High Spatial‐Resolution and Acquisition‐Efficiency Cardiac MR T1 Mapping Based on Radial bSSFP and a Low‐Rank Tensor Constraint

Background Cardiac T1 mapping is valuable for evaluating myocardial fibrosis, yet its resolution and acquisition efficiency are limited, potentially obscuring visualization of small pathologies. Purpose To develop a technique for high‐resolution cardiac T1 mapping with a less‐than‐100‐millisecond ac...

Full description

Saved in:
Bibliographic Details
Published inJournal of magnetic resonance imaging Vol. 61; no. 3; pp. 1388 - 1401
Main Authors Gao, Juan, Gong, Yiwen, Emu, Yixin, Chen, Zhuo, Chen, Haiyang, Yang, Fan, Ding, Zekang, Hua, Sha, Jin, Wei, Hu, Chenxi
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.03.2025
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Background Cardiac T1 mapping is valuable for evaluating myocardial fibrosis, yet its resolution and acquisition efficiency are limited, potentially obscuring visualization of small pathologies. Purpose To develop a technique for high‐resolution cardiac T1 mapping with a less‐than‐100‐millisecond acquisition window based on radial MOdified Look‐Locker Inversion recovery (MOLLI) and a calibrationless space‐contrast‐coil locally low‐rank tensor (SCC‐LLRT) constrained reconstruction. Study Type Prospective. Subjects/Phantom Sixteen healthy subjects (age 25 ± 3 years, 44% females) and 12 patients with suspected cardiomyopathy (age 57 ± 15 years, 42% females), NiCl2‐agar phantom. Field Strength/Sequence 3‐T, standard MOLLI, radial MOLLI, inversion‐recovery spin‐echo, late gadolinium enhancement. Assessment SCC‐LLRT was compared to a conventional locally low‐rank (LLR) method through simulations using Normalized Root‐Mean‐Square Error (NRMSE) and Structural Similarity Index Measure (SSIM). Radial MOLLI was compared to standard MOLLI across phantom, healthy subjects, and patients. Three independent readers subjectively evaluated the quality of T1 maps using a 5‐point scale (5 = best). Statistical Tests Paired t‐test, Wilcoxon signed‐rank test, intraclass correlation coefficient analysis, linear regression, Bland–Altman analysis. P < 0.05 was considered statistically significant. Results In simulations, SCC‐LLRT demonstrated a significant improvement in NRMSE and SSIM compared to LLR. In phantom, both radial MOLLI and standard MOLLI provided consistent T1 estimates across different heart rates. In healthy subjects, radial MOLLI exhibited a significantly lower mean T1 (1115 ± 39 msec vs. 1155 ± 36 msec), similar T1 SD (74 ± 14 msec vs. 67 ± 23 msec, P = 0.20), and similar T1 reproducibility (28 ± 18 msec vs. 22 ± 15 msec, P = 0.34) compared to standard MOLLI. In patients, the proposed method significantly improved the sharpness of myocardial boundaries (4.50 ± 0.65 vs. 3.25 ± 0.43), the conspicuity of papillary muscles and fine structures (4.33 ± 0.74 vs. 3.33 ± 0.47), and artifacts (4.75 ± 0.43 vs. 3.83 ± 0.55). The reconstruction time for a single slice was 5.2 hours. Data Conclusion The proposed method enables high‐resolution cardiac T1 mapping with a short acquisition window and improved image quality. Evidence Level 1 Technical Efficacy Stage 1
AbstractList Cardiac T1 mapping is valuable for evaluating myocardial fibrosis, yet its resolution and acquisition efficiency are limited, potentially obscuring visualization of small pathologies.BACKGROUNDCardiac T1 mapping is valuable for evaluating myocardial fibrosis, yet its resolution and acquisition efficiency are limited, potentially obscuring visualization of small pathologies.To develop a technique for high-resolution cardiac T1 mapping with a less-than-100-millisecond acquisition window based on radial MOdified Look-Locker Inversion recovery (MOLLI) and a calibrationless space-contrast-coil locally low-rank tensor (SCC-LLRT) constrained reconstruction.PURPOSETo develop a technique for high-resolution cardiac T1 mapping with a less-than-100-millisecond acquisition window based on radial MOdified Look-Locker Inversion recovery (MOLLI) and a calibrationless space-contrast-coil locally low-rank tensor (SCC-LLRT) constrained reconstruction.Prospective.STUDY TYPEProspective.Sixteen healthy subjects (age 25 ± 3 years, 44% females) and 12 patients with suspected cardiomyopathy (age 57 ± 15 years, 42% females), NiCl2-agar phantom.SUBJECTS/PHANTOMSixteen healthy subjects (age 25 ± 3 years, 44% females) and 12 patients with suspected cardiomyopathy (age 57 ± 15 years, 42% females), NiCl2-agar phantom.3-T, standard MOLLI, radial MOLLI, inversion-recovery spin-echo, late gadolinium enhancement.FIELD STRENGTH/SEQUENCE3-T, standard MOLLI, radial MOLLI, inversion-recovery spin-echo, late gadolinium enhancement.SCC-LLRT was compared to a conventional locally low-rank (LLR) method through simulations using Normalized Root-Mean-Square Error (NRMSE) and Structural Similarity Index Measure (SSIM). Radial MOLLI was compared to standard MOLLI across phantom, healthy subjects, and patients. Three independent readers