High Spatial‐Resolution and Acquisition‐Efficiency Cardiac MR T1 Mapping Based on Radial bSSFP and a Low‐Rank Tensor Constraint
Background Cardiac T1 mapping is valuable for evaluating myocardial fibrosis, yet its resolution and acquisition efficiency are limited, potentially obscuring visualization of small pathologies. Purpose To develop a technique for high‐resolution cardiac T1 mapping with a less‐than‐100‐millisecond ac...
Saved in:
Published in | Journal of magnetic resonance imaging Vol. 61; no. 3; pp. 1388 - 1401 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken, USA
John Wiley & Sons, Inc
01.03.2025
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Background
Cardiac T1 mapping is valuable for evaluating myocardial fibrosis, yet its resolution and acquisition efficiency are limited, potentially obscuring visualization of small pathologies.
Purpose
To develop a technique for high‐resolution cardiac T1 mapping with a less‐than‐100‐millisecond acquisition window based on radial MOdified Look‐Locker Inversion recovery (MOLLI) and a calibrationless space‐contrast‐coil locally low‐rank tensor (SCC‐LLRT) constrained reconstruction.
Study Type
Prospective.
Subjects/Phantom
Sixteen healthy subjects (age 25 ± 3 years, 44% females) and 12 patients with suspected cardiomyopathy (age 57 ± 15 years, 42% females), NiCl2‐agar phantom.
Field Strength/Sequence
3‐T, standard MOLLI, radial MOLLI, inversion‐recovery spin‐echo, late gadolinium enhancement.
Assessment
SCC‐LLRT was compared to a conventional locally low‐rank (LLR) method through simulations using Normalized Root‐Mean‐Square Error (NRMSE) and Structural Similarity Index Measure (SSIM). Radial MOLLI was compared to standard MOLLI across phantom, healthy subjects, and patients. Three independent readers subjectively evaluated the quality of T1 maps using a 5‐point scale (5 = best).
Statistical Tests
Paired t‐test, Wilcoxon signed‐rank test, intraclass correlation coefficient analysis, linear regression, Bland–Altman analysis. P < 0.05 was considered statistically significant.
Results
In simulations, SCC‐LLRT demonstrated a significant improvement in NRMSE and SSIM compared to LLR. In phantom, both radial MOLLI and standard MOLLI provided consistent T1 estimates across different heart rates. In healthy subjects, radial MOLLI exhibited a significantly lower mean T1 (1115 ± 39 msec vs. 1155 ± 36 msec), similar T1 SD (74 ± 14 msec vs. 67 ± 23 msec, P = 0.20), and similar T1 reproducibility (28 ± 18 msec vs. 22 ± 15 msec, P = 0.34) compared to standard MOLLI. In patients, the proposed method significantly improved the sharpness of myocardial boundaries (4.50 ± 0.65 vs. 3.25 ± 0.43), the conspicuity of papillary muscles and fine structures (4.33 ± 0.74 vs. 3.33 ± 0.47), and artifacts (4.75 ± 0.43 vs. 3.83 ± 0.55). The reconstruction time for a single slice was 5.2 hours.
Data Conclusion
The proposed method enables high‐resolution cardiac T1 mapping with a short acquisition window and improved image quality.
Evidence Level
1
Technical Efficacy
Stage 1 |
---|---|
AbstractList | Cardiac T1 mapping is valuable for evaluating myocardial fibrosis, yet its resolution and acquisition efficiency are limited, potentially obscuring visualization of small pathologies.BACKGROUNDCardiac T1 mapping is valuable for evaluating myocardial fibrosis, yet its resolution and acquisition efficiency are limited, potentially obscuring visualization of small pathologies.To develop a technique for high-resolution cardiac T1 mapping with a less-than-100-millisecond acquisition window based on radial MOdified Look-Locker Inversion recovery (MOLLI) and a calibrationless space-contrast-coil locally low-rank tensor (SCC-LLRT) constrained reconstruction.PURPOSETo develop a technique for high-resolution cardiac T1 mapping with a less-than-100-millisecond acquisition window based on radial MOdified Look-Locker Inversion recovery (MOLLI) and a calibrationless space-contrast-coil locally low-rank tensor (SCC-LLRT) constrained reconstruction.Prospective.STUDY TYPEProspective.Sixteen healthy subjects (age 25 ± 3 years, 44% females) and 12 patients with suspected cardiomyopathy (age 57 ± 15 years, 42% females), NiCl2-agar phantom.SUBJECTS/PHANTOMSixteen healthy subjects (age 25 ± 3 years, 44% females) and 12 patients with suspected cardiomyopathy (age 57 ± 15 years, 42% females), NiCl2-agar phantom.3-T, standard MOLLI, radial MOLLI, inversion-recovery spin-echo, late gadolinium enhancement.FIELD STRENGTH/SEQUENCE3-T, standard MOLLI, radial MOLLI, inversion-recovery spin-echo, late gadolinium enhancement.SCC-LLRT was compared to a conventional locally low-rank (LLR) method through simulations using Normalized Root-Mean-Square Error (NRMSE) and Structural Similarity Index Measure (SSIM). Radial MOLLI was compared to standard