Measuring impacts on species with models and metrics of varying ecological and computational complexity

Approaches to assess the impacts of landscape disturbance scenarios on species range from metrics based on patterns of occurrence or habitat to comprehensive models that explicitly include ecological processes. The choice of metrics and models affects how impacts are interpreted and conservation dec...

Full description

Saved in:
Bibliographic Details
Published inConservation biology Vol. 34; no. 6; pp. 1512 - 1524
Main Authors Hallam, Christopher D., Wintle, Brendan A., Kujala, Heini, Whitehead, Amy L., Nicholson, Emily
Format Journal Article
LanguageEnglish
Published United States Blackwell Publishing Ltd 01.12.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Approaches to assess the impacts of landscape disturbance scenarios on species range from metrics based on patterns of occurrence or habitat to comprehensive models that explicitly include ecological processes. The choice of metrics and models affects how impacts are interpreted and conservation decisions. We explored the impacts of 3 realistic disturbance scenarios on 4 species with different ecological and taxonomic traits. We used progressively more complex models and metrics to evaluate relative impact and rank of scenarios on the species. Models ranged from species distribution models that relied on implicit assumptions about environmental factors and species presence to highly parameterized spatially explicit population models that explicitly included ecological processes and stochasticity. Metrics performed consistently in ranking different scenarios in order of severity primarily when variation in impact was driven by habitat amount. However, they differed in rank for cases where dispersal dynamics were critical in influencing metapopulation persistence. Impacts of scenarios on species with low dispersal ability were better characterized using models that explicitly captured these processes. Metapopulation capacity provided rank orders that most consistently correlated with those from highly parameterized and data‐rich models and incorporated information about dispersal with little additional computational and data cost. Our results highlight the importance of explicitly considering species’ ecology, spatial configuration of habitat, and disturbance when choosing indicators of species persistence. We suggest using hybrid approaches that are a mixture of simple and complex models to improve multispecies assessments. Medición de los Impactos sobre las Especies con Modelos y Medidas de Complejidad Ecológica y Computacional Variante Resumen Las estrategias para evaluar el impacto de los escenarios de perturbación de paisaje sobre la distribución de las especies van desde las medidas basadas en patrones de presencia o hábitat hasta los modelos integrales que incluyen explícitamente a los procesos ecológicos. La elección de medidas y modelos afecta la interpretación de los impactos y las decisiones de conservación. Exploramos los impactos de tres escenarios realistas de perturbación sobre cuatro especies con características ecológicas y taxonómicas diferentes. Usamos progresivamente modelos y medidas más complejas para evaluar el impacto relativo y la clasificación de los escenarios sobre las especies. Los modelos variaron desde aquellos de distribución de especies que dependen de las suposiciones implícitas acerca de los factores ambientales y la presencia de la especie hasta aquellos modelos poblacionales explícitos con una alta parametrización espacial que incluyen los procesos ecológicos y la estocasticidad. Las medidas tuvieron un desempeño uniforme en la clasificación de los diferentes escenarios de acuerdo a la gravedad, principalmente cuando la variación en el impacto fue causada por la cantidad de hábitat presente. Sin embargo, las medidas difirieron en la clasificación para los casos en los que las dinámicas de dispersión fueron significativas en la influencia de la persistencia metapoblacional. Los impactos de los escenarios sobre las especies con una habilidad reducida de dispersión estuvieron mejor caracterizados con el uso de modelos que capturaron explícitamente estos procesos. La capacidad metapoblacional proporcionó categorías de clasificación con la correlación más consistente a aquellas provenientes de los modelos ricos en datos y con una alta parametrización e incorporó información sobre la dispersión con un reducido costo adicional de cómputo y de datos. Nuestros resultados resaltan la importancia de la consideración explícita de la ecología de las especies, la configuración espacial del hábitat y la perturbación cuando se eligen los indicadores de la persistencia de una especie. Sugerimos que se usen estrategias híbridas que mezclen modelos simples y complejos para mejorar las evaluaciones realizadas a múltiples especies. 摘要 评估景观干扰情景对物种影响的方法包括基于物种出现格局或栖息地格局的指标和纳入生态过程的综合模型等。对指标和模型的选择会影响对物种所受影响的解读和保护决策。本研究探索了三种真实干扰情景对四种不同生态学特征和类群的物种的影响。我们使用了逐渐复杂化的模型和指标评估了干扰情景对物种的相对影响和影响等级。本研究涉及的模型包括依赖于环境因素和物种出现的隐式假设的物种分布模型, 以及明确包含生态过程和随机性的高度参数化的空间显式种群模型。当影响的变化是由栖息地数量驱动时, 各种指标对不同情景的影响严重程度排序的结果一致。然而, 当扩散动态对集合种群续存有重要影响时, 不同指标的排序结果不同。使用明确考虑了扩散过程的模型可以更好地描述干扰情景对扩散能力弱的物种的影响。集合种群承载力提供了与高度参数化和数据丰富的模型最为一致的排序, 并且可以在几乎没有额外计算和数据成本的情况下加入扩散的信息。我们的结果强调了选择物种续存指标时应清楚地考虑物种的生态特征、栖息地空间结构以及干扰。我们建议使用简单和复杂模型混合的方法来改进多物种评估。【翻译: 胡怡思; 审校: 聂永刚】 Article impact statement: Not explicitly including ecological complexity in biodiversity metrics may result in misleading conclusions when assessing impacts.