subjectively evaluated the quality of T1 maps using a 5-point scale (5 = best).ASSESSMENTSCC-LLRT was compared to a conventional locally low-rank (LLR) method through simulations using Normalized Root-Mean-Square Error (NRMSE) and Structural Similarity Index Measure (SSIM). Radial MOLLI was compared to standard MOLLI across phantom, healthy subjects, and patients. Three independent readers subjectively evaluated the quality of T1 maps using a 5-point scale (5 = best).Paired t-test, Wilcoxon signed-rank test, intraclass correlation coefficient analysis, linear regression, Bland-Altman analysis. P < 0.05 was considered statistically significant.STATISTICAL TESTSPaired t-test, Wilcoxon signed-rank test, intraclass correlation coefficient analysis, linear regression, Bland-Altman analysis. P < 0.05 was considered statistically significant.In simulations, SCC-LLRT demonstrated a significant improvement in NRMSE and SSIM compared to LLR. In phantom, both radial MOLLI and standard MOLLI provided consistent T1 estimates across different heart rates. In healthy subjects, radial MOLLI exhibited a significantly lower mean T1 (1115 ± 39 msec vs. 1155 ± 36 msec), similar T1 SD (74 ± 14 msec vs. 67 ± 23 msec, P = 0.20), and similar T1 reproducibility (28 ± 18 msec vs. 22 ± 15 msec, P = 0.34) compared to standard MOLLI. In patients, the proposed method significantly improved the sharpness of myocardial boundaries (4.50 ± 0.65 vs. 3.25 ± 0.43), the conspicuity of papillary muscles and fine structures (4.33 ± 0.74 vs. 3.33 ± 0.47), and artifacts (4.75 ± 0.43 vs. 3.83 ± 0.55). The reconstruction time for a single slice was 5.2 hours.RESULTSIn simulations, SCC-LLRT demonstrated a significant improvement in NRMSE and SSIM compared to LLR. In phantom, both radial MOLLI and standard MOLLI provided consistent T1 estimates across different heart rates. In healthy subjects, radial MOLLI exhibited a significantly lower mean T1 (1115 ± 39 msec vs. 1155 ± 36 msec), similar T1 SD (74 ± 14 msec vs. 67 ± 23 msec, P = 0.20), and similar T1 reproducibility (28 ± 18 msec vs. 22 ± 15 msec, P = 0.34) compared to standard MOLLI. In patients, the proposed method significantly improved the sharpness of myocardial boundaries (4.50 ± 0.65 vs. 3.25 ± 0.43), the conspicuity of papillary muscles and fine structures (4.33 ± 0.74 vs. 3.33 ± 0.47), and artifacts (4.75 ± 0.43 vs. 3.83 ± 0.55). The reconstruction time for a single slice was 5.2 hours.The proposed method enables high-resolution cardiac T1 mapping with a short acquisition window and improved image quality.DATA CONCLUSIONThe proposed method enables high-resolution cardiac T1 mapping with a short acquisition window and improved image quality.1 TECHNICAL EFFICACY: Stage 1.EVIDENCE LEVEL1 TECHNICAL EFFICACY: Stage 1.
Cardiac T1 mapping is valuable for evaluating myocardial fibrosis, yet its resolution and acquisition efficiency are limited, potentially obscuring visualization of small pathologies. To develop a technique for high-resolution cardiac T1 mapping with a less-than-100-millisecond acquisition window based on radial MOdified Look-Locker Inversion recovery (MOLLI) and a calibrationless space-contrast-coil locally low-rank tensor (SCC-LLRT) constrained reconstruction. Prospective. Sixteen healthy subjects (age 25 ± 3 years, 44% females) and 12 patients with suspected cardiomyopathy (age 57 ± 15 years, 42% females), NiCl2-agar phantom. 3-T, standard MOLLI, radial MOLLI, inversion-recovery spin-echo, late gadolinium enhancement. SCC-LLRT was compared to a conventional locally low-rank (LLR) method through simulations using Normalized Root-Mean-Square Error (NRMSE) and Structural Similarity Index Measure (SSIM). Radial MOLLI was compared to standard MOLLI across phantom, healthy subjects, and patients. Three independent readers subjectively evaluated the quality of T1 maps using a 5-point scale (5 = best). Paired t-test, Wilcoxon signed-rank test, intraclass correlation coefficient analysis, linear regression, Bland-Altman analysis. P < 0.05 was considered statistically significant. In simulations, SCC-LLRT demonstrated a significant improvement in NRMSE and SSIM compared to LLR. In phantom, both radial MOLLI and standard MOLLI provided consistent T1 estimates across different heart rates. In healthy subjects, radial MOLLI exhibited a significantly lower mean T1 (1115 ± 39 msec vs. 1155 ± 36 msec), similar T1 SD (74 ± 14 msec vs. 67 ± 23 msec, P = 0.20), and similar T1 reproducibility (28 ± 18 msec vs. 22 ± 15 msec, P = 0.34) compared to standard MOLLI. In patients, the proposed method significantly improved the sharpness of myocardial boundaries (4.50 ± 0.65 vs. 3.25 ± 0.43), the conspicuity of papillary muscles and fine structures (4.33 ± 0.74 vs. 3.33 ± 0.47), and artifacts (4.75 ± 0.43 vs. 3.83 ± 0.55). The reconstruction time for a single slice was 5.2 hours. The proposed method enables high-resolution cardiac T1 mapping with a short acquisition window and improved image quality. 1 TECHNICAL EFFICACY: Stage 1.
