Improved Symbiotic Organisms Search Algorithm for Optimal Operation of Active Distribution Systems Incorporating Renewables and Emerging Data‐Center Resources
The optimal operation analysis plays an important role in estimating the expected return of investment for power systems. However, this work could be highly challenging under the context of active distribution network, where a variety of renewable energy sources and emerging active loads (such as In...
Saved in:
Published in | Energy science & engineering Vol. 9; no. 10; pp. 1719 - 1733 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
London
John Wiley & Sons, Inc
01.10.2021
Wiley |
Subjects | |
Online Access | Get full text |
ISSN | 2050-0505 2050-0505 |
DOI | 10.1002/ese3.944 |
Cover
Loading…
Abstract | The optimal operation analysis plays an important role in estimating the expected return of investment for power systems. However, this work could be highly challenging under the context of active distribution network, where a variety of renewable energy sources and emerging active loads (such as Internet data centers) could be penetrated that introduce a high level of nonlinearity and nonconvexity characteristics into the system modeling. To overcome such challenge, this paper presents a new methodological framework based on the improvements of symbiotic organisms search (SOS) algorithm to address the optimal operation problem of active distribution systems containing renewable energy sources and datacenter resources, aiming to provide a practical tool for system analysis, particularly subject to nonconvexity nature of system components. For this purpose, a generic model for the distribution system including wind power, PV, and datacenter resources is first developed, which not only captures the uncertain nature of system components but also accounts for their spatiotemporal flexibility during operation. On this basis, in order to improve the computation efficiency of the problem, the SOS algorithm is improved by designing the selection strategy of random parameters. By using the penalty function method, the concerned problem is expressed as a nonlinear unconstrained optimization problem. The performance of the proposed model and algorithm is examined through comparative studies. It is shown that the proposed method is able to schedule the renewable energy resources and flexible demand of datacenters coordinately to reduce the operation cost of the system significantly in the case study. In addition, the proposed algorithm demonstrates a higher level of accuracy as well as better convergence efficiency compared to other conventional techniques.
Improved SOS algorithm provided a faster convergence speed to find a lower optimal solution value for fitness functions than the SOS, ABC, GA, and PSO methods. |
---|---|
AbstractList | The optimal operation analysis plays an important role in estimating the expected return of investment for power systems. However, this work could be highly challenging under the context of active distribution network, where a variety of renewable energy sources and emerging active loads (such as Internet data centers) could be penetrated that introduce a high level of nonlinearity and nonconvexity characteristics into the system modeling. To overcome such challenge, this paper presents a new methodological framework based on the improvements of symbiotic organisms search (SOS) algorithm to address the optimal operation problem of active distribution systems containing renewable energy sources and datacenter resources, aiming to provide a practical tool for system analysis, particularly subject to nonconvexity nature of system components. For this purpose, a generic model for the distribution system including wind power, PV, and datacenter resources is first developed, which not only captures the uncertain nature of system components but also accounts for their spatiotemporal flexibility during operation. On this basis, in order to improve the computation efficiency of the problem, the SOS algorithm is improved by designing the selection strategy of random parameters. By using the penalty function