AbstractList Abstract Approaches to assess the impacts of landscape disturbance scenarios on species range from metrics based on patterns of occurrence or habitat to comprehensive models that explicitly include ecological processes. The choice of metrics and models affects how impacts are interpreted and conservation decisions. We explored the impacts of 3 realistic disturbance scenarios on 4 species with different ecological and taxonomic traits. We used progressively more complex models and metrics to evaluate relative impact and rank of scenarios on the species. Models ranged from species distribution models that relied on implicit assumptions about environmental factors and species presence to highly parameterized spatially explicit population models that explicitly included ecological processes and stochasticity. Metrics performed consistently in ranking different scenarios in order of severity primarily when variation in impact was driven by habitat amount. However, they differed in rank for cases where dispersal dynamics were critical in influencing metapopulation persistence. Impacts of scenarios on species with low dispersal ability were better characterized using models that explicitly captured these processes. Metapopulation capacity provided rank orders that most consistently correlated with those from highly parameterized and data‐rich models and incorporated information about dispersal with little additional computational and data cost. Our results highlight the importance of explicitly considering species’ ecology, spatial configuration of habitat, and disturbance when choosing indicators of species persistence. We suggest using hybrid approaches that are a mixture of simple and complex models to improve multispecies assessments. Medición de los Impactos sobre las Especies con Modelos y Medidas de Complejidad Ecológica y Computacional Variante Resumen Las estrategias para evaluar el impacto de los escenarios de perturbación de paisaje sobre la distribución de las especies van desde las medidas basadas en patrones de presencia o hábitat hasta los modelos integrales que incluyen explícitamente a los procesos ecológicos. La elección de medidas y modelos afecta la interpretación de los impactos y las decisiones de conservación. Exploramos los impactos de tres escenarios realistas de perturbación sobre cuatro especies con características ecológicas y taxonómicas diferentes. Usamos progresivamente modelos y medidas más complejas para evaluar el impacto relativo y la clasificación de los escenarios sobre las especies. Los modelos variaron desde aquellos de distribución de especies que dependen de las suposiciones implícitas acerca de los factores ambientales y la presencia de la especie hasta aquellos modelos poblacionales explícitos con una alta parametrización espacial que incluyen los procesos ecológicos y la estocasticidad. Las medidas tuvieron un desempeño uniforme en la clasificación de los diferentes escenarios de acuerdo a la gravedad, principalmente cuando la variación en el impacto fue causada por la cantidad de hábitat presente. Sin embargo, las medidas difirieron en la clasificación para los casos en los que las dinámicas de dispersión fueron significativas en la influencia de la persistencia metapoblacional. Los impactos de los escenarios sobre las especies con una habilidad reducida de dispersión estuvieron mejor caracterizados con el uso de modelos que capturaron explícitamente estos procesos. La capacidad metapoblacional proporcionó categorías de clasificación con la correlación más consistente a aquellas provenientes de los modelos ricos en datos y con una alta parametrización e incorporó información sobre la dispersión con un reducido costo adicional de cómputo y de datos. Nuestros resultados resaltan la importancia de la consideración explícita de la ecología de las especies, la configuración espacial del hábitat y la perturbación cuando se eligen los indicadores de la persistencia de una especie. Sugerimos que se usen estrategias híbridas que mezclen modelos simples y complejos para mejorar las evaluaciones realizadas a múltiples especies. 摘要 评估景观干扰情景对物种影响的方法包括基于物种出现格局或栖息地格局的指标和纳入生态过程的综合模型等。对指标和模型的选择会影响对物种所受影响的解读和保护决策。本研究探索了三种真实干扰情景对四种不同生态学特征和类群的物种的影响。我们使用了逐渐复杂化的模型和指标评估了干扰情景对物种的相对影响和影响等级。本研究涉及的模型包括依赖于环境因素和物种出现的隐式假设的物种分布模型, 以及明确包含生态过程和随机性的高度参数化的空间显式种群模型。当影响的变化是由栖息地数量驱动时, 各种指标对不同情景的影响严重程度排序的结果一致。然而, 当扩散动态对集合种群续存有重要影响时, 不同指标的排序结果不同。使用明确考虑了扩散过程的模型可以更好地描述干扰情景对扩散能力弱的物种的影响。集合种群承载力提供了与高度参数化和数据丰富的模型最为一致的排序, 并且可以在几乎没有额外计算和数据成本的情况下加入扩散的信息。我们的结果强调了选择物种续存指标时应清楚地考虑物种的生态特征、栖息地空间结构以及干扰。我们建议使用简单和复杂模型混合的方法来改进多物种评估。 【翻译: 胡怡思; 审校: 聂永刚】 Article impact statement : Not explicitly including ecological complexity in biodiversity metrics may result in misleading conclusions when assessing impacts.
Approaches to assess the impacts of landscape disturbance scenarios on species range from metrics based on patterns of occurrence or habitat to comprehensive models that explicitly include ecological processes. The choice of metrics and models affects how impacts are interpreted and conservation decisions. We explored the impacts of 3 realistic disturbance scenarios on 4 species with different ecological and taxonomic traits. We used progressively more complex models and metrics to evaluate relative impact and rank of scenarios on the species. Models ranged from species distribution models that relied on implicit assumptions about environmental factors and species presence to highly parameterized spatially explicit population models that explicitly included ecological processes and stochasticity. Metrics performed consistently in ranking different scenarios in order of severity primarily when variation in impact was driven by habitat amount. However, they differed in rank for cases where dispersal dynamics were critical in influencing metapopulation persistence. Impacts of scenarios on species with low dispersal ability were better characterized using models that explicitly captured these processes. Metapopulation capacity provided rank orders that most consistently correlated with those from highly parameterized and data‐rich models and incorporated information about dispersal with little additional computational and data cost. Our results highlight the importance of explicitly considering species’ ecology, spatial configuration of habitat, and disturbance when choosing indicators of species persistence. We suggest using hybrid approaches that are a mixture of simple and complex models to improve multispecies assessments.
