Improved Symbiotic Organisms Search Algorithm for Optimal Operation of Active Distribution Systems Incorporating Renewables and Emerging Data‐Center Resources

The optimal operation analysis plays an important role in estimating the expected return of investment for power systems. However, this work could be highly challenging under the context of active distribution network, where a variety of renewable energy sources and emerging active loads (such as In...

Full description

Saved in:
Bibliographic Details
Published inEnergy science & engineering Vol. 9; no. 10; pp. 1719 - 1733
Main Authors Zeng, Bo, Xu, Hao, Wang, Wenshi, Zhu, Lei
Format Journal Article
LanguageEnglish
Published London John Wiley & Sons, Inc 01.10.2021
Wiley
Subjects
Online AccessGet full text
ISSN2050-0505
2050-0505
DOI10.1002/ese3.944

Cover

Loading…
Abstract The optimal operation analysis plays an important role in estimating the expected return of investment for power systems. However, this work could be highly challenging under the context of active distribution network, where a variety of renewable energy sources and emerging active loads (such as Internet data centers) could be penetrated that introduce a high level of nonlinearity and nonconvexity characteristics into the system modeling. To overcome such challenge, this paper presents a new methodological framework based on the improvements of symbiotic organisms search (SOS) algorithm to address the optimal operation problem of active distribution systems containing renewable energy sources and datacenter resources, aiming to provide a practical tool for system analysis, particularly subject to nonconvexity nature of system components. For this purpose, a generic model for the distribution system including wind power, PV, and datacenter resources is first developed, which not only captures the uncertain nature of system components but also accounts for their spatiotemporal flexibility during operation. On this basis, in order to improve the computation efficiency of the problem, the SOS algorithm is improved by designing the selection strategy of random parameters. By using the penalty function method, the concerned problem is expressed as a nonlinear unconstrained optimization problem. The performance of the proposed model and algorithm is examined through comparative studies. It is shown that the proposed method is able to schedule the renewable energy resources and flexible demand of datacenters coordinately to reduce the operation cost of the system significantly in the case study. In addition, the proposed algorithm demonstrates a higher level of accuracy as well as better convergence efficiency compared to other conventional techniques. Improved SOS algorithm provided a faster convergence speed to find a lower optimal solution value for fitness functions than the SOS, ABC, GA, and PSO methods.
AbstractList The optimal operation analysis plays an important role in estimating the expected return of investment for power systems. However, this work could be highly challenging under the context of active distribution network, where a variety of renewable energy sources and emerging active loads (such as Internet data centers) could be penetrated that introduce a high level of nonlinearity and nonconvexity characteristics into the system modeling. To overcome such challenge, this paper presents a new methodological framework based on the improvements of symbiotic organisms search (SOS) algorithm to address the optimal operation problem of active distribution systems containing renewable energy sources and datacenter resources, aiming to provide a practical tool for system analysis, particularly subject to nonconvexity nature of system components. For this purpose, a generic model for the distribution system including wind power, PV, and datacenter resources is first developed, which not only captures the uncertain nature of system components but also accounts for their spatiotemporal flexibility during operation. On this basis, in order to improve the computation efficiency of the problem, the SOS algorithm is improved by designing the selection strategy of random parameters. By using the penalty function method, the concerned problem is expressed as a nonlinear unconstrained optimization problem. The performance of the proposed model and algorithm is examined through comparative studies. It is shown that the proposed method is able to schedule the renewable energy resources and flexible demand of datacenters coordinately to reduce the operation cost of the system significantly in the case study. In addition, the proposed algorithm demonstrates a higher level of accuracy as well as better convergence efficiency compared to other conventional techniques.
Abstract The optimal operation analysis plays an important role in estimating the expected return of investment for power systems. However, this work could be highly challenging under the context of active distribution network, where a variety of renewable energy sources and emerging active loads (such as Internet data centers) could be penetrated that introduce a high level of nonlinearity and nonconvexity characteristics into the system modeling. To overcome such challenge, this paper presents a new methodological framework based on the improvements of symbiotic organisms search (SOS) algorithm to address the optimal operation problem of active distribution systems containing renewable energy sources and datacenter resources, aiming to provide a practical tool for system analysis, particularly subject to nonconvexity nature of system components. For this purpose, a generic model for the distribution system including wind power, PV, and datacenter resources is first developed, which not only captures the uncertain nature of system components but also accounts for their spatiotemporal flexibility during operation. On this basis, in order to improve the computation efficiency of the problem, the SOS algorithm is improved by designing the selection strategy of random parameters. By using the penalty function method, the concerned problem is expressed as a nonlinear unconstrained optimization problem. The performance of the proposed model and algorithm is examined through comparative studies. It is shown that the proposed method is able to schedule the renewable energy resources and flexible demand of datacenters coordinately to reduce the operation cost of the system significantly in the case study. In addition, the proposed algorithm demonstrates a higher level of accuracy as well as better convergence efficiency compared to other conventional techniques.