MOLLI across phantom, healthy subjects, and patients. Three independent readers subjectively evaluated the quality of T1 maps using a 5-point scale (5 = best).ASSESSMENTSCC-LLRT was compared to a conventional locally low-rank (LLR) method through simulations using Normalized Root-Mean-Square Error (NRMSE) and Structural Similarity Index Measure (SSIM). Radial MOLLI was compared to standard MOLLI across phantom, healthy subjects, and patients. Three independent readers subjectively evaluated the quality of T1 maps using a 5-point scale (5 = best).Paired t-test, Wilcoxon signed-rank test, intraclass correlation coefficient analysis, linear regression, Bland-Altman analysis. P < 0.05 was considered statistically significant.STATISTICAL TESTSPaired t-test, Wilcoxon signed-rank test, intraclass correlation coefficient analysis, linear regression, Bland-Altman analysis. P < 0.05 was considered statistically significant.In simulations, SCC-LLRT demonstrated a significant improvement in NRMSE and SSIM compared to LLR. In phantom, both radial MOLLI and standard MOLLI provided consistent T1 estimates across different heart rates. In healthy subjects, radial MOLLI exhibited a significantly lower mean T1 (1115 ± 39 msec vs. 1155 ± 36 msec), similar T1 SD (74 ± 14 msec vs. 67 ± 23 msec, P = 0.20), and similar T1 reproducibility (28 ± 18 msec vs. 22 ± 15 msec, P = 0.34) compared to standard MOLLI. In patients, the proposed method significantly improved the sharpness of myocardial boundaries (4.50 ± 0.65 vs. 3.25 ± 0.43), the conspicuity of papillary muscles and fine structures (4.33 ± 0.74 vs. 3.33 ± 0.47), and artifacts (4.75 ± 0.43 vs. 3.83 ± 0.55). The reconstruction time for a single slice was 5.2 hours.RESULTSIn simulations, SCC-LLRT demonstrated a significant improvement in NRMSE and SSIM compared to LLR. In phantom, both radial MOLLI and standard MOLLI provided consistent T1 estimates across different heart rates. In healthy subjects, radial MOLLI exhibited a significantly lower mean T1 (1115 ± 39 msec vs. 1155 ± 36 msec), similar T1 SD (74 ± 14 msec vs. 67 ± 23 msec, P = 0.20), and similar T1 reproducibility (28 ± 18 msec vs. 22 ± 15 msec, P = 0.34) compared to standard MOLLI. In patients, the proposed method significantly improved the sharpness of myocardial boundaries (4.50 ± 0.65 vs. 3.25 ± 0.43), the conspicuity of papillary muscles and fine structures (4.33 ± 0.74 vs. 3.33 ± 0.47), and artifacts (4.75 ± 0.43 vs. 3.83 ± 0.55). The reconstruction time for a single slice was 5.2 hours.The proposed method enables high-resolution cardiac T1 mapping with a short acquisition window and improved image quality.DATA CONCLUSIONThe proposed method enables high-resolution cardiac T1 mapping with a short acquisition window and improved image quality.1 TECHNICAL EFFICACY: Stage 1.EVIDENCE LEVEL1 TECHNICAL EFFICACY: Stage 1. Cardiac T1 mapping is valuable for evaluating myocardial fibrosis, yet its resolution and acquisition efficiency are limited, potentially obscuring visualization of small pathologies. To develop a technique for high-resolution cardiac T1 mapping with a less-than-100-millisecond acquisition window based on radial MOdified Look-Locker Inversion recovery (MOLLI) and a calibrationless space-contrast-coil locally low-rank tensor (SCC-LLRT) constrained reconstruction. Prospective. Sixteen healthy subjects (age 25 ± 3 years, 44% females) and 12 patients with suspected cardiomyopathy (age 57 ± 15 years, 42% females), NiCl2-agar phantom. 3-T, standard MOLLI, radial MOLLI, inversion-recovery spin-echo, late gadolinium enhancement. SCC-LLRT was compared to a conventional locally low-rank (LLR) method through simulations using Normalized Root-Mean-Square Error (NRMSE) and Structural Similarity Index Measure (SSIM). Radial MOLLI was compared to standard MOLLI across phantom, healthy subjects, and patients. Three independent readers subjectively evaluated the quality of T1 maps using a 5-point scale (5 = best). Paired t-test, Wilcoxon signed-rank test, intraclass correlation coefficient analysis, linear regression, Bland-Altman analysis. P < 0.05 was considered statistically significant. In simulations, SCC-LLRT demonstrated a significant improvement in NRMSE and SSIM compared to LLR. In phantom, both radial MOLLI and standard MOLLI provided consistent T1 estimates across different heart rates. In healthy subjects, radial MOLLI exhibited a significantly lower mean T1 (1115 ± 39 msec vs. 1155 ± 36 msec), similar T1 SD (74 ± 14 msec vs. 67 ± 23 msec, P = 0.20), and similar T1 reproducibility (28 ± 18 msec vs. 22 ± 15 msec, P = 0.34) compared to standard MOLLI. In patients, the proposed method significantly improved the sharpness of myocardial boundaries (4.50 ± 0.65 vs. 3.25 ± 0.43), the conspicuity of papillary muscles and fine structures (4.33 ± 0.74 vs. 3.33 ± 0.47), and artifacts (4.75 ± 0.43 vs. 3.83 ± 0.55). The reconstruction time for a single slice was 5.2 hours. The proposed method enables high-resolution cardiac T1 mapping with a short acquisition window and improved image quality. 