BackgroundCardiac T1 mapping is valuable for evaluating myocardial fibrosis, yet its resolution and acquisition efficiency are limited, potentially obscuring visualization of small pathologies.PurposeTo develop a technique for high‐resolution cardiac T1 mapping with a less‐than‐100‐millisecond acquisition window based on radial MOdified Look‐Locker Inversion recovery (MOLLI) and a calibrationless space‐contrast‐coil locally low‐rank tensor (SCC‐LLRT) constrained reconstruction.Study TypeProspective.Subjects/PhantomSixteen healthy subjects (age 25 ± 3 years, 44% females) and 12 patients with suspected cardiomyopathy (age 57 ± 15 years, 42% females), NiCl2‐agar phantom.Field Strength/Sequence3‐T, standard MOLLI, radial MOLLI, inversion‐recovery spin‐echo, late gadolinium enhancement.AssessmentSCC‐LLRT was compared to a conventional locally low‐rank (LLR) method through simulations using Normalized Root‐Mean‐Square Error (NRMSE) and Structural Similarity Index Measure (SSIM). Radial MOLLI was compared to standard MOLLI across phantom, healthy subjects, and patients. Three independent readers subjectively evaluated the quality of T1 maps using a 5‐point scale (5 = best).Statistical TestsPaired t‐test, Wilcoxon signed‐rank test, intraclass correlation coefficient analysis, linear regression, Bland–Altman analysis. P < 0.05 was considered statistically significant.ResultsIn simulations, SCC‐LLRT demonstrated a significant improvement in NRMSE and SSIM compared to LLR. In phantom, both radial MOLLI and standard MOLLI provided consistent T1 estimates across different heart rates. In healthy subjects, radial MOLLI exhibited a significantly lower mean T1 (1115 ± 39 msec vs. 1155 ± 36 msec), similar T1 SD (74 ± 14 msec vs. 67 ± 23 msec, P = 0.20), and similar T1 reproducibility (28 ± 18 msec vs. 22 ± 15 msec, P = 0.34) compared to standard MOLLI. In patients, the proposed method significantly improved the sharpness of myocardial boundaries (4.50 ± 0.65 vs. 3.25 ± 0.43), the conspicuity of papillary muscles and fine structures (4.33 ± 0.74 vs. 3.33 ± 0.47), and artifacts (4.75 ± 0.43 vs. 3.83 ± 0.55). The reconstruction time for a single slice was 5.2 hours.Data ConclusionThe proposed method enables high‐resolution cardiac T1 mapping with a short acquisition window and improved image quality.Evidence Level1Technical EfficacyStage 1
Background Cardiac T1 mapping is valuable for evaluating myocardial fibrosis, yet its resolution and acquisition efficiency are limited, potentially obscuring visualization of small pathologies. Purpose To develop a technique for high‐resolution cardiac T1 mapping with a less‐than‐100‐millisecond acquisition window based on radial MOdified Look‐Locker Inversion recovery (MOLLI) and a calibrationless space‐contrast‐coil locally low‐rank tensor (SCC‐LLRT) constrained reconstruction. Study Type Prospective. Subjects/Phantom Sixteen healthy subjects (age 25 ± 3 years, 44% females) and 12 patients with suspected cardiomyopathy (age 57 ± 15 years, 42% females), NiCl2‐agar phantom. Field Strength/Sequence 3‐T, standard MOLLI, radial MOLLI, inversion‐recovery spin‐echo, late gadolinium enhancement. Assessment SCC‐LLRT was compared to a conventional locally low‐rank (LLR) method through simulations using Normalized Root‐Mean‐Square Error (NRMSE) and Structural Similarity Index Measure (SSIM). Radial MOLLI was compared to standard MOLLI across phantom, healthy subjects, and patients. Three independent readers subjectively evaluated the quality of T1 maps using a 5‐point scale (5 = best). Statistical Tests Paired t‐test, Wilcoxon signed‐rank test, intraclass correlation coefficient analysis, linear regression, Bland–Altman analysis. P < 0.05 was considered statistically significant. Results In simulations, SCC‐LLRT demonstrated a significant improvement in NRMSE and SSIM compared to LLR. In phantom, both radial MOLLI and standard MOLLI provided consistent T1 estimates across different heart rates. In healthy subjects, radial MOLLI exhibited a significantly lower mean T1 (1115 ± 39 msec vs. 1155 ± 36 msec), similar T1 SD (74 ± 14 msec vs. 67 ± 23 msec, P = 0.20), and similar T1 reproducibility (28 ± 18 msec vs. 22 ± 15 msec, P = 0.34) compared to standard MOLLI. In patients, the proposed method significantly improved the sharpness of myocardial boundaries (4.50 ± 0.65 vs. 3.25 ± 0.43), the conspicuity of papillary muscles and fine structures (4.33 ± 0.74 vs. 3.33 ± 0.47), and artifacts (4.75 ± 0.43 vs. 3.83 ± 0.55). The reconstruction time for a single slice was 5.2 hours. Data Conclusion The proposed method enables high‐resolution cardiac T1 mapping with a short acquisition window and improved image quality. Evidence Level 1 Technical Efficacy Stage 1
Author Gong, Yiwen
Emu, Yixin
Chen, Haiyang