The optimal operation analysis plays an important role in estimating the expected return of investment for power systems. However, this work could be highly challenging under the context of active distribution network, where a variety of renewable energy sources and emerging active loads (such as Internet data centers) could be penetrated that introduce a high level of nonlinearity and nonconvexity characteristics into the system modeling. To overcome such challenge, this paper presents a new methodological framework based on the improvements of symbiotic organisms search (SOS) algorithm to address the optimal operation problem of active distribution systems containing renewable energy sources and datacenter resources, aiming to provide a practical tool for system analysis, particularly subject to nonconvexity nature of system components. For this purpose, a generic model for the distribution system including wind power, PV, and datacenter resources is first developed, which not only captures the uncertain nature of system components but also accounts for their spatiotemporal flexibility during operation. On this basis, in order to improve the computation efficiency of the problem, the SOS algorithm is improved by designing the selection strategy of random parameters. By using the penalty function method, the concerned problem is expressed as a nonlinear unconstrained optimization problem. The performance of the proposed model and algorithm is examined through comparative studies. It is shown that the proposed method is able to schedule the renewable energy resources and flexible demand of datacenters coordinately to reduce the operation cost of the system significantly in the case study. In addition, the proposed algorithm demonstrates a higher level of accuracy as well as better convergence efficiency compared to other conventional techniques. Improved SOS algorithm provided a faster convergence speed to find a lower optimal solution value for fitness functions than the SOS, ABC, GA, and PSO methods.
Author Zeng, Bo
Zhu, Lei
Xu, Hao
Wang, Wenshi
Author_xml – sequence: 1
  givenname: Bo
  surname: Zeng
  fullname: Zeng, Bo
  organization: North China Electric Power University
– sequence: 2
  givenname: Hao
  surname: Xu
  fullname: Xu, Hao
  organization: North China Electric Power University
– sequence: 3
  givenname: Wenshi
  surname: Wang
  fullname: Wang, Wenshi
  organization: North China Electric Power University
– sequence: 4
  givenname: Lei
  orcidid: 0000-0002-4342-452X
  surname: Zhu
  fullname: Zhu, Lei
  email: 120202206115@ncepu.edu.cn
  organization: North China Electric Power University
BookMark eNp1kcFqGzEQhkVJoWka6CMIeullXUkrrXePxnFaQ8BQt2eh1Y42MruSK8kJvvUR-gh9tj5JtXYLJaQHMWL45ueff16jC-cdIPSWkhklhH2ACOWs4fwFumREkCI_cfHP_xW6jnFHCKGc8obQS_RzPe6Df4AOb49ja32yGm9Cr5yNY8RbUEHf48XQ-2DT_YiND3izT3ZUQ64QVLLeYW_wQif7APjGxhRsezi1t8eYIKusnfZh7yfY9fgzOHhU7QARK9fh1Qihn_o3Kqlf338swSUImYr-EDTEN-ilUUOE6z_1Cn29XX1ZfiruNh_Xy8Vdocum5EXNmOg6ITojOgbzWhDdGgLUqHrOVENKMLpmVV68ntdQUdHoihBNdFVyVrGuvELrs27n1U7uQ14xHKVXVp4aPvRShZzOANLMuaZlTSpoNa84aWjLgbSGK151uhZZ691ZK0f77QAxyV1exmX7konsjTNBy0zNzpQOPsYARmqbToGmoOwgKZHTUeV0VJmPmgfePxn4a_MZtDijj3aA4385udquyon_DZ_ItT0
CitedBy_id crossref_primary_10_1016_j_apenergy_2025_125454
Cites_doi 10.1016/j.jclepro.2020.125666
10.1016/j.ijepes.2018.01.024
10.1109/ACCESS.2018.2849599
10.1109/TIA.2018.2851516
10.1007/s00202-019-00815-8
10.1007/s10115-018-1158-1
10.1016/j.energy.2015.09.083
10.1109/JSYST.2011.2162896
10.1109/TII.2020.2993815
10.1016/j.energy.2021.120043
10.1016/j.neucom.2019.06.112
10.1016/j.enconman.2017.06.071
10.1016/j.ijepes.2014.12.060
10.1016/j.energy.2016.07.056
10.1016/j.energy.2020.117530
10.35833/MPCE.2020.000198
10.1080/01605682.2017.1418151
10.1109/ACCESS.2019.2953800
10.1109/TPWRS.2010.2051168
10.1016/j.apenergy.2019.05.029
10.1504/IJBIC.2018.093334
10.1109/TIA.2020.2974426
10.1016/j.compstruc.2014.03.007
10.1016/j.asoc.2019.02.002
10.1016/j.knosys.2018.09.013
10.1080/0952813X.2016.1198935
10.1109/TSG.2018.2810830
10.1016/j.renene.2014.11.028
10.1109/ACCESS.2020.2970236
10.1016/j.asoc.2020.106321
10.1016/j.ijepes.2013.09.028
10.1016/j.asoc.2018.11.042
10.1109/TPWRS.2013.2291553
10.1016/j.ijepes.2016.02.004
10.1109/TCC.2017.2744623
10.1016/j.asoc.2015.10.057
10.1016/j.jesit.2016.01.004
ContentType Journal Article
Copyright 2021 The Authors. published by Society of Chemical Industry and John Wiley & Sons Ltd.