1 TECHNICAL EFFICACY: Stage 1. BackgroundCardiac T1 mapping is valuable for evaluating myocardial fibrosis, yet its resolution and acquisition efficiency are limited, potentially obscuring visualization of small pathologies.PurposeTo develop a technique for high‐resolution cardiac T1 mapping with a less‐than‐100‐millisecond acquisition window based on radial MOdified Look‐Locker Inversion recovery (MOLLI) and a calibrationless space‐contrast‐coil locally low‐rank tensor (SCC‐LLRT) constrained reconstruction.Study TypeProspective.Subjects/PhantomSixteen healthy subjects (age 25 ± 3 years, 44% females) and 12 patients with suspected cardiomyopathy (age 57 ± 15 years, 42% females), NiCl2‐agar phantom.Field Strength/Sequence3‐T, standard MOLLI, radial MOLLI, inversion‐recovery spin‐echo, late gadolinium enhancement.AssessmentSCC‐LLRT was compared to a conventional locally low‐rank (LLR) method through simulations using Normalized Root‐Mean‐Square Error (NRMSE) and Structural Similarity Index Measure (SSIM). Radial MOLLI was compared to standard MOLLI across phantom, healthy subjects, and patients. Three independent readers subjectively evaluated the quality of T1 maps using a 5‐point scale (5 = best).Statistical TestsPaired t‐test, Wilcoxon signed‐rank test, intraclass correlation coefficient analysis, linear regression, Bland–Altman analysis. P < 0.05 was considered statistically significant.ResultsIn simulations, SCC‐LLRT demonstrated a significant improvement in NRMSE and SSIM compared to LLR. In phantom, both radial MOLLI and standard MOLLI provided consistent T1 estimates across different heart rates. In healthy subjects, radial MOLLI exhibited a significantly lower mean T1 (1115 ± 39 msec vs. 1155 ± 36 msec), similar T1 SD (74 ± 14 msec vs. 67 ± 23 msec, P = 0.20), and similar T1 reproducibility (28 ± 18 msec vs. 22 ± 15 msec, P = 0.34) compared to standard MOLLI. In patients, the proposed method significantly improved the sharpness of myocardial boundaries (4.50 ± 0.65 vs. 3.25 ± 0.43), the conspicuity of papillary muscles and fine structures (4.33 ± 0.74 vs. 3.33 ± 0.47), and artifacts (4.75 ± 0.43 vs. 3.83 ± 0.55). The reconstruction time for a single slice was 5.2 hours.Data ConclusionThe proposed method enables high‐resolution cardiac T1 mapping with a short acquisition window and improved image quality.Evidence Level1Technical EfficacyStage 1 Background Cardiac T1 mapping is valuable for evaluating myocardial fibrosis, yet its resolution and acquisition efficiency are limited, potentially obscuring visualization of small pathologies. Purpose To develop a technique for high‐resolution cardiac T1 mapping with a less‐than‐100‐millisecond acquisition window based on radial MOdified Look‐Locker Inversion recovery (MOLLI) and a calibrationless space‐contrast‐coil locally low‐rank tensor (SCC‐LLRT) constrained reconstruction. Study Type Prospective. Subjects/Phantom Sixteen healthy subjects (age 25 ± 3 years, 44% females) and 12 patients with suspected cardiomyopathy (age 57 ± 15 years, 42% females), NiCl2‐agar phantom. Field Strength/Sequence 3‐T, standard MOLLI, radial MOLLI, inversion‐recovery spin‐echo, late gadolinium enhancement. Assessment SCC‐LLRT was compared to a conventional locally low‐rank (LLR) method through simulations using Normalized Root‐Mean‐Square Error (NRMSE) and Structural Similarity Index Measure (SSIM). Radial MOLLI was compared to standard MOLLI across phantom, healthy subjects, and patients. Three independent readers subjectively evaluated the quality of T1 maps using a 5‐point scale (5 = best). Statistical Tests Paired t‐test, Wilcoxon signed‐rank test, intraclass correlation coefficient analysis, linear regression, Bland–Altman analysis. P < 0.05 was considered statistically significant. Results In simulations, SCC‐LLRT demonstrated a significant improvement in NRMSE and SSIM compared to LLR. In phantom, both radial MOLLI and standard MOLLI provided consistent T1 estimates across different heart rates. In healthy subjects, radial MOLLI exhibited a significantly lower mean T1 (1115 ± 39 msec vs. 1155 ± 36 msec), similar T1 SD (74 ± 14 msec vs. 67 ± 23 msec, P = 0.20), and similar T1 reproducibility (28 ± 18 msec vs. 22 ± 15 msec, P = 0.34) compared to standard MOLLI. In patients, the proposed method significantly improved the sharpness of myocardial boundaries (4.50 ± 0.65 vs. 3.25 ± 0.43), the conspicuity of papillary muscles and fine structures (4.33 ± 0.74 vs. 3.33 ± 0.47), and artifacts (4.75 ± 0.43 vs. 3.83 ± 0.55). The reconstruction time for a single slice was 5.2 hours. Data Conclusion The proposed method enables high‐resolution cardiac T1 mapping with a short acquisition window and improved image quality. Evidence Level 1 Technical Efficacy Stage 1 |