Chen, Zhuo
Yang, Fan
Hu, Chenxi
Ding, Zekang
Hua, Sha
Gao, Juan
Jin, Wei
Author_xml – sequence: 1
  givenname: Juan
  orcidid: 0000-0002-3409-395X
  surname: Gao
  fullname: Gao, Juan
  organization: Shanghai Jiao Tong University
– sequence: 2
  givenname: Yiwen
  surname: Gong
  fullname: Gong, Yiwen
  organization: Shanghai Jiao Tong University School of Medicine
– sequence: 3
  givenname: Yixin
  surname: Emu
  fullname: Emu, Yixin
  organization: Shanghai Jiao Tong University
– sequence: 4
  givenname: Zhuo
  surname: Chen
  fullname: Chen, Zhuo
  organization: Shanghai Jiao Tong University
– sequence: 5
  givenname: Haiyang
  orcidid: 0009-0007-9700-5092
  surname: Chen
  fullname: Chen, Haiyang
  organization: Shanghai Jiao Tong University
– sequence: 6
  givenname: Fan
  surname: Yang
  fullname: Yang, Fan
  organization: Shanghai Jiao Tong University
– sequence: 7
  givenname: Zekang
  surname: Ding
  fullname: Ding, Zekang
  organization: Shanghai Jiao Tong University
– sequence: 8
  givenname: Sha
  surname: Hua
  fullname: Hua, Sha
  organization: Shanghai Jiao Tong University School of Medicine
– sequence: 9
  givenname: Wei
  surname: Jin
  fullname: Jin, Wei
  organization: Shanghai Jiao Tong University School of Medicine
– sequence: 10
  givenname: Chenxi
  orcidid: 0000-0003-2551-3075
  surname: Hu
  fullname: Hu, Chenxi
  email: chenxi.hu@sjtu.edu.cn
  organization: Shanghai Jiao Tong University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39143028$$D View this record in MEDLINE/PubMed
BookMark eNp9kctu1DAUhi1URC-w4QGQJTYIKcWXOImXZdQbmhFoZlhbJ45TPGTs1E5UzY5N9zwjT4LTaTcVYmVb5_v_43P-Y3TgvDMIvaXklBLCPm22wZ4yKYr8BTqigrGMiao4SHcieEYrUh6i4xg3hBApc_EKHXJJc05YdYTur-zND7zqYbDQ_fn1e2mi78bBeofBNfhM34422umdiudta7U1Tu_wDEJjQePFEq8pXkDfW3eDP0M0DU7aJaRqh-vV6uLbgxHgub-b_MH9xGvjog945l0cAlg3vEYvW-iiefN4nqDvF-fr2VU2_3p5PTubZ5pLnmci5yWvKdAqzco0rwFMW9DCMF1xUTW01HkrCw6iaUsihWxKQsumyE2h67aq-Qn6sPftg78dTRzU1kZtug6c8WNUnEhOS8ZzntD3z9CNH4NLv1Ocpu6cFbRK1LtHaqy3plF9sFsIO_W04ASQPaCDjzGYVmk7wLTPafJOUaKmDNWUoXrIMEk-PpM8uf4Tpnv4znZm9x9SfVksr_eav0sVrfQ
CitedBy_id crossref_primary_10_1002_jmri_29579
Cites_doi 10.1002/mrm.27935
10.1002/jmri.28187
10.1002/mp.16471
10.1002/mrm.26081
10.1038/s41551-018-0217-y
10.1186/1532-429X-12-71
10.1109/MSP.2007.914728
10.1002/mrm.29714
10.1002/mrm.23023
10.1002/mrm.25161
10.1002/mrm.27662
10.1002/mrm.27574
10.1002/mrm.28659
10.1002/mrm.29521
10.1109/ACSSC.2011.6189958
10.1002/mrm.29699
10.1186/1532-429X-16-2
10.1002/mrm.10171
10.1137/07070111X
10.1002/mrm.24997
10.1002/mrm.27474
10.1148/radiol.14131295
10.1002/mrm.27526
10.1186/1532-429X-15-63
10.1002/mrm.24751
10.6028/jres.049.044
10.1002/mrm.27694
10.1002/jmri.28528
10.1002/mrm.23153
10.1002/mrm.27579
10.1093/ehjci/jew187
10.1145/3643640
10.1002/mrm.26795
10.1186/1532-429X-14-66
10.1161/hc0402.102975
ContentType Journal Article
Copyright 2024 International Society for Magnetic Resonance in Medicine.
2025 International Society for Magnetic Resonance in Medicine
Copyright_xml – notice: 2024 International Society for Magnetic Resonance in Medicine.
– notice: 2025 International Society for Magnetic Resonance in Medicine
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7TK
8FD
FR3
K9.
P64
7X8
DOI 10.1002/jmri.29564
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Neurosciences Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
ProQuest Health & Medical Complete (Alumni)

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1522-2586
EndPage 1401
ExternalDocumentID 39143028
10_1002_jmri_29564
JMRI29564
Genre researchArticle
Journal Article
GrantInformation_xml – fundername: Huangpu District Health System Talent Training Project
  funderid: 2023BJ01
– fundername: Shanghai Science and Technology Commission
  funderid: 22TS1400200
– fundername: Shanghai Oriental Talents Youth Project
  funderid: Sha Hua 2023
– fundername: National Natural Science Foundation of China
  funderid: 62001288
– fundername: Shanghai Oriental Talents Youth Project
  grantid: Sha Hua 2023
– fundername: Huangpu District Health System Talent Training Project
  grantid: 2023BJ01
– fundername: National Natural Science Foundation of China
  grantid: 62001288
– fundername: Shanghai Science and Technology Commission
  grantid: 22TS1400200
GroupedDBID ---
-DZ
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAWTL
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABLJU
ABOCM
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGB
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TWZ
UB1
V2E
V8K
V9Y
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
XG1
XV2
ZXP
ZZTAW
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGYGG
CITATION
AGQPQ
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7TK
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
FR3
K9.