Approaches to assess the impacts of landscape disturbance scenarios on species range from metrics based on patterns of occurrence or habitat to comprehensive models that explicitly include ecological processes. The choice of metrics and models affects how impacts are interpreted and conservation decisions. We explored the impacts of 3 realistic disturbance scenarios on 4 species with different ecological and taxonomic traits. We used progressively more complex models and metrics to evaluate relative impact and rank of scenarios on the species. Models ranged from species distribution models that relied on implicit assumptions about environmental factors and species presence to highly parameterized spatially explicit population models that explicitly included ecological processes and stochasticity. Metrics performed consistently in ranking different scenarios in order of severity primarily when variation in impact was driven by habitat amount. However, they differed in rank for cases where dispersal dynamics were critical in influencing metapopulation persistence. Impacts of scenarios on species with low dispersal ability were better characterized using models that explicitly captured these processes. Metapopulation capacity provided rank orders that most consistently correlated with those from highly parameterized and data‐rich models and incorporated information about dispersal with little additional computational and data cost. Our results highlight the importance of explicitly considering species’ ecology, spatial configuration of habitat, and disturbance when choosing indicators of species persistence. We suggest using hybrid approaches that are a mixture of simple and complex models to improve multispecies assessments. Medición de los Impactos sobre las Especies con Modelos y Medidas de Complejidad Ecológica y Computacional Variante Resumen Las estrategias para evaluar el impacto de los escenarios de perturbación de paisaje sobre la distribución de las especies van desde las medidas basadas en patrones de presencia o hábitat hasta los modelos integrales que incluyen explícitamente a los procesos ecológicos. La elección de medidas y modelos afecta la interpretación de los impactos y las decisiones de conservación. Exploramos los impactos de tres escenarios realistas de perturbación sobre cuatro especies con características ecológicas y taxonómicas diferentes. Usamos progresivamente modelos y medidas más complejas para evaluar el impacto relativo y la clasificación de los escenarios sobre las especies. Los modelos variaron desde aquellos de distribución de especies que dependen de las suposiciones implícitas acerca de los factores ambientales y la presencia de la especie hasta aquellos modelos poblacionales explícitos con una alta parametrización espacial que incluyen los procesos ecológicos y la estocasticidad. Las medidas tuvieron un desempeño uniforme en la clasificación de los diferentes escenarios de acuerdo a la gravedad, principalmente cuando la variación en el impacto fue causada por la cantidad de hábitat presente. Sin embargo, las medidas difirieron en la clasificación para los casos en los que las dinámicas de dispersión fueron significativas en la influencia de la persistencia metapoblacional. Los impactos de los escenarios sobre las especies con una habilidad reducida de dispersión estuvieron mejor caracterizados con el uso de modelos que capturaron explícitamente estos procesos. La capacidad metapoblacional proporcionó categorías de clasificación con la correlación más consistente a aquellas provenientes de los modelos ricos en datos y con una alta parametrización e incorporó información sobre la dispersión con un reducido costo adicional de cómputo y de datos. Nuestros resultados resaltan la importancia de la consideración explícita de la ecología de las especies, la configuración espacial del hábitat y la perturbación cuando se eligen los indicadores de la persistencia de una especie. Sugerimos que se usen estrategias híbridas que mezclen modelos simples y complejos para mejorar las evaluaciones realizadas a múltiples especies. 摘要 评估景观干扰情景对物种影响的方法包括基于物种出现格局或栖息地格局的指标和纳入生态过程的综合模型等。对指标和模型的选择会影响对物种所受影响的解读和保护决策。本研究探索了三种真实干扰情景对四种不同生态学特征和类群的物种的影响。我们使用了逐渐复杂化的模型和指标评估了干扰情景对物种的相对影响和影响等级。本研究涉及的模型包括依赖于环境因素和物种出现的隐式假设的物种分布模型, 以及明确包含生态过程和随机性的高度参数化的空间显式种群模型。当影响的变化是由栖息地数量驱动时, 各种指标对不同情景的影响严重程度排序的结果一致。然而, 当扩散动态对集合种群续存有重要影响时, 不同指标的排序结果不同。使用明确考虑了扩散过程的模型可以更好地描述干扰情景对扩散能力弱的物种的影响。集合种群承载力提供了与高度参数化和数据丰富的模型最为一致的排序, 并且可以在几乎没有额外计算和数据成本的情况下加入扩散的信息。我们的结果强调了选择物种续存指标时应清楚地考虑物种的生态特征、栖息地空间结构以及干扰。我们建议使用简单和复杂模型混合的方法来改进多物种评估。【翻译: 胡怡思; 审校: 聂永刚】 Article impact statement: Not explicitly including ecological complexity in biodiversity metrics may result in misleading conclusions when assessing impacts.
Author Kujala, Heini
Whitehead, Amy L.
Nicholson, Emily
Hallam, Christopher D.
Wintle, Brendan A.
Author_xml – sequence: 1
  givenname: Christopher D.
  orcidid: 0000-0002-3960-3859
  surname: Hallam
  fullname: Hallam, Christopher D.
  email: challam@student.unimelb.edu.au
  organization: University of Melbourne
– sequence: 2
  givenname: Brendan A.
  orcidid: 0000-0002-4234-5950
  surname: Wintle
  fullname: Wintle, Brendan A.
  organization: University of Melbourne
– sequence: 3
  givenname: Heini
  orcidid: 0000-0001-9772-3202
  surname: Kujala
  fullname: Kujala, Heini
  organization: University of Melbourne
– sequence: 4
  givenname: Amy L.
  orcidid: 0000-0002-4164-9047
  surname: Whitehead
  fullname: Whitehead, Amy L.