method, the concerned problem is expressed as a nonlinear unconstrained optimization problem. The performance of the proposed model and algorithm is examined through comparative studies. It is shown that the proposed method is able to schedule the renewable energy resources and flexible demand of datacenters coordinately to reduce the operation cost of the system significantly in the case study. In addition, the proposed algorithm demonstrates a higher level of accuracy as well as better convergence efficiency compared to other conventional techniques. Abstract The optimal operation analysis plays an important role in estimating the expected return of investment for power systems. However, this work could be highly challenging under the context of active distribution network, where a variety of renewable energy sources and emerging active loads (such as Internet data centers) could be penetrated that introduce a high level of nonlinearity and nonconvexity characteristics into the system modeling. To overcome such challenge, this paper presents a new methodological framework based on the improvements of symbiotic organisms search (SOS) algorithm to address the optimal operation problem of active distribution systems containing renewable energy sources and datacenter resources, aiming to provide a practical tool for system analysis, particularly subject to nonconvexity nature of system components. For this purpose, a generic model for the distribution system including wind power, PV, and datacenter resources is first developed, which not only captures the uncertain nature of system components but also accounts for their spatiotemporal flexibility during operation. On this basis, in order to improve the computation efficiency of the problem, the SOS algorithm is improved by designing the selection strategy of random parameters. By using the penalty function method, the concerned problem is expressed as a nonlinear unconstrained optimization problem. The performance of the proposed model and algorithm is examined through comparative studies. It is shown that the proposed method is able to schedule the renewable energy resources and flexible demand of datacenters coordinately to reduce the operation cost of the system significantly in the case study. In addition, the proposed algorithm demonstrates a higher level of accuracy as well as better convergence efficiency compared to other conventional techniques. The optimal operation analysis plays an important role in estimating the expected return of investment for power systems. However, this work could be highly challenging under the context of active distribution network, where a variety of renewable energy sources and emerging active loads (such as Internet data centers) could be penetrated that introduce a high level of nonlinearity and nonconvexity characteristics into the system modeling. To overcome such challenge, this paper presents a new methodological framework based on the improvements of symbiotic organisms search (SOS) algorithm to address the optimal operation problem of active distribution systems containing renewable energy sources and datacenter resources, aiming to provide a practical tool for system analysis, particularly subject to nonconvexity nature of system components. For this purpose, a generic model for the distribution system including wind power, PV, and datacenter resources is first developed, which not only captures the uncertain nature of system components but also accounts for their spatiotemporal flexibility during operation. On this basis, in order to improve the computation efficiency of the problem, the SOS algorithm is improved by designing the selection strategy of random parameters. By using the penalty function method, the concerned problem is expressed as a nonlinear unconstrained optimization problem. The performance of the proposed model and algorithm is examined through comparative studies. It is shown that the proposed method is able to schedule the renewable energy resources and flexible demand of datacenters coordinately to reduce the operation cost of the system significantly in the case study. In addition, the proposed algorithm demonstrates a higher level of accuracy as well as better convergence efficiency compared to other conventional techniques. Improved SOS algorithm provided a faster convergence speed to find a lower optimal solution value for fitness functions than the SOS, ABC, GA, and PSO methods. |