2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 The Authors. published by Society of Chemical Industry and John Wiley & Sons Ltd.
– notice: 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
7TB
8FD
8FE
8FG
ABJCF
ABUWG
AEUYN
AFKRA
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
DWQXO
FR3
H8D
HCIFZ
KR7
L6V
L7M
M7S
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOA
DOI 10.1002/ese3.944
DatabaseName Wiley Online Library Open Access
CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Aerospace Database
SciTech Premium Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Engineering Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
Aerospace Database
ProQuest One Sustainability
ProQuest Engineering Collection
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Civil Engineering Abstracts
Engineering Database
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database


CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2050-0505
EndPage 1733
ExternalDocumentID oai_doaj_org_article_f74c13806ebc464091b4e0bf4a46dc85
10_1002_ese3_944
ESE3944
Genre article
GrantInformation_xml – fundername: State Key Laboratory Of Alternate Electrical Power System With Renewable Energy Sources
  funderid: LAPS19018
GroupedDBID 0R~
1OC
24P
31~
5VS
8-1
8FE
8FG
8FH
AAHHS
AAZKR
ABJCF
ACCFJ
ACCMX
ACXQS
ADBBV
ADKYN
ADZMN
ADZOD
AEEZP
AEQDE
AEUYN
AFKRA
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AVUZU
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
D-9
EBS
EJD
GODZA
GROUPED_DOAJ
HCIFZ
HZ~
IAO
IGS
ITC
KQ8
L6V
L8X
LK5
M7R
M7S
M~E
O9-
OK1
PCBAR
PIMPY
PROAC
PTHSS
TUS
WIN
AAYXX
ADMLS
CITATION
IVC
PHGZM
PHGZT
7TB
8FD
AAMMB
ABUWG
AEFGJ
AGXDD
AIDQK
AIDYY
AZQEC
DWQXO
FR3
H8D
KR7
L7M
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c3934-8225dd55df5d2e7850cbf0e1fa872a903efc826014878e6159c600c0c634262d3
IEDL.DBID 24P
ISSN 2050-0505
IngestDate Wed Aug 27 01:29:55 EDT 2025
Wed Aug 13 04:47:49 EDT 2025
Tue Jul 01 04:24:04 EDT 2025
Thu Apr 24 23:10:06 EDT 2025
Wed Jan 22 16:27:22 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3934-8225dd55df5d2e7850cbf0e1fa872a903efc826014878e6159c600c0c634262d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4342-452X
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fese3.944
PQID 2578542513
PQPubID 2034362
PageCount 15
ParticipantIDs doaj_primary_oai_doaj_org_article_f74c13806ebc464091b4e0bf4a46dc85
proquest_journals_2578542513
crossref_citationtrail_10_1002_ese3_944
crossref_primary_10_1002_ese3_944
wiley_primary_10_1002_ese3_944_ESE3944
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2021
2021-10-00
20211001
2021-10-01
PublicationDateYYYYMMDD 2021-10-01
PublicationDate_xml – month: 10
  year: 2021
  text: October 2021
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Energy science & engineering
PublicationYear 2021
Publisher John Wiley & Sons, Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley
References 2021; 9
2019; 7
2014; 139
2019; 70
2015; 93
2021; 223
2019; 75
2021; 288
2019; 77
2019; 10
2015; 76
2019; 58
2019; 39
2020; 200
2016; 2016
2020; 56
2017; 29
2014; 29
2019; 163
2016; 38
2019; 101
2020; 407
2020; 8
2018; 6
2015; 69
2016; 3
2019; 43
2020; 92
2021; 17
2016; 113
2016; 81
2020; 44
2011; 26
2019; 250
2018; 12
2012; 6
2018; 99
2018; 54
2017; 148
2014; 55
e_1_2_10_23_1
e_1_2_10_24_1
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_22_1
e_1_2_10_43_1
e_1_2_10_42_1
e_1_2_10_20_1
e_1_2_10_40_1
Wu HZ (e_1_2_10_27_1) 2016; 2016
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_6_1
e_1_2_10_39_1
e_1_2_10_5_1
e_1_2_10_38_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_13_1
e_1_2_10_34_1
e_1_2_10_10_1
Wen ZN (e_1_2_10_17_1) 2019; 43
e_1_2_10_33_1
e_1_2_10_11_1
e_1_2_10_32_1
e_1_2_10_31_1
e_1_2_10_30_1
Gu C (e_1_2_10_16_1) 2020; 8
Sheng WX (e_1_2_10_2_1) 2019; 39
Wang Q (e_1_2_10_41_1) 2020; 44
e_1_2_10_29_1
e_1_2_10_28_1
e_1_2_10_25_1
e_1_2_10_26_1
References_xml – volume: 26
  start-page: 12
  issue: 1
  year: 2011
  end-page: 19
  article-title: MATPOWER: steady‐state operations, planning, and analysis tools for power systems research and education
  publication-title: IEEE Trans Power Syst
– volume: 12
  start-page: 23
  year: 2018
  end-page: 53