P64
7X8
ID FETCH-LOGICAL-c3934-54373b1a185642c3baaef616e2c8358d17c4f963a5df70959d7017d64e6cbf8b3
IEDL.DBID DR2
ISSN 1053-1807
1522-2586
IngestDate Fri Jul 11 13:31:09 EDT 2025
Sun Jul 27 07:11:39 EDT 2025
Fri Apr 25 03:26:09 EDT 2025
Tue Jul 01 03:57:04 EDT 2025
Thu Apr 24 23:05:17 EDT 2025
Fri Feb 07 09:41:49 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords acceleration
radial
low‐rank
cardiac T1 mapping
tensor
high resolution
Language English
License 2024 International Society for Magnetic Resonance in Medicine.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3934-54373b1a185642c3baaef616e2c8358d17c4f963a5df70959d7017d64e6cbf8b3
Notes Juan Gao and Yiwen Gong contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-3409-395X
0009-0007-9700-5092
0000-0003-2551-3075
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/jmri.29564
PMID 39143028
PQID 3164232618
PQPubID 1006400
PageCount 14
ParticipantIDs proquest_miscellaneous_3093172343
proquest_journals_3164232618
pubmed_primary_39143028
crossref_citationtrail_10_1002_jmri_29564
crossref_primary_10_1002_jmri_29564
wiley_primary_10_1002_jmri_29564_JMRI29564
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2025
PublicationDateYYYYMMDD 2025-03-01
PublicationDate_xml – month: 03
  year: 2025
  text: March 2025
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: United States
– name: Nashville
PublicationSubtitle JMRI
PublicationTitle Journal of magnetic resonance imaging
PublicationTitleAlternate J Magn Reson Imaging
PublicationYear 2025
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2010; 12
2011
2015; 73
2020; 83
2018; 81
2022; 89
2016; 76
2022; 24
2012; 14
2002; 47
2013; 15
2019; 81
2018; 2
2009; 51
2023; 25
1952; 49
2019; 21
2015; 274
2008; 25
2014; 16
2022; 56
2022; 58
2024; 20
2002; 105
2017; 18
2023; 90
2012; 67
2014; 72
2021; 85
2014; 71
2023; 50
2018; 79
Biglands JD (e_1_2_7_7_1) 2012; 14
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_19_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_14_1
Guo R (e_1_2_7_17_1) 2022; 24
e_1_2_7_12_1
e_1_2_7_10_1
Lyu J (e_1_2_7_18_1) 2024; 20
Ridgway JP (e_1_2_7_13_1) 2010; 12
e_1_2_7_26_1
Lyu Z (e_1_2_7_39_1) 2023; 25
Wang XQ (e_1_2_7_11_1) 2019; 21
e_1_2_7_27_1
e_1_2_7_29_1
Xiang J (e_1_2_7_28_1) 2022; 58
Kellman P (e_1_2_7_6_1) 2012; 14
Zhu Y (e_1_2_7_4_1) 2018; 81
Kellman P (e_1_2_7_23_1) 2013; 15
Wang X (e_1_2_7_35_1) 2022; 89
Cerqueira MD (e_1_2_7_34_1) 2002; 105
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_21_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_37_1
e_1_2_7_38_1
References_xml – volume: 83
  start-page: 438
  year: 2020
  end-page: 451
  article-title: Fast myocardial T‐1 mapping using cardiac motion correction
  publication-title: Magn Reson Med
– volume: 79
  start-page: 1387
  year: 2018
  end-page: 1398
  article-title: Fast, precise, and accurate myocardial T‐1 mapping using a radial MOLLI sequence with FLASH readout
  publication-title: Magn Reson Med
– year: 2011
– volume: 24
  start-page: 24
  year: 2022
  article-title: Accelerated cardiac T1 mapping in four heartbeats with inline MyoMapNet: A deep learning‐based T1 estimation approach
  publication-title: J Cardiovasc Magn Reson
– volume: 12
  start-page: 12
  year: 2010
  article-title: Cardiovascular magnetic resonance physics for clinicians: Part I
  publication-title: J Cardiovasc Magn Reson
– volume: 20
  start-page: 1
  year: 2024
  end-page: 18
  article-title: Iterative temporal‐spatial transformer‐based cardiac T1 mapping MRI reconstruction
  publication-title: ACM Trans Multim Comput Commun Appl
– volume: 67
  start-page: 470
  year: 2012
  end-page: 476
  article-title: Automatic coil selection for streak artifact reduction in radial MRI
  publication-title: Magn Reson Med
– volume: 81
  start-page: 1714
  year: 2019
  end-page: 1725
  article-title: Real‐time triggered RAdial single‐shot inversion recovery for arrhythmia‐insensitive myocardial T1 mapping: Motion phantom validation and in vivo comparison
  publication-title: Magn Reson Med
– volume: 50
  start-page: 7039
  year: 2023
  end-page: 7048
  article-title: High resolution single‐shot myocardial imaging using bSSFP with wave encoding
  publication-title: Med Phys
– volume: 14
  start-page: 14
  year: 2012
  article-title: Cardiovascular magnetic resonance physics for clinicians: Part II
  publication-title: J Cardiovasc Magn Reson
– volume: 81
  start-page: 3705
  year: 2019
  end-page: 3719
  article-title: High‐dimensionality undersampled patch‐based reconstruction (HD‐PROST) for accelerated multi‐contrast MRI
  publication-title: Magn Reson Med
– volume: 2
  start-page: 215
  year: 2018
  end-page: 226
  article-title: Magnetic resonance multitasking for motion‐resolved quantitative cardiovascular imaging
  publication-title: Nat Biomed Eng
– volume: 81
  start-page: 1080
  year: 2019
  end-page: 1091
  article-title: Simultaneous high‐resolution cardiac T(1) mapping and cine imaging using model‐based iterative image reconstruction