Author | Gong, Yiwen Emu, Yixin Chen, Haiyang Chen, Zhuo Yang, Fan Hu, Chenxi Ding, Zekang Hua, Sha Gao, Juan Jin, Wei |
Author_xml | – sequence: 1 givenname: Juan orcidid: 0000-0002-3409-395X surname: Gao fullname: Gao, Juan organization: Shanghai Jiao Tong University – sequence: 2 givenname: Yiwen surname: Gong fullname: Gong, Yiwen organization: Shanghai Jiao Tong University School of Medicine – sequence: 3 givenname: Yixin surname: Emu fullname: Emu, Yixin organization: Shanghai Jiao Tong University – sequence: 4 givenname: Zhuo surname: Chen fullname: Chen, Zhuo organization: Shanghai Jiao Tong University – sequence: 5 givenname: Haiyang orcidid: 0009-0007-9700-5092 surname: Chen fullname: Chen, Haiyang organization: Shanghai Jiao Tong University – sequence: 6 givenname: Fan surname: Yang fullname: Yang, Fan organization: Shanghai Jiao Tong University – sequence: 7 givenname: Zekang surname: Ding fullname: Ding, Zekang organization: Shanghai Jiao Tong University – sequence: 8 givenname: Sha surname: Hua fullname: Hua, Sha organization: Shanghai Jiao Tong University School of Medicine – sequence: 9 givenname: Wei surname: Jin fullname: Jin, Wei organization: Shanghai Jiao Tong University School of Medicine – sequence: 10 givenname: Chenxi orcidid: 0000-0003-2551-3075 surname: Hu fullname: Hu, Chenxi email: chenxi.hu@sjtu.edu.cn organization: Shanghai Jiao Tong University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39143028$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kctu1DAUhi1URC-w4QGQJTYIKcWXOImXZdQbmhFoZlhbJ45TPGTs1E5UzY5N9zwjT4LTaTcVYmVb5_v_43P-Y3TgvDMIvaXklBLCPm22wZ4yKYr8BTqigrGMiao4SHcieEYrUh6i4xg3hBApc_EKHXJJc05YdYTur-zND7zqYbDQ_fn1e2mi78bBeofBNfhM34422umdiudta7U1Tu_wDEJjQePFEq8pXkDfW3eDP0M0DU7aJaRqh-vV6uLbgxHgub-b_MH9xGvjog945l0cAlg3vEYvW-iiefN4nqDvF-fr2VU2_3p5PTubZ5pLnmci5yWvKdAqzco0rwFMW9DCMF1xUTW01HkrCw6iaUsihWxKQsumyE2h67aq-Qn6sPftg78dTRzU1kZtug6c8WNUnEhOS8ZzntD3z9CNH4NLv1Ocpu6cFbRK1LtHaqy3plF9sFsIO_W04ASQPaCDjzGYVmk7wLTPafJOUaKmDNWUoXrIMEk-PpM8uf4Tpnv4znZm9x9SfVksr_eav0sVrfQ |
CitedBy_id | crossref_primary_10_1002_jmri_29579 |
Cites_doi | 10.1002/mrm.27935 10.1002/jmri.28187 10.1002/mp.16471 10.1002/mrm.26081 10.1038/s41551-018-0217-y 10.1186/1532-429X-12-71 10.1109/MSP.2007.914728 10.1002/mrm.29714 10.1002/mrm.23023 10.1002/mrm.25161 10.1002/mrm.27662 10.1002/mrm.27574 10.1002/mrm.28659 10.1002/mrm.29521 10.1109/ACSSC.2011.6189958 10.1002/mrm.29699 10.1186/1532-429X-16-2 10.1002/mrm.10171 10.1137/07070111X 10.1002/mrm.24997 10.1002/mrm.27474 10.1148/radiol.14131295 10.1002/mrm.27526 10.1186/1532-429X-15-63 10.1002/mrm.24751 10.6028/jres.049.044 10.1002/mrm.27694 10.1002/jmri.28528 10.1002/mrm.23153 10.1002/mrm.27579 10.1093/ehjci/jew187 10.1145/3643640 10.1002/mrm.26795 10.1186/1532-429X-14-66 10.1161/hc0402.102975 |
ContentType | Journal Article |
Copyright | 2024 International Society for Magnetic Resonance in Medicine. 2025 International Society for Magnetic Resonance in Medicine |
Copyright_xml | – notice: 2024 International Society for Magnetic Resonance in Medicine. – notice: 2025 International Society for Magnetic Resonance in Medicine |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7TK 8FD FR3 K9. P64 7X8 |
DOI | 10.1002/jmri.29564 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Neurosciences Abstracts Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) Engineering Research Database Biotechnology Research Abstracts Technology Research Database Neurosciences Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE ProQuest Health & Medical Complete (Alumni) |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1522-2586 |
EndPage | 1401 |
ExternalDocumentID | 39143028 10_1002_jmri_29564 JMRI29564 |
Genre | researchArticle Journal Article |
GrantInformation_xml | – fundername: Huangpu District Health System Talent Training Project funderid: 2023BJ01 – fundername: Shanghai Science and Technology Commission funderid: 22TS1400200 – fundername: Shanghai Oriental Talents Youth Project funderid: Sha Hua 2023 – fundername: National Natural Science Foundation of China funderid: 62001288 – fundername: Shanghai Oriental Talents Youth Project grantid: Sha Hua 2023 – fundername: Huangpu District Health System Talent Training Project grantid: 2023BJ01 – fundername: National Natural Science Foundation of China grantid: 62001288 – fundername: Shanghai Science and Technology Commission grantid: 22TS1400200 |
