 – ident: e_1_2_7_21_1 doi: 10.1145/2448196.2448199 – ident: e_1_2_7_31_1 doi: 10.1145/3439795 – ident: e_1_2_7_24_1 – ident: e_1_2_7_12_1 doi: 10.1145/3382507.3418815 – ident: e_1_2_7_18_1 doi: 10.1145/1015706.1015753 – ident: e_1_2_7_14_1 doi: 10.1109/CVPR.2019.00361 – ident: e_1_2_7_19_1 – ident: e_1_2_7_25_1 doi: 10.1515/9783110813098.207 – ident: e_1_2_7_30_1 doi: 10.1007/978-3-642-40415-3_33 – ident: e_1_2_7_11_1 doi: 10.1145/3267851.3267898 – volume: 7 start-page: 90 issue: 177 year: 1972 ident: e_1_2_7_23_1 article-title: Some relationships between body motion and speech publication-title: Stud Dyadic Commun – ident: e_1_2_7_7_1 doi: 10.1145/1330511.1330516 – ident: e_1_2_7_13_1 doi: 10.1109/TCYB.2020.2966730 – ident: e_1_2_7_20_1 doi: 10.1145/3386569.3392440 – ident: e_1_2_7_22_1 doi: 10.1002/cav.1674 – start-page: 477 year: 2001 ident: e_1_2_7_4_1 article-title: BEAT: the behavior expression animation toolkit publication-title: ACM Trans Graph – ident: e_1_2_7_15_1 doi: 10.1016/j.cag.2020.04.007 |
SSID | ssj0026210 |
Score | 2.48582 |
Snippet | Co‐speech gestures are a vital ingredient in making virtual agents more human‐like and engaging. Automatically generated gestures based on speech‐input often... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Acceleration computer animation conversational agents expressive agents gesture generation Gesture recognition Machine learning Motion capture motion matching Parameters perception Sequences Speech |
Title | ExpressGesture: Expressive gesture generation from speech through database matching |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcav.2016 https://www.proquest.com/docview/2550228099 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA66J33wLk7niCD61F2StF18G2Nz-CCicwx8KGkuKsoc6yrirzcnbTcVBfEpNJxAmpOcS_jyHYSOCTHMaMNtksOYx4RsekJK4knRMD4VSijjUL6XQf-WXYz8UY6qhLcwGT_E_MINToaz13DARZzUF6ShUrwCMgvYtgGqBfHQ9Zw5igQkIyLwWeBBllDwzjZIvRj41RMtwsvPQarzMr11dFfMLwOXPNXSWVyT79-oG__3AxtoLQ8-cTvbLZtoSY-30OrwMUmz3mQb3XTfHDT23E4yneoznH9bo4jvsz7bAlU1aBTD6xScTLSWDzgv-YMBdArOEdtg2CE1d9Cg1x10-l5eeMGTlNPAszlHs2VMyIR1XsrwhuCiqa36rDlgMW_5MQ2NCpWiSlMpubULokUU1WEYthSlu6g0fhnrPYQ14w1fhrwpWcyUlZKcWfUbFigBuVoZnRY6iGROSg61MZ6jjE6ZRHaVIlilMjqaS04yIo4fZCqFGqP8KCaRzZkc5w_nZXTi9PHr-KjTHkK7_1fBA7RCAOPibmUqqDSbpvrQBimzuIqWCbuquk35AdfQ5gE |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB4hOBQOQF9iebSuRNtTYNdxkjVSD4jX8igH2CJuluMHINCCyC60_KT-lf6pzjjJAlUr9cKBUxRrIjme8Xhm9PkbgEXOvfDOS0xyhIiENq1IG8Mjo5s-ibXV1geU737a-SZ2jpPjEfhZ34Up-SGGBTfaGcFf0wangvTyPWuo0TcEzUorROWu-3GL-VrxZXsdlfuR882N7lonqloKRCaWcRphNN1qe58JjW7ZetnUUrccTgwNXeSyneRx5m1mbWxdbIxEi9dtbmOXZVnbUvET3f0Y9Q8nnv71gyFVFU95yXyQiDSitKQmum3y5Xqij4---3j2YVQcjrXNKfhVL0iJZjlfGvTzJXP3B1fk81ixaZisomu2Wm6HlzDieq9g4uisGJSjxWs43PgesL9buCiDa7fCqnf0-uykHMMncXGTyTK6fsOKK-fMKat6GjFC1dLpzzDaD1DUN9B9ip96C6O9y56bAeaEbCYmky0jcmFRykiB9u1FajUlow34XOtcmYp1nZp_XKiSL5orVIoipTTgw1DyqmQa-YvMfG02qvI1hcKkMJAaSdmAT0H___xera0e0XP2fwXfw4tO9-ue2tve352DcU6AnlCCmofR_vXALWBE1s_fha3AQD2xIf0GFIJCGQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dSxwxEB9EQdoHUdvS8zOFfjwt7mWzuxfBB1GvWosc9Hr4FrL5UEHOw_X8-JP8L53J7p4KFvpyT2HD7BImk8nM7C-_AHzl3AvvvMQkR4hIaNOOtDE8Mjr2aaKttj6gfE-yw7_i12l6OgOPzVmYih9iUnCjlRH8NS3wkfVbz6ShRt8SMiurAZXH7uEO07Vy52gf5_Yb592D_t5hVN8oEJlEJlmEwXS7430uNHpl62WspW47HBfauShkJy2S3Nvc2sS6xBiJBq873CYuz_OOpdonevs5-rVI6DEuepPcLuMV8UEqsoiykobnNuZbzUBf73zP4ezLoDjsat1FWKjDUbZb2c8SzLjhMrwfXJTjqrf8AH8O7gNY9id-Znzttln9jG6SnVV92BJ5Nc0xo_MqrBw5Z85ZfQkQIxgqbZcMw-OA3fwI_Wko7hPMDq-G7jMwJ2Scmly2jSiERSkjBRqEF5nVlL214EejJWVqmnK6LeNSVQTLXKE-FemzBV8mkqOKmuMNmbVG0apenKXCLCqwAEnZgu9B-f98X-3tDqhd-V_BTZjv7XfV76OT41V4xwkAE0o2azB7cz126xjB3BQbwXYYqCnb6hOUagEr |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ExpressGesture%3A+Expressive+gesture+generation+from+speech+through+database+matching&rft.jtitle=Computer+animation+and+virtual+worlds&rft.au=Ferstl%2C+Ylva&rft.au=Neff%2C+Michael&rft.au=McDonnell%2C+Rachel&rft.date=2021-06-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1546-4261&rft.eissn=1546-427X&rft.volume=32&rft.issue=3-4&rft_id=info:doi/10.1002%2Fcav.2016&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1546-4261&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1546-4261&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1546-4261&client=summon |