  publication-title: Magn Reson Med
– volume: 73
  start-page: 655
  year: 2015
  end-page: 661
  article-title: Accelerating parameter mapping with a locally low rank constraint
  publication-title: Magn Reson Med
– volume: 14
  start-page: 14
  year: 2012
  article-title: Extracellular volume fraction mapping in the myocardium, part 1: Evaluation of an automated method
  publication-title: J Cardiovasc Magn Reson
– volume: 25
  start-page: 25
  year: 2023
  article-title: Free‐breathing simultaneous native myocardial T1, T2 and T1ρ mapping with Cartesian acquisition and dictionary matching
  publication-title: J Cardiovasc Magn Reson
– volume: 47
  start-page: 1202
  year: 2002
  end-page: 1210
  article-title: Generalized autocalibrating partially parallel acquisitions (GRAPPA)
  publication-title: Magn Reson Med
– volume: 18
  start-page: 1034
  year: 2017
  end-page: 1040
  article-title: Insight into hypertrophied hearts: A cardiovascular magnetic resonance study of papillary muscle mass and T1 mapping
  publication-title: Eur Heart J Cardiovasc Imaging
– volume: 15
  start-page: 15
  year: 2013
  article-title: Influence of off‐resonance in myocardial T1‐mapping using SSFP based MOLLI
  publication-title: J Cardiovasc Magn Reson
– volume: 89
  start-page: 1368
  year: 2022
  end-page: 1384
  article-title: Free‐breathing myocardial T1 mapping using inversion‐recovery radial FLASH and motion‐resolved model‐based reconstruction
  publication-title: Magn Reson Med
– volume: 85
  start-page: 3211
  year: 2021
  end-page: 3226
  article-title: Magnetic resonance parameter mapping using model‐guided self‐supervised deep learning
  publication-title: Magn Reson Med
– volume: 105
  start-page: 539
  year: 2002
  end-page: 542
  article-title: Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart
  publication-title: Circ J
– volume: 16
  start-page: 2
  year: 2014
  article-title: T1‐mapping in the heart: Accuracy and precision
  publication-title: J Cardiovasc Magn Reson
– volume: 58
  start-page: 782
  year: 2022
  end-page: 791
  article-title: Balanced steady‐state free precession cine MR imaging in the presence of cardiac devices: Value of interleaved radial linear combination acquisition with partial dephasing
  publication-title: J Magn Reson Imaging
– volume: 71
  start-page: 990
  year: 2014
  end-page: 1001
  article-title: ESPIRiT—An eigenvalue approach to autocalibrating parallel MRI: Where SENSE meets GRAPPA
  publication-title: Magn Reson Med
– volume: 51
  start-page: 455
  year: 2009
  end-page: 500
  article-title: Tensor decompositions and applications
  publication-title: Siam Rev
– volume: 81
  start-page: 3515
  year: 2019
  end-page: 3529
  article-title: SUPER: A blockwise curve‐fitting method for accelerating MR parametric mapping with fast reconstruction
  publication-title: Magn Reson Med
– volume: 25
  start-page: 72
  year: 2008
  end-page: 82
  article-title: Compressed sensing MRI
  publication-title: IEEE Signal Proc Mag
– volume: 67
  start-page: 1644
  year: 2012
  end-page: 1655
  article-title: Motion correction for myocardial T1 mapping using image registration with synthetic image estimation
  publication-title: Magn Reson Med
– volume: 274
  start-page: 879
  year: 2015
  end-page: 887
  article-title: Myocardial T1: Quantification by using an ECG‐triggered radial single‐shot inversion‐recovery MR imaging sequence
  publication-title: Radiology
– volume: 56
  start-page: 45
  year: 2022
  end-page: 62
  article-title: Golden‐angle radial MRI: Basics, advances, and applications
  publication-title: J Magn Reson Imaging
– volume: 81
  start-page: 2450
  year: 2019
  end-page: 2463
  article-title: Free‐breathing, non‐ECG, continuous myocardial T‐1 mapping with cardiovascular magnetic resonance multitasking
  publication-title: Magn Reson Med
– volume: 90
  start-page: 1380
  year: 2023
  end-page: 1395
  article-title: Regularized SUPER‐CAIPIRINHA: Accelerating 3D variable flip‐angle T1 mapping with accurate and efficient reconstruction
  publication-title: Magn Reson Med
– volume: 72
  start-page: 959
  year: 2014
  end-page: 970
  article-title: Calibrationless parallel imaging reconstruction based on structured low‐rank matrix completion
  publication-title: Magn Reson Med
– volume: 81
  start-page: 2644
  year: 2018
  end-page: 2654
  article-title: Integrated motion correction and dictionary learning for free‐breathing myocardial T1 mapping
  publication-title: Magn Reson Med
– volume: 21
  start-page: 21
  year: 2019
  article-title: Model‐based myocardial T1 mapping with sparsity constraints using single‐shot inversion‐recovery radial FLASH cardiovascular magnetic resonance
  publication-title: J Cardiovasc Magn Reson
– volume: 49
  start-page: 409
  year: 1952
  end-page: 436
  article-title: Methods of conjugate gradients for solving linear systems
  publication-title: J Res Natl Bur Stand
– volume: 76
  start-page: 1848