GroupedDBID | --- -DZ .3N .GA .GJ .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AAHQN AAIPD AAMNL AANHP AANLZ AAONW AASGY AAWTL AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABLJU ABOCM ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE FUBAC G-S G.N GNP GODZA H.X HBH HDBZQ HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RGB RIWAO RJQFR ROL RWI RX1 RYL SAMSI SUPJJ SV3 TEORI TWZ UB1 V2E V8K V9Y W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WIN WJL WOHZO WQJ WRC WUP WVDHM WXI WXSBR XG1 XV2 ZXP ZZTAW ~IA ~WT AAYXX AEYWJ AGHNM AGYGG CITATION AGQPQ CGR CUY CVF ECM EIF NPM 7QO 7TK 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY FR3 K9. P64 7X8 |
ID | FETCH-LOGICAL-c3934-54373b1a185642c3baaef616e2c8358d17c4f963a5df70959d7017d64e6cbf8b3 |
IEDL.DBID | DR2 |
ISSN | 1053-1807 1522-2586 |
IngestDate | Fri Jul 11 13:31:09 EDT 2025 Sun Jul 27 07:11:39 EDT 2025 Fri Apr 25 03:26:09 EDT 2025 Tue Jul 01 03:57:04 EDT 2025 Thu Apr 24 23:05:17 EDT 2025 Fri Feb 07 09:41:49 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | acceleration radial low‐rank cardiac T1 mapping tensor high resolution |
Language | English |
License | 2024 International Society for Magnetic Resonance in Medicine. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3934-54373b1a185642c3baaef616e2c8358d17c4f963a5df70959d7017d64e6cbf8b3 |
Notes | Juan Gao and Yiwen Gong contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-3409-395X 0009-0007-9700-5092 0000-0003-2551-3075 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/jmri.29564 |
PMID | 39143028 |
PQID | 3164232618 |
PQPubID | 1006400 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_3093172343 proquest_journals_3164232618 pubmed_primary_39143028 crossref_citationtrail_10_1002_jmri_29564 crossref_primary_10_1002_jmri_29564 wiley_primary_10_1002_jmri_29564_JMRI29564 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2025 |
PublicationDateYYYYMMDD | 2025-03-01 |
PublicationDate_xml | – month: 03 year: 2025 text: March 2025 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken, USA |
PublicationPlace_xml | – name: Hoboken, USA – name: United States – name: Nashville |
PublicationSubtitle | JMRI |
PublicationTitle | Journal of magnetic resonance imaging |
PublicationTitleAlternate | J Magn Reson Imaging |
PublicationYear | 2025 |
Publisher | John Wiley & Sons, Inc Wiley Subscription Services, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Subscription Services, Inc |
References | 2010; 12 2011 2015; 73 2020; 83 2018; 81 2022; 89 2016; 76 2022; 24 2012; 14 2002; 47 2013; 15 2019; 81 2018; 2 2009; 51 2023; 25 1952; 49 2019; 21 2015; 274 2008; 25 2014; 16 2022; 56 2022; 58 2024; 20 2002; 105 2017; 18 2023; 90 2012; 67 2014; 72 2021; 85 2014; 71 2023; 50 2018; 79 Biglands JD (e_1_2_7_7_1) 2012; 14 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_19_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_14_1 Guo R (e_1_2_7_17_1) 2022; 24 e_1_2_7_12_1 e_1_2_7_10_1 Lyu J (e_1_2_7_18_1) 2024; 20 Ridgway JP (e_1_2_7_13_1) 2010; 12 e_1_2_7_26_1 Lyu Z (e_1_2_7_39_1) 2023; 25 Wang XQ (e_1_2_7_11_1) 2019; 21 e_1_2_7_27_1 e_1_2_7_29_1 Xiang J (e_1_2_7_28_1) 2022; 58 Kellman P (e_1_2_7_6_1) 2012; 14 Zhu Y (e_1_2_7_4_1) 2018; 81 Kellman P (e_1_2_7_23_1) 2013; 15 Wang X (e_1_2_7_35_1) 2022; 89 Cerqueira MD (e_1_2_7_34_1) 2002; 105 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_21_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_37_1 e_1_2_7_38_1 |
References_xml | – volume: 83 start-page: 438 year: 2020 end-page: 451 article-title: Fast myocardial T‐1 mapping using cardiac motion correction publication-title: Magn Reson Med – volume: 79 start-page: 1387 year: 2018 end-page: 1398 article-title: Fast, precise, and accurate myocardial T‐1 mapping using a radial MOLLI sequence with FLASH readout publication-title: Magn Reson Med – year: 2011 – volume: 24 start-page: 24 year: 2022 article-title: Accelerated cardiac T1 mapping in four heartbeats with inline MyoMapNet: A deep learning‐based T1 estimation approach publication-title: J Cardiovasc Magn Reson – volume: 12 start-page: 12 year: 2010 article-title: Cardiovascular magnetic resonance physics for clinicians: Part I publication-title: J Cardiovasc Magn Reson – volume: 20 start-page: 1 year: 2024 end-page: 18 article-title: Iterative temporal‐spatial transformer‐based cardiac T1 mapping MRI reconstruction publication-title: ACM Trans Multim Comput Commun Appl – volume: 67 start-page: 470 year: 2012 end-page: 476 article-title: Automatic coil selection for streak artifact reduction in radial MRI publication-title: Magn Reson Med – volume: 81 start-page: 1714 year: 2019 end-page: 1725 article-title: Real‐time triggered RAdial single‐shot inversion recovery for arrhythmia‐insensitive myocardial T1 mapping: Motion phantom validation and in vivo comparison publication-title: Magn Reson Med – volume: 50 start-page: 7039 year: 2023 end-page: 7048 article-title: High resolution single‐shot myocardial imaging using bSSFP with wave encoding