  article-title: Hybrid symbiotic organisms search algorithm for solving 0–1 knapsack problem
  publication-title: Int J Bio Inspired Comput
– volume: 7
  start-page: 166833
  year: 2019
  end-page: 166859
  article-title: Binary symbiotic organism search algorithm for feature selection and analysis
  publication-title: IEEE Access
– volume: 9
  start-page: 423
  issue: 2
  year: 2021
  end-page: 430
  article-title: Robust Optimal operation of active distribution network based on minimum confidence interval of distributed energy beta distribution
  publication-title: J Mod Power Syst Clean Energy
– volume: 77
  start-page: 497
  year: 2019
  end-page: 508
  article-title: Symbiotic organisms search algorithm for optimal evolutionary controller tuning of fractional fuzzy controllers
  publication-title: Appl Soft Comput
– volume: 3
  start-page: 151
  issue: 2
  year: 2016
  end-page: 160
  article-title: Solution of wind integrated thermal generation system for environmental optimal power flow using hybrid algorithm
  publication-title: Journal of Electrical Systems and Information Technology
– volume: 75
  start-page: 616
  year: 2019
  end-page: 632
  article-title: Optimal reactive power dispatch with uncertainties in load demand and renewable energy sources adopting scenario‐based approach
  publication-title: Appl Soft Comput J
– volume: 223
  start-page: 0360
  year: 2021
  end-page: 5442
  article-title: Robust optimization of microgrid based on renewable distributed power generation and load demand uncertainty
  publication-title: Energy
– volume: 2016
  start-page: 14
  year: 2016
  article-title: Training feedforward neural networks using symbiotic organisms search algorithm
  publication-title: Computat Intell Neurosci
– volume: 29
  start-page: 495
  year: 2017
  end-page: 515
  article-title: Symbiotic organisms search algorithm for dynamic economic dispatch with valve‐point effects
  publication-title: J Exp Theor Artif Intell
– volume: 139
  start-page: 98
  year: 2014
  end-page: 112
  article-title: Symbiotic organisms search: a new metaheuristic optimization algorithm
  publication-title: Comput Struct
– volume: 8
  start-page: 27001
  year: 2020
  end-page: 27017
  article-title: Enhanced velocity differential evolutionary particle swarm optimization for optimal scheduling of a distributed energy resources with uncertain scenarios
  publication-title: IEEE Access
– volume: 43
  start-page: 2449
  issue: 7
  year: 2019
  end-page: 2460
  article-title: A optimal scheduling method for hybrid wind‐solar‐hydro power generation system with data center in demand side
  publication-title: Power Syst Technol
– volume: 29
  start-page: 1153
  issue: 3
  year: 2014
  end-page: 1165
  article-title: Integrated planning for transition to low‐carbon distribution system with renewable energy generation and demand response
  publication-title: IEEE Trans Power Syst
– volume: 148
  start-page: 1194
  year: 2017
  end-page: 1207
  article-title: Optimal power flow solutions incorporating stochastic wind and solar power
  publication-title: Energy Convers Manage
– volume: 10
  start-page: 2820
  issue: 3
  year: 2019
  end-page: 2832
  article-title: Data center demand response in deregulated electricity markets
  publication-title: IEEE Trans Smart Grid
– volume: 81
  start-page: 64
  year: 2016
  end-page: 77
  article-title: Optimal power flow with emission and non‐smooth cost functions using backtracking search optimization algorithm
  publication-title: Int J Electr Power Energy Syst
– volume: 8
  start-page: 833
  issue: 3
  year: 2020
  end-page: 846
  article-title: Energy efficient scheduling of servers with multi‐sleep modes for cloud data center
  publication-title: IEEE Trans Cloud Comput
– volume: 17
  start-page: 1863
  issue: 3
  year: 2021
  end-page: 1872
  article-title: Co‐optimized parking lot placement and incentive design for promoting PEV integration considering decision‐dependent uncertainties
  publication-title: IEEE Trans Industr Inf
– volume: 6
  start-page: 45394
  issue: 1
  year: 2018
  end-page: 45416
  article-title: A modified moth swarm algorithm based on an arithmetic crossover for constrained optimization and optimal power flow problems
  publication-title: IEEE Access