Author | Zeng, Bo Zhu, Lei Xu, Hao Wang, Wenshi |
Author_xml | – sequence: 1 givenname: Bo surname: Zeng fullname: Zeng, Bo organization: North China Electric Power University – sequence: 2 givenname: Hao surname: Xu fullname: Xu, Hao organization: North China Electric Power University – sequence: 3 givenname: Wenshi surname: Wang fullname: Wang, Wenshi organization: North China Electric Power University – sequence: 4 givenname: Lei orcidid: 0000-0002-4342-452X surname: Zhu fullname: Zhu, Lei email: 120202206115@ncepu.edu.cn organization: North China Electric Power University |
BookMark | eNp1kcFqGzEQhkVJoWka6CMIeullXUkrrXePxnFaQ8BQt2eh1Y42MruSK8kJvvUR-gh9tj5JtXYLJaQHMWL45ueff16jC-cdIPSWkhklhH2ACOWs4fwFumREkCI_cfHP_xW6jnFHCKGc8obQS_RzPe6Df4AOb49ja32yGm9Cr5yNY8RbUEHf48XQ-2DT_YiND3izT3ZUQ64QVLLeYW_wQif7APjGxhRsezi1t8eYIKusnfZh7yfY9fgzOHhU7QARK9fh1Qihn_o3Kqlf338swSUImYr-EDTEN-ilUUOE6z_1Cn29XX1ZfiruNh_Xy8Vdocum5EXNmOg6ITojOgbzWhDdGgLUqHrOVENKMLpmVV68ntdQUdHoihBNdFVyVrGuvELrs27n1U7uQ14xHKVXVp4aPvRShZzOANLMuaZlTSpoNa84aWjLgbSGK151uhZZ691ZK0f77QAxyV1exmX7konsjTNBy0zNzpQOPsYARmqbToGmoOwgKZHTUeV0VJmPmgfePxn4a_MZtDijj3aA4385udquyon_DZ_ItT0 |
CitedBy_id | crossref_primary_10_1016_j_apenergy_2025_125454 |
Cites_doi | 10.1016/j.jclepro.2020.125666 10.1016/j.ijepes.2018.01.024 10.1109/ACCESS.2018.2849599 10.1109/TIA.2018.2851516 10.1007/s00202-019-00815-8 10.1007/s10115-018-1158-1 10.1016/j.energy.2015.09.083 10.1109/JSYST.2011.2162896 10.1109/TII.2020.2993815 10.1016/j.energy.2021.120043 10.1016/j.neucom.2019.06.112 10.1016/j.enconman.2017.06.071 10.1016/j.ijepes.2014.12.060 10.1016/j.energy.2016.07.056 10.1016/j.energy.2020.117530 10.35833/MPCE.2020.000198 10.1080/01605682.2017.1418151 10.1109/ACCESS.2019.2953800 10.1109/TPWRS.2010.2051168 10.1016/j.apenergy.2019.05.029 10.1504/IJBIC.2018.093334 10.1109/TIA.2020.2974426 10.1016/j.compstruc.2014.03.007 10.1016/j.asoc.2019.02.002 10.1016/j.knosys.2018.09.013 10.1080/0952813X.2016.1198935 10.1109/TSG.2018.2810830 10.1016/j.renene.2014.11.028 10.1109/ACCESS.2020.2970236 10.1016/j.asoc.2020.106321 10.1016/j.ijepes.2013.09.028 10.1016/j.asoc.2018.11.042 10.1109/TPWRS.2013.2291553 10.1016/j.ijepes.2016.02.004 10.1109/TCC.2017.2744623 10.1016/j.asoc.2015.10.057 10.1016/j.jesit.2016.01.004 |
ContentType | Journal Article |
Copyright | 2021 The Authors. published by Society of Chemical Industry and John Wiley & Sons Ltd. 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2021 The Authors. published by Society of Chemical Industry and John Wiley & Sons Ltd. – notice: 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION 7TB 8FD 8FE 8FG ABJCF ABUWG AEUYN AFKRA AZQEC BENPR BGLVJ BHPHI BKSAR CCPQU DWQXO FR3 H8D HCIFZ KR7 L6V L7M M7S PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS DOA |
DOI | 10.1002/ese3.944 |
DatabaseName | Wiley Online Library Open Access CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection ProQuest One Community College ProQuest Central Engineering Research Database Aerospace Database SciTech Premium Collection Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Engineering Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering collection DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Applied & Life Sciences Aerospace Database ProQuest One Sustainability ProQuest Engineering Collection Natural Science Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Civil Engineering Abstracts Engineering Database ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2050-0505 |
EndPage | 1733 |
ExternalDocumentID | oai_doaj_org_article_f74c13806ebc464091b4e0bf4a46dc85 10_1002_ese3_944 ESE3944 |
Genre | article |
GrantInformation_xml | – fundername: State Key Laboratory Of Alternate Electrical Power System With Renewable Energy Sources funderid: LAPS19018 |