publication-title: Med Phys – volume: 14 start-page: 14 year: 2012 article-title: Cardiovascular magnetic resonance physics for clinicians: Part II publication-title: J Cardiovasc Magn Reson – volume: 81 start-page: 3705 year: 2019 end-page: 3719 article-title: High‐dimensionality undersampled patch‐based reconstruction (HD‐PROST) for accelerated multi‐contrast MRI publication-title: Magn Reson Med – volume: 2 start-page: 215 year: 2018 end-page: 226 article-title: Magnetic resonance multitasking for motion‐resolved quantitative cardiovascular imaging publication-title: Nat Biomed Eng – volume: 81 start-page: 1080 year: 2019 end-page: 1091 article-title: Simultaneous high‐resolution cardiac T(1) mapping and cine imaging using model‐based iterative image reconstruction publication-title: Magn Reson Med – volume: 73 start-page: 655 year: 2015 end-page: 661 article-title: Accelerating parameter mapping with a locally low rank constraint publication-title: Magn Reson Med – volume: 14 start-page: 14 year: 2012 article-title: Extracellular volume fraction mapping in the myocardium, part 1: Evaluation of an automated method publication-title: J Cardiovasc Magn Reson – volume: 25 start-page: 25 year: 2023 article-title: Free‐breathing simultaneous native myocardial T1, T2 and T1ρ mapping with Cartesian acquisition and dictionary matching publication-title: J Cardiovasc Magn Reson – volume: 47 start-page: 1202 year: 2002 end-page: 1210 article-title: Generalized autocalibrating partially parallel acquisitions (GRAPPA) publication-title: Magn Reson Med – volume: 18 start-page: 1034 year: 2017 end-page: 1040 article-title: Insight into hypertrophied hearts: A cardiovascular magnetic resonance study of papillary muscle mass and T1 mapping publication-title: Eur Heart J Cardiovasc Imaging – volume: 15 start-page: 15 year: 2013 article-title: Influence of off‐resonance in myocardial T1‐mapping using SSFP based MOLLI publication-title: J Cardiovasc Magn Reson – volume: 89 start-page: 1368 year: 2022 end-page: 1384 article-title: Free‐breathing myocardial T1 mapping using inversion‐recovery radial FLASH and motion‐resolved model‐based reconstruction publication-title: Magn Reson Med – volume: 85 start-page: 3211 year: 2021 end-page: 3226 article-title: Magnetic resonance parameter mapping using model‐guided self‐supervised deep learning publication-title: Magn Reson Med – volume: 105 start-page: 539 year: 2002 end-page: 542 article-title: Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart publication-title: Circ J – volume: 16 start-page: 2 year: 2014 article-title: T1‐mapping in the heart: Accuracy and precision publication-title: J Cardiovasc Magn Reson – volume: 58 start-page: 782 year: 2022 end-page: 791 article-title: Balanced steady‐state free precession cine MR imaging in the presence of cardiac devices: Value of interleaved radial linear combination acquisition with partial dephasing publication-title: J Magn Reson Imaging – volume: 71 start-page: 990 year: 2014 end-page: 1001 article-title: ESPIRiT—An eigenvalue approach to autocalibrating parallel MRI: Where SENSE meets GRAPPA publication-title: Magn Reson Med – volume: 51 start-page: 455 year: 2009 end-page: 500 article-title: Tensor decompositions and applications publication-title: Siam Rev – volume: 81 start-page: 3515 year: 2019 end-page: 3529 article-title: SUPER: A blockwise curve‐fitting method for accelerating MR parametric mapping with fast reconstruction publication-title: Magn Reson Med – volume: 25 start-page: 72 year: 2008 end-page: 82 article-title: Compressed sensing MRI publication-title: IEEE Signal Proc Mag – volume: 67 start-page: 1644 year: 2012 end-page: 1655 article-title: Motion correction for myocardial T1 mapping using image registration with synthetic image estimation publication-title: Magn Reson Med – volume: 274 start-page: 879 year: 2015 end-page: 887 article-title: Myocardial T1: Quantification by using an ECG‐triggered radial single‐shot inversion‐recovery MR imaging sequence publication-title: Radiology – volume: 56 start-page: 45 year: 2022 end-page: 62 article-title: Golden‐angle radial MRI: Basics, advances, and applications publication-title: J Magn Reson Imaging – volume: 81 start-page: 2450 year: 2019 end-page: 2463 article-title: Free‐breathing, non‐ECG, continuous myocardial T‐1 mapping with cardiovascular magnetic resonance multitasking publication-title: Magn Reson Med – volume: 90 start-page: 1380 year: 2023 end-page: 1395 article-title: Regularized SUPER‐CAIPIRINHA: Accelerating 3D variable flip‐angle T1 mapping with accurate and efficient reconstruction publication-title: Magn Reson Med – volume: 72 start-page: 959 year: 2014 end-page: 970 article-title: Calibrationless parallel imaging reconstruction based on structured low‐rank matrix completion