  organization: National Institute of Water and Atmospheric Research
– sequence: 5
  givenname: Emily
  orcidid: 0000-0003-2199-3446
  surname: Nicholson
  fullname: Nicholson, Emily
  organization: Deakin University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32390253$$D View this record in MEDLINE/PubMed
BookMark eNp90MtKxDAUBuAgio6XjQ8gBTciVHPrJFnq4A0UN7oumdPTMdI2tWkd5-1NHXXhwmxCwpefnH-XbDa-QUIOGT1jcZ2Dn7szJjIuN8iEZVykTAmzSSZUa51qbfgO2Q3hlVJqMia3yY7gwlCeiQlZPKANQ-eaReLq1kIfEt8koUVwGJKl61-S2hdYhcQ2RVJj3zmIpEzebbcaXyH4yi8c2OpLgK_bobe98028GU8Vfrh-tU-2SlsFPPje98jz9dXT7Da9f7y5m13cpyCMkCkqboyyGTImgYMAPgdQpeS6FFYpWcRhjGYMeaE0TDMwSku0cm6mUltLxR45Wee2nX8bMPR57QJgVdkG_RByLmmsTEs-0uM_9NUPXfz2qKZyylTGeFSnawWdD6HDMm87V8fhc0bzsf58rD__qj_io-_IYV5j8Ut_-o6ArcHSVbj6JyqfPV7erUM_AdsFkbo
CitedBy_id crossref_primary_10_1017_S0376892924000055
crossref_primary_10_4000_vertigo_40230
Cites_doi 10.7882/RZSNSW.1991.031
10.1073/pnas.100126797
10.1016/j.biocon.2009.05.010
10.1890/07-1306.1
10.1007/s10021-009-9229-5
10.1111/j.1523-1739.2005.00276.x
10.1073/pnas.1311491110
10.1146/annurev.ecolsys.34.011802.132419
10.1111/j.1523-1739.2006.00369.x
10.1111/ele.12189
10.1111/j.1523-1739.2004.00520.x
10.1126/science.1196624
10.1371/journal.pcbi.1004251
10.1071/WR9930387
10.1111/j.1461-0248.2006.00956.x
10.1371/journal.pone.0064852
10.1111/j.1523-1739.2005.00418.x
10.1016/0006-3207(94)90167-8
10.1093/besa/15.3.237
10.1111/j.2005.0906-7590.04285.x
10.1086/498655
10.1111/j.1461-0248.2007.01004.x
10.1111/j.1442-9993.2005.01514.x
10.1515/9781400833023.177
10.1111/j.1523-1739.2008.01066.x
10.1016/j.biocon.2011.06.015
10.5751/ES-00184-040116
10.1016/j.mbs.2008.12.004
10.1038/35008063
10.1016/j.ecolmodel.2005.03.026
10.1017/S0952836903004631
10.1017/S136794300100141X
10.1111/conl.12202
10.1111/j.1365-2664.2010.01917.x
10.1126/science.1116030
10.1016/B978-0-12-373631-4.00002-2
10.1086/338991
10.1038/23876
10.1111/conl.12159
10.1016/B978-012323448-3/50007-6
10.1111/cobi.12047
10.1002/eap.1739
10.1086/428293
10.1023/B:BIOC.0000004318.10051.48
10.1034/j.1600-0706.2002.980208.x
10.1146/annurev.ecolsys.110308.120159
10.1023/B:BIOC.0000004319.91643.9e
10.1016/j.biocon.2012.09.014
ContentType Journal Article
Copyright 2020 Society for Conservation Biology
2020 Society for Conservation Biology.
2020, Society for Conservation Biology
Copyright_xml – notice: 2020 Society for Conservation Biology
– notice: 2020 Society for Conservation Biology.
– notice: 2020, Society for Conservation Biology
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QG
7SN
7SS
7ST
7U6
8FD
C1K
F1W
FR3
H95
L.G
P64
RC3
SOI
7X8
DOI 10.1111/cobi.13524
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Animal Behavior Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Sustainability Science Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Research Database
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Sustainability Science Abstracts
Animal Behavior Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Environment Abstracts
MEDLINE - Academic
DatabaseTitleList CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Ecology
EISSN 1523-1739
EndPage 1524
ExternalDocumentID 10_1111_cobi_13524
32390253
COBI13524
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Australian Research Council
  funderid: DP160101003; DP170100609
GroupedDBID ---
-DZ
.-4
.3N
.GA
.Y3
05W
0R~
10A
1OB
1OC
29F
31~
33P
3SF
4.4
42X
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHKG
AAISJ
AAKGQ
AANLZ
AAONW
AASGY
AAUTI
AAXRX
AAZKR
ABBHK
ABCQN
ABCUV
ABEFU
ABEML
ABJNI
ABLJU
ABPLY
ABPPZ
ABPVW
ABTLG
ABXSQ
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACNCT
ACPOU
ACPRK
ACPVT
ACSCC
ACSTJ
ACXBN
ACXQS
ADACV
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADUKH
ADULT
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUPB
AEUQT
AEUYR
AFAZZ
AFBPY
AFEBI
AFFDN
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AGUYK
AHBTC
AI.
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ANHSF
AQVQM
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CAG
CBGCD
COF
CS3
CUYZI
D-E
D-F
D0L
DCZOG
DEVKO
DOOOF
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
FEDTE
G-S
G.N
GODZA
GTFYD
H.T
H.X
HF~
HGD
HGLYW
HQ2
HTVGU
HVGLF
HZI
HZ~
IHE
IPSME
IX1
J0M
JAAYA
JBMMH
JBS
JEB
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSODD
JST
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LMP
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NEJ
NF~
O66
O9-
OES
OIG
OVD
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QN7
R.K
ROL
RSU
RX1
SA0
SAMSI
SUPJJ
TEORI
TN5
UB1
UKR
UQL
V8K
VH1
VOH
W8V
W99
WBKPD
WHG
WIH
WIK
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XIH
XSW
YFH
YUY
YV5
YZZ
ZCA
ZCG
ZO4
ZZTAW
~02
~IA
~KM
~WT
AHXOZ
AILXY
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QG
7SN
7SS
7ST
7U6
8FD
C1K
F1W
FR3
H95
L.G
P64
RC3
SOI
7X8
ID FETCH-LOGICAL-c3934-e72997a5e114c2c3c2bcc7f428f3a774d8929811e2d78c65c9784ea4b9648aa03
IEDL.DBID DR2
ISSN 0888-8892
IngestDate Fri Aug 16 09:33:37 EDT 2024
Thu Oct 10 19:28:42 EDT 2024
Fri Aug 23 01:58:16 EDT 2024
Wed Oct 16 00:44:10 EDT 2024
Sat Aug 24 01:06:31 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords metapopulation models
metapopulation capacity
capacidad metapoblacional
medidas de la biodiversidad
集合种群承载力
生物多样性指标
modelos metapoblacionales
evaluación de impacto
影响评价
集合种群模型
biodiversity metrics
impact assessment
Language English
License 2020 Society for Conservation Biology.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3934-e72997a5e114c2c3c2bcc7f428f3a774d8929811e2d78c65c9784ea4b9648aa03
Notes Article impact statement
Not explicitly including ecological complexity in biodiversity metrics may result in misleading conclusions when assessing impacts.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-4234-5950