  year: 2016
  end-page: 1864
  article-title: Acceleration of MR parameter mapping using annihilating filter‐based low rank hankel matrix (ALOHA)
  publication-title: Magn Reson Med
– volume: 90
  start-page: 1086
  year: 2023
  end-page: 1100
  article-title: Motion‐corrected model‐based reconstruction for 2D myocardial T1 mapping
  publication-title: Magn Reson Med
– ident: e_1_2_7_2_1
  doi: 10.1002/mrm.27935
– ident: e_1_2_7_41_1
  doi: 10.1002/jmri.28187
– ident: e_1_2_7_38_1
  doi: 10.1002/mp.16471
– ident: e_1_2_7_37_1
  doi: 10.1002/mrm.26081
– ident: e_1_2_7_21_1
  doi: 10.1038/s41551-018-0217-y
– volume: 25
  start-page: 25
  year: 2023
  ident: e_1_2_7_39_1
  article-title: Free‐breathing simultaneous native myocardial T1, T2 and T1ρ mapping with Cartesian acquisition and dictionary matching
  publication-title: J Cardiovasc Magn Reson
– volume: 12
  start-page: 12
  year: 2010
  ident: e_1_2_7_13_1
  article-title: Cardiovascular magnetic resonance physics for clinicians: Part I
  publication-title: J Cardiovasc Magn Reson
  doi: 10.1186/1532-429X-12-71
– ident: e_1_2_7_15_1
  doi: 10.1109/MSP.2007.914728
– ident: e_1_2_7_32_1
  doi: 10.1002/mrm.29714
– volume: 21
  start-page: 21
  year: 2019
  ident: e_1_2_7_11_1
  article-title: Model‐based myocardial T1 mapping with sparsity constraints using single‐shot inversion‐recovery radial FLASH cardiovascular magnetic resonance
  publication-title: J Cardiovasc Magn Reson
– ident: e_1_2_7_29_1
  doi: 10.1002/mrm.23023
– ident: e_1_2_7_16_1
  doi: 10.1002/mrm.25161
– ident: e_1_2_7_3_1
  doi: 10.1002/mrm.27662
– ident: e_1_2_7_10_1
  doi: 10.1002/mrm.27574
– ident: e_1_2_7_22_1
– ident: e_1_2_7_40_1
  doi: 10.1002/mrm.28659
– volume: 24
  start-page: 24
  year: 2022
  ident: e_1_2_7_17_1
  article-title: Accelerated cardiac T1 mapping in four heartbeats with inline MyoMapNet: A deep learning‐based T1 estimation approach
  publication-title: J Cardiovasc Magn Reson
– volume: 89
  start-page: 1368
  year: 2022
  ident: e_1_2_7_35_1
  article-title: Free‐breathing myocardial T1 mapping using inversion‐recovery radial FLASH and motion‐resolved model‐based reconstruction
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.29521
– ident: e_1_2_7_20_1
  doi: 10.1109/ACSSC.2011.6189958
– ident: e_1_2_7_31_1
  doi: 10.1002/mrm.29699
– ident: e_1_2_7_24_1
  doi: 10.1186/1532-429X-16-2
– ident: e_1_2_7_33_1
  doi: 10.1002/mrm.10171
– ident: e_1_2_7_27_1
  doi: 10.1137/07070111X
– ident: e_1_2_7_36_1
  doi: 10.1002/mrm.24997
– ident: e_1_2_7_5_1
  doi: 10.1002/mrm.27474
– ident: e_1_2_7_14_1
  doi: 10.1148/radiol.14131295
– ident: e_1_2_7_9_1
  doi: 10.1002/mrm.27526
– volume: 15
  start-page: 15
  year: 2013
  ident: e_1_2_7_23_1
  article-title: Influence of off‐resonance in myocardial T1‐mapping using SSFP based MOLLI
  publication-title: J Cardiovasc Magn Reson
  doi: 10.1186/1532-429X-15-63
– ident: e_1_2_7_25_1
  doi: 10.1002/mrm.24751
– ident: e_1_2_7_26_1
  doi: 10.6028/jres.049.044
– ident: e_1_2_7_19_1
  doi: 10.1002/mrm.27694
– volume: 58
  start-page: 782
  year: 2022
  ident: e_1_2_7_28_1
  article-title: Balanced steady‐state free precession cine MR imaging in the presence of cardiac devices: Value of interleaved radial linear combination acquisition with partial dephasing
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.28528
– ident: e_1_2_7_30_1
  doi: 10.1002/mrm.23153
– volume: 81
  start-page: 2644
  year: 2018
  ident: e_1_2_7_4_1
  article-title: Integrated motion correction and dictionary learning for free‐breathing myocardial T1 mapping
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.27579
– ident: e_1_2_7_8_1
  doi: 10.1093/ehjci/jew187
– volume: 20
  start-page: 1
  year: 2024
  ident: e_1_2_7_18_1
  article-title: Iterative temporal‐spatial transformer‐based cardiac T1 mapping MRI reconstruction
  publication-title: ACM Trans Multim Comput Commun Appl
  doi: 10.1145/3643640
– volume: 14
  start-page: 14
  year: 2012
  ident: e_1_2_7_6_1
  article-title: Extracellular volume fraction mapping in the myocardium, part 1: Evaluation of an automated method
  publication-title: J Cardiovasc Magn Reson
– ident: e_1_2_7_12_1
  doi: 10.1002/mrm.26795
– volume: 14
  start-page: 14
  year: 2012
  ident: e_1_2_7_7_1
  article-title: Cardiovascular magnetic resonance physics for clinicians: Part II
  publication-title: J Cardiovasc Magn Reson
  doi: 10.1186/1532-429X-14-66
– volume: 105
  start-page: 539
  year: 2002
  ident: e_1_2_7_34_1
  article-title: Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart
  publication-title: Circ J
  doi: 10.1161/hc0402.102975
SSID ssj0009945
Score 2.4664528
Snippet Background Cardiac T1 mapping is valuable for evaluating myocardial fibrosis, yet its resolution and acquisition efficiency are limited, potentially obscuring...
Cardiac T1 mapping is valuable for evaluating myocardial fibrosis, yet its resolution and acquisition efficiency are limited, potentially obscuring...