GroupedDBID | 0R~ 1OC 24P 31~ 5VS 8-1 8FE 8FG 8FH AAHHS AAZKR ABJCF ACCFJ ACCMX ACXQS ADBBV ADKYN ADZMN ADZOD AEEZP AEQDE AEUYN AFKRA AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AVUZU BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU D-9 EBS EJD GODZA GROUPED_DOAJ HCIFZ HZ~ IAO IGS ITC KQ8 L6V L8X LK5 M7R M7S M~E O9- OK1 PCBAR PIMPY PROAC PTHSS TUS WIN AAYXX ADMLS CITATION IVC PHGZM PHGZT 7TB 8FD AAMMB ABUWG AEFGJ AGXDD AIDQK AIDYY AZQEC DWQXO FR3 H8D KR7 L7M PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c3934-8225dd55df5d2e7850cbf0e1fa872a903efc826014878e6159c600c0c634262d3 |
IEDL.DBID | 24P |
ISSN | 2050-0505 |
IngestDate | Wed Aug 27 01:29:55 EDT 2025 Wed Aug 13 04:47:49 EDT 2025 Tue Jul 01 04:24:04 EDT 2025 Thu Apr 24 23:10:06 EDT 2025 Wed Jan 22 16:27:22 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3934-8225dd55df5d2e7850cbf0e1fa872a903efc826014878e6159c600c0c634262d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-4342-452X |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fese3.944 |
PQID | 2578542513 |
PQPubID | 2034362 |
PageCount | 15 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_f74c13806ebc464091b4e0bf4a46dc85 proquest_journals_2578542513 crossref_citationtrail_10_1002_ese3_944 crossref_primary_10_1002_ese3_944 wiley_primary_10_1002_ese3_944_ESE3944 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2021 2021-10-00 20211001 2021-10-01 |
PublicationDateYYYYMMDD | 2021-10-01 |
PublicationDate_xml | – month: 10 year: 2021 text: October 2021 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Energy science & engineering |
PublicationYear | 2021 |
Publisher | John Wiley & Sons, Inc Wiley |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley |
References | 2021; 9 2019; 7 2014; 139 2019; 70 2015; 93 2021; 223 2019; 75 2021; 288 2019; 77 2019; 10 2015; 76 2019; 58 2019; 39 2020; 200 2016; 2016 2020; 56 2017; 29 2014; 29 2019; 163 2016; 38 2019; 101 2020; 407 2020; 8 2018; 6 2015; 69 2016; 3 2019; 43 2020; 92 2021; 17 2016; 113 2016; 81 2020; 44 2011; 26 2019; 250 2018; 12 2012; 6 2018; 99 2018; 54 2017; 148 2014; 55 e_1_2_10_23_1 e_1_2_10_24_1 e_1_2_10_21_1 e_1_2_10_44_1 e_1_2_10_22_1 e_1_2_10_43_1 e_1_2_10_42_1 e_1_2_10_20_1 e_1_2_10_40_1 Wu HZ (e_1_2_10_27_1) 2016; 2016 e_1_2_10_4_1 e_1_2_10_18_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_6_1 e_1_2_10_39_1 e_1_2_10_5_1 e_1_2_10_38_1 e_1_2_10_8_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_13_1 e_1_2_10_34_1 e_1_2_10_10_1 Wen ZN (e_1_2_10_17_1) 2019; 43 e_1_2_10_33_1 e_1_2_10_11_1 e_1_2_10_32_1 e_1_2_10_31_1 e_1_2_10_30_1 Gu C (e_1_2_10_16_1) 2020; 8 Sheng WX (e_1_2_10_2_1) 2019; 39 Wang Q (e_1_2_10_41_1) 2020; 44 e_1_2_10_29_1 e_1_2_10_28_1 e_1_2_10_25_1 e_1_2_10_26_1 |
References_xml | – volume: 26 start-page: 12 issue: 1 year: 2011 end-page: 19 article-title: MATPOWER: steady‐state operations, planning, and analysis tools for power systems research and education publication-title: IEEE Trans Power Syst – volume: 12 start-page: 23 year: 2018 end-page: 53 article-title: Hybrid symbiotic organisms search algorithm for solving 0–1 knapsack problem publication-title: Int J Bio Inspired Comput – volume: 7 start-page: 166833 year: 2019 end-page: 166859 article-title: Binary symbiotic organism search algorithm for feature selection and analysis publication-title: IEEE Access – volume: 9 start-page: 423 issue: 2 year: 2021 end-page: 430 article-title: Robust Optimal operation of active distribution network based on minimum confidence interval of distributed energy beta distribution publication-title: J Mod Power Syst Clean Energy – volume: 77 start-page: 497 year: 2019 end-page: 508 article-title: Symbiotic organisms search algorithm for optimal evolutionary controller tuning of fractional fuzzy controllers publication-title: Appl Soft Comput – volume: 3 start-page: 151 issue: 2 year: 2016 end-page: 160 article-title: Solution of wind integrated thermal generation system for environmental optimal power flow using hybrid algorithm publication-title: Journal of Electrical Systems and Information Technology – volume: 75 start-page: 616 year: 2019 end-page: 632 article-title: Optimal reactive power dispatch with uncertainties