publication-title: Magn Reson Med – volume: 81 start-page: 2644 year: 2018 end-page: 2654 article-title: Integrated motion correction and dictionary learning for free‐breathing myocardial T1 mapping publication-title: Magn Reson Med – volume: 21 start-page: 21 year: 2019 article-title: Model‐based myocardial T1 mapping with sparsity constraints using single‐shot inversion‐recovery radial FLASH cardiovascular magnetic resonance publication-title: J Cardiovasc Magn Reson – volume: 49 start-page: 409 year: 1952 end-page: 436 article-title: Methods of conjugate gradients for solving linear systems publication-title: J Res Natl Bur Stand – volume: 76 start-page: 1848 year: 2016 end-page: 1864 article-title: Acceleration of MR parameter mapping using annihilating filter‐based low rank hankel matrix (ALOHA) publication-title: Magn Reson Med – volume: 90 start-page: 1086 year: 2023 end-page: 1100 article-title: Motion‐corrected model‐based reconstruction for 2D myocardial T1 mapping publication-title: Magn Reson Med – ident: e_1_2_7_2_1 doi: 10.1002/mrm.27935 – ident: e_1_2_7_41_1 doi: 10.1002/jmri.28187 – ident: e_1_2_7_38_1 doi: 10.1002/mp.16471 – ident: e_1_2_7_37_1 doi: 10.1002/mrm.26081 – ident: e_1_2_7_21_1 doi: 10.1038/s41551-018-0217-y – volume: 25 start-page: 25 year: 2023 ident: e_1_2_7_39_1 article-title: Free‐breathing simultaneous native myocardial T1, T2 and T1ρ mapping with Cartesian acquisition and dictionary matching publication-title: J Cardiovasc Magn Reson – volume: 12 start-page: 12 year: 2010 ident: e_1_2_7_13_1 article-title: Cardiovascular magnetic resonance physics for clinicians: Part I publication-title: J Cardiovasc Magn Reson doi: 10.1186/1532-429X-12-71 – ident: e_1_2_7_15_1 doi: 10.1109/MSP.2007.914728 – ident: e_1_2_7_32_1 doi: 10.1002/mrm.29714 – volume: 21 start-page: 21 year: 2019 ident: e_1_2_7_11_1 article-title: Model‐based myocardial T1 mapping with sparsity constraints using single‐shot inversion‐recovery radial FLASH cardiovascular magnetic resonance publication-title: J Cardiovasc Magn Reson – ident: e_1_2_7_29_1 doi: 10.1002/mrm.23023 – ident: e_1_2_7_16_1 doi: 10.1002/mrm.25161 – ident: e_1_2_7_3_1 doi: 10.1002/mrm.27662 – ident: e_1_2_7_10_1 doi: 10.1002/mrm.27574 – ident: e_1_2_7_22_1 – ident: e_1_2_7_40_1 doi: 10.1002/mrm.28659 – volume: 24 start-page: 24 year: 2022 ident: e_1_2_7_17_1 article-title: Accelerated cardiac T1 mapping in four heartbeats with inline MyoMapNet: A deep learning‐based T1 estimation approach publication-title: J Cardiovasc Magn Reson – volume: 89 start-page: 1368 year: 2022 ident: e_1_2_7_35_1 article-title: Free‐breathing myocardial T1 mapping using inversion‐recovery radial FLASH and motion‐resolved model‐based reconstruction publication-title: Magn Reson Med doi: 10.1002/mrm.29521 – ident: e_1_2_7_20_1 doi: 10.1109/ACSSC.2011.6189958 – ident: e_1_2_7_31_1 doi: 10.1002/mrm.29699 – ident: e_1_2_7_24_1 doi: 10.1186/1532-429X-16-2 – ident: e_1_2_7_33_1 doi: 10.1002/mrm.10171 – ident: e_1_2_7_27_1 doi: 10.1137/07070111X – ident: e_1_2_7_36_1 doi: 10.1002/mrm.24997 – ident: e_1_2_7_5_1 doi: 10.1002/mrm.27474 – ident: e_1_2_7_14_1 doi: 10.1148/radiol.14131295 – ident: e_1_2_7_9_1 doi: 10.1002/mrm.27526 – volume: 15 start-page: 15 year: 2013 ident: e_1_2_7_23_1 article-title: Influence of off‐resonance in myocardial T1‐mapping using SSFP based MOLLI publication-title: J Cardiovasc Magn Reson doi: 10.1186/1532-429X-15-63 – ident: e_1_2_7_25_1 doi: 10.1002/mrm.24751 – ident: e_1_2_7_26_1 doi: 10.6028/jres.049.044 – ident: e_1_2_7_19_1 doi: 10.1002/mrm.27694 – volume: 58 start-page: 782 year: 2022 ident: e_1_2_7_28_1 article-title: Balanced steady‐state free precession cine MR imaging in the presence of cardiac devices: Value of interleaved radial linear combination acquisition with partial dephasing publication-title: J Magn Reson Imaging doi: 10.1002/jmri.28528 – ident: e_1_2_7_30_1 doi: 10.1002/mrm.23153 – volume: 81 start-page: 2644 year: 2018 ident: e_1_2_7_4_1 article-title: Integrated motion correction and dictionary learning for free‐breathing myocardial T1 mapping publication-title: Magn Reson Med doi: 10.1002/mrm.27579 – ident: e_1_2_7_8_1 doi: 10.1093/ehjci/jew187 – volume: 20 start-page: 1 year: 2024 ident: e_1_2_7_18_1 article-title: Iterative temporal‐spatial transformer‐based cardiac T1 mapping MRI reconstruction publication-title: ACM Trans Multim Comput Commun Appl doi: 10.1145/3643640 – volume: 14 start-page: 14 year: 2012 ident: e_1_2_7_6_1 article-title: Extracellular volume fraction mapping in the myocardium, part 1: Evaluation of an automated method publication-title: J Cardiovasc Magn Reson – ident: e_1_2_7_12_1 doi: 10.1002/mrm.26795 – volume: 14 start-page: 14 year: 2012 ident: e_1_2_7_7_1 article-title: Cardiovascular magnetic resonance physics for clinicians: Part II publication-title: J Cardiovasc Magn Reson doi: 10.1186/1532-429X-14-66 – volume: 105 start-page: 539 year: 2002 ident: e_1_2_7_34_1 article-title: Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart publication-title: Circ J doi: 10.1161/hc0402.102975 |