– volume: 38
  start-page: 1012
  year: 2016
  end-page: 1024
  article-title: Adaptive group search optimization algorithm for multi‐objective optimal power flow problem
  publication-title: Appl Soft Comput
– volume: 44
  start-page: 3129
  year: 2020
  end-page: 3138
  article-title: Congestion management of urban power grid considering demand response of data center
  publication-title: Power Syst Technol
– volume: 55
  start-page: 312
  year: 2014
  end-page: 320
  article-title: Optimal power flow of a wind‐thermal generation system
  publication-title: Int J Electr Power Energy Syst
– volume: 58
  start-page: 209
  year: 2019
  end-page: 248
  article-title: Complex‐valued encoding symbiotic organisms search algorithm for global optimization
  publication-title: Knowl Inf Syst
– volume: 69
  start-page: 173
  year: 2015
  end-page: 187
  article-title: Stochastic optimal power flow incorporating offshore wind farm and electric vehicles
  publication-title: Int J Electr Power Energy Syst
– volume: 250
  start-page: 1217
  year: 2019
  end-page: 1224
  article-title: A decision support system for waste heat recovery and energy efficiency improvement in data centres
  publication-title: Applied Energy
– volume: 92
  year: 2020
  article-title: Application of modified pigeon‐inspired optimization algorithm and constraint‐objective sorting rule on multi‐objective optimal power flow problem
  publication-title: Applied Soft Computing
– volume: 7
  start-page: 1095
  issue: 4
  year: 2019
  end-page: 1108
  article-title: Shaving Data Center Power Demand Peaks Through Energy Storage and Workload Shifting Control
  publication-title: IEEE Transactions on Cloud Computing
– volume: 99
  start-page: 331
  year: 2018
  end-page: 343
  article-title: Optimal power flow solution in power systems using a novel Sine‐Cosine algorithm
  publication-title: Int J Electr Power Energy Syst
– volume: 70
  start-page: 21
  year: 2019
  end-page: 52
  article-title: A modified symbiotic organisms search algorithm for unmanned combat aerial vehicle route planning problem
  publication-title: J Oper Res Soc
– volume: 288
  year: 2021
  article-title: Optimal demand response resource exploitation for efficient accommodation of renewable energy sources in multi‐energy systems considering correlated uncertainties
  publication-title: J Clean Prod
– volume: 56
  start-page: 2227
  issue: 3
  year: 2020
  end-page: 2237
  article-title: Multitime scale coordinated scheduling for the combined system of wind power, photovoltaic, thermal generator, hydro pumped storage, and batteries
  publication-title: IEEE Trans Ind Appl
– volume: 200
  year: 2020
  article-title: Robust optimization based energy management of a fuel cell/ultra‐capacitor hybrid electric vehicle under uncertainty
  publication-title: Energy
– volume: 113
  start-page: 366
  year: 2016
  end-page: 384
  article-title: A modified Symbiotic Organisms Search algorithm for large scale economic dispatch problem with valve‐point effects
  publication-title: Energy
– volume: 39
  start-page: 2175
  year: 2019
  end-page: 2186
  article-title: Key techniques and engineering practice of distributed renewable generation clusters integration
  publication-title: Proc CSEE
– volume: 6
  start-page: 233
  issue: 2
  year: 2012
  end-page: 241
  article-title: Optimal power flow solution incorporating wind power
  publication-title: IEEE Syst J
– volume: 76
  start-page: 283
  year: 2015
  end-page: 295
  article-title: Multi‐linear Monte Carlo simulation method for probabilistic load flow of distribution systems with wind and photovoltaic generation systems
  publication-title: Renewable Energy
– volume: 93
  start-page: 816
  year: 2015
  end-page: 827
  article-title: Security constrained optimal power flow solution of wind‐thermal generation system using modified bacteria foraging algorithm
  publication-title: Energy
– volume: 54
  start-page: 5599
  issue: 6
  year: 2018
  end-page: 5608
  article-title: Emission‐aware stochastic resource planning scheme for data center microgrid considering batch workload scheduling and risk management
  publication-title: IEEE Trans Ind Appl
– volume: 163
  start-page: 546
  year: 2019
  end-page: 557