in load demand and renewable energy sources adopting scenario‐based approach publication-title: Appl Soft Comput J – volume: 223 start-page: 0360 year: 2021 end-page: 5442 article-title: Robust optimization of microgrid based on renewable distributed power generation and load demand uncertainty publication-title: Energy – volume: 2016 start-page: 14 year: 2016 article-title: Training feedforward neural networks using symbiotic organisms search algorithm publication-title: Computat Intell Neurosci – volume: 29 start-page: 495 year: 2017 end-page: 515 article-title: Symbiotic organisms search algorithm for dynamic economic dispatch with valve‐point effects publication-title: J Exp Theor Artif Intell – volume: 139 start-page: 98 year: 2014 end-page: 112 article-title: Symbiotic organisms search: a new metaheuristic optimization algorithm publication-title: Comput Struct – volume: 8 start-page: 27001 year: 2020 end-page: 27017 article-title: Enhanced velocity differential evolutionary particle swarm optimization for optimal scheduling of a distributed energy resources with uncertain scenarios publication-title: IEEE Access – volume: 43 start-page: 2449 issue: 7 year: 2019 end-page: 2460 article-title: A optimal scheduling method for hybrid wind‐solar‐hydro power generation system with data center in demand side publication-title: Power Syst Technol – volume: 29 start-page: 1153 issue: 3 year: 2014 end-page: 1165 article-title: Integrated planning for transition to low‐carbon distribution system with renewable energy generation and demand response publication-title: IEEE Trans Power Syst – volume: 148 start-page: 1194 year: 2017 end-page: 1207 article-title: Optimal power flow solutions incorporating stochastic wind and solar power publication-title: Energy Convers Manage – volume: 10 start-page: 2820 issue: 3 year: 2019 end-page: 2832 article-title: Data center demand response in deregulated electricity markets publication-title: IEEE Trans Smart Grid – volume: 81 start-page: 64 year: 2016 end-page: 77 article-title: Optimal power flow with emission and non‐smooth cost functions using backtracking search optimization algorithm publication-title: Int J Electr Power Energy Syst – volume: 8 start-page: 833 issue: 3 year: 2020 end-page: 846 article-title: Energy efficient scheduling of servers with multi‐sleep modes for cloud data center publication-title: IEEE Trans Cloud Comput – volume: 17 start-page: 1863 issue: 3 year: 2021 end-page: 1872 article-title: Co‐optimized parking lot placement and incentive design for promoting PEV integration considering decision‐dependent uncertainties publication-title: IEEE Trans Industr Inf – volume: 6 start-page: 45394 issue: 1 year: 2018 end-page: 45416 article-title: A modified moth swarm algorithm based on an arithmetic crossover for constrained optimization and optimal power flow problems publication-title: IEEE Access – volume: 38 start-page: 1012 year: 2016 end-page: 1024 article-title: Adaptive group search optimization algorithm for multi‐objective optimal power flow problem publication-title: Appl Soft Comput – volume: 44 start-page: 3129 year: 2020 end-page: 3138 article-title: Congestion management of urban power grid considering demand response of data center publication-title: Power Syst Technol – volume: 55 start-page: 312 year: 2014 end-page: 320 article-title: Optimal power flow of a wind‐thermal generation system publication-title: Int J Electr Power Energy Syst – volume: 58 start-page: 209 year: 2019 end-page: 248 article-title: Complex‐valued encoding symbiotic organisms search algorithm for global optimization publication-title: Knowl Inf Syst – volume: 69 start-page: 173 year: 2015 end-page: 187 article-title: Stochastic optimal power flow incorporating offshore wind farm and electric vehicles publication-title: Int J Electr Power Energy Syst – volume: 250 start-page: 1217 year: 2019 end-page: 1224 article-title: A decision support system for waste heat recovery and energy efficiency improvement in data centres publication-title: Applied Energy – volume: 92 year: 2020 article-title: Application of modified pigeon‐inspired