0000-0002-4164-9047
0000-0003-2199-3446
0000-0002-3960-3859
0000-0001-9772-3202
OpenAccessLink https://figshare.com/ndownloader/files/36918349
PMID 32390253
PQID 2464617512
PQPubID 36794
PageCount 13
ParticipantIDs proquest_miscellaneous_2401118420
proquest_journals_2464617512
crossref_primary_10_1111_cobi_13524
pubmed_primary_32390253
wiley_primary_10_1111_cobi_13524_COBI13524
PublicationCentury 2000
PublicationDate December 2020
2020-12-00
20201201
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: December 2020
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Conservation biology
PublicationTitleAlternate Conserv Biol
PublicationYear 2020
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References 2009; 40
2013; 27
2000; 48
2013; 24
2000; 4
1993; 20
2002; 98
2005a; 19
2002; 159
2013; 8
1998; 396
2005; 28
2009; 12
2006; 20
2013; 16
2001
2000; 404
2000; 97
2013; 157
2005; 309
2013; 110
1994; 70
2006; 167
2009; 23
2018; 28
2012
2010
2004; 262
2008; 18
2015; 11
2006; 9
2009
2008
2007
2006
2005b; 30
2005
2004
1969; 15
1991
2009; 218
2007; 10
1999
2003; 34
2005; 19
2004; 18
2005; 165
2006; 190
2001; 4
2004; 13
2010; 330
2016
2015
2011; 48
2009; 142
2016; 9
2011; 144
e_1_2_6_51_1
e_1_2_6_53_1
Citroen S. (e_1_2_6_14_1) 2006
Santini L (e_1_2_6_54_1) 2013; 24
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_59_1
e_1_2_6_11_1
e_1_2_6_34_1
Possingham H (e_1_2_6_52_1) 2001
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_57_1
e_1_2_6_62_1
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_60_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
Akcakaya HR (e_1_2_6_2_1) 2000; 48
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_56_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_58_1
e_1_2_6_63_1
e_1_2_6_42_1
e_1_2_6_21_1
e_1_2_6_40_1
e_1_2_6_61_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_29_1
e_1_2_6_44_1
Hanski I. (e_1_2_6_32_1) 2010
e_1_2_6_27_1
e_1_2_6_46_1
References_xml – volume: 23
  start-page: 225
  year: 2009
  end-page: 229
  article-title: Sensitivity analyses of spatial population viability analysis models for species at risk and habitat conservation planning
  publication-title: Conservation Biology
– start-page: 33
  year: 2009
  end-page: 49
– volume: 110
  start-page: 12715
  year: 2013
  end-page: 12720
  article-title: Species–fragmented area relationship
  publication-title: Proceedings of the National Academy of Sciences
– volume: 48
  start-page: 23
  year: 2000
  end-page: 38
  article-title: Population viability analyses with demographically and spatially structured models
  publication-title: Ecological Bulletins
– volume: 18
  start-page: 526
  year: 2004
  end-page: 537
  article-title: Integrating landscape and metapopulation modeling approaches: viability of the Sharp‐Tailed Grouse in a dynamic landscape
  publication-title: Conservation Biology
– year: 2005
– volume: 16
  start-page: 1424
  year: 2013
  end-page: 1435
  article-title: Predicting species distributions for conservation decisions
  publication-title: Ecology Letters
– volume: 70
  start-page: 227
  year: 1994
  end-page: 236
  article-title: Metapopulation viability analysis of the greater glider in a wood production area
  publication-title: Biological Conservation
– volume: 28
  start-page: 1354
  year: 2018
  end-page: 1361
  article-title: Reserve design to optimize the long‐term persistence of multiple species
  publication-title: Ecological Applications
– volume: 24
  start-page: 1
  year: 2013
  end-page: 6
  article-title: Ecological correlates of dispersal distance in terrestrial mammals
  publication-title: Hystrix
– volume: 48
  start-page: 9
  year: 2011
  end-page: 13
  article-title: Monitoring species abundance and distribution at the landscape scale
  publication-title: Journal of Applied Ecology
– volume: 11
  year: 2015
  article-title: Metapopulation persistence in random fragmented landscapes
  publication-title: PLOS Computational Biology
– volume: 12
  start-page: 374
  year: 2009
  end-page: 390
  article-title: GLOBIO3: a framework to investigate options for reducing global terrestrial biodiversity loss
  publication-title: Ecosystems
– volume: 330
  start-page: 1496
  year: 2010
  end-page: 1501
  article-title: Scenarios for global biodiversity in the 21st century
  publication-title: Science
– volume: 9
  start-page: 181
  year: 2016
  end-page: 190
  article-title: Climate and fire scenario uncertainty dominate the evaluation of options for conserving the great desert skink: resolving uncertainty in fire management
  publication-title: Conservation Letters
– volume: 15
  start-page: 237
  year: 1969
  end-page: 240
  article-title: Some demographic and genetic consequences of environmental heterogeneity for biological control
  publication-title: Bulletin of the Entomological Society of America
– year: 2008
– volume: 13
  start-page: 189
  year: 2004
  end-page: 206
  article-title: Ecologically differentiated rules of thumb for habitat network design–lessons from a formula
  publication-title: Biodiversity & Conservation
– volume: 20
  start-page: 387
  year: 1993
  end-page: 403
  article-title: Home‐range estimates and habitat of the yellow‐bellied glider ( ) at Waratah Creek, New South Wales
  publication-title: Wildlife Research
– volume: 27
  start-page: 520
  year: 2013
  end-page: 530
  article-title: Estimating extinction risk with metapopulation models of large‐scale fragmentation: metapopulation analyses of large‐ranged species
  publication-title: Conservation Biology
– volume: 8
  year: 2013
  article-title: Ranking landscape development scenarios affecting natterjack toad ( ) population dynamics in central Poland