BackgroundCardiac T1 mapping is valuable for evaluating myocardial fibrosis, yet its resolution and acquisition efficiency are limited, potentially obscuring...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1388
SubjectTerms acceleration
Adult
Aged
Algorithms
cardiac T1 mapping
Cardiomyopathies - diagnostic imaging
Cardiomyopathy
Computer Simulation
Conspicuity
Contrast Media
Correlation coefficient
Correlation coefficients
Error analysis
Evaluation
Female
Females
Fibrosis
Field strength
Gadolinium
Heart
Heart - diagnostic imaging
Heart rate
high resolution
Humans
Image acquisition
Image Interpretation, Computer-Assisted - methods
Image Processing, Computer-Assisted - methods
Image quality
Image reconstruction
low‐rank
Magnetic Resonance Imaging - methods
Male
Mapping
Middle Aged
Muscles
Nickel chloride
Phantoms, Imaging
Prospective Studies
radial
Rank tests
Recovery
Reproducibility of Results
Statistical analysis
Statistical tests
tensor
Tensors
Young Adult
Title High Spatial‐Resolution and Acquisition‐Efficiency Cardiac MR T1 Mapping Based on Radial bSSFP and a Low‐Rank Tensor Constraint
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjmri.29564
https://www.ncbi.nlm.nih.gov/pubmed/39143028
https://www.proquest.com/docview/3164232618
https://www.proquest.com/docview/3093172343
Volume 61
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4hDohLC32G0soVvVApSxLnsZZ6AcQKEKmqZZG4VJHt2NUWmm2XXSFx6qV3fiO_hBknmxUUVSq3SH7EcWbG39jjbwA-oLkLMhGFvrVoAokC3ZeZtL7QMkX_GdfwgO4O55_T_ZP48DQ5XYBPs7swNT9Eu-FGmuHsNSm4VBdbc9LQ7z_Gw06E8J7IQClYixBRf84dJYTLUIz4gfs0oJabNNqaN727Gv0FMe8iVrfk9J7C19lg60iTs850ojr66h6P42O_ZgWeNFiUbdfCswoLpnoGS3lz2v4c_lAQCKOkxSikN7-vaau_FlQmq5Jt61_TYR3yhYV7jouCLnKyXSd1muV9NghZLokC4hvbwfWyZNi2T3QI50wdH_e-uI4kOxpdUv-yOmMD9KtHY0aJRF36iskLOOntDXb3_SZtg6-54LGfEFuSCiUiAXRuNFdSGpuGqYk0wr1uGWY6tqj3MiltRtuQZYZmoUxjk2plu4q_hMVqVJnXwILAdFWphY4sOn4KnTlhVWISraQWoow92Jz9vkI3nOY0tvOiZmOOCprXws2rBxtt3Z81k8eDtdZnUlA02nxRcPQpUWrTsOvB-7YY9ZAOV2RlRlOsEwiEYhGPuQevaulpX8MFolIEch58dDLwj_cXh3n_wD2t_U_lN7AcUWJiFxy3DouT8dS8RbQ0Ue-cVtwC-oYSJQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VVgIutLzTBxjBBaRskziP9bGv1bZsKrTdSr1FtmOj0pKF7a4qceLCnd_YX9IZJ82qgJDgFsmvxJmxvxmPvwF4g8tdkIko9K3FJZAo0H2ZSesLLVO0n3EPD-jucH6Y9o_jg5PkpInNobswNT9E63AjzXDrNSk4OaQ356yhnz5PTjsR4vv4DixRSm-izt8dztmjhHA5ihFBcJ9eqWUnjTbnbW_vR7-BzNuY1W06veU6s-qF4yqkWJOzzmyqOvrbL0yO__09K_CggaNsq5afh7BgqkdwN28O3B_DD4oDYZS3GOX06vtP8vbXsspkVbIt_XV2Wkd9YeGeo6Ogu5xsxwmeZvmQjUKWS2KB-Mi2ccssGbYdEiPCOVNHR70PriPJBuNL6l9WZ2yEpvV4wiiXqMtgMX0Cx7290U7fbzI3-JoLHvsJESapUCIYQPtGcyWlsWmYmkgj4uuWYaZji6ovk9Jm5IksM1wZyjQ2qVa2q_hTWKzGlXkOLAhMV5Va6Mii7afQnhNWJSbRSmohytiDtzf_r9ANrTm923lREzJHBc1r4ebVg9dt3S81mccfa63fiEHRKPRFwdGsRMFNw64Hr9piVEU6X5GVGc-wTiAQjUU85h48q8WnHYYLBKaI5Tx454TgL-MXB_lw3z2t_kvll3CvP8oHxWD_8P0a3I8oT7GLlVuHxelkZjYQPE3VC6ci1wQAFkE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIlVceD8CBYzgAlK2SZzHWuJS2q7a0lTVdiv1UkV-otKSLcuukDhx4c5v5Jcw42SzKiAkuEXyI44zM_7GHn8D8ALNXVSIJA6dQxNIFOihLKQLhZY5-s-4hkd0d7jcz7eP0t3j7HgJXs_vwjT8EN2GG2mGt9ek4BfGrS1IQ99_mJz2EoT36RW4muaRoMQNm8MFeZQQPkUxAgge0og6ctJkbdH28nL0G8a8DFn9mjO4ASfz0TahJme92VT19JdfiBz_93NuwvUWjLL1RnpuwZKtb8NK2R6334FvFAXCKGsxSumPr99pr7-RVCZrw9b1x9lpE_OFhVuejIJucrINL3aalUM2ilkpiQPiHXuDC6Zh2HZIfAjnTB0eDg58R5LtjT9T_7I-YyN0rMcTRplEff6K6V04GmyNNrbDNm9DqLngaZgRXZKKJUIB9G40V1Jal8e5TTTivb6JC506VHyZGVfQPqQp0C6YPLW5Vq6v-D1Yrse1fQAsimxfGS104tDzU-jNCacym2kltRAmDeDl_PdVuiU1p7GdVw0dc1LRvFZ-XgN43tW9aKg8_lhrdS4FVavOnyqOTiWKbR73A3jWFaMi0umKrO14hnUigVgs4SkP4H4jPd1ruEBYikgugFdeBv7y_mq3HO74p4f_UvkprBxsDqq9nf23j-BaQkmKfaDcKixPJzP7GJHTVD3xCvITutIU8A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High+Spatial-Resolution+and+Acquisition-Efficiency+Cardiac+MR+T1+Mapping+Based+on+Radial+bSSFP+and+a+Low-Rank+Tensor+Constraint&rft.jtitle=Journal+of+magnetic+resonance+imaging&rft.au=Gao%2C+Juan&rft.au=Gong%2C+Yiwen&rft.au=Emu%2C+Yixin&rft.au=Chen%2C+Zhuo&rft.date=2025-03-01&rft.issn=1522-2586&rft.eissn=1522-2586&rft_id=info:doi/10.1002%2Fjmri.29564&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-1807&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-1807&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-1807&client=summon