optimization algorithm and constraint‐objective sorting rule on multi‐objective optimal power flow problem publication-title: Applied Soft Computing – volume: 7 start-page: 1095 issue: 4 year: 2019 end-page: 1108 article-title: Shaving Data Center Power Demand Peaks Through Energy Storage and Workload Shifting Control publication-title: IEEE Transactions on Cloud Computing – volume: 99 start-page: 331 year: 2018 end-page: 343 article-title: Optimal power flow solution in power systems using a novel Sine‐Cosine algorithm publication-title: Int J Electr Power Energy Syst – volume: 70 start-page: 21 year: 2019 end-page: 52 article-title: A modified symbiotic organisms search algorithm for unmanned combat aerial vehicle route planning problem publication-title: J Oper Res Soc – volume: 288 year: 2021 article-title: Optimal demand response resource exploitation for efficient accommodation of renewable energy sources in multi‐energy systems considering correlated uncertainties publication-title: J Clean Prod – volume: 56 start-page: 2227 issue: 3 year: 2020 end-page: 2237 article-title: Multitime scale coordinated scheduling for the combined system of wind power, photovoltaic, thermal generator, hydro pumped storage, and batteries publication-title: IEEE Trans Ind Appl – volume: 200 year: 2020 article-title: Robust optimization based energy management of a fuel cell/ultra‐capacitor hybrid electric vehicle under uncertainty publication-title: Energy – volume: 113 start-page: 366 year: 2016 end-page: 384 article-title: A modified Symbiotic Organisms Search algorithm for large scale economic dispatch problem with valve‐point effects publication-title: Energy – volume: 39 start-page: 2175 year: 2019 end-page: 2186 article-title: Key techniques and engineering practice of distributed renewable generation clusters integration publication-title: Proc CSEE – volume: 6 start-page: 233 issue: 2 year: 2012 end-page: 241 article-title: Optimal power flow solution incorporating wind power publication-title: IEEE Syst J – volume: 76 start-page: 283 year: 2015 end-page: 295 article-title: Multi‐linear Monte Carlo simulation method for probabilistic load flow of distribution systems with wind and photovoltaic generation systems publication-title: Renewable Energy – volume: 93 start-page: 816 year: 2015 end-page: 827 article-title: Security constrained optimal power flow solution of wind‐thermal generation system using modified bacteria foraging algorithm publication-title: Energy – volume: 54 start-page: 5599 issue: 6 year: 2018 end-page: 5608 article-title: Emission‐aware stochastic resource planning scheme for data center microgrid considering batch workload scheduling and risk management publication-title: IEEE Trans Ind Appl – volume: 163 start-page: 546 year: 2019 end-page: 557 article-title: Automatic data clustering using nature‐inspired symbiotic organism search algorithm publication-title: Knowl Based Syst – volume: 101 start-page: 699 issue: 3 year: 2019 end-page: 718 article-title: Multi‐objective optimal power flow considering wind power cost functions using enhanced PSO with chaotic mutation and stochastic weights publication-title: Electrical Engineering – volume: 407 start-page: 313 year: 2020 end-page: 342 article-title: Complex‐valued encoding metaheuristic optimization algorithm: a comprehensive survey publication-title: Neurocomputing – ident: e_1_2_10_37_1 doi: 10.1016/j.jclepro.2020.125666 – ident: e_1_2_10_18_1 doi: 10.1016/j.ijepes.2018.01.024 – ident: e_1_2_10_39_1 doi: 10.1109/ACCESS.2018.2849599 – ident: e_1_2_10_15_1 doi: 10.1109/TIA.2018.2851516 – volume: 44 start-page: 3129 year: 2020 ident: e_1_2_10_41_1 article-title: Congestion management of urban power grid considering demand response of data center publication-title: Power Syst Technol – ident: e_1_2_10_7_1 doi: 10.1007/s00202-019-00815-8 – ident: e_1_2_10_33_1 doi: 10.1007/s10115-018-1158-1 – ident: e_1_2_10_8_1 doi: 10.1016/j.energy.2015.09.083 – ident: e_1_2_10_38_1 doi: 10.1109/JSYST.2011.2162896 – ident: e_1_2_10_21_1 doi: 10.1109/TII.2020.2993815 – ident: e_1_2_10_12_1 doi: 10.1016/j.energy.2021.120043 – ident: e_1_2_10_28_1 