  article-title: Automatic data clustering using nature‐inspired symbiotic organism search algorithm
  publication-title: Knowl Based Syst
– volume: 101
  start-page: 699
  issue: 3
  year: 2019
  end-page: 718
  article-title: Multi‐objective optimal power flow considering wind power cost functions using enhanced PSO with chaotic mutation and stochastic weights
  publication-title: Electrical Engineering
– volume: 407
  start-page: 313
  year: 2020
  end-page: 342
  article-title: Complex‐valued encoding metaheuristic optimization algorithm: a comprehensive survey
  publication-title: Neurocomputing
– ident: e_1_2_10_37_1
  doi: 10.1016/j.jclepro.2020.125666
– ident: e_1_2_10_18_1
  doi: 10.1016/j.ijepes.2018.01.024
– ident: e_1_2_10_39_1
  doi: 10.1109/ACCESS.2018.2849599
– ident: e_1_2_10_15_1
  doi: 10.1109/TIA.2018.2851516
– volume: 44
  start-page: 3129
  year: 2020
  ident: e_1_2_10_41_1
  article-title: Congestion management of urban power grid considering demand response of data center
  publication-title: Power Syst Technol
– ident: e_1_2_10_7_1
  doi: 10.1007/s00202-019-00815-8
– ident: e_1_2_10_33_1
  doi: 10.1007/s10115-018-1158-1
– ident: e_1_2_10_8_1
  doi: 10.1016/j.energy.2015.09.083
– ident: e_1_2_10_38_1
  doi: 10.1109/JSYST.2011.2162896
– ident: e_1_2_10_21_1
  doi: 10.1109/TII.2020.2993815
– ident: e_1_2_10_12_1
  doi: 10.1016/j.energy.2021.120043
– ident: e_1_2_10_28_1
  doi: 10.1016/j.neucom.2019.06.112
– ident: e_1_2_10_24_1
  doi: 10.1016/j.enconman.2017.06.071
– ident: e_1_2_10_25_1
  doi: 10.1016/j.ijepes.2014.12.060
– ident: e_1_2_10_35_1
  doi: 10.1016/j.energy.2016.07.056
– ident: e_1_2_10_5_1
  doi: 10.1016/j.energy.2020.117530
– ident: e_1_2_10_10_1
  doi: 10.35833/MPCE.2020.000198
– ident: e_1_2_10_34_1
  doi: 10.1080/01605682.2017.1418151
– volume: 2016
  start-page: 14
  year: 2016
  ident: e_1_2_10_27_1
  article-title: Training feedforward neural networks using symbiotic organisms search algorithm
  publication-title: Computat Intell Neurosci
– ident: e_1_2_10_32_1
  doi: 10.1109/ACCESS.2019.2953800
– ident: e_1_2_10_43_1
  doi: 10.1109/TPWRS.2010.2051168
– ident: e_1_2_10_13_1
  doi: 10.1016/j.apenergy.2019.05.029
– ident: e_1_2_10_30_1
  doi: 10.1504/IJBIC.2018.093334
– ident: e_1_2_10_9_1
  doi: 10.1109/TIA.2020.2974426
– ident: e_1_2_10_26_1
  doi: 10.1016/j.compstruc.2014.03.007
– volume: 43
  start-page: 2449
  issue: 7
  year: 2019
  ident: e_1_2_10_17_1
  article-title: A optimal scheduling method for hybrid wind‐solar‐hydro power generation system with data center in demand side
  publication-title: Power Syst Technol
– ident: e_1_2_10_31_1
  doi: 10.1016/j.asoc.2019.02.002
– volume: 39
  start-page: 2175
  year: 2019
  ident: e_1_2_10_2_1
  article-title: Key techniques and engineering practice of distributed renewable generation clusters integration
  publication-title: Proc CSEE
– ident: e_1_2_10_29_1
  doi: 10.1016/j.knosys.2018.09.013
– ident: e_1_2_10_36_1
  doi: 10.1080/0952813X.2016.1198935
– ident: e_1_2_10_14_1
  doi: 10.1109/TSG.2018.2810830
– ident: e_1_2_10_3_1
  doi: 10.1016/j.renene.2014.11.028
– ident: e_1_2_10_4_1
  doi: 10.1109/ACCESS.2020.2970236
– ident: e_1_2_10_20_1
  doi: 10.1016/j.asoc.2020.106321
– ident: e_1_2_10_23_1
  doi: 10.1016/j.ijepes.2013.09.028
– ident: e_1_2_10_22_1
  doi: 10.1016/j.asoc.2018.11.042
– ident: e_1_2_10_42_1
– ident: e_1_2_10_11_1
  doi: 10.1109/TPWRS.2013.2291553
– ident: e_1_2_10_40_1
  doi: 10.1016/j.ijepes.2016.02.004
– ident: e_1_2_10_44_1
  doi: 10.1109/TCC.2017.2744623
– ident: e_1_2_10_19_1
  doi: 10.1016/j.asoc.2015.10.057
– ident: e_1_2_10_6_1
  doi: 10.1016/j.jesit.2016.01.004
– volume: 8
  start-page: 833
  issue: 3
  year: 2020
  ident: e_1_2_10_16_1
  article-title: Energy efficient scheduling of servers with multi‐sleep modes for cloud data center
  publication-title: IEEE Trans Cloud Comput
SSID ssj0001414901
Score 2.1739142
Snippet The optimal operation analysis plays an important role in estimating the expected return of investment for power systems. However, this work could be highly...
Abstract The optimal operation analysis plays an important role in estimating the expected return of investment for power systems. However, this work could be...