SSID | ssj0009945 |
Score | 2.4664528 |
Snippet | Background
Cardiac T1 mapping is valuable for evaluating myocardial fibrosis, yet its resolution and acquisition efficiency are limited, potentially obscuring... Cardiac T1 mapping is valuable for evaluating myocardial fibrosis, yet its resolution and acquisition efficiency are limited, potentially obscuring... BackgroundCardiac T1 mapping is valuable for evaluating myocardial fibrosis, yet its resolution and acquisition efficiency are limited, potentially obscuring... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1388 |
SubjectTerms | acceleration Adult Aged Algorithms cardiac T1 mapping Cardiomyopathies - diagnostic imaging Cardiomyopathy Computer Simulation Conspicuity Contrast Media Correlation coefficient Correlation coefficients Error analysis Evaluation Female Females Fibrosis Field strength Gadolinium Heart Heart - diagnostic imaging Heart rate high resolution Humans Image acquisition Image Interpretation, Computer-Assisted - methods Image Processing, Computer-Assisted - methods Image quality Image reconstruction low‐rank Magnetic Resonance Imaging - methods Male Mapping Middle Aged Muscles Nickel chloride Phantoms, Imaging Prospective Studies radial Rank tests Recovery Reproducibility of Results Statistical analysis Statistical tests tensor Tensors Young Adult |
Title | High Spatial‐Resolution and Acquisition‐Efficiency Cardiac MR T1 Mapping Based on Radial bSSFP and a Low‐Rank Tensor Constraint |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjmri.29564 https://www.ncbi.nlm.nih.gov/pubmed/39143028 https://www.proquest.com/docview/3164232618 https://www.proquest.com/docview/3093172343 |
Volume | 61 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4hDohLC32G0soVvVApSxLnsZZ6AcQKEKmqZZG4VJHt2NUWmm2XXSFx6qV3fiO_hBknmxUUVSq3SH7EcWbG39jjbwA-oLkLMhGFvrVoAokC3ZeZtL7QMkX_GdfwgO4O55_T_ZP48DQ5XYBPs7swNT9Eu-FGmuHsNSm4VBdbc9LQ7z_Gw06E8J7IQClYixBRf84dJYTLUIz4gfs0oJabNNqaN727Gv0FMe8iVrfk9J7C19lg60iTs850ojr66h6P42O_ZgWeNFiUbdfCswoLpnoGS3lz2v4c_lAQCKOkxSikN7-vaau_FlQmq5Jt61_TYR3yhYV7jouCLnKyXSd1muV9NghZLokC4hvbwfWyZNi2T3QI50wdH_e-uI4kOxpdUv-yOmMD9KtHY0aJRF36iskLOOntDXb3_SZtg6-54LGfEFuSCiUiAXRuNFdSGpuGqYk0wr1uGWY6tqj3MiltRtuQZYZmoUxjk2plu4q_hMVqVJnXwILAdFWphY4sOn4KnTlhVWISraQWoow92Jz9vkI3nOY0tvOiZmOOCprXws2rBxtt3Z81k8eDtdZnUlA02nxRcPQpUWrTsOvB-7YY9ZAOV2RlRlOsEwiEYhGPuQevaulpX8MFolIEch58dDLwj_cXh3n_wD2t_U_lN7AcUWJiFxy3DouT8dS8RbQ0Ue-cVtwC-oYSJQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VVgIutLzTBxjBBaRskziP9bGv1bZsKrTdSr1FtmOj0pKF7a4qceLCnd_YX9IZJ82qgJDgFsmvxJmxvxmPvwF4g8tdkIko9K3FJZAo0H2ZSesLLVO0n3EPD-jucH6Y9o_jg5PkpInNobswNT9E63AjzXDrNSk4OaQ356yhnz5PTjsR4vv4DixRSm-izt8dztmjhHA5ihFBcJ9eqWUnjTbnbW_vR7-BzNuY1W06veU6s-qF4yqkWJOzzmyqOvrbL0yO__09K_CggaNsq5afh7BgqkdwN28O3B_DD4oDYZS3GOX06vtP8vbXsspkVbIt_XV2Wkd9YeGeo6Ogu5xsxwmeZvmQjUKWS2KB-Mi2ccssGbYdEiPCOVNHR70PriPJBuNL6l9WZ2yEpvV4wiiXqMtgMX0Cx7290U7fbzI3-JoLHvsJESapUCIYQPtGcyWlsWmYmkgj4uuWYaZji6ovk9Jm5IksM1wZyjQ2qVa2q_hTWKzGlXkOLAhMV5Va6Mii7afQnhNWJSbRSmohytiDtzf_r9ANrTm923lREzJHBc1r4ebVg9dt3S81mccfa63fiEHRKPRFwdGsRMFNw64Hr9piVEU6X5GVGc-wTiAQjUU85h48q8WnHYYLBKaI5Tx454TgL-MXB_lw3z2t_kvll3CvP8oHxWD_8P0a3I8oT7GLlVuHxelkZjYQPE3VC6ci1wQAFkE |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIlVceD8CBYzgAlK2SZzHWuJS2q7a0lTVdiv1UkV-otKSLcuukDhx4c5v5Jcw42SzKiAkuEXyI44zM_7GHn8D8ALNXVSIJA6dQxNIFOihLKQLhZY5-s-4hkd0d7jcz7eP0t3j7HgJXs_vwjT8EN2GG2mGt9ek4BfGrS1IQ99_mJz2EoT36RW4muaRoMQNm8MFeZQQPkUxAgge0og6ctJkbdH28nL0G8a8DFn9mjO4ASfz0TahJme92VT19JdfiBz_93NuwvUWjLL1RnpuwZKtb8NK2R6334FvFAXCKGsxSumPr99pr7-RVCZrw9b1x9lpE_OFhVuejIJucrINL3aalUM2ilkpiQPiHXuDC6Zh2HZIfAjnTB0eDg58R5LtjT9T_7I-YyN0rMcTRplEff6K6V04GmyNNrbDNm9DqLngaZgRXZKKJUIB9G40V1Jal8e5TTTivb6JC506VHyZGVfQPqQp0C6YPLW5Vq6v-D1Yrse1fQAsimxfGS104tDzU-jNCacym2kltRAmDeDl_PdVuiU1p7GdVw0dc1LRvFZ-XgN43tW9aKg8_lhrdS4FVavOnyqOTiWKbR73A3jWFaMi0umKrO14hnUigVgs4SkP4H4jPd1ruEBYikgugFdeBv7y_mq3HO74p4f_UvkprBxsDqq9nf23j-BaQkmKfaDcKixPJzP7GJHTVD3xCvITutIU8A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High+Spatial-Resolution+and+Acquisition-Efficiency+Cardiac+MR+T1+Mapping+Based+on+Radial+bSSFP+and+a+Low-Rank+Tensor+Constraint&rft.jtitle=Journal+of+magnetic+resonance+imaging&rft.au=Gao%2C+Juan&rft.au=Gong%2C+Yiwen&rft.au=Emu%2C+Yixin&rft.au=Chen%2C+Zhuo&rft.date=2025-03-01&rft.issn=1522-2586&rft.eissn=1522-2586&rft_id=info:doi/10.1002%2Fjmri.29564&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-1807&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-1807&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-1807&client=summon |