doi: 10.1016/j.neucom.2019.06.112 – ident: e_1_2_10_24_1 doi: 10.1016/j.enconman.2017.06.071 – ident: e_1_2_10_25_1 doi: 10.1016/j.ijepes.2014.12.060 – ident: e_1_2_10_35_1 doi: 10.1016/j.energy.2016.07.056 – ident: e_1_2_10_5_1 doi: 10.1016/j.energy.2020.117530 – ident: e_1_2_10_10_1 doi: 10.35833/MPCE.2020.000198 – ident: e_1_2_10_34_1 doi: 10.1080/01605682.2017.1418151 – volume: 2016 start-page: 14 year: 2016 ident: e_1_2_10_27_1 article-title: Training feedforward neural networks using symbiotic organisms search algorithm publication-title: Computat Intell Neurosci – ident: e_1_2_10_32_1 doi: 10.1109/ACCESS.2019.2953800 – ident: e_1_2_10_43_1 doi: 10.1109/TPWRS.2010.2051168 – ident: e_1_2_10_13_1 doi: 10.1016/j.apenergy.2019.05.029 – ident: e_1_2_10_30_1 doi: 10.1504/IJBIC.2018.093334 – ident: e_1_2_10_9_1 doi: 10.1109/TIA.2020.2974426 – ident: e_1_2_10_26_1 doi: 10.1016/j.compstruc.2014.03.007 – volume: 43 start-page: 2449 issue: 7 year: 2019 ident: e_1_2_10_17_1 article-title: A optimal scheduling method for hybrid wind‐solar‐hydro power generation system with data center in demand side publication-title: Power Syst Technol – ident: e_1_2_10_31_1 doi: 10.1016/j.asoc.2019.02.002 – volume: 39 start-page: 2175 year: 2019 ident: e_1_2_10_2_1 article-title: Key techniques and engineering practice of distributed renewable generation clusters integration publication-title: Proc CSEE – ident: e_1_2_10_29_1 doi: 10.1016/j.knosys.2018.09.013 – ident: e_1_2_10_36_1 doi: 10.1080/0952813X.2016.1198935 – ident: e_1_2_10_14_1 doi: 10.1109/TSG.2018.2810830 – ident: e_1_2_10_3_1 doi: 10.1016/j.renene.2014.11.028 – ident: e_1_2_10_4_1 doi: 10.1109/ACCESS.2020.2970236 – ident: e_1_2_10_20_1 doi: 10.1016/j.asoc.2020.106321 – ident: e_1_2_10_23_1 doi: 10.1016/j.ijepes.2013.09.028 – ident: e_1_2_10_22_1 doi: 10.1016/j.asoc.2018.11.042 – ident: e_1_2_10_42_1 – ident: e_1_2_10_11_1 doi: 10.1109/TPWRS.2013.2291553 – ident: e_1_2_10_40_1 doi: 10.1016/j.ijepes.2016.02.004 – ident: e_1_2_10_44_1 doi: 10.1109/TCC.2017.2744623 – ident: e_1_2_10_19_1 doi: 10.1016/j.asoc.2015.10.057 – ident: e_1_2_10_6_1 doi: 10.1016/j.jesit.2016.01.004 – volume: 8 start-page: 833 issue: 3 year: 2020 ident: e_1_2_10_16_1 article-title: Energy efficient scheduling of servers with multi‐sleep modes for cloud data center publication-title: IEEE Trans Cloud Comput |
SSID | ssj0001414901 |
Score | 2.1739142 |
Snippet | The optimal operation analysis plays an important role in estimating the expected return of investment for power systems. However, this work could be highly... Abstract The optimal operation analysis plays an important role in estimating the expected return of investment for power systems. However, this work could be... |
SourceID | doaj proquest crossref wiley |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1719 |
SubjectTerms | Active distribution system Algorithms Alternative energy sources Batch processing Comparative studies Computer centers Data centers datacenter resources distributed generation Electric power distribution Energy consumption Energy distribution Energy resources Energy storage flexibility Genetic algorithms Mutualism Nonlinearity operation Optimization Participation Penalty function Photovoltaic cells Renewable energy sources Renewable resources Scheduling Search algorithms Servers Simulation Systems analysis Wind power |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NahRBEG4kp3gQjYqriZQgehrT0z-z08fVbIiCBoyB3JrpPw1kd0NmRXLLI-QRfDafxKru2bABxYvXnqanmaqu_qqm6ivGXpomKic8r4SOEh2U0FadcAYPnja-EZ0ziYqTP35qDo7VhxN9stbqi3LCCj1w-XC7aax8LVveROdVg95I7VTkLqlONcG3mb0UB9ecqRxdUYj8eb1im-ViN_ZRvjFK3bp_Mk3_LWy5jlDzFbN_n90bsCFMyp4esDtxvsXurjEGPmQ_SxAgBji6nLnTBc6EUk7Zz3ooucMwOfu6QJ__2wwQkcIhGoUZLnt4Hou0YZFgks0c7BFt7tDxCgbycnhP1JaZ3hhfCZ_RGP6g-qoeunkACmJRXyPY65bdr6trig7HC1j9BegfseP96Zd3B9XQZKHy0khVIUDQIWgdkg4ijlvNvUs81qlrx6IzXMbkW-IdQ8-mjYh_UISce-4bSWT2QT5mG_PFPD5hoF1UeMJTjesp5Wrj0FszKajGofh9PWKvV5_e-oGBnBphnNnCnSwsCcmikEbsxc3M88K68Yc5b0l6N8-JJzsPoPbYQXvsv7RnxLZXsrfD4e0tWTGNtqyWI_Yq68NfN2GnR1MqLX76PzbzjG0KypjJqYLbbGN58T3uIORZuudZu38DQFQCYA priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagvcCh4im2tGiQEJxCHcdO4xPa0q0KEi1qqdSbFb8KUnezbBYhbvwEfgK_rb-EmcTpQwKuiWUnnodnxjPfMPZCl0Fa4XgmVCjQQfFVVgurUfCUdqWorY5UnPzhoNw_ke9P1WkKuLUprXLQiZ2i9o2jGPkWsZZCBsuLN_OvGXWNotvV1ELjNltFFVwhh6_uTA4-Hl1FWSR6ADwfUGe52AptKF5rKW-cQx1c_w0b87ql2h01e_fYWrIRYdwT9T67FWYP2N1ryIEP2e8-GBA8HP-Y2i8NjoS-rLKdttDnEMP4_Az_YPl5CmiZwiEqhylOezgPPdWhiTDu1B3sEnxu6nwFCcQc3hHEZQdzjEvCESrF71Rn1UI980DBLOpvBLv1sr74-YuixGEBw21A-4id7E0-vd3PUrOFzBW6kBkaCsp7pXxUXgTca-5s5CGPdbUtas2LEF1F-GPo4VQB7SAkJeeOu7IgUHtfPGYrs2YWnjBQNkiU9JjjfFLaXFv02nT0srTIBi4fsVfD1huXkMipIca56TGUhSEiGSTSiD2_HDnv0Tf-MmaHqHf5nvCyuwfN4swk8TNxW7q8qHgZrJMl-rS5lYHbKGtZelepEdsYaG-SELfmiuVG7GXHD__8CDM5nlCJ8fr_53nK7gjKiemSATfYynLxLWyiUbO0zxLn_gGYm_sl priority: 102 providerName: ProQuest |
Title | Improved Symbiotic Organisms Search Algorithm for Optimal Operation of Active Distribution Systems Incorporating Renewables and Emerging Data‐Center Resources |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fese3.944 https://www.proquest.com/docview/2578542513 https://doaj.org/article/f74c13806ebc464091b4e0bf4a46dc85 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEF5Be4EDojxEoI0WCcHJdL0Px3tM24SCRFu1VOpt5X2VSk1cxUGIGz-Bn8Bv45d0Zm2nrQQSFx_s8dryPDwzO_MNIW90EaTljmVcBQEBii-zilsNiqe0K3hldcTm5M8Hxf6p_HSmzrqqSuyFafEhVgk31Ixkr1HBK9ts34CGhiaI91rK-2QdO2tRxrk8usmvSPD90_RjzhTu9zLVY88yvt3ffOdvlED773iat_3V9MOZPiaPOk-RjlvWbpB7Yf6EPLyFH_iU_G5TAsHTkx8ze1EDJW2bK5tZQ9tKYjq-PK8XF8uvMwr-KT0EEzGDZQ-vQst7Wkc6TkaP7iGIbjf_inZQ5vQjAl0msGN4JD0G0_gdu60aWs09xZQWTjmie9Wy-vPzF-aKw4L2ewLNM3I6nXzZ3c-6kQuZE1rIDNwF5b1SPirPw6hUzNnIQh6rcsQrzUSIrkQUMohzygDeEDCUMcdcIRDa3ovnZG1ez8MLQpUNEvQ95rCelDbXFmI3Hb0sLAiDywfkXf_pjevwyHEsxqVpkZS5QSYZYNKAvF5RXrUYHH-h2UHura4janY6US_OTaeEJo6ky0XJimCdLCCyza0MzEZZycK7Ug3IZs9706lyY9CmKbBsuRiQt0ke_vkSZnIywUbjl_9L-Io84Fgjk4oDN8nacvEtbIGTs7TDJM1wLKcfhmR9Z3JwdDxMCYNreor-eQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JbtRAEG2FcAAOiFUMBGgklpNJuxfHfUBoYGaYIZtEEim3jnsLSJmF8aAoNz6BT-AL-Ci-hCovWSTglqvdKluu19VV5apXhDzXWZCWO5ZwFQQEKD5PCm41bDylXcYLqyM2J29uZcM9-XFf7S-RX20vDJZVtjaxMtR-6jBHvorQUgCwVLydfU1wahT-XW1HaNSwWA8nxxCylW9GPdDvC84H_d33w6SZKpA4oYVM4ERU3ivlo_I8gFDmbGQhjUW-xgvNRIguR6ItcOXzAAc-vDNjjrlMIHu7FyD3CrkqhdBYQpgPPpzldCTEGyxtOW4ZXw1lEK-1lBdOvWo4wAWP9rxfXB1sg1vkZuOR0m4NodtkKUzukBvneArvkp916iF4unMytl-msJLWTZzluKR1xTLtHh3C91p8HlPwg-k2mKIxiN2ehRpjdBpptzKutIdkvc2cLdpQptMREmpWpMrwSPoJTPAxdnWVtJh4iqkznKZEe8Wi-P39B-akw5y2_x7Ke2TvUpRwnyxPppPwgFBlgwS7ElOQJ6VNtYUYUUcvMwugc2mHvGo_vXEN7zmO3zgyNWMzN6gkA0rqkGenK2c118df1rxD7Z3eR3bu6sJ0fmiazW7imnSpyFkWrJMZRNCplYHZKAuZeZerDllpdW8ak1GaM4B3yMsKD_98CdPf6WND88P_y3lKrg13NzfMxmhr_RG5zrEapypDXCHLi_m38BjcqYV9UmGYkoPL3jR_AJ_ENOA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JbhQxELVCkBAcEKsYCFBILKdm3G67p_uA0MDMkCGQIEKk3Jz2FpAyC9ODotz4BD6B7-Bz-BKqeskiAbdcuy235XouV1VXvWLscZ56aYTlkVA-QQfFZVEhTI4HT-U2FYXJAxUnv99M13fk2121u8J-tbUwlFbZ6sRKUbuZpRh5l6ClEGBx0g1NWsSHwejl_GtEHaToT2vbTqOGyIY_OkT3rXwxHqCsnwgxGn56vR41HQYim-SJjPB2VM4p5YJywuMHuDWB-zgUWU8UOU98sBmRbqFZn3m8_HH9nFtu04SY3F2C815gF3tJxql7QjZ6cxLfkeh78Ljlu-Wi60ufPM-lPHMDVo0Czli3p23k6pIbXWNXG-sU-jWcrrMVP73BrpziLLzJftZhCO9g-2hivsxwJNQFneWkhDp7GfoH-7hfy88TQJsYtlAtTXDarbmv8QazAP1K0cKAiHubnlvQ0KfDmMg1K4Jl_CR8RHV8SBVeJRRTBxRGo85KMCiWxe_vPyg-7RfQ_ocob7GdcxHCbbY6nU39HQbKeIk6JsQ4n5Qmzg36i3lwMjUIQBt32LN267VtONCpFceBrtmbhSYhaRRShz06HjmveT_-MuYVSe_4PTF1Vw9mi33dHHwdetLGiI_UGytT9KZjIz03QRYydTZTHbbWyl436qPUJ2DvsKcVHv65CD3cHlJx893_z_OQXcLjot-NNzfuscuCEnOqjMQ1trpcfPP30bJamgcVhIHtnfeZ-QOlSTkN |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+Symbiotic+Organisms+Search+Algorithm+for+Optimal+Operation+of+Active+Distribution+Systems+Incorporating+Renewables+and+Emerging+Data%E2%80%90Center+Resources&rft.jtitle=Energy+science+%26+engineering&rft.au=Zeng%2C+Bo&rft.au=Xu%2C+Hao&rft.au=Wang%2C+Wenshi&rft.au=Zhu%2C+Lei&rft.date=2021-10-01&rft.issn=2050-0505&rft.eissn=2050-0505&rft.volume=9&rft.issue=10&rft.spage=1719&rft.epage=1733&rft_id=info:doi/10.1002%2Fese3.944&rft.externalDBID=10.1002%252Fese3.944&rft.externalDocID=ESE3944 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-0505&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-0505&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-0505&client=summon |