SourceID doaj
proquest
crossref
wiley
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1719
SubjectTerms Active distribution system
Algorithms
Alternative energy sources
Batch processing
Comparative studies
Computer centers
Data centers
datacenter resources
distributed generation
Electric power distribution
Energy consumption
Energy distribution
Energy resources
Energy storage
flexibility
Genetic algorithms
Mutualism
Nonlinearity
operation
Optimization
Participation
Penalty function
Photovoltaic cells
Renewable energy sources
Renewable resources
Scheduling
Search algorithms
Servers
Simulation
Systems analysis
Wind power
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NahRBEG4kp3gQjYqriZQgehrT0z-z08fVbIiCBoyB3JrpPw1kd0NmRXLLI-QRfDafxKru2bABxYvXnqanmaqu_qqm6ivGXpomKic8r4SOEh2U0FadcAYPnja-EZ0ziYqTP35qDo7VhxN9stbqi3LCCj1w-XC7aax8LVveROdVg95I7VTkLqlONcG3mb0UB9ecqRxdUYj8eb1im-ViN_ZRvjFK3bp_Mk3_LWy5jlDzFbN_n90bsCFMyp4esDtxvsXurjEGPmQ_SxAgBji6nLnTBc6EUk7Zz3ooucMwOfu6QJ__2wwQkcIhGoUZLnt4Hou0YZFgks0c7BFt7tDxCgbycnhP1JaZ3hhfCZ_RGP6g-qoeunkACmJRXyPY65bdr6trig7HC1j9BegfseP96Zd3B9XQZKHy0khVIUDQIWgdkg4ijlvNvUs81qlrx6IzXMbkW-IdQ8-mjYh_UISce-4bSWT2QT5mG_PFPD5hoF1UeMJTjesp5Wrj0FszKajGofh9PWKvV5_e-oGBnBphnNnCnSwsCcmikEbsxc3M88K68Yc5b0l6N8-JJzsPoPbYQXvsv7RnxLZXsrfD4e0tWTGNtqyWI_Yq68NfN2GnR1MqLX76PzbzjG0KypjJqYLbbGN58T3uIORZuudZu38DQFQCYA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagvcCh4im2tGiQEJxCHcdO4xPa0q0KEi1qqdSbFb8KUnezbBYhbvwEfgK_rb-EmcTpQwKuiWUnnodnxjPfMPZCl0Fa4XgmVCjQQfFVVgurUfCUdqWorY5UnPzhoNw_ke9P1WkKuLUprXLQiZ2i9o2jGPkWsZZCBsuLN_OvGXWNotvV1ELjNltFFVwhh6_uTA4-Hl1FWSR6ADwfUGe52AptKF5rKW-cQx1c_w0b87ql2h01e_fYWrIRYdwT9T67FWYP2N1ryIEP2e8-GBA8HP-Y2i8NjoS-rLKdttDnEMP4_Az_YPl5CmiZwiEqhylOezgPPdWhiTDu1B3sEnxu6nwFCcQc3hHEZQdzjEvCESrF71Rn1UI980DBLOpvBLv1sr74-YuixGEBw21A-4id7E0-vd3PUrOFzBW6kBkaCsp7pXxUXgTca-5s5CGPdbUtas2LEF1F-GPo4VQB7SAkJeeOu7IgUHtfPGYrs2YWnjBQNkiU9JjjfFLaXFv02nT0srTIBi4fsVfD1huXkMipIca56TGUhSEiGSTSiD2_HDnv0Tf-MmaHqHf5nvCyuwfN4swk8TNxW7q8qHgZrJMl-rS5lYHbKGtZelepEdsYaG-SELfmiuVG7GXHD__8CDM5nlCJ8fr_53nK7gjKiemSATfYynLxLWyiUbO0zxLn_gGYm_sl
  priority: 102
  providerName: ProQuest
Title Improved Symbiotic Organisms Search Algorithm for Optimal Operation of Active Distribution Systems Incorporating Renewables and Emerging Data‐Center Resources
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fese3.944
https://www.proquest.com/docview/2578542513
https://doaj.org/article/f74c13806ebc464091b4e0bf4a46dc85