  publication-title: PLOS ONE
– volume: 167
  start-page: 260
  year: 2006
  end-page: 275
  article-title: Distributions of habitat suitability and the abundance‐occupancy relationship
  publication-title: The American Naturalist
– volume: 34
  start-page: 487
  year: 2003
  end-page: 515
  article-title: Effects of habitat fragmentation on biodiversity
  publication-title: Annual Review of Ecology, Evolution, and Systematics
– volume: 18
  start-page: 1002
  year: 2008
  end-page: 1013
  article-title: Sensitivity of population viability to spatial and nonspatial parameters using grip
  publication-title: Ecological Applications
– year: 2015
– volume: 190
  start-page: 231
  year: 2006
  end-page: 259
  article-title: Maximum entropy modeling of species geographic distributions
  publication-title: Ecological Modelling
– volume: 30
  start-page: 719
  year: 2005b
  end-page: 738
  article-title: Fauna habitat modelling and mapping: a review and case study in the Lower Hunter Central Coast region of NSW
  publication-title: Austral Ecology
– volume: 165
  start-page: 374
  year: 2005
  end-page: 388
  article-title: Metapopulation persistence in heterogeneous landscapes: lessons about the effect of stochasticity
  publication-title: The American Naturalist
– volume: 396
  start-page: 41
  year: 1998
  end-page: 49
  article-title: Metapopulation dynamics
  publication-title: Nature
– volume: 144
  start-page: 2354
  year: 2011
  end-page: 2361
  article-title: Linking cost efficiency evaluation with population viability analysis to prioritize wetland bird conservation actions
  publication-title: Biological Conservation
– volume: 9
  start-page: 1049
  year: 2006
  end-page: 1060
  article-title: A new method for conservation planning for the persistence of multiple species
  publication-title: Ecology Letters
– volume: 20
  start-page: 871
  year: 2006
  end-page: 881
  article-title: Objectives for multiple‐species conservation planning
  publication-title: Conservation Biology
– volume: 4
  start-page: 351
  year: 2001
  end-page: 355
  article-title: Expected minimum population size as a measure of threat
  publication-title: Animal Conservation
– year: 2007
– volume: 40
  start-page: 677
  year: 2009
  end-page: 697
  article-title: Species Distribution models: ecological explanation and prediction across space and time
  publication-title: Annual Review of Ecology, Evolution, and Systematics
– volume: 157
  start-page: 156
  year: 2013
  end-page: 162
  article-title: Achieving no net loss in habitat offset of a threatened frog required high offset ratio and intensive monitoring
  publication-title: Biological Conservation
– start-page: 167
  year: 2010
  end-page: 188
– volume: 19
  start-page: 1930
  year: 2005a
  end-page: 1943
  article-title: Utility of dynamic‐landscape metapopulation models for sustainable forest management
  publication-title: Conservation Biology
– year: 2016
– volume: 142
  start-page: 2438
  year: 2009
  end-page: 2448
  article-title: Modelling human impacts on the Tasmanian wedge‐tailed eagle ( )
  publication-title: Biological Conservation
– volume: 218
  start-page: 59
  year: 2009
  end-page: 71
  article-title: Predicting metapopulation lifetime from macroscopic network properties
  publication-title: Mathematical Biosciences
– year: 2012
– start-page: 105
  year: 2004
  end-page: 133
– volume: 4
  start-page: 1
  year: 2000
  end-page: 16
  article-title: Scaling of natal dispersal distances in terrestrial birds and mammals
  publication-title: Conservation Ecology
– volume: 159
  start-page: 530
  year: 2002
  end-page: 552
  article-title: A formula for the mean lifetime of metapopulations in heterogeneous landscapes
  publication-title: The American Naturalist
– volume: 309
  start-page: 1239
  year: 2005
  end-page: 1241
  article-title: Multiple causes of high extinction risk in large mammal species
  publication-title: Science
– year: 2006
– volume: 19
  start-page: 534
  year: 2005
  end-page: 546
  article-title: Metapopulation extinction risk under spatially autocorrelated disturbance
  publication-title: Conservation Biology
– start-page: 177
  year: 2009
  end-page: 185
– volume: 28
  start-page: 593
  year: 2005
  end-page: 602
  article-title: Low dispersal ability and habitat specificity promote extinctions in rare but not in widespread species: the Orthoptera of Germany
  publication-title: Ecography
– volume: 10
  start-page: 219
  year: 2007
  end-page: 229
  article-title: Dispersal of Amazonian birds in continuous and fragmented forest
  publication-title: Ecology Letters
– volume: 98
  start-page: 263
  year: 2002
  end-page: 270
  article-title: Metapopulation persistence in dynamic landscapes: the role of dispersal distance
  publication-title: Oikos
– start-page: 1
  year: 2001
  end-page: 18
– volume: 404
  start-page: 755
  year: 2000
  end-page: 758
  article-title: The metapopulation capacity of a fragmented landscape
  publication-title: Nature
– year: 1991
– volume: 262
  start-page: 271
  year: 2004
  end-page: 280
  article-title: Home range and spatial organization of the marsupial carnivore, (Marsupialia: Dasyuridae) in south‐eastern Australia
  publication-title: Journal of Zoology
– volume: 9
  start-page: 5
  year: 2016
  end-page: 13
  article-title: Projecting global biodiversity indicators under future development scenarios: projecting biodiversity indicators
  publication-title: Conservation Letters
– volume: 97
  start-page: 5954
  year: 2000
  end-page: 5959
  article-title: Umbrellas and flagships: efficient conservation surrogates or expensive mistakes?