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEF5Be4EDojxEoI0WCcHJdL0Px3tM24SCRFu1VOpt5X2VSk1cxUGIGz-Bn8Bv45d0Zm2nrQQSFx_s8dryPDwzO_MNIW90EaTljmVcBQEBii-zilsNiqe0K3hldcTm5M8Hxf6p_HSmzrqqSuyFafEhVgk31Ixkr1HBK9ts34CGhiaI91rK-2QdO2tRxrk8usmvSPD90_RjzhTu9zLVY88yvt3ffOdvlED773iat_3V9MOZPiaPOk-RjlvWbpB7Yf6EPLyFH_iU_G5TAsHTkx8ze1EDJW2bK5tZQ9tKYjq-PK8XF8uvMwr-KT0EEzGDZQ-vQst7Wkc6TkaP7iGIbjf_inZQ5vQjAl0msGN4JD0G0_gdu60aWs09xZQWTjmie9Wy-vPzF-aKw4L2ewLNM3I6nXzZ3c-6kQuZE1rIDNwF5b1SPirPw6hUzNnIQh6rcsQrzUSIrkQUMohzygDeEDCUMcdcIRDa3ovnZG1ez8MLQpUNEvQ95rCelDbXFmI3Hb0sLAiDywfkXf_pjevwyHEsxqVpkZS5QSYZYNKAvF5RXrUYHH-h2UHura4janY6US_OTaeEJo6ky0XJimCdLCCyza0MzEZZycK7Ug3IZs9706lyY9CmKbBsuRiQt0ke_vkSZnIywUbjl_9L-Io84Fgjk4oDN8nacvEtbIGTs7TDJM1wLKcfhmR9Z3JwdDxMCYNreor-eQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JbtRAEG2FcAAOiFUMBGgklpNJuxfHfUBoYGaYIZtEEim3jnsLSJmF8aAoNz6BT-AL-Ci-hCovWSTglqvdKluu19VV5apXhDzXWZCWO5ZwFQQEKD5PCm41bDylXcYLqyM2J29uZcM9-XFf7S-RX20vDJZVtjaxMtR-6jBHvorQUgCwVLydfU1wahT-XW1HaNSwWA8nxxCylW9GPdDvC84H_d33w6SZKpA4oYVM4ERU3ivlo_I8gFDmbGQhjUW-xgvNRIguR6ItcOXzAAc-vDNjjrlMIHu7FyD3CrkqhdBYQpgPPpzldCTEGyxtOW4ZXw1lEK-1lBdOvWo4wAWP9rxfXB1sg1vkZuOR0m4NodtkKUzukBvneArvkp916iF4unMytl-msJLWTZzluKR1xTLtHh3C91p8HlPwg-k2mKIxiN2ehRpjdBpptzKutIdkvc2cLdpQptMREmpWpMrwSPoJTPAxdnWVtJh4iqkznKZEe8Wi-P39B-akw5y2_x7Ke2TvUpRwnyxPppPwgFBlgwS7ElOQJ6VNtYUYUUcvMwugc2mHvGo_vXEN7zmO3zgyNWMzN6gkA0rqkGenK2c118df1rxD7Z3eR3bu6sJ0fmiazW7imnSpyFkWrJMZRNCplYHZKAuZeZerDllpdW8ak1GaM4B3yMsKD_98CdPf6WND88P_y3lKrg13NzfMxmhr_RG5zrEapypDXCHLi_m38BjcqYV9UmGYkoPL3jR_AJ_ENOA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JbhQxELVCkBAcEKsYCFBILKdm3G67p_uA0MDMkCGQIEKk3Jz2FpAyC9ODotz4BD6B7-Bz-BKqeskiAbdcuy235XouV1VXvWLscZ56aYTlkVA-QQfFZVEhTI4HT-U2FYXJAxUnv99M13fk2121u8J-tbUwlFbZ6sRKUbuZpRh5l6ClEGBx0g1NWsSHwejl_GtEHaToT2vbTqOGyIY_OkT3rXwxHqCsnwgxGn56vR41HQYim-SJjPB2VM4p5YJywuMHuDWB-zgUWU8UOU98sBmRbqFZn3m8_HH9nFtu04SY3F2C815gF3tJxql7QjZ6cxLfkeh78Ljlu-Wi60ufPM-lPHMDVo0Czli3p23k6pIbXWNXG-sU-jWcrrMVP73BrpziLLzJftZhCO9g-2hivsxwJNQFneWkhDp7GfoH-7hfy88TQJsYtlAtTXDarbmv8QazAP1K0cKAiHubnlvQ0KfDmMg1K4Jl_CR8RHV8SBVeJRRTBxRGo85KMCiWxe_vPyg-7RfQ_ocob7GdcxHCbbY6nU39HQbKeIk6JsQ4n5Qmzg36i3lwMjUIQBt32LN267VtONCpFceBrtmbhSYhaRRShz06HjmveT_-MuYVSe_4PTF1Vw9mi33dHHwdetLGiI_UGytT9KZjIz03QRYydTZTHbbWyl436qPUJ2DvsKcVHv65CD3cHlJx893_z_OQXcLjot-NNzfuscuCEnOqjMQ1trpcfPP30bJamgcVhIHtnfeZ-QOlSTkN
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+Symbiotic+Organisms+Search+Algorithm+for+Optimal+Operation+of+Active+Distribution+Systems+Incorporating+Renewables+and+Emerging+Data%E2%80%90Center+Resources&rft.jtitle=Energy+science+%26+engineering&rft.au=Zeng%2C+Bo&rft.au=Xu%2C+Hao&rft.au=Wang%2C+Wenshi&rft.au=Zhu%2C+Lei&rft.date=2021-10-01&rft.issn=2050-0505&rft.eissn=2050-0505&rft.volume=9&rft.issue=10&rft.spage=1719&rft.epage=1733&rft_id=info:doi/10.1002%2Fese3.944&rft.externalDBID=10.1002%252Fese3.944&rft.externalDocID=ESE3944
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-0505&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-0505&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-0505&client=summon