  publication-title: Proceedings of the National Academy of Sciences
– volume: 13
  start-page: 207
  year: 2004
  end-page: 251
  article-title: Predictors of species sensitivity to fragmentation
  publication-title: Biodiversity & Conservation
– year: 1999
– ident: e_1_2_6_27_1
  doi: 10.7882/RZSNSW.1991.031
– ident: e_1_2_6_7_1
  doi: 10.1073/pnas.100126797
– ident: e_1_2_6_9_1
  doi: 10.1016/j.biocon.2009.05.010
– ident: e_1_2_6_13_1
  doi: 10.1890/07-1306.1
– ident: e_1_2_6_5_1
  doi: 10.1007/s10021-009-9229-5
– ident: e_1_2_6_62_1
  doi: 10.1111/j.1523-1739.2005.00276.x
– ident: e_1_2_6_34_1
  doi: 10.1073/pnas.1311491110
– ident: e_1_2_6_20_1
  doi: 10.1146/annurev.ecolsys.34.011802.132419
– ident: e_1_2_6_45_1
  doi: 10.1111/j.1523-1739.2006.00369.x
– ident: e_1_2_6_29_1
  doi: 10.1111/ele.12189
– ident: e_1_2_6_4_1
  doi: 10.1111/j.1523-1739.2004.00520.x
– volume-title: Bachelor of Forest Science, Honours
  year: 2006
  ident: e_1_2_6_14_1
  contributor:
    fullname: Citroen S.
– ident: e_1_2_6_59_1
– ident: e_1_2_6_36_1
– ident: e_1_2_6_47_1
  doi: 10.1126/science.1196624
– ident: e_1_2_6_26_1
  doi: 10.1371/journal.pcbi.1004251
– ident: e_1_2_6_28_1
  doi: 10.1071/WR9930387
– ident: e_1_2_6_46_1
  doi: 10.1111/j.1461-0248.2006.00956.x
– ident: e_1_2_6_24_1
  doi: 10.1371/journal.pone.0064852
– ident: e_1_2_6_39_1
  doi: 10.1111/j.1523-1739.2005.00418.x
– ident: e_1_2_6_51_1
  doi: 10.1016/0006-3207(94)90167-8
– ident: e_1_2_6_40_1
  doi: 10.1093/besa/15.3.237
– ident: e_1_2_6_53_1
  doi: 10.1111/j.2005.0906-7590.04285.x
– ident: e_1_2_6_25_1
  doi: 10.1086/498655
– ident: e_1_2_6_3_1
– ident: e_1_2_6_60_1
  doi: 10.1111/j.1461-0248.2007.01004.x
– ident: e_1_2_6_63_1
  doi: 10.1111/j.1442-9993.2005.01514.x
– ident: e_1_2_6_31_1
  doi: 10.1515/9781400833023.177
– ident: e_1_2_6_44_1
  doi: 10.1111/j.1523-1739.2008.01066.x
– ident: e_1_2_6_6_1
– ident: e_1_2_6_56_1
  doi: 10.1016/j.biocon.2011.06.015
– volume: 48
  start-page: 23
  year: 2000
  ident: e_1_2_6_2_1
  article-title: Population viability analyses with demographically and spatially structured models
  publication-title: Ecological Bulletins
  contributor:
    fullname: Akcakaya HR
– ident: e_1_2_6_58_1
  doi: 10.5751/ES-00184-040116
– start-page: 1
  volume-title: Conservation biology: research priorities for the next decade
  year: 2001
  ident: e_1_2_6_52_1
  contributor:
    fullname: Possingham H
– ident: e_1_2_6_15_1
  doi: 10.1016/j.mbs.2008.12.004
– ident: e_1_2_6_33_1
  doi: 10.1038/35008063
– ident: e_1_2_6_48_1
  doi: 10.1016/j.ecolmodel.2005.03.026
– ident: e_1_2_6_10_1
  doi: 10.1017/S0952836903004631
– ident: e_1_2_6_42_1
  doi: 10.1017/S136794300100141X
– ident: e_1_2_6_11_1
  doi: 10.1111/conl.12202
– ident: e_1_2_6_38_1
  doi: 10.1111/j.1365-2664.2010.01917.x
– ident: e_1_2_6_12_1
  doi: 10.1126/science.1116030
– ident: e_1_2_6_8_1
  doi: 10.1016/B978-0-12-373631-4.00002-2
– ident: e_1_2_6_23_1
  doi: 10.1086/338991
– ident: e_1_2_6_41_1
– ident: e_1_2_6_19_1
– ident: e_1_2_6_30_1
  doi: 10.1038/23876
– start-page: 167
  volume-title: Spatial ecology
  year: 2010
  ident: e_1_2_6_32_1
  contributor:
    fullname: Hanski I.
– ident: e_1_2_6_61_1
  doi: 10.1111/conl.12159
– volume: 24
  start-page: 1
  year: 2013
  ident: e_1_2_6_54_1
  article-title: Ecological correlates of dispersal distance in terrestrial mammals
  publication-title: Hystrix
  contributor:
    fullname: Santini L
– ident: e_1_2_6_16_1
– ident: e_1_2_6_18_1
  doi: 10.1016/B978-012323448-3/50007-6
– ident: e_1_2_6_55_1
  doi: 10.1111/cobi.12047
– ident: e_1_2_6_57_1
  doi: 10.1002/eap.1739
– ident: e_1_2_6_22_1
  doi: 10.1086/428293
– ident: e_1_2_6_21_1
  doi: 10.1023/B:BIOC.0000004318.10051.48
– ident: e_1_2_6_37_1
  doi: 10.1034/j.1600-0706.2002.980208.x
– ident: e_1_2_6_17_1
  doi: 10.1146/annurev.ecolsys.110308.120159
– ident: e_1_2_6_43_1
– ident: e_1_2_6_35_1
  doi: 10.1023/B:BIOC.0000004319.91643.9e
– ident: e_1_2_6_49_1
– ident: e_1_2_6_50_1
  doi: 10.1016/j.biocon.2012.09.014
SSID ssj0009514
Score 2.3906715
Snippet Approaches to assess the impacts of landscape disturbance scenarios on species range from metrics based on patterns of occurrence or habitat to comprehensive...
Abstract Approaches to assess the impacts of landscape disturbance scenarios on species range from metrics based on patterns of occurrence or habitat to...
SourceID proquest
crossref
pubmed
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage 1512
SubjectTerms Benchmarking
biodiversity metrics
capacidad metapoblacional
Complexity
Computer applications
Conservation of Natural Resources
Dispersal
Dispersion
Disturbance
Ecological effects
Ecosystem
Environmental factors
evaluación de impacto
Geographical distribution
Habitats
impact assessment
medidas de la biodiversidad
metapopulation capacity
metapopulation models
Metapopulations
modelos metapoblacionales
Models, Biological
Parameterization
Population Dynamics
Species
Stochasticity
影响评价
生物多样性指标
集合种群承载力
集合种群模型
Title Measuring impacts on species with models and metrics of varying ecological and computational complexity
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcobi.13524
https://www.ncbi.nlm.nih.gov/pubmed/32390253
https://www.proquest.com/docview/2464617512
https://search.proquest.com/docview/2401118420
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS-QwFD4MguDLel2tjhJZnxYqbZLpBXzRUVFBBVHwZSnpabosYkecGWH89Z6TtrNeQNC3liYkzclJvi-X7wDsFL3AKGsCXxM29jWBUj-VoSWWok1J81-pke87n19EJzf67LZ324G99i5MrQ8xXXBjz3DjNTu4yYevnBwH-T-O2iBZDDRUMZ_nOrySrxR3a2Fvonh-kqSy0SblYzz_s76djT5AzLeI1U05x_Pwp61sfdLkbnc8ynfx-Z2O43f_ZgF-NFhU7NedZxE6tlqC2To65YSejpyi9WQZ_p67lUSa5UR9q3IoBpXgS5rEswUv5QoXUWcoTFWIew7ShZSkFE9UIc5lsR1jXQp0oSSaZUj3xrKco8kK3BwfXfdP_CZCg48qVdq3BM3T2PQssSqUqFDmiGRfmZTKELAsqN3TJAytLOIEox4SZ9XW6DyNdGJMoH7CTDWo7BqIJDRBHFuTIGqd2jAvCwIbBiOiqHlojQe_WktlD7UQR9YSGG68zDWeB93WiFnjjMNM6kgTUCNo48H29DO5Ee-NmMoOxpyGBjpiuzLwYLU2_rQYJRVvxioPfjsTflJ-1r88OHVP619JvAFzknm8OybThZnR49huEtgZ5VuuU78ASpn53w
link.rule.ids 315,783,787,1378,27936,27937,46306,46730
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwED6NTghetvFjkK0DI3hCypTYbpo8bl2nFtoioVbqW-RcHIQQKaItUvfX785JuxakSezNURw58eXs7zvb3wF8yFuBUdYEviZs7GsCpX4iQ0ssRZuC5r9CI593Ho6i3kR_mram9d4cPgtT6UNsAm7sGW68ZgfngPSWl-Ms-85pG6R-BPvk74ozN1x9lVuau5W0N5E8P44TWauT8kaeu2d356N_QOYuZnWTzvVhlVl17rQKea_Jj_PlIjvHm7-UHB_8PUdwUMNRcVH9P89gz5bP4XGVoHJFpa4TtV69gG9DF0ykiU5UByvnYlYKPqdJVFtwNFe4pDpzYcpc_OQ8XUhVCvGH3oifsrgeZl0NdNkk6kiku2JlzsXqJUyuu-NOz6-TNPioEqV9S-g8aZuWJWKFEhXKDJFMLONCGcKWOXV8EoehlXk7xqiFRFu1NTpLIh0bE6hjaJSz0r4GEYcmaLetiRG1TmyYFTnhDYMRsdQstMaD92tTpb8qLY50zWG481LXeR4011ZMa3-cp1JHmrAaoRsP3m1ukyfx8ogp7WzJdWisI8IrAw9eVdbfNKOk4vVY5cFHZ8N72k87Xy77rnTyP5XfwpPeeDhIB_3R51N4KpnWu10zTWgsfi_tGWGfRfbG_eG32Rn99w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZS8QwEB48UHzxPuoZ0SehS5tkuy344rV4K6Lgi5R0moqIXXF3hfXXO0nb9QJB31qakDSTyXxfkpkB2EzrnhJaea4kbOxKAqVuxH1NLEWqjOxfJtH4O5-dB4c38vi2fjsA25UvTBEfor_hZjTDrtdGwZ_T7JOSYyt5MFkbuByEYRlQKwYSXfFPIXeLyN7E8dwwjHgZnNTc4_mo-9Uc_cCYXyGrtTnNCbireltcNXmsdTtJDd--BXL87-9MwngJRtlOMXumYEDn0zBSpKfs0dOBDWndm4H7M7uVSGaOFW6VbdbKmfHSJKLNzF4usyl12kzlKXsyWbqQimTslTpkammsFllbAm0uiXIf0r6ZuJyd3izcNA-u9w7dMkWDiyIS0tWEzaOGqmuiVchRIE8QScA8zIQiZJnSuEeh72ueNkIM6kikVWolkyiQoVKemIOhvJXrBWChr7xGQ6sQUcpI-0mWEtpQGBBHTXytHNioJBU_F5E44orBmMGL7eA5sFwJMS61sR1zGUhCaoRtHFjvfyY9MocjKtetrilDKx3RXe45MF8Iv9-M4MKcxgoHtqwIf2k_3rvYPbJPi38pvAajl_vN-PTo_GQJxrjh9PbKzDIMdV66eoWATydZtfP7HeXG_KY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Measuring+impacts+on+species+with+models+and+metrics+of+varying+ecological+and+computational+complexity&rft.jtitle=Conservation+biology&rft.au=Hallam%2C+Christopher+D.&rft.au=Wintle%2C+Brendan+A.&rft.au=Kujala%2C+Heini&rft.au=Whitehead%2C+Amy+L.&rft.date=2020-12-01&rft.issn=0888-8892&rft.eissn=1523-1739&rft.volume=34&rft.issue=6&rft.spage=1512&rft.epage=1524&rft_id=info:doi/10.1111%2Fcobi.13524&rft.externalDBID=10.1111%252Fcobi.13524&rft.externalDocID=COBI13524
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0888-8892&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0888-8892